
sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

C# Programming IV-8:
System.Text and

System.Text.RegularExpressions
Namespaces

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following
statement:

Copyright ©2011 sheepsqueezers.com. This

work is reproduced and distributed with the

permission of the copyright holder.

Legal Stuff

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is intended, and all outside source materials are
copyright of their respective author(s).

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

.NET Lecture Series

C#
Programming V:

Introduction
to LINQ

C#
Programming I:
Concepts of OOP

C#
Programming II:

Beginning C#

C#
Programming III:

Advanced C#

C#
Programming IV-1:

System
Namespace

C#
Programming IV-2:
System.Collections

Namespace

C#
Programming IV-3:
System.Collections.

Generic
Namespace

C#
Programming IV-4A:

System.Data
Namespace

C#
Programming IV-4B:
System.Data.Odbc

Namespace

C#
Programming IV-4C:
System.Data.OleDb

Namespace

C#
Programming IV-4E:

System.Data.SqlClient
Namespace

C#
Programming IV-4F:

System.Data.SqlTypes
Namespace

C#
Programming IV-5:

System.Drawing/(2D)
Namespace

C#
Programming IV-7:
System.Numerics

C#
Programming IV-6:

System.IO
Namespace

C#
Programming IV-8:
System.Text and

System.Text.
RegularExpressions

Namespaces

C#
Programming IV-4D:

Oracle.DataAccess.Client
Namespace

C#

Self-
Inflicted

Project #1

Address

Cleaning

C#

Self-
Inflicted

Project #2

Large

Intersection
Problem

http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Charting Our Course
 The System.Text and System.Text.RegularExpressions Namespace

 What Next?

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text/System.Text.RegularExpressions Namespaces

The System.Text namespace is defined by Microsoft as follows:

The System.Text namespace contains classes that represent ASCII and Unicode
character encodings; abstract base classes for converting blocks of characters to
and from blocks of bytes; and a helper class that manipulates and formats String
objects without creating intermediate instances of String.

Note that most of the classes available in System.Text are esoteric (such as

converting blocks of characters to and from blocks of bytes), so we will skip over
those classes. One class in particular, the StringBuilder class, behaves a lot
like the String class, but whereas the String class creates immutable strings,
the StringBuilder does not. Depending on the amount of string manipulation
you are doing, the StringBuilder class may be the more efficient choice.

The System.Text.RegularExpressions namespace is defined by Microsoft as
follows:

The System.Text.RegularExpressions namespace contains classes that provide
access to the .NET Framework regular expression engine. The namespace
provides regular expression functionality that may be used from any platform or
language that runs within the Microsoft .NET Framework. In addition to the types
contained in this namespace, the System.Configuration.RegexStringValidator
class enables you to determine whether a particular string conforms to a regular
expression pattern.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text/System.Text.RegularExpressions Namespaces

When writing code using this namespace, include the following line at the top of
your C# program:

using System.Text;

using System.Text.RegularExpressions;

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text Namespace

 Classes

 StringBuilder

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

StringBuilder

The StringBuilder class represents a mutable string of characters. According

to Microsoft's website, specifically referring to performance considerations: The
Concat and AppendFormat methods both concatenate new data to an existing
String or StringBuilder object. A String object concatenation operation always
creates a new object from the existing string and the new data. A StringBuilder
object maintains a buffer to accommodate the concatenation of new data. New
data is appended to the end of the buffer if room is available; otherwise, a new,
larger buffer is allocated, data from the original buffer is copied to the new
buffer, then the new data is appended to the new buffer. The performance of a
concatenation operation for a String or StringBuilder object depends on how
often a memory allocation occurs. A String concatenation operation always
allocates memory, whereas a StringBuilder concatenation operation only
allocates memory if the StringBuilder object buffer is too small to accommodate
the new data. Consequently, the String class is preferable for a concatenation
operation if a fixed number of String objects are concatenated. In that case, the
individual concatenation operations might even be combined into a single
operation by the compiler. A StringBuilder object is preferable for a
concatenation operation if an arbitrary number of strings are concatenated; for
example, if a loop concatenates a random number of strings of user input.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

StringBuilder

Constructors
• StringBuilder() - Initializes a new instance of the StringBuilder class

• StringBuilder(Int32) - Initializes a new instance of the StringBuilder class using the specified capacity

• StringBuilder(String) - Initializes a new instance of the StringBuilder class using the specified string

• StringBuilder(Int32, Int32) - Initializes a new instance of the StringBuilder class that starts with a specified capacity and can
grow to a specified maximum

• StringBuilder(String, Int32) - Initializes a new instance of the StringBuilder class using the specified string and capacity

• StringBuilder(String, Int32, Int32, Int32) - Initializes a new instance of the StringBuilder class from the specified substring
and capacity

Properties
• Capacity - Gets or sets the maximum number of characters that can be contained in the memory allocated by the current

instance

• Chars - Gets or sets the character at the specified character position in this instance

• Length - Gets or sets the length of the current StringBuilder object

• MaxCapacity - Gets the maximum capacity of this instance

Methods
• Append(Boolean) - Appends the string representation of a specified Boolean value to this instance

• Append(Byte) - Appends the string representation of a specified 8-bit unsigned integer to this instance

• Append(Char) - Appends the string representation of a specified Unicode character to this instance

• Append(Char[]) - Appends the string representation of the Unicode characters in a specified array to this instance

• Append(Decimal) - Appends the string representation of a specified decimal number to this instance

• Append(Double) - Appends the string representation of a specified double-precision floating-point number to this instance

• Append(Int16) - Appends the string representation of a specified 16-bit signed integer to this instance

• Append(Int32) - Appends the string representation of a specified 32-bit signed integer to this instance

• Append(Int64) - Appends the string representation of a specified 64-bit signed integer to this instance

• Append(Object) - Appends the string representation of a specified object to this instance

• Append(SByte) - Appends the string representation of a specified 8-bit signed integer to this instance

• Append(Single) - Appends the string representation of a specified single-precision floating-point number to this instance

• Append(String) - Appends a copy of the specified string to this instance

• Append(UInt16) - Appends the string representation of a specified 16-bit unsigned integer to this instance

• Append(UInt32) - Appends the string representation of a specified 32-bit unsigned integer to this instance

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

StringBuilder

Methods (continued)
• Append(UInt64) - Appends the string representation of a specified 64-bit unsigned integer to this instance

• Append(Char, Int32) - Appends a specified number of copies of the string representation of a Unicode character to this
instance

• Append(Char[], Int32, Int32) - Appends the string representation of a specified subarray of Unicode characters to this
instance

• Append(String, Int32, Int32) - Appends a copy of a specified substring to this instance

• AppendFormat(String, Object) - Appends the string returned by processing a composite format string, which contains zero or
more format items, to this instance. Each format item is replaced by the string representation of a single argument

• AppendFormat(String, Object[]) - Appends the string returned by processing a composite format string, which contains zero or
more format items, to this instance. Each format item is replaced by the string representation of a corresponding argument in
a parameter array

• AppendFormat(IFormatProvider, String, Object[]) - Appends the string returned by processing a composite format string,
which contains zero or more format items, to this instance. Each format item is replaced by the string representation of a
corresponding argument in a parameter array using a specified format provider

• AppendFormat(String, Object, Object) - Appends the string returned by processing a composite format string, which contains
zero or more format items, to this instance. Each format item is replaced by the string representation of either of two
arguments

