

-

SAS
Access

by
Example

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 2

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following
statement:
Copyright ©2011 sheepsqueezers.com. This

work is reproduced and distributed with the

permission of the copyright holder.

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is intended, and all outside source materials are
copyright of their respective author(s).

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 3

Table of Contents

Introduction .. 4
How SAS/Access Accesses Databases from within SAS ... 5
Using SAS/Access to Oracle to Access an Oracle Database ... 7
Using SAS/Access to OLEDB to Access an Oracle Database ... 10
Using SAS/Access to ODBC to Access an Oracle Database from Base SAS on Your Desktop 13
Using the SASTRACE Option to Determine SQL Passed to the Database .. 16
Using the INSERTBUFF=, READBUFF=, DBCOMMIT= and BUFFSIZE= Options 17
Using SAS/Access to OLEDB to Significantly Decrease Load Times into a SQL Server Database............ 18
Creating a Comma-Delimited List using PROC SQL’s SEPARATED BY Clause 19
HMMM….WHERE DID I PUT THAT TABLE? .. 21
SAS/Access and Oracle’s Bulk Load Feature .. 25
Creating Excel Spreadsheets and Access Databases using SAS/Access to OLEDB 26

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 4

Introduction

This introductory document shows you how to use SAS/Access to Oracle/OLEDB/ODBC by example.

SAS/Access is used to push data to and pull data from a variety of databases such as Oracle, SQL Server,
MySQL, Microsoft Access and even Microsoft Excel, to name a few.

SAS/Access to Oracle is used solely to pull data from and push data to an Oracle database.

SAS/Access to ODBC is used to push data to and pull data from ODBC data sources. ODBC, which stands for
Open Database Connectivity, is an older data access method used to communicate with data sources. For the
most part, it has been replaced by OLEDB which is faster. This is why SAS has created SAS/Access to OLEDB.
With that said, SAS/Access to ODBC may be the only SAS/Access product installed on your desktop. You can run

the proc setinit noalias;run; command from within SAS to determine the products you have installed at

your site.

Although this document focuses on Oracle databases, one method you can use to access SQL Server databases
is via SAS/Access to OLEDB. In the SAS/Access to OLEDB examples below, you will have to change the
connection string appropriate for your SQL Server database and initial catalog as shown in the code below:

libname dbSQL oledb init_string="Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security

Info=False;Initial Catalog=your-initial-catalog;Data Source=your-dbserver-name";

run;

proc sql noprint noerrorstop;

 connect to oledb as SQLDW (init_string="Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security

Info=False;Initial Catalog=your-initial-catalog;Data Source=your-dbserver-name ");

 execute(...) by SQLDW;

 create table table_name as

 select * from connection to SQLDW(

 SQLServer-SQL-GOES-HERE

);

 disconnect from SQLDW;

quit;

libname dBSQL clear;

run;

In the examples for ODBC below, we are assuming SAS is installed on a Windows platform. Setting ODBC data
sources are via the Data Sources (ODBC) Applet. If you are running SAS/Access to ODBC on a UNIX machine,
you will have to install the unixODBC (or similar) software to create your data source names.

In order to access an Oracle database via SAS/Access to OLEDB, SAS/Access to ODBC and SAS/Access to

Oracle, you will have to have the file TNSNAMES.ORA placed on your computer along with the Oracle client

software. This software contains Oracle’s SQL*Net which allows for communication to and from an Oracle

database. The TNSNAMES.ORA file should be placed in the \NETWORK\ADMIN folder once the Oracle client

software has been installed on your computer. This file contains a list of your company’s Oracle databases along
with their server locations and service names and is maintained by your company’s DBA Group. P lease contact
your Help Desk or the Oracle Database Administrators (DBAs) for help with this installation and setup.

In several of the examples below, we show you how to create database indexes. Note that there’s a lot more to
know about indexes than just what’s shown below. For example, instead of using a normal B-Tree index, you may
want to use a BITMAP index. Also, once an index has been created on an Oracle database table, it’s a good idea
to run the DBMS_STATS.GATHER_TABLE_STATS procedure on that table. This will allow Oracle a fighting
chance of being able to optimize your queries. Note that the ANALYZE procedure used to gather statistics for
tables and indexes has been deprecated by Oracle in favor of the more robust DBMS_STATS package.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 5

