
sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

C# Programming V:
Introduction to LINQ

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following
statement:

Copyright ©2011 sheepsqueezers.com. This

work is reproduced and distributed with the

permission of the copyright holder.

Legal Stuff

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is intended, and all outside source materials are
copyright of their respective author(s).

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

.NET Lecture Series

C#
Programming V:

Introduction
to LINQ

C#
Programming I:
Concepts of OOP

C#
Programming II:

Beginning C#

C#
Programming III:

Advanced C#

C#
Programming IV-1:

System
Namespace

C#
Programming IV-2:
System.Collections

Namespace

C#
Programming IV-3:
System.Collections.

Generic
Namespace

C#
Programming IV-4A:

System.Data
Namespace

C#
Programming IV-4B:
System.Data.Odbc

Namespace

C#
Programming IV-4C:
System.Data.OleDb

Namespace

C#
Programming IV-4E:

System.Data.SqlClient
Namespace

C#
Programming IV-4F:

System.Data.SqlTypes
Namespace

C#
Programming IV-5:

System.Drawing/(2D)
Namespace

C#
Programming IV-7:
System.Numerics

C#
Programming IV-6:

System.IO
Namespace

C#
Programming IV-8:
System.Text and

System.Text.
RegularExpressions

Namespaces

C#
Programming IV-4D:

Oracle.DataAccess.Client
Namespace

C#

Self-
Inflicted

Project #1

Address

Cleaning

C#

Self-
Inflicted

Project #2

Large

Intersection
Problem

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Charting Our Course
 What is LINQ?

 A Quick Romp through the SQL Forest

 .NET 3.0/3.5 Concepts

 Implicitly Typed Local Variables (var keyword)

 Anonymous Types and the new keyword

 Anonymous Methods

 Extension Methods

 Lambda Expressions

 LINQ to WHAT-WHAT-WHAT?

 LINQ to Datasets, LINQ to SQL, LINQ to XML, LINQ to XSD, LINQ to Entities, LINQ to Objects

 Two Types of LINQ Syntax: Query (aka, Expression) Syntax vs. Method Syntax

 LINQ Query Keywords – Part I (Projecting, Filtering and Ordering Operators)

 from, where, select, orderby, ascending, descending

 Example: from, where, select

 Example: orderby, ascending

 Example: All combinations of two arrays of numbers

 LINQ Query Keywords – Part II (Join Operators)

 join, on, in, equals

 Example: Joining Two Arrays

 LINQ Query Keywords – Part III (Grouping Operators)

 group...by, into

 Example: Grouping the List

 LINQ Query Keywords – Part IV (Additional Keywords)

 let

 Example: Using the let Keyword

 continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Charting Our Course (continued)
 LINQ Query Keywords – Part V (Set Operators)

 Set-Like Operations: Concat, Union, Intersect, Except
 Example: Using the Union operator

 Example: Using the Intersect Operator

 LINQ Query Keywords – Part VI (Filtering Operators)

 Take, Skip, TakeWhile, SkipWhile, Distinct

 Example: Using the Skip and Take Operators

 Example: Using the TakeWhile Operator

 Example: Using the Distinct Operator

 LINQ Query Keywords – Part VII (Element Operators)

 First, Last, ElementAt

 Example: Using the First Operator

 LINQ Query Keywords – Part VIII (Aggregation Operators)

 Average, Count, LongCount, Sum, Max, Min, Aggregate

 Example: Using the Average Operator

 Example: Using the Aggregate Operator

 LINQ to DataSets

 References

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

What is LINQ?

LINQ, or Language Integrated Query, allows you to code SQL-like queries
using C#, Visual Basic .NET, etc. and is a new feature of C# 3.0 and the
.NET Framework 3.5. This presentation assumes the reader is familiar with C#.

LINQ lets you query any collection implementing the IEnumerable<> interface
(which includes arrays, lists, XML DOM, local DataSets) or the IQueryable<>

interface (which includes remote DataSets from SQL Server, Oracle, etc.)

To use LINQ, you must reference the following namespaces in your code:

 using System.Linq;

 using System.Data.Linq; //For LINQ to SQL

 using System.Linq.Expressions;

LINQ contains several keywords (aka, operators) which allow you to modify a
collection through filtering, sorting, projection, aggregation, etc. This
presentation presents these operators along with simple examples.