• AppendFormat(String, Object, Object, Object) - Appends the string returned by processing a composite format string, which
contains zero or more format items, to this instance. Each format item is replaced by the string representation of either of
three arguments

• AppendLine() - Appends the default line terminator to the end of the current StringBuilder object

• AppendLine(String) - Appends a copy of the specified string followed by the default line terminator to the end of the current
StringBuilder object

• Clear - Removes all characters from the current StringBuilder instance

• CopyTo - Copies the characters from a specified segment of this instance to a specified segment of a destination Char array

• EnsureCapacity - Ensures that the capacity of this instance of StringBuilder is at least the specified value

• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Equals(StringBuilder) - Returns a value indicating whether this instance is equal to a specified object

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• Insert(Int32, Boolean) - Inserts the string representation of a Boolean value into this instance at the specified character
position

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

StringBuilder

Methods (continued)
• Insert(Int32, Byte) - Inserts the string representation of a specified 8-bit unsigned integer into this instance at the specified

character position

• Insert(Int32, Char) - Inserts the string representation of a specified Unicode character into this instance at the specified
character position

• Insert(Int32, Char[]) - Inserts the string representation of a specified array of Unicode characters into this instance at the
specified character position

• Insert(Int32, Decimal) - Inserts the string representation of a decimal number into this instance at the specified character
position

• Insert(Int32, Double) - Inserts the string representation of a double-precision floating-point number into this instance at the
specified character position

• Insert(Int32, Int16) - Inserts the string representation of a specified 16-bit signed integer into this instance at the specified
character position

• Insert(Int32, Int32) - Inserts the string representation of a specified 32-bit signed integer into this instance at the specified
character position

• Insert(Int32, Int64) - Inserts the string representation of a 64-bit signed integer into this instance at the specified character
position

• Insert(Int32, Object) - Inserts the string representation of an object into this instance at the specified character position

• Insert(Int32, SByte) - Inserts the string representation of a specified 8-bit signed integer into this instance at the specified
character position

• Insert(Int32, Single) - Inserts the string representation of a single-precision floating point number into this instance at the
specified character position

• Insert(Int32, String) - Inserts a string into this instance at the specified character position

• Insert(Int32, UInt16) - Inserts the string representation of a 16-bit unsigned integer into this instance at the specified
character position

• Insert(Int32, UInt32) - Inserts the string representation of a 32-bit unsigned integer into this instance at the specified
character position

• Insert(Int32, UInt64) - Inserts the string representation of a 64-bit unsigned integer into this instance at the specified
character position

• Insert(Int32, String, Int32) - Inserts one or more copies of a specified string into this instance at the specified character
position

• Insert(Int32, Char[], Int32, Int32) - Inserts the string representation of a specified subarray of Unicode characters into this
instance at the specified character position

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• Remove - Removes the specified range of characters from this instance

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

StringBuilder

Methods (continued)
• Replace(Char, Char) - Replaces all occurrences of a specified character in this instance with another specified character

• Replace(String, String) - Replaces all occurrences of a specified string in this instance with another specified string

• Replace(Char, Char, Int32, Int32) - Replaces, within a substring of this instance, all occurrences of a specified character with
another specified character

• Replace(String, String, Int32, Int32) - Replaces, within a substring of this instance, all occurrences of a specified string with
another specified string

• ToString() - Converts the value of this instance to a String. (Overrides Object.ToString().)

• ToString(Int32, Int32) - Converts the value of a substring of this instance to a String

For example,

using System;

using System.Text;

class MainProgram {

 public static void Main() {

 StringBuilder oSB_NAME = new StringBuilder("John Doe");

 StringBuilder oSB_ADDRESS = new StringBuilder("123 Main Street, Anytown, PA 12345-6789");

 StringBuilder oSB_FULLINFO = new StringBuilder();

 oSB_FULLINFO.AppendFormat("{0} lives at {1}.",oSB_NAME,oSB_ADDRESS);

 Console.WriteLine(oSB_FULLINFO.ToString());

 }

}

results in: John Doe lives at 123 Main Street, Anytown, PA 12345-6789.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Unlike searching for text within a string, you can use regular expressions to
perform matches based on complex matching rules. Now, before you dive into
regular expressions, you need to know the Regular Expressions Language
Elements, how to use Character Classes as well as how to use Alternation. This
information is available on Microsoft's website at http://msdn.microsoft.com/en-
us/library/az24scfc.aspx. Please note that character classes such as [:digit:]
and [:alpha:] are not available. You will have to use the backslashed forms
such as \d for digits and \w for alphabetic characters.

Now, at the very simplest, you can use the IsMatch static method of the Regex
class within the System.Text.RegularExpressions namespace. For example,

using System;

using System.Text.RegularExpressions;

class MainProgram {

 public static void Main() {

 String sADDRESS_1 = "123 Main Street";

 String sRegex_1 = @"^\d+\s+\w+\s+(Street|Str|St)$";

 Boolean bIsMatch_1 = Regex.IsMatch(sADDRESS_1,sRegex_1);

 Console.WriteLine("Match? {0}",bIsMatch_1); //Match? True

 String sADDRESS_2 = "12345 John F. Kennedy Blvd";

 String sRegex_2 = @"^\d+\s+\w+\s+(Blvd|Street|Str|St)$";

 Boolean bIsMatch_2 = Regex.IsMatch(sADDRESS_2,sRegex_2);

 Console.WriteLine("Match? {0}",bIsMatch_2); //Match? False

 }

}

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

The first regular expression ^\d+\s+\w+\s+(Street|Str|St)$ indicates that we

are looking for our string to match this pattern. This pattern means the
following:

• ^  indicates, along with the $, that the search must match the entire string
provided to it and not just a substring within the full string.

• \d+  indicates what must follow next is a series of one or more (+) digits
(\d).

• \s+  indicates that what must now follow is a series of one or more (+)
whitespace characters (\s) such as blanks, line feeds, tabs, etc.

• \w+  indicates that one or more (+) alphabetic characters (\w) must follow.

• \s+  indicates that what must now follow is a series of one or more (+)
whitespace characters (\s) such as blanks, line feeds, tabs, etc.

• (Street|Str|St)  indicates that one of the provided words must match. The
vertical bar along with the parentheses indicate that an alternation is
occurring.

• $  indicates, along with the ^, that the search must match the entire string
provided to it and not just a substring within the full string.

Now, you don't have to use the ^ and $, and can search within your string to
determine if a match occurred. For example,

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
using System;

using System.Text.RegularExpressions;

class MainProgram {

 public static void Main() {

 String sADDRESS = "123 Main Street";

 String sRegex = @"\d+";

 Boolean bIsMatch = Regex.IsMatch(sADDRESS,sRegex);

 Console.WriteLine("Match? {0}",bIsMatch); //Match? True

 }

}

Here we are just looking for one or more digits within the string sADDRESS.
Naturally, the 123 will be found and the result returned is a True.

But, what if you wanted to know what the matched number was? In this case,
you can use the static Match method of the Regex class. Be aware that the
Match method returns a Match object and not a string!! Here is an example (see

next slide).

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
using System;

using System.Text.RegularExpressions;

class MainProgram {

 public static void Main() {

 String sADDRESS = "123 Main Street";

 String sRegex = @"\d+";

 Match oDigitsMatch = Regex.Match(sADDRESS,sRegex);

 Console.WriteLine("The match is: {0}.",oDigitsMatch.Value); //The match is: 123.