How SAS/Access Accesses Databases from within SAS

SAS/Access not only allows you to pass SQL directly to the database, but you can also create a LIBNAME
statement – just as you would to a folder containing SAS datasets – to a database. Thus, you can use SAS DATA
and procedure steps to access a database. But! There is a price to pay for this madness! In order for SAS to pull
data from a database, SAS has to translate your DATA and procedure steps requests into SQL because
databases, for the most part, only understand SQL. Thus, if you use a WHERE clause in a DATA step using a
LIBNAME to a database, that WHERE clause is translated from SAS code into SQL code whenever SAS can do
the translation, otherwise, no WHERE clause is passed at all. So, the question is: When can SAS do the

translation? Here is a simple DATA step request using a LIBNAME dbORACLE to an Oracle database:

data MyData;

 set dbORACLE.MY_DB_TABLE(where=(CUST_KEY=12345);

run;

This is translated into SQL as

SELECT *

 FROM MY_DB_TABLE

 WHERE CUST_KEY=12345

If you left off the WHERE clause in the dataset option above, then you would attempt to pull back all of the data to

your SAS session. This may fail because your computer might not have enough resources to hold all the of rows
data coming back from the database. Here is another example DATA step:

data MyData;

 set dbORACLE.MY_DB_TABLE(where=(datepart(DATE_KEY)='01JAN2005'd));

run;

This translates into the following SQL:

SELECT *

 FROM MY_DB_TABLE

Hey! What happened to the WHERE clause? Since the SAS DATEPART() function is not recognized by any
database, SAS removes the WHERE clause and attempts to pull back all of the data to your computer which
THEN performs the DATEPART() function. That is, the DATEPART() function is applied after all of the data is
brought back from the database. If the amount of data is small, this should work, but if MY_DB_TABLE contains

billions of rows it might fail on your computer.

So, how do you avoid this problem? The best way is to use Pass-Through SQL. This will allow you to write SQL
and have it passed exactly as written to the database. The database will then run this SQL code as if you by-

passed SAS directly. This allows you to take advantage of database-specific features which are not available in
SAS.

For example, here is an example of SAS/Access to ODBC Pass-Through SQL to create a SAS dataset from the
results of an Oracle query run on a database. (We assume that an ODBC DSN has been created and is called
dsnMyUserAcct).

proc sql;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 create table WORK.MyData as

 select * from connection to MYDB(

 SELECT CUST_KEY,ITEM_KEY,DATE_KEY

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 6

 FROM MY_DB_TABLE

 WHERE DATE_KEY BETWEEN DATE '2005-01-01'

 AND DATE '2005-01-31'

);

 disconnect from MYDB;

quit;

The code in red above is passed directly to the database without SAS getting involved. This means that no

functions will be dropped and any subsetting you do will be taken into account by the Oracle database engine
directly. Naturally, the resulting data is pulled back and stored into the SAS dataset MyData.

Note that you can create tables and indexes, drop tables and indexes, alter tables, and other database-specific
things using the SAS EXECUTE() function. This allows you to run SQL Data Definition Language (DDL) on the
database, but no rows of data will be returned, unlike the SELECT * FROM CONNECTION TO MYDB above. For

example, you can drop a table and then create a table like this:

proc sql;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 execute(DROP TABLE MYIDS) by MYDB;

 execute(CREATE TABLE MYIDS(ITEMKEYS VARCHAR2(11)) by MYDB;

 disconnect from MYDB;

quit;

If you want to see what SAS is passing to the database, you can turn on the SASTRACE option. This is described

in a separate section below.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 7

Using SAS/Access to Oracle to Access an Oracle Database

Here are some quick examples using SAS/Access to Oracle. Note that there are many other ways of doing the
same thing. Be sure to replace the USERID, PASSWORD and PATH to your database below with your own

username and password.

Note that the SQL code highlighted in red is passed directly to the database and, thus, SAS does not modify that
SQL code.

1. Create a table in your user account:

/* Using PROC SQL */

proc sql noprint;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 execute(CREATE TABLE MYIDS (ITEM_KEY VARCHAR2(11))) by MYDB;

 disconnect from MYDB;

quit;

/* …or… Using SAS DATA step */

/* Assign a libname to the database */

libname dbMYDB oracle user="USERID" password="PASSWORD" path="PATH";

run;

data dbMYDB.MYIDS;

 length ITEM_KEY $ 11;

 ITEM_KEY="11111111111";output;

run;

libname dbMYDB clear;

run;

2. Insert data from a SAS dataset into a table in your user account:

/* Create your ITEMs – fake data */

data ITEMS(keep=ITEM_KEY);

 length ITEM_KEY $ 11;

 do I=1 to 1000;

 ITEM_KEY='11111111111';

 output;

 end;

run;