As a motivational example, this programmer needed to read in a list of Excel
spreadsheet "tab" names and a list containing a subset of these tab names. The
idea was to merge these two lists to produce a final usable list for processing.
(The obvious way around this was to just use the list containing the subset of
tab names, but since these tab names are entered in by hand, there was no
guarantee that the tab names would exist in the workbook.) Two ways to code
this is to do loops or use a hash/dictionary...but, joining the two lists using LINQ
was a much more straight-forward approach...and at five lines of code...who
could argue?

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

A Quick Romp through the SQL Forest

Just as a reminder, here is what SQL Syntax looks like:

SELECT

 FROM ... JOIN ...

 WHERE/ON

 GROUP BY

 HAVING

 ORDER BY

The SELECT clause is used to select specific variables for inclusion into your final
resulting set of data.

The FROM clause is used to specify one or more source tables.

The WHERE/ON clauses are used to join and/or subset data from the tables
appearing on the FROM clause.

The GROUP BY clause is used to summarize the included data based on one or
more variables appearing on the SELECT clause as well as an aggregate
function.

The HAVING clause is used to subset the data AFTER the GROUP BY has
occurred. Think of HAVING as a WHERE clause that happens after the data has
been summarized by the GROUP BY clause.

The ORDER BY clause sorts the data on one or more variables.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

There are several new concepts include in the .NET Framework 3.0/3.5
that are used by LINQ and in this section we try to familiarize you with them.
Note that these concepts are not LINQ-Specific and you can use them in your
code outside of LINQ.

Implicitly Typed Local Variables (var Keyword)

A variable is explicitly typed when you specify a data type for the variable. For
example, the variable RowCnt below is explicitly typed as an Int32:

 Int32 RowCnt=10;

On the other hand, a variable is implicitly typed if you use the keyword var

instead of a proper data type:

 var RowCnt=10;

Note that var is not considered as a second-class citizen as far as data types go

and are just as strongly typed as variables whose type you specify explicitly.

Now, the compiler will attempt to determine the proper data type when it sees
var. Thus, the data type above will be Int32. Note that arrays can be declared
with implicit typing.

The use of var makes it possible to create anonymous types, as we shall see

later.

 continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

Anonymous Types and the new Keyword

An anonymous type provides a convenient way to encapsulate a set of read-only
properties into a single object without having to first explicitly define a type.

The type name is compiler-generated and not available to the programmer.

When an anonymous type is assigned to a variable, that variable must be
initialized with the var keyword

Anonymous types are created using the new operator with an object initializer.

For example, the following code creates an anonymous type atADDR and
initializes its properties to an address, city, state and zipcode:

 var atADDR = new { sADDR="123 Main Street",

 sCITY="Chicago",

 sSTATE="IL",

 sZIP="19042" };

Anonymous types are typically used in the select clause of a query expression in
LINQ to return a subset of the properties from each object in the source
sequence.

Anonymous types are reference types that derive directly from an object.

 continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

Anonymous Methods

In versions of C# before 2.0, the only way to declare a delegate was to use a
Named Method. C# 2.0 introduced Anonymous Methods and in C# 3.0 and later,
Lambda Expressions supersede Anonymous Methods as the preferred way to
write inline code.

An anonymous method provides a convenient way to encapsulate a set of read-
only properties into a single object without having to first explicitly define a type.

Creating anonymous methods is essentially a way to pass a code block as a
delegate parameter.

 See next slide for example.

 continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

Named and Anonymous Method Example

delegate void PerformCalculationDelegate(Int32 iMethodChoice);

class Program

{

 static void Main(string[] args)

 {

 //Perform the calculation using a named method

 PerformCalculationDelegate ndCalc = new PerformCalculationDelegate(Program.PerformCalculation);

 ndCalc(2);

 //Perform the calculation using an anonymous method

 PerformCalculationDelegate adCalc = delegate(Int32 imethod)

 {

 if (imethod == 1)

 {

 Console.WriteLine("100");

 }

 else if (imethod == 2)

 {

 Console.WriteLine("200");

 }

 };

 adCalc(2);

 }

 //The aforementioned named method.

 static void PerformCalculation(Int32 imethod)

 {

 if (imethod == 1)

 {

 Console.WriteLine("1");

 }

 else if (imethod == 2)

 {

 Console.WriteLine("2");

 }

 }

} continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

Extension Methods

Recall that when you first read about creating a derived class from a base class,
I’ll bet your first thought was: Cool, I can derive from the String class!