 }

}

In the code above we get back the number 123 as our matched value. But,
what happens if there are several numbers within our string? Here we can
iterate through the matches using the NextMatch method:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"\d+";

 Match oDigitsMatch = Regex.Match(sADDRESS,sRegex);

 while(oDigitsMatch.Success) {

 Console.WriteLine("This match is: {0}.",oDigitsMatch.Value);

 oDigitsMatch = oDigitsMatch.NextMatch();

 }

This match is: 123.

This match is: 456.

This match is: 789.

This match is: 012.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Now, you can collect all of your matches at once, rather than performing the
while loop as shown on the previous slide, by using the Matches method. This
method returns a MatchCollection object rather than a Method object. For

example,

 String sADDRESS = "123 456 789 012";

 String sRegex = @"\d+";

 MatchCollection oDigitsMatchColl = Regex.Matches(sADDRESS,sRegex);

 foreach(Match oMatch in oDigitsMatchColl) {

 Console.WriteLine("This match is: {0}.",oMatch.Value);

 }

Be aware that if you want to copy the resulting collection to an array, say, you
can use the CopyTo method:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"\d+";

 MatchCollection oDigitsMatchColl = Regex.Matches(sADDRESS,sRegex);

 Object[] asMatches = new Object[4];

 oDigitsMatchColl.CopyTo(asMatches,0);

 for(Int32 indx=0;indx<asMatches.Length;indx++) {

 Console.WriteLine(asMatches[indx]);

 }

Note that, for some reason, I can only get the Object datatype to work; the
String datatype does not work in the code above!!

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

So far, we've seen how to determine if a regular expression has a match within a
text string. But, what happens if you want to know what that match was. In
this case, we have to modify the regular expression slightly so that we can
"capture" that information. For example, the regular expression to capture the
each number in the text string "123 456 789 012" would look like this:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"(\d+)";

 MatchCollection oMatches = Regex.Matches(sADDRESS,sRegex);

 Console.WriteLine(oMatches[0].Groups[1].Captures[0].Value);

The result of this is the output "123". Notice that the regular expression is NOT
constrained with the ^ and $ symbols, so our regular expression will match each
number (123, 456, 789 and 012) in turn if we used a foreach loop or the
NextMatch method. In this case, though, we gather the first match
(oMatches[0]), the first group (Groups[1]) and the first capture (Capture[0]).
Note that the group corresponds to the parenthesized part of the regular
expression. Note, also, that we are starting at the second element ([1]) rather
than the traditional first element ([0]). This is because Groups[0] returns the
complete match…we will see more about this in a moment.

Here is another example:

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
 String sADDRESS = "123 456 789 012";

 String sRegex = @"(\d+)";

 MatchCollection oMatches = Regex.Matches(sADDRESS,sRegex);

 foreach(Match oMatch in oMatches) {

 Console.WriteLine(oMatch.Groups[1].Captures[0].Value);

 }

In this case, the output we receive is:

123

456

789

012

Note that the foreach loop is giving us back each individual match based on our
regular expression. In this case, we get back 123 first, then 456, and so on.
And it is because of this that there is only one group, (\d+), and only one
capture. Another way to approach this is to change the regular expression to
match more than one thing at a time, as in this example:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"(\d+\s*)+";

 Match oMatch = Regex.Match(sADDRESS,sRegex);

 GroupCollection oGrpColl = oMatch.Groups;

 Group oGrp = oGrpColl[1];

 Console.WriteLine("Captured ==>{0}<==",oGrp.Captures[0].Value);

 Console.WriteLine("Captured ==>{0}<==",oGrp.Captures[1].Value);

 Console.WriteLine("Captured ==>{0}<==",oGrp.Captures[2].Value);

 Console.WriteLine("Captured ==>{0}<==",oGrp.Captures[3].Value);

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

The output is:

Captured ==>123 <==

Captured ==>456 <==

Captured ==>789 <==

Captured ==>012<==

Notice that we are using Regex.Match and not Regex.Matches. This will allow

us to gather all of the groups and captures in the group collection.

Another way to approach this is to add additional groups to our regular
expression:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"(\d+)\s+(\d+)\s+(\d+)\s+(\d+)";

 Match oMatch = Regex.Match(sADDRESS,sRegex);

 Console.WriteLine(oMatch.Groups[0].Captures[0].Value); //Full match when Groups[0] at 0-index.

 Console.WriteLine(oMatch.Groups[1].Captures[0].Value); //[1] ==> first set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[2].Captures[0].Value); //[2] ==> second set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[3].Captures[0].Value); //[3] ==> third set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[4].Captures[0].Value); //[4] ==> fourth set of parens (i.e., group)

The output is:
123 456 789 012

123

456

789

012

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

In this case, we have four groups, one for each of the corresponding sets of
numbers. Now, each group will only capture one thing instead of multiple things
as shown on Slide #20. Notice, again, that Group[0] is a special case and can
be ignored; Groups should start counting at 1, not 0.

Here is another example using an address. In this case, we have three groups,
one for house number, one for street name, and one for street type:

 String sADDRESS = "123 Main Street";

 String sRegex = @"^(\d+)\s+(\w+)\s+(\w+)$";

 Match oMatch = Regex.Match(sADDRESS,sRegex);

 Console.WriteLine(oMatch.Groups[0].Captures[0].Value);

 Console.WriteLine(oMatch.Groups[1].Captures[0].Value);

 Console.WriteLine(oMatch.Groups[2].Captures[0].Value);

 Console.WriteLine(oMatch.Groups[3].Captures[0].Value);

The results are:

123 Main Street

123

Main

Street

As you can see, Groups[0] is just the full match and can be ignored. Note that
each group will have only one capture which is why we used Captures[0].Value
throughout this example.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Now, up to this point we have been using static methods of the Regex class
instead of instantiating an object using one of the Regex constructors. According

to Microsoft's website: Static regular expression methods are recommended as
an alternative to repeatedly instantiating a regular expression object with the
same regular expression. You should replace…inefficient code with a call to
static Regex methods. This eliminates the need to instantiate a Regex object

each time you want to call a pattern-matching method, and enables the regular
expression engine to retrieve a compiled version of the regular expression from
its cache. By default, the last 15 most recently used static regular expression
patterns are cached. For applications that require a larger number of cached
static regular expressions, the size of the cache can be adjusted by setting the
Regex.CacheSize property.

Now, when you use an instantiated Regex object, you can specify the option
RegexOptions.Compiled in the constructor to force your regular expression

compiled. According to Microsoft's website: Regular expression patterns that are
not bound to the regular expression engine through the specification of the
Compiled option are interpreted. When a regular expression object is
instantiated, the regular expression engine converts the regular expression to a
set of operation codes. When an instance method is called, the operation codes
are converted to MSIL and executed by the JIT compiler. Similarly, when a static
regular expression method is called and the regular expression cannot be found
in the cache, the regular expression engine converts the regular expression to a
set of operation codes and stores them in the cache. It then converts these
operation codes to MSIL so that the JIT compiler can execute them.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Interpreted regular expressions reduce startup time at the cost of slower
execution time. Because of this, they are best used when the regular expression
is used in a small number of method calls, or if the exact number of calls to
regular expression methods is unknown but is expected to be small. As the
number of method calls increases, the performance gain from reduced startup
time is outstripped by the slower execution speed.