Sadly, the String class is sealed and you cannot derive from it. But, using
Extension Methods, you can create methods for Strings, Int32s, etc. and they

appear to be methods inherent in the class.

An extension methods is a static method of a static class where the this

modifier is applied to the first parameter. The type of the first parameter is the
type that is extended.

Extension Method Example

class Program

{

 static void Main(string[] args)

 {

 Console.WriteLine(TestEM.IsNonEmpty("FALSE").ToString());

 }

}

public static class TestEM

{

 //Extension Method: IsNonEmpty

 public static bool IsNonEmpty(this string s)

 {

 if (s.Length > 0) return true;

 return false;

 }

} continued

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

.NET 3.0/3.5 Concepts

Lambda Expressions

Recall from a few slides ago we talked about Anonymous Methods. Lambda
Expressions supersede Anonymous Methods as the preferred way to write inline
code. The syntax is a little strange as this example shows:

Example of Lambda Expressions

 delegate Int32 SquaredDelegate(Int32 iNum);

 class Program

 {

 static void Main(string[] args)

 {

 //Perform the calculation using Lambda Expressions

 SquaredDelegate sqr = (Int32 x) => x*x;

 Console.WriteLine(sqr(5));

 }

 }

Lambda Expressions are used with one of the two variations of LINQ syntax. We
talk about that later on in the presentation.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ to WHAT-WHAT-WHAT?

LINQ can be used to query a variety of sources such as objects, relational
databases, XML, etc. In this presentation, though, we will be focusing on LINQ
to Objects and LINQ to Datasets. Here is a list of LINQ query sources:

LINQ to Datasets

You can use LINQ to Datasets to query DataSet objects within your program.

LINQ to SQL

You use LINQ to SQL to query a relational database such as SQL Server or Oracle. You first connect to the
database using an ADO.NET data context.

LINQ to XML

You use LINQ to XML to query an XML DOM. The LINQ to XML programmer operates on generic XML trees.

LINQ to XSD

You use LINQ to XML to query XML given an XML Schema. The LINQ to XSD programmer operates on types
of XML trees; that is, instances of .NET types that model the XML types of a specific XML Schema. (As of
this writing, LINQ to XSD is in alpha release and available on Microsoft’s Website.)

LINQ to Entities

LINQ to Entities, allows developers to create flexible, strongly typed queries against the Entity Framework
object context by using LINQ expressions and the LINQ standard query operators directly from the
development environment.

LINQ to Objects

The term "LINQ to Objects" refers to the use of LINQ queries with any IEnumerable or IEnumerable<(Of
<(T>)>) collection directly, without the use of an intermediate LINQ provider or API such as LINQ to SQL or
LINQ to XML. You can use LINQ to query any enumerable collections such as List<(Of <(T>)>), Array, or
Dictionary<(Of <(TKey, TValue>)>). The collection may be user-defined or may be returned by a .NET
Framework API.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Two Types of LINQ Syntax

LINQ comes in two syntactic flavors: Query Syntax and Method Syntax.

The LINQ Query Syntax looks very similar to SQL and will probably be used by
the developer most of the time. The compiler translates Query Syntax into
Method Syntax.

The LINQ Method Syntax uses method calls instead of a SQL-like query
language.

You can program in either one since the results will be the same.

Note that there may be places where the Method Syntax can do things that the
Query Syntax can’t.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part I (Projecting, Filtering and Ordering Operators)

The Projection Operator is the select clause. This clause specifies the type

of values that will be produced when the query is executed.

The from clause begins a Query Expression and specifies the data source on
which the query will be run. The data source referenced in the from clause must
have a type of IEnumerable or IQueryable. If you have sub-queries, they must
also begin with a from clause.

The Filtering Operator is the where clause and is used to specify which elements

from the data source will be returned in the query expression. It applies a
Boolean condition (aka, predicate) to each source element and returns those for
which the specified condition is true.

Example: from, where, select

//Set up a simple array of numbers

Int32[] aNbrs = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

//LINQ Query using Query Syntax to pull back even numbers only. aNbr is called a Local Range Variable.

var queryEvenNbrs = from aNbr in aNbrs

 where aNbr % 2 == 0

 select aNbr;

//Write out the Even Numbers: 10, 8, 6, 4 and 2 in that order.

foreach (var v in queryEvenNbrs)

{

 Console.WriteLine(v.ToString());

}

//Output (on separate rows): 10, 8, 6, 4, 2.

Note: Here is where we use the .NET 3.0/3.5 concept of Implicitly Typed Local Variables.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part I (Projecting, Filtering and Ordering Operators)

The Ordering Operator is the orderby clause. This clause specifies the
ordering of the output sequence. You can sort ascending or descending.

Example: from, where, select

//Set up a simple array of numbers

Int32[] aNbrs = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

//LINQ Query using Query Syntax to pull back even numbers only

var queryEvenNbrs = from aNbr in aNbrs

 where aNbr % 2 == 0

 orderby aNbr ascending

 select aNbr;

//Write out the Even Numbers 2, 4, 6, 8, 10 in that order.

foreach (var v in queryEvenNbrs)

{

 Console.WriteLine(v.ToString());

}

//Output (on separate rows): 2, 4, 6, 8, 10

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part I (Projecting, Filtering and Ordering Operators)

You can specific the from clause multiple times within a query. The next

example shows that to produce all combinations of two arrays of numbers.

Example: All Combinations of Two Arrays of Numbers

//Set up two array of numbers

Int32[] aNbr1 = { 0,1,2,3,4 };

Int32[] aNbr2 = { 5,6,7,8,9 };

//LINQ Query using Query Syntax to create all combinations of the two arrays

var queryAllCombos = from a1 in aNbr1

 from a2 in aNbr2

 orderby a1 ascending,a2 ascending

 select a1.ToString() + "-" + a2.ToString();

//Write out the combinations

foreach (var v in queryAllCombos)

{

 Console.WriteLine(v.ToString());

}

//Output:

0-5

0-6

0-7

0-8

0-9

1-5

1-6

1-7

1-8

1-9

2-5

2-6

2-7

2-8

2-9

... and so on...

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part I (Projecting, Filtering and Ordering Operators)

As you saw in the previous example, we used the from clause twice along

with two local range variables: a1 and a2. In order to print the data, we had to
combine the two local range variables into one string. But, you can keep the
variables separate by creating an Anonymous Type (using the new keyword)
after the select clause:

Example: All Combinations of Two Arrays of Numbers

//Set up two array of numbers

Int32[] aNbr1 = { 0,1,2,3,4 };

Int32[] aNbr2 = { 5,6,7,8,9 };

//LINQ Query using Query Syntax to create all combinations of the two arrays

var queryAllCombos = from a1 in aNbr1

 from a2 in aNbr2

 orderby a1 ascending, a2 ascending

 select new { FirstVar = a1, SecondVar = a2 };

//Write out the combinations

foreach (var v in queryAllCombos)

{

 Console.WriteLine(v.FirstVar.ToString() + "/" + v.SecondVar.ToString());

}

//Output:

0/5

0/6

0/7

0/8

0/9

1/5

... and so on...

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part II (Join Operators)

Just like SQL’s INNER JOIN, you can use LINQ to join to objects together
based on one or more common variables. Below we join two arrays together to
get one array that contains the common values.

Example: Joining (Inner Join) Two Arrays

//Set up two array of numbers

Int32[] aNbr1 = { 0, 1, 2, 3, 4 };

Int32[] aNbr2 = { 5, 1, 7, 2, 9, 3 };

//LINQ Query using Query Syntax to inner join the two arrays

var queryAllCombos = from a1 in aNbr1

 join a2 in aNbr2 on a1 equals a2

 select a1;

//Write out the common elements

foreach (var v in queryAllCombos)

{

 Console.WriteLine(v.ToString());

}

//Output:

1

2

3

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part III (Grouping Operator)

In SQL, the GROUP BY clause reduces the output data by summarizing the

input data based on one or more variables and an aggregate function. The LINQ
group...by clause does NOT do this...the same number of source data elements
are output as are input. The LINQ group...by clause literally creates a grouping

of your input data elements by some group criteria. The output is a sequence
from the IGrouping(TKey,TElement) object which is a List of Lists. For example,
the key could be the first initial of the last name, or status as shown below.