Regular expression patterns that are bound to the regular expression engine
through the specification of the Compiled option are compiled. This means that,
when a regular expression object is instantiated, or when a static regular
expression method is called and the regular expression cannot be found in the
cache, the regular expression engine converts the regular expression to an
intermediary set of operation codes, which it then converts to MSIL. When a
method is called, the JIT compiler executes the MSIL. In contrast to interpreted
regular expressions, compiled regular expressions increase startup time but
execute individual pattern-matching methods faster. As a result, the
performance benefit that results from compiling the regular expression increases
in proportion to the number of regular expression methods called.

To summarize, we recommend that you use interpreted regular expressions
when you call regular expression methods with a specific regular expression
relatively infrequently. You should use compiled regular expressions when you
call regular expression methods with a specific regular expression relatively
frequently.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

The exact threshold at which the slower execution speeds of interpreted regular
expressions outweigh gains from their reduced startup time, or the threshold at
which the slower startup times of compiled regular expressions outweigh gains
from their faster execution speeds, is difficult to determine. It depends on a
variety of factors, including the complexity of the regular expression and the
specific data that it processes. To determine whether interpreted or compiled
regular expressions offer the best performance for your particular application
scenario, you can use the Stopwatch class to compare their execution times.

Now, you can get further performance increases by compiling your regular
expressions to an assembly. According to Microsoft's website: The .NET
Framework also enables you to create an assembly that contains compiled
regular expressions. This moves the performance hit of regular expression
compilation from run time to design time. However, it also involves some
additional work: You must define the regular expressions in advance and compile
them to an assembly. The compiler can then reference this assembly when
compiling source code that uses the assembly’s regular expressions. Each
compiled regular expression in the assembly is represented by a class that
derives from Regex. To compile regular expressions to an assembly, you call the
Regex.CompileToAssembly(RegexCompilationInfo[], AssemblyName) method
and pass it an array of RegexCompilationInfo objects that represent the regular
expressions to be compiled, and an AssemblyName object that contains
information about the assembly to be created.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

We recommend that you compile regular expressions to an assembly in the
following situations:

• If you are a component developer who wants to create a library of reusable
regular expressions.

• If you expect your regular expression's pattern-matching methods to be
called an indeterminate number of times -- anywhere from once or twice to
thousands or tens of thousands of times. Unlike compiled or interpreted
regular expressions, regular expressions that are compiled to separate
assemblies offer performance that is consistent regardless of the number of
method calls.

If you are using compiled regular expressions to optimize performance, you
should not use reflection to create the assembly, load the regular expression
engine, and execute its pattern-matching methods. This requires that you avoid
building regular expression patterns dynamically, and that you specify any
pattern-matching options (such as case-insensitive pattern matching) at the
time the assembly is created. It also requires that you separate the code that
creates the assembly from the code that uses the regular expression.

Now, to increase the cache size, do this:

Regex.CacheSize=100; //up the cache to hold 100 regexes.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

To use the RegexOptions.Compiled option, instantiate a Regex using the
constructor that allows for RegexOptions:

 String sADDRESS = "123 456 789 012";

 String sRegex = @"(\d+)\s+(\d+)\s+(\d+)\s+(\d+)";

 Regex oRE = new Regex(sRegex,RegexOptions.Compiled);

 Match oMatch = oRE.Match(sADDRESS);

 Console.WriteLine(oMatch.Groups[0].Captures[0].Value); //Full match when Groups[0] at 0-index.

 Console.WriteLine(oMatch.Groups[1].Captures[0].Value); //[1] ==> first set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[2].Captures[0].Value); //[2] ==> second set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[3].Captures[0].Value); //[3] ==> third set of parens (i.e., group)

 Console.WriteLine(oMatch.Groups[4].Captures[0].Value); //[4] ==> fourth set of parens (i.e., group)

NOTE: YOU MAY WANT TO TRY YOUR CODE WITH AND WITHOUT THE
RegexOptions.Compiled SWITCH! I FOUND THAT WHEN THE SWITCH IS

TURNED ON, THE FIRST CALL TO THE MATCH METHOD TAKES A WHILE
TO COMPILE AND RETURN RESULTS WHEREAS WHEN THE SWITCH IS
OFF THAT FIRST CALL TO MATCH TAKES NO TIME AT ALL!! IN EITHER
CASE, THE SECOND CALL TO MATCH TAKES NO TIME AT ALL!!

Now, if you are dealing with a few regular expressions, the code above is
probably sufficiently fast. Please read this article for more information:
http://msdn.microsoft.com/en-us/library/gg578045.aspx.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://msdn.microsoft.com/en-us/library/gg578045.aspx
http://msdn.microsoft.com/en-us/library/gg578045.aspx
http://msdn.microsoft.com/en-us/library/gg578045.aspx
http://msdn.microsoft.com/en-us/library/gg578045.aspx

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

We seen several times how to access capture groups in a regular expression
using the parentheses. But, what happens if you need to search for one of
several alternate choices? This is where alternation comes in. No, alternation
has nothing to do with tailoring clothes. Alternation allows you to specify a pipe-
delimited series of characters as alternatives within your regular expression. For
example, in the example below, I am going to try to match the text fred1wilma
and fred2wilma using a single regular expression with alternation:

 String sTEXT="fred2wilma";

 Regex oRE=new Regex(@"^fred(1|2)wilma$");

 Match oMatch = oRE.Match(sTEXT);

 Console.WriteLine(oMatch.Success);

 if (oMatch.Success) {

 Console.WriteLine("Match ==>{0}<==",oMatch.Value);

 }

 sTEXT="fred1wilma";

 oMatch = oRE.Match(sTEXT);

 Console.WriteLine(oMatch.Success);

 if (oMatch.Success) {

 Console.WriteLine("Match ==>{0}<==",oMatch.Value);

 }

As you see, the regular expression contains the alternation (1|2) which is a

pipe-delimited series of numbers, in this case 1 and 2. This is equivalent to the
two regular expressions "^fred1wilma$" and "^fred2wilma$". Now, alternation

is nice because you can specify words instead of just characters or numbers.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Below, we're going to break apart the address "123 Main Street" into the house
number, the street name and the street type. Note that we are using alternation
as well as capture groups to find all of this information.

Note that the parentheses for alternation also act to indicate a capture group.

 String sADDRESS="123 MAIN STREET";

 Regex oRE=new Regex(@"^(\d+) +(\w+) +(STREET|STR|ST|PLACE|PL|DRIVE|DR){1} *$");

 Match oMatch = oRE.Match(sADDRESS);

 if (oMatch.Success) {

 GroupCollection oGrpColl = oMatch.Groups;

 Console.WriteLine("Captured ==>{0}<==",oGrpColl[1].Captures[0].Value);

 Console.WriteLine("Captured ==>{0}<==",oGrpColl[2].Captures[0].Value);

 Console.WriteLine("Captured ==>{0}<==",oGrpColl[3].Captures[0].Value);

 }

The results are:

Captured ==>123<==

Captured ==>MAIN<==

Captured ==>STREET<==

Take note that in the alternation above, we are specifying several alternatives to
the word STREET as well as PLACE and DRIVE. We are also specifying {1} to
indicate that only one of the alternatives should occur.

Now, there may be times where you don't want the alternation parentheses to
signify a capture group. You can turn off the capture group for alternation…

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

…by specifying a ?: just after the left alternation parenthesis. For example,

 Regex oRE=new Regex(@"^(\d+) +(\w+) +(?:STREET|STR|ST|PLACE|PL|DRIVE|DR){1} *$");

This will indicate two capture groups instead of three in the previous example
since the last one has been turned off.