Example: Grouping a List
//Create a class to hold each DMA territory along with the allergy alert status (NORMAL or ALERT).

public class AllergyAlert

{

 public String DMA_Name;

 public String Alert_Status;

}

static void Main(string[] args)

{

 //Set up the AllergyAlert list

 List<AllergyAlert> aaList = new List<AllergyAlert>

 {

 new AllergyAlert {DMA_Name="New Orleans", Alert_Status="NORMAL"},

 new AllergyAlert {DMA_Name="Chicago", Alert_Status="ALERT"},

 new AllergyAlert {DMA_Name="Philadelphia", Alert_Status="NORMAL"},

 new AllergyAlert {DMA_Name="San Diego", Alert_Status="ALERT"},

 new AllergyAlert {DMA_Name="New York", Alert_Status="NORMAL"},

 new AllergyAlert {DMA_Name="Miami", Alert_Status="ALERT"},

 new AllergyAlert {DMA_Name="Lubbock", Alert_Status="NORMAL"},

 new AllergyAlert {DMA_Name="Los Angeles", Alert_Status="ALERT"}

 };

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part III (Grouping Operator)
//LINQ Query using Query Syntax to group the resulting query based on the Alert_Status

 var queryGroupAlert = from aa in aaList

 group aa by aa.Alert_Status;

 //Write out the common elements

 foreach (var v in queryGroupAlert)

 {

 Console.WriteLine(v.Key.ToString());

 foreach (var w in v)

 {

 Console.WriteLine(@" =>" + w.DMA_Name);

 }

 }

}

//Output:

NORMAL

 =>New Orleans

 =>Philadelphia

 =>New York

 =>Lubbock

ALERT

 =>Chicago

 =>San Diego

 =>Miami

 =>Los Angeles

Now, you can sort the output data by the key by adding the orderby clause:
//Take note of the into clause! You need this if you want to perform additional operations by each group.

var queryGroupAlert = from aa in aaList

 group aa by aa.Alert_Status into g

 orderby g.Key

 select g;

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part IV (Additional Operators)

The let query expression is used to store the result of a sub-expression
in order to use it in subsequent clauses. The variable created with the let query

expression is a new range variable and is initialized with the result of the
expression you supply. Once initialized, the range variable cannot be used to
store another value, although it can be queried. In the following example, we
want to sort our DMAs by the number of words appearing in the DMA name. For
example, "Los Angeles" contains two words whereas "Philadelphia" contains one
word.

Example: Using the let Clause
//LINQ Query using Query Syntax to group the resulting query based on the Alert_Status

var queryGroupAlert = from aa in aaList

 let wrdcnt=(aa.DMA_Name).Split(' ')

 orderby wrdcnt.Count() descending

 select aa;

//Write out the common elements

foreach (var v in queryGroupAlert)

{

 Console.WriteLine(v.DMA_Name);

}

//Output:

New Orleans

San Diego

New York

Los Angeles

Chicago

Philadelphia

Miami

Lubbock

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part V (Set Operators)

In SQL, you can perform a UNION, UNION ALL, INTERSECT and MINUS/EXCEPT

on two tables. Union allows you to combine the data from two tables into one
table, but it eliminates the duplicates. UNION ALL is the same as UNION except
that it does not eliminate duplicates. INTERSECT returns common elements
between the two tables and MINUS/EXCEPT returns all rows from the first table
that are not in the second table. Notice that these operators are query methods!

In LINQ, you would use the operators union, concat, intersect and except.