Now, alternation has a nice feature called conditional matching. This allows you
to provide an expression and if that expression is matched, the first conditional
regular expression is executed; otherwise, the second conditional regular
expression is executed. This is coded as follows:

(?(conditional_expression) found_regex | notfound_regex)

Take note of the very important vertical bar as well as ending parenthesis!

For example, suppose you have a file containing either the United States Social
Security Number (NNN-NN-NNNN) or the United Kingdom National Insurance
Number (LL-NNNNNNL), where L is a letter and N is a number. We can use a
conditional regular expression to return either the US Social Security Number or
the UK National Insurance Number. See the example on the next slide.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
 Regex oRE=new Regex(@"^(?(\d{3}-\d{2}-\d{4})\d{3}-\d{2}-\d{4}|\w{2}\d{6}\w{1})$");

 String sID1="111-22-3333";

 Match oMatch = oRE.Match(sID1);

 if (oMatch.Success) {

 Console.WriteLine("Found ==>{0}<==",oMatch.Value);

 }

 String sID2="AB123456C";

 oMatch = oRE.Match(sID2);

 if (oMatch.Success) {

 Console.WriteLine("Found ==>{0}<==",oMatch.Value);

 }

As you can see, the regex code is rather confusing. Here is the regex in living
color:

 Regex oRE=new Regex(@"^(?(\d{3}-\d{2}-\d{4})\d{3}-\d{2}-\d{4}|\w{2}\d{6}\w{1})$");

The purple code is the conditional expression; the green code is the regular
expression that is executed if the conditional expression is true; the red code is
the regular expression that is executed if the conditional expression is false. The
results are:

Found ==>111-22-3333<==

Found ==>AB123456C<==

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

For the last few slides we've been talking about grouping constructs using one or
more pairs of regular expressions contained within a pair of parentheses. Now,
by default, each pair of grouping construct parentheses is assigned an internal
number assigned for each left parenthesis starting at the beginning of the
regular expression. Rather than just using C# code such as
GrpColl[1].Captures[0].Value, you can refer to each capture as \1, \2, and

so on within the same regular expression; or, $1, $2, and so on such when using
the Replace method.

For example, say we are given a string containing "111-222". We can use
regular expressions to easily "flip" the string into "222-111" by using the
following code:

 String sTEXT="111-222";

 Regex oRE = new Regex(@"^(\d{1,})-(\d{1,})$");

 String sFlipped = oRE.Replace(sTEXT,@"$2-$1"); // $1 is first capture, $2 is second capture

 Console.WriteLine(sFlipped); //222-111

Note that in this case, we are using $1 to refer to the first capture (the 111 in
the example string) and $2 to refer to the second capture (the 222 in the
example string).

When you need to refer to a capture within the same regular expression, you
use the \1, etc. construct instead of the $1, etc. construct. For example…

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
 String sTEXT="111-222-111";

 Regex oRE = new Regex(@"^(\d{1,})-(\d{1,})-\1$");

 String sFlipped = oRE.Replace(sTEXT,@"$2-$1($1)");

 Console.WriteLine(sFlipped); //222-111(111)

Note that, in this case, I have place a \1 in the regular expression. This \1
refers to the first capture.

Now, instead of allowing .NET to use the automatic numbering for captures, you
can give each capture a name. Within the capture group, place a ? followed by a
less than symbol (<), followed by your desired name, followed by a greater than
symbol (>): ?<NAME>. Now, to refer to this named capture in the Replace

method, use a $, followed by a left brace ({), followed by the name, followed by
a right brace (}): ${NAME}. The code starts to get more cluttered and

complicated, but this option is there for the emotionally scarred. Here is an
example:

 String sTEXT="111-222";

 Regex oRE = new Regex(@"^(?<NBR1>\d{1,})-(?<NBR2>\d{1,})$");

 String sFlipped = oRE.Replace(sTEXT,@"${NBR2}-${NBR1}");

 Console.WriteLine(sFlipped); //222-111

You can specify a series of options within a capture group to enable or disable
certain functionality. For example, to ignore case, use the ?i: option within your
capture group: (?i:regex). See the next slide for an example.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
 String sTEXT="AaA-BbB";

 Regex oRE = new Regex(@"^((?i:[A-Z]+))-((?i:[A-Z]+))$");

 String sFlipped = oRE.Replace(sTEXT,@"$2-$1");

 Console.WriteLine(sFlipped); //BbB-AaA

Note the I surrounded each capture group by a second set of
parentheses. This is because when I tried this example without the
surrounding set of parentheses, there were no captures captured.

Now, at this point, you've probably surmised that as each part of a regular
expression is matched, a "pointer" to the input string is moving forward to the
next part of the regex to be analyzed. This is true for everything we've talked
about except for conditional matching. You'll notice that with conditional
matching, the condition tested does NOT force the "pointer" within the input
string to move forward; but, when either the true or false regular expression is
executed, then the pointer begins to move forward again. The condition portion
of the conditional matching regular expression is called a zero-width assertion.
There are four zero-width assertions available to you:

1. Zero-Width Positive Lookahead Assertions

2. Zero-Width Negative Lookahead Assertions

3. Zero-Width Positive Lookbehind Assertions

4. Zero-Width Negative Lookbehind Assertions

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions

Zero-Width Positive Lookahead Assertions

A zero-width positive lookahead assertion is coded in a regular expression as
follows: (?=subexpression). According to Microsoft's website: For a regular

expression match to be successful, the input string must match the regular
expression pattern in subexpression, although the matched substring is not
included in the match result. Based on this information, a conditional matching
(which we talked about a few slides back) can be coded like this:

(?(?=expression)yes|no)

as well as the original form we learned:

(?(expression)yes|no)

Either form works.

Below is an example of zero-width positive lookahead assertions.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Introduction to Regular Expressions
 String sTEXT="AB123456C";

 Regex oRE = new Regex(@"^(?=[AB]{2})(.*)$");

 Match oMatch = oRE.Match(sTEXT);

 if (oMatch.Success) {

 GroupCollection oGrpColl = oMatch.Groups;

 Console.WriteLine("Captured ==>{0}<==",oGrpColl[1].Captures[0].Value);

 }

The code in the red above is the zero-width assertion and it is asserting that the
product number must start with exactly two letters, AA, AB, BA, or BB. Note
that the first capture group is actually the (.*) and NOT the assertion itself!
Also, note that the result is Captured ==>AB123456C<==. As you see, the first

two letters are captured as well…this indicates that the pointer within the input
string did NOT move despite there being additional regex code within
parentheses before the (.*).

For the rest of the assertions, please refer to the Grouping Constructs webpage
at http://msdn.microsoft.com/en-us/library/bs2twtah(v=VS.100).aspx.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://msdn.microsoft.com/en-us/library/bs2twtah(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/bs2twtah(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/bs2twtah(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/bs2twtah(v=VS.100).aspx

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 CaptureCollection

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

CaptureCollection

The CaptureCollection class represents the set of captures made by a single

capturing group. According to Microsoft's website: The collection is immutable
(read-only) and has no public constructor. The CaptureCollection object contains
one or more Capture objects. Instances of the CaptureCollection class are
returned by the following properties:

• The Group.Captures property. Each member of the collection represents a
substring captured by a capturing group. If a quantifier is not applied to a
capturing group, the CaptureCollection includes a single Capture object that
represents the same captured substring as the Group object. If a quantifier is
applied to a capturing group, the CaptureCollection includes one Capture
object for each captured substring, and the Group object provides information
only about the last captured substring.