Example: Using the Union Operator

//Set up two array of numbers

Int32[] aNbr1 = { 0, 1, 2, 3, 4 };

Int32[] aNbr2 = { 5, 1, 2, 4, 9 };

//Create an array to hold the union (distinct) of the two arrays

var AllNbr = aNbr1.Union<Int32>(aNbr2);

//Write out the values

foreach (Int32 iNbr in AllNbr)

{

 Console.WriteLine(iNbr.ToString());

}

//Output:

0

1

2

3

4

5

9

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part V (Set Operators)

Example: Using the Intersect Operator

//Set up two array of numbers

Int32[] aNbr1 = { 0, 1, 2, 3, 4 };

Int32[] aNbr2 = { 5, 1, 2, 4, 9 };

//Create an array to hold the intersection of the two arrays

var AllNbr = aNbr1.Intersect<Int32>(aNbr2);

//Write out the values

foreach (Int32 iNbr in AllNbr)

{

 Console.WriteLine(iNbr.ToString());

}

//Output:

1

2

4

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VI (Filtering Operators)

The Take, TakeWhile, Skip, SkipWhile and Distinct filtering operators
are methods that subset the source data in different ways. Both TakeWhile and
SkipWhile expect a predicate in Lambda Expression Syntax.

The Take method emits the first n elements and discards the rest. The
TakeWhile method emits the source data until the given predicate becomes
true. The Skip method discards the first n elements and then emits the rest.
The SkipWhile method emits the input sequence ignoring each item until the

given predicate is true and then it emits the rest of the elements.

The Distinct method returns the source data stripped of duplicates.

Example: Using the Skip and Take Operators
//Set up an array of numbers

Int32[] aNbr1 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

//Create an array to hold data by skipping the first 5 entries and taking the following 3 entries

var AllNbr = (from a in aNbr1

 orderby a

 select a).Skip(5).Take(3);

//Write out the values

foreach (var iNbr in AllNbr)

{

 Console.WriteLine(iNbr.ToString());

}

//Output:

5

6

7

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VI (Filtering Operators)

Example: Using the TakeWhile Operator

//Set up an array of numbers

Int32[] aNbr1 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

//Create an array to hold data that is less than 6

var AllNbr = (from a in aNbr1

 orderby a

 select a).TakeWhile(n => n < 6); //Take note of the Lambda Expression as the parameter

//Write out the values

foreach (var iNbr in AllNbr)

{

 Console.WriteLine(iNbr.ToString());

}

//Output:

0

1

2

3

4

5

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VI (Filtering Operators)

Example: Using the Distinct Operator

 //Set up an array of numbers

 Double[] aNbr1 = {0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5};

//Create an array to hold data that is less than 6

var AllNbr = aNbr1.Distinct();

//Write out the values

foreach (var iNbr in AllNbr)

{

 Console.WriteLine(iNbr.ToString());

}

//Output:

0

1

2

3

4

5

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VII (Element Operators)

The First method returns the first element in the sequence similar to
SELECT TOP 1 in SQL Server SQL. The Last method returns the last element in

the sequence similar to the SELECT TOP 1...ORDER BY DESCENDING in SQL.
The ElementAt method returns the element at the specified position.

Example: Using the First Operator
//Set up an array of numbers

String[] aNbr1 = {"mary","sally","phoebe","jezabel"};

//Create an array to hold data that is less than 6

var AllNbr = aNbr1.First();

//Write out the value

Console.WriteLine(AllNbr.ToString());

//Output:

mary

Note that you can also order the array before taking the first element:

//Set up an array of numbers

String[] aNbr1 = {"mary","sally","phoebe","jezabel"};

//Create an array to hold data that is less than 6

var AllNbr = aNbr1.OrderBy(n => n).First(); //Note that you still need a Lambda Expression for OrderBy!

//Write out the value

Console.WriteLine(AllNbr.ToString());

//Output:

jezabel

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VIII (Aggregation Operators)

As mentioned above, the GROUP BY in SQL allows you to aggregate the
source data based on the chosen group by variables as well as an aggregation
function. As indicated, the grouping operator does not do this, but you can do
something similar using the Aggregation Operators:

Count and LongCount count the number of items in the sequence. LongCount

returns a 64-bit integer.

Min and Max return the minimum number and maximum number in a sequence.

Sum returns the sum across the sequence and Average returns the average

across the sequence.

Aggregate allows you to plug in a custom accumulation algorithm for

implementing your own aggregation method.