• The Match.Captures property. In this case, the collection consists of a single
Capture object that provides information about the match as a whole. That is,
the CaptureCollection object provides the same information as the Match
object.

To iterate through the members of the collection, you should use the collection
iteration construct provided by your language (such as foreach in C# and For
Each…Next in Visual Basic) instead of retrieving the enumerator that is returned
by the GetEnumerator method.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

CaptureCollection

Properties
• Count - Gets the number of substrings captured by the group.

• IsReadOnly - Gets a value that indicates whether the collection is read only.

• IsSynchronized - Gets a value that indicates whether access to the collection is synchronized (thread-safe).

• Item - Gets an individual member of the collection.

• SyncRoot - Gets an object that can be used to synchronize access to the collection.

Methods
• CopyTo - Copies all the elements of the collection to the given array beginning at the given index.

• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetEnumerator - Provides an enumerator that iterates through the collection.

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• ToString - Returns a string that represents the current object. (Inherited from Object.)

Extension Methods
• AsParallel - Enables parallelization of a query. (Defined by ParallelEnumerable.)

• AsQueryable - Converts an IEnumerable to an IQueryable. (Defined by Queryable.)

• Cast<TResult> - Converts the elements of an IEnumerable to the specified type. (Defined by Enumerable.)

• OfType<TResult> - Filters the elements of an IEnumerable based on a specified type. (Defined by Enumerable.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 Capture

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Capture

The Capture class represents the represents the results from a single successful

subexpression capture. According to Microsoft's website: A Capture object is
immutable and has no public constructor. Instances are returned through the
CaptureCollection object, which is returned by the Match.Captures and
Group.Captures properties. However, the Match.Captures property provides
information about the same match as the Match object. If you do not apply a
quantifier to a capturing group, the Group.Captures property returns a
CaptureCollection with a single Capture object that provides information about
the same capture as the Group object. If you do apply a quantifier to a capturing
group, the Group.Index, Group.Length, and Group.Value properties provide
information only about the last captured group, whereas the Capture objects in
the CaptureCollection provide information about all subexpression captures.

Properties
• Index - The position in the original string where the first character of the captured substring was found.

• Length - The length of the captured substring.

• Value - Gets the captured substring from the input string.

Methods
• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• ToString - Gets the captured substring from the input string. (Overrides Object.ToString().)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 GroupCollection

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

GroupCollection

The GroupCollection class represents returns the set of captured groups in a

single match. According to Microsoft's website: The collection is immutable
(read-only) and has no public constructor. A GroupCollection object is returned
by the Match.Groups property. The collection contains one or more
System.Text.RegularExpressions.Group objects. If the match is successful, the
first element in the collection contains the Group object that corresponds to the
entire match. Each subsequent element represents a captured group, if the
regular expression includes capturing groups. If the match is unsuccessful, the
collection contains a single System.Text.RegularExpressions.Group object whose
Success property is false and whose Value property equals String.Empty. To
iterate through the members of the collection, you should use the collection
iteration construct provided by your language (such as foreach in C# and For
Each…Next in Visual Basic) instead of retrieving the enumerator that is returned
by the GetEnumerator method.

Properties
• Count - Returns the number of groups in the collection.

• IsReadOnly - Gets a value that indicates whether the collection is read-only.

• IsSynchronized - Gets a value that indicates whether access to the GroupCollection is synchronized (thread-safe).

• Item[Int32] - Enables access to a member of the collection by integer index.

• Item[String] - Enables access to a member of the collection by string index.

• SyncRoot - Gets an object that can be used to synchronize access to the GroupCollection.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

GroupCollection

Methods
• CopyTo - Copies all the elements of the collection to the given array beginning at the given index.

• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetEnumerator - Provides an enumerator that iterates through the collection.

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• ToString - Returns a string that represents the current object. (Inherited from Object.)

Extension Methods
• AsParallel - Enables parallelization of a query. (Defined by ParallelEnumerable.)

• AsQueryable - Converts an IEnumerable to an IQueryable. (Defined by Queryable.)

• Cast<TResult> - Converts the elements of an IEnumerable to the specified type. (Defined by Enumerable.)

• OfType<TResult> - Filters the elements of an IEnumerable based on a specified type. (Defined by Enumerable.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 Group

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Group

The Group class represents the results from a single capturing group. According

to Microsoft's website: A capturing group can capture zero, one, or more strings
in a single match because of quantifiers. (For more information, see Quantifiers.)
All the substrings matched by a single capturing group are available from the
Group.Captures property. Information about the last substring captured can be
accessed directly from the Value and Index properties. (That is, the Group
instance is equivalent to the last item of the collection returned by the Captures
property, which reflects the last capture made by the capturing group.)

Properties
• Captures - Gets a collection of all the captures matched by the capturing group, in innermost-leftmost-first order (or

innermost-rightmost-first order if the regular expression is modified with the RegexOptions.RightToLeft option). The collection
may have zero or more items.

• Index - The position in the original string where the first character of the captured substring was found. (Inherited from
Capture.)

• Length - The length of the captured substring. (Inherited from Capture.)

• Success - Gets a value indicating whether the match is successful.

• Value - Gets the captured substring from the input string. (Inherited from Capture.)

Methods
• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• Synchronized - Returns a Group object equivalent to the one supplied that is safe to share between multiple threads.

• ToString - Gets the captured substring from the input string. (Inherited from Capture.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 MatchCollection

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

MatchCollection

The MatchCollection class represents the set of successful matches found by

iteratively applying a regular expression pattern to the input string. According to
Microsoft's website: The collection is immutable (read-only) and has no public
constructor. The Regex.Matches method returns a MatchCollection object. The
collection contains zero or more System.Text.RegularExpressions.Match objects.
If the match is successful, the collection is populated with one
System.Text.RegularExpressions.Match object for each match found in the input
string. If the match is unsuccessful, the collection contains no
System.Text.RegularExpressions.Match objects, and its Count property equals
zero. When applying a regular expression pattern to a particular input string,
the regular expression engine uses either of two techniques to build the
MatchCollection object:

• Direct evaluation: The MatchCollection object is populated all at once, with all
matches resulting from a particular call to the Regex.Matches method. This
technique is used when the collection's Count property is accessed. It typically
is the more expensive method of populating the collection and entails a
greater performance hit.

• Lazy evaluation: The MatchCollection object is populated as needed on a
match-by-match basis. It is equivalent to the regular expression engine
calling the Regex.Match method repeatedly and adding each match to the
collection. This technique is used when the collection is accessed through its
GetEnumerator method, or when it is accessed using the foreach statement
(in C#) or the For Each...Next statement (in Visual Basic).

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

MatchCollection

To iterate through the members of the collection, you should use the collection
iteration construct provided by your language (such as foreach in C# and For
Each…Next in Visual Basic) instead of retrieving the enumerator that is returned
by the GetEnumerator method.

Properties
• Count - Gets the number of matches.

• IsReadOnly - Gets a value that indicates whether the collection is read only.

• IsSynchronized - Gets a value indicating whether access to the collection is synchronized (thread-safe).

• Item - Gets an individual member of the collection.

• SyncRoot - Gets an object that can be used to synchronize access to the collection.

Methods
• CopyTo - Copies all the elements of the collection to the given array starting at the given index.

• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetEnumerator - Provides an enumerator that iterates through the collection.

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• ToString - Returns a string that represents the current object. (Inherited from Object.)

Extension Methods
• AsParallel - Enables parallelization of a query. (Defined by ParallelEnumerable.)

• AsQueryable - Converts an IEnumerable to an IQueryable. (Defined by Queryable.)

• Cast<TResult> - Converts the elements of an IEnumerable to the specified type. (Defined by Enumerable.)

• OfType<TResult> - Filters the elements of an IEnumerable based on a specified type. (Defined by Enumerable.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 Match

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Match

The Match class represents the results from a single regular expression match.

According to Microsoft's website: The Match object is immutable and has no
public constructor. An instance of the Match class is returned by the
Regex.Match method and represents the first pattern match in a string.
Subsequent matches are represented by Match objects returned by the
Match.NextMatch method. In addition, a MatchCollection object that consists of
zero, one, or more Match objects is returned by the Regex.Matches method. If
the Regex.Matches method fails to match a regular expression pattern in an
input string, it returns an empty MatchCollection object. You can then use a
foreach construct in C# or a For Each construct in Visual Basic to iterate the
collection. If the Regex.Match method fails to match the regular expression
pattern, it returns a Match object that is equal to Match.Empty. You can use the
Success property to determine whether the match was successful.

Properties
• Captures - Gets a collection of all the captures matched by the capturing group, in innermost-leftmost-first order (or

innermost-rightmost-first order if the regular expression is modified with the RegexOptions.RightToLeft option). The collection
may have zero or more items. (Inherited from Group.)

• Empty - Gets the empty group. All failed matches return this empty match.

• Groups - Gets a collection of groups matched by the regular expression.

• Index - The position in the original string where the first character of the captured substring was found. (Inherited from
Capture.)

• Length - The length of the captured substring. (Inherited from Capture.)

• Success - Gets a value indicating whether the match is successful. (Inherited from Group.)

• Value - Gets the captured substring from the input string. (Inherited from Capture.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Match

Methods
• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• NextMatch - Returns a new Match object with the results for the next match, starting at the position at which the last match
ended (at the character after the last matched character).

• Result - Returns the expansion of the specified replacement pattern.

• Synchronized - Returns a Match instance equivalent to the one supplied that is suitable to share between multiple threads.

• ToString - Gets the captured substring from the input string. (Inherited from Capture.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 Regex

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Regex

The Regex class represents an immutable regular expression. According to

Microsoft's website: The Regex class represents the .NET Framework's regular
expression engine. It can be used to quickly parse large amounts of text to find
specific character patterns; to extract, edit, replace, or delete text substrings; or
to add the extracted strings to a collection to generate a report.

Note Microsoft's comment: If your primary interest is to validate a string by
determining whether it conforms to a particular pattern, you can use the
System.Configuration.RegexStringValidator class.

Note that if you instantiate a Regex object, the regular expression you provide
cannot be changed at a later time. If you use the static methods, rather than
instantiating a Regex object, you can change the regular expression. Note that
performance is comparable between the instance and static methods. But, if you
are using a lot of regular expressions, be aware that the first 15 regular
expressions are cached and after that they are recompiled. To prevent this,
increase the Regex.CacheSize property!

Constructors
• Regex() - Initializes a new instance of the Regex class

• Regex(String) - Initializes and compiles a new instance of the Regex class for the specified regular expression

• Regex(SerializationInfo, StreamingContext) - Initializes a new instance of the Regex class by using serialized data

• Regex(String, RegexOptions) - Initializes and compiles a new instance of the Regex class for the specified regular expression,
with options that modify the pattern

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Regex

Properties
• CacheSize - Gets or sets the maximum number of entries in the current static cache of compiled regular expressions

• Options - Returns the options passed into the Regex constructor

• RightToLeft - Gets a value indicating whether the regular expression searches from right to left.

Methods
• CompileToAssembly(RegexCompilationInfo[], AssemblyName) - Compiles one or more specified Regex objects to a named

assembly

• CompileToAssembly(RegexCompilationInfo[], AssemblyName, CustomAttributeBuilder[]) - Compiles one or more specified
Regex objects to a named assembly with the specified attributes

• CompileToAssembly(RegexCompilationInfo[], AssemblyName, CustomAttributeBuilder[], String) - Compiles one or more
specified Regex objects and a specified resource file to a named assembly with the specified attributes

• Equals(Object) Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Escape - Escapes a minimal set of characters (\, *, +, ?, |, {, [, (,), ^, $,., #, and white space) by replacing them with their
escape codes. This instructs the regular expression engine to interpret these characters literally rather than as metacharacters

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetGroupNames - Returns an array of capturing group names for the regular expression

• GetGroupNumbers - Returns an array of capturing group numbers that correspond to group names in an array

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• GroupNameFromNumber - Gets the group name that corresponds to the specified group number

• GroupNumberFromName - Returns the group number that corresponds to the specified group name

• InitializeReferences - Infrastructure. Used by a Regex object generated by the CompileToAssembly method

• IsMatch(String) - Indicates whether the regular expression specified in the Regex constructor finds a match in a specified
input string

• IsMatch(String, Int32) - Indicates whether the regular expression specified in the Regex constructor finds a match in the
specified input string, beginning at the specified starting position in the string

• IsMatch(String, String) - Indicates whether the specified regular expression finds a match in the specified input string

• IsMatch(String, String, RegexOptions) - Indicates whether the specified regular expression finds a match in the specified input
string, using the specified matching options

• Match(String) - Searches the specified input string for the first occurrence of the regular expression specified in the Regex
constructor

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Regex

Methods (continued)
• Match(String, Int32) - Searches the input string for the first occurrence of a regular expression, beginning at the specified

starting position in the string

• Match(String, String) - Searches the specified input string for the first occurrence of the specified regular expression

• Match(String, Int32, Int32) - Searches the input string for the first occurrence of a regular expression, beginning at the
specified starting position and searching only the specified number of characters

• Match(String, String, RegexOptions) - Searches the input string for the first occurrence of the specified regular expression,
using the specified matching options

• Matches(String) - Searches the specified input string for all occurrences of a regular expression

• Matches(String, Int32) - Searches the specified input string for all occurrences of a regular expression, beginning at the
specified starting position in the string

• Matches(String, String) - Searches the specified input string for all occurrences of a specified regular expression

• Matches(String, String, RegexOptions) - Searches the specified input string for all occurrences of a specified regular
expression, using the specified matching options

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• Replace(String, String) - Within a specified input string, replaces all strings that match a regular expression pattern with a
specified replacement string

• Replace(String, MatchEvaluator) - Within a specified input string, replaces all strings that match a specified regular expression
with a string returned by a MatchEvaluator delegate

• Replace(String, String, Int32) - Within a specified input string, replaces a specified maximum number of strings that match a
regular expression pattern with a specified replacement string

• Replace(String, String, String) - Within a specified input string, replaces all strings that match a specified regular expression
with a specified replacement string

• Replace(String, String, MatchEvaluator) - Within a specified input string, replaces all strings that match a specified regular
expression with a string returned by a MatchEvaluator delegate

• Replace(String, MatchEvaluator, Int32) - Within a specified input string, replaces a specified maximum number of strings that
match a regular expression pattern with a string returned by a MatchEvaluator delegate

• Replace(String, String, Int32, Int32) - Within a specified input substring, replaces a specified maximum number of strings that
match a regular expression pattern with a specified replacement string