Example: Using the Average Operator
//Set up an array of numbers

Int32[] aNbr1 = {1,2,3,4,5};

//Create an array to hold data that is less than 6

var AllNbr = aNbr1.Average();

//Write out the value

Console.WriteLine(AllNbr.ToString());

//Output:

3

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ Query Keywords – Part VIII (Aggregation Operators)

Example: Using the Aggregate Operator to Compute the Fibonacci Sequence

The Aggregate method takes three parameters:

 The first parameter is the seed value (in the example below it is zero and is
referred to as seed in the Lambda Expression).

 The second parameter takes a Lambda Expression.

 The (optional) third parameter (not used below) is used to project the final
result value from the accumulated value.

//Set up an array of numbers

Int32[] aNbr1 = {1,2,3,4,5,6,7,8,9,10};

//Create an array to hold the 10th element in the Fibonacci sequence.

//Take note of the Lambda Expression.

Int32 Fib10 = aNbr1.Aggregate(0,(seed,n) => (seed + n));

//Write out the value

Console.WriteLine("F(10) = " + Fib10.ToString());

//Output:

F(10)=55

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ to Datasets

LINQ to Datasets is very similar to what we’ve presented so far except
that the queries are on Datasets and not arrays, lists, etc. The big difference is
the use of the Field method to indicate what column you are referring to.

Example: LINQ to Datasets

//Create two tables

DataTable oDT1 = new DataTable();

DataTable oDT2 = new DataTable();

//Create a string column to Table 1 called TABNAME

DataColumn oDC_TABNAME1 = new DataColumn();

oDC_TABNAME1.DataType = System.Type.GetType("System.String");

oDC_TABNAME1.ColumnName = "TABNAME";

oDC_TABNAME1.AutoIncrement = false;

oDT1.Columns.Add(oDC_TABNAME1);

//Create a string column to Table 2 called TABNAME

DataColumn oDC_TABNAME2 = new DataColumn();

oDC_TABNAME2.DataType = System.Type.GetType("System.String");

oDC_TABNAME2.ColumnName = "TABNAME";

oDC_TABNAME2.AutoIncrement = false;

oDT2.Columns.Add(oDC_TABNAME2);

//Add data to Table 1

DataRow oDataRow11;

oDataRow11 = oDT1.NewRow();

DataRow oDataRow12;

oDataRow12 = oDT1.NewRow();

DataRow oDataRow13;

oDataRow13 = oDT1.NewRow();

...continued...

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

LINQ to Datasets
oDataRow11["TABNAME"] = "ALPHA";

oDT1.Rows.Add(oDataRow11);

oDataRow12["TABNAME"] = "BETA";

oDT1.Rows.Add(oDataRow12);

oDataRow13["TABNAME"] = "GAMMA";

oDT1.Rows.Add(oDataRow13);

//Add data to Table 2

DataRow oDataRow21;

oDataRow21 = oDT2.NewRow();

DataRow oDataRow22;

oDataRow22 = oDT2.NewRow();

oDataRow21["TABNAME"] = "ALPHA";

oDT2.Rows.Add(oDataRow21);

oDataRow22["TABNAME"] = "GAMMA";

oDT2.Rows.Add(oDataRow22);

//Use Linq to perform an inner join between the two tables

var ret = from t1 in oDT1.AsEnumerable()

 join t2 in oDT2.AsEnumerable()

 on t1.Field<String>("TABNAME") equals t2.Field<String>("TABNAME")

 select new

 {

 TABNAME = t1.Field<String>("TABNAME")

 };

foreach (var item in ret)

{

 Console.WriteLine(item.TABNAME);

}

//Output:

ALPHA

GAMMA

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

References

 Introducing Microsoft LINQ, Paolo Pialorsi and Marco Russo, Microsoft Press,
ISBN:9780735623910

 LINQ Pocket Reference, Joseph Albahari and Ben Albahari, O'Reilly Press,
ISBN:9780596519247

Click the book titles below to read more about these books on Amazon.com's website.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.amazon.com/gp/product/0735623910?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0735623910
http://www.amazon.com/gp/product/0596519249?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596519249

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

Support sheepsqueezers.com
If you found this information helpful, please consider

supporting sheepsqueezers.com. There are several

ways to support our site:

 Buy me a cup of coffee by clicking on the

following link and donate to my PayPal

account: Buy Me A Cup Of Coffee?.

 Visit my Amazon.com Wish list at the following

link and purchase an item:

http://amzn.com/w/3OBK1K4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