• Replace(String, String, String, RegexOptions) - Within a specified input string, replaces all strings that match a specified
regular expression with a specified replacement string. Specified options modify the matching operation

• Replace(String, String, MatchEvaluator, RegexOptions) - Within a specified input string, replaces all strings that match a
specified regular expression with a string returned by a MatchEvaluator delegate. Specified options modify the matching
operation

• Replace(String, MatchEvaluator, Int32, Int32) - Within a specified input substring, replaces a specified maximum number of
strings that match a regular expression pattern with a string returned by a MatchEvaluator delegate

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Regex

Methods (continued)
• Split(String) - Splits the specified input string at the positions defined by a regular expression pattern specified in the Regex

constructor

• Split(String, Int32) - Splits the specified input string a specified maximum number of times at the positions defined by a
regular expression specified in the Regex constructor

• Split(String, String) - Splits the input string at the positions defined by a regular expression pattern

• Split(String, Int32, Int32) - Splits the specified input string a specified maximum number of times at the positions defined by
a regular expression specified in the Regex constructor. The search for the regular expression pattern starts at a specified
character position in the input string

• Split(String, String, RegexOptions) - Splits the input string at the positions defined by a specified regular expression pattern.
Specified options modify the matching operation

• ToString - Returns the regular expression pattern that was passed into the Regex constructor. (Overrides Object.ToString().)

• Unescape - Converts any escaped characters in the input string

Note that you can find a list of the regular expression language elements at the
following website: http://msdn.microsoft.com/en-us/library/az24scfc.aspx.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx
http://msdn.microsoft.com/en-us/library/az24scfc.aspx

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text.RegularExpressions Namespace

 Classes

 RegexCompilationInfo

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

RegexCompilationInfo

The RegexCompilationInfo class provides information about a regular

expression that is used to compile a regular expression to a stand-alone
assembly. According to Microsoft's website: An array of RegexCompilationInfo
objects is passed to the CompileToAssembly method to provide information
about each regular expression to be included in the assembly. Each compiled
regular expression that is included in the assembly is represented as a class
derived from Regex. The properties of the RegexCompilationInfo type define the
regular expression's class name, its fully qualified name (that is, its namespace
and its type name), its regular expression pattern, and any additional options
(such as whether the regular expression is case-insensitive). You can instantiate
a RegexCompilationInfo object by calling its class constructor.

Constructors
• RegexCompilationInfo - Initializes a new instance of the RegexCompilationInfo class that contains information about a regular

expression to be included in an assembly.

Properties
• IsPublic - Gets or sets a value that indicates whether the compiled regular expression has public visibility.

• Name - Gets or sets the name of the type that represents the compiled regular expression.

• Namespace - Gets or sets the namespace to which the new type belongs.

• Options - Gets or sets the options to use when compiling the regular expression.

• Pattern - Gets or sets the regular expression to compile.

Methods
• Equals(Object) - Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

• Finalize - Allows an object to try to free resources and perform other cleanup operations before it is reclaimed by garbage
collection. (Inherited from Object.)

• GetHashCode - Serves as a hash function for a particular type. (Inherited from Object.)

• GetType - Gets the Type of the current instance. (Inherited from Object.)

• MemberwiseClone - Creates a shallow copy of the current Object. (Inherited from Object.)

• ToString - Returns a string that represents the current object. (Inherited from Object.)

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

The System.Text and System.Text.RegularExpressions Namespaces

 Attributes

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Attributes
There are no attributes in these namespaces.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 EventArgs

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

EventArgs
There are no EventArgs in these namespaces.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 Structures

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Structures
There are no structures in these namespaces.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 Interfaces

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Interfaces
There are no interfaces in these namespaces.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 Delegates

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Delegates
There is one delegate in the System.Text.RegularExpressions namespace.

Delegates
• MatchEvaluator - Represents the method that is called each time a regular expression match is found during a Replace method

operation.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 Enumerations

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Enumerations
There is one enumeration available in the System.Text.RegularExpressions

namespace.

Enumerations
• RegexOptions - Provides enumerated values to use to set regular expression options.

The RegexOptions members are listed below:

• None - Specifies that no options are set.
• IgnoreCase - Specifies case-insensitive matching.
• Multiline - Multiline mode. Changes the meaning of ^ and $ so they match at the beginning and end, respectively, of any line, and

not just the beginning and end of the entire string.
• ExplicitCapture - Specifies that the only valid captures are explicitly named or numbered groups of the form (?<name>…). This

allows unnamed parentheses to act as noncapturing groups without the syntactic clumsiness of the expression (?:…).
• Compiled - Specifies that the regular expression is compiled to an assembly. This yields faster execution but increases startup

time. This value should not be assigned to the Options property when calling the CompileToAssembly method.
• Singleline - Specifies single-line mode. Changes the meaning of the dot (.) so it matches every character (instead of every

character except \n).
• IgnorePatternWhitespace - Eliminates unescaped white space from the pattern and enables comments marked with #. However,

the IgnorePatternWhitespace value does not affect or eliminate white space in character classes.
• RightToLeft - Specifies that the search will be from right to left instead of from left to right.
• ECMAScript - Enables ECMAScript-compliant behavior for the expression. This value can be used only in conjunction with the

IgnoreCase, Multiline, and Compiled values. The use of this value with any other values results in an exception.
• CultureInvariant - Specifies that cultural differences in language is ignored. See Performing Culture-Insensitive Operations in the

RegularExpressions Namespace for more information.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

 Exceptions

The System.Text and System.Text.RegularExpressions Namespaces

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

Exceptions
There are no exceptions available in these namespaces.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

What Next?

In C# Programming IV-#, we look at specific classes within specific namespaces
such as the System namespace, the System.Text namespace, etc.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com Copyright ©2011 sheepsqueezers.com

sheepsqueezers.com

References

 Introducing Microsoft LINQ, Paolo Pialorsi and Marco Russo, Microsoft Press,
ISBN:9780735623910

 LINQ Pocket Reference, Joseph Albahari and Ben Albahari, O'Reilly Press,
ISBN:9780596519247

 Inside C#, Tom Archer and Andrew Whitechapel, Microsoft Press,
ISBN:0735616485

 C# 4.0 In a Nutshell, O'Reilly Press, Joseph Albahari and Ben Albahari,
ISBN:9780596800956

 The Object Primer, Scott W. Ambler, Cambridge Press, ISBN:0521540186

 CLR via C#, Jeffrey Richter, Microsoft Press, ISBN:9780735621633

Click the book titles below to read more about these books on Amazon.com's website.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.amazon.com/gp/product/0735623910?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0735623910
http://www.amazon.com/gp/product/0596519249?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596519249
http://www.amazon.com/gp/product/0735616485/ref=as_li_ss_tl?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0735616485
http://www.amazon.com/gp/product/0596800959/ref=as_li_ss_tl?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596800959
http://www.amazon.com/gp/product/0521540186/ref=as_li_ss_tl?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0521540186
http://www.amazon.com/gp/product/0735627045/ref=as_li_ss_tl?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0735627045

sheepsqueezers.com

Copyright ©2011 sheepsqueezers.com

Support sheepsqueezers.com
If you found this information helpful, please consider

supporting sheepsqueezers.com. There are several

ways to support our site:

 Buy me a cup of coffee by clicking on the

following link and donate to my PayPal

account: Buy Me A Cup Of Coffee?.

 Visit my Amazon.com Wish list at the following

link and purchase an item:

http://amzn.com/w/3OBK1K4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