/* Assign a libname to the database */

libname dbMYDB oracle user="USERID" password="PASSWORD" path="PATH";

run;

/* Using PROC SQL, insert the data into the table MYIDS in your user account */

proc sql noprint;

 insert into dbMYDB.MYIDS(insertbuff=1000)

 SELECT ITEM_KEY

 FROM ITEMS;

quit;

/* …or… Using PROC DATASETS, insert the data into the table MYIDS in your user account */

proc datasets library=dbMYDB nolist;

 append base=dbMYDB.MYIDS(insertbuff=1000) data=work.ITEMS;

run;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 8

/* Clear the libname statement */

libname dbMYDB clear;

run;

3. Read from the MYIDS table you created and print it off:

/* Using PROC SQL */

proc sql;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

 disconnect from MYDB;

quit;

/* …or… Using PROC PRINT */

/* Assign a libname to the database */

libname dbMYDB oracle user="USERID" password="PASSWORD" path="PATH";

run;

proc print data=dbMYDB.MYIDS;

run;

libname dbMYDB clear;

run;

4. Create a SAS data using the Oracle table MYIDS:

proc sql noprint;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 create table ThosePeskyITEMs as

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

quit;

5. Granting the BSMITH user read access to the MYIDS table in your account:

proc sql;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 execute(GRANT SELECT ON MYIDS TO BSMITH) by MYDB;

 disconnect from MYDB;

quit;

6. Dropping a table when you are done:

/* Using PROC SQL */

proc sql noprint;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 execute(DROP TABLE MYIDS) by MYDB;

 disconnect from MYDB;

quit;

/* …or… using PROC DATASETS */

/* Assign a libname to the database */

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 9

libname dbMYDB oracle user="USERID" password="PASSWORD" path="PATH";

run;

proc datasets library=dbMYDB nolist;

 delete MYIDS;

run;

quit;

libname dbMYDB clear;

run;

7. Create a SAS dataset by reading from the table MY_DB_TABLE:

proc sql;

connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 create table TinyTable as

 select * from connection to MYDB (

 SELECT *

 FROM MY_DB_TABLE

 WHERE ROWNUM<=10

);

quit;

8. Create an index on the column ITEM in your MYIDS table:

proc sql;

 connect to oracle as MYDB (user="USERID" password="PASSWORD" path="PATH" preserve_comments);

 execute(CREATE INDEX IDX_ITEM ON MYIDS(ITEM_KEY)) by MYDB;

 disconnect from MYDB;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 10

Using SAS/Access to OLEDB to Access an Oracle Database

Here are some quick examples using SAS/Access to OLEDB to access an Oracle database. Be sure the replace
USERID, PASSWORD, mydbserver, and mydbname below with your own username, password, Oracle server

name and Oracle database name.

Note that the SQL code highlighted in red is passed directly to the database and, thus, SAS does not get involved
in these cases.

1. Create a table in your user account:

/* Using PROC SQL */

proc sql noprint;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 execute(CREATE TABLE MYIDS (ITEM VARCHAR2(11))) by MYDB;

 disconnect from MYDB;

quit;

/* …or… Using SAS DATA step */

/* Assign a libname to the database */

libname dbMYDB oledb init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521";

run;

data dbMYIDS;

 length ITEM_KEY $ 11;

 ITEM_KEY="11111111111";output;

run;

libname dbMYDB clear;

run;

2. Insert data from a SAS dataset into a table in your user account:

/* Create your ITEMs */

data ITEMS(keep=ITEM_KEY);

 length ITEM_KEY $ 11;

 do I=1 to 1000;

 ITEM_KEY='11111111111';

 output;

 end;

run;

/* Assign a libname to the database */

libname dbMYDB oledb init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521";

run;

/* Using PROC SQL, insert the data into the table MYIDS in your user account */

proc sql noprint;

 insert into dbMYIDS(insertbuff=1000)

 SELECT ITEM_KEY

 FROM ITEMS;

quit;

/* …or… Using PROC DATASETS, insert the data into the table MYIDS in your user account */

proc datasets library=dbMYDB nolist;

 append base=dbMYIDS(insertbuff=1000) data=work.ITEMS;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 11

run;

quit;

/* Clear the libname statement */

libname dbMYDB clear;

run;

3. Read from the MYIDS table you created and print it off:

/* Using PROC SQL */

proc sql;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

 disconnect from MYDB;

quit;

/* …or… Using PROC PRINT */

/* Assign a libname to the database */

libname dbMYDB oledb init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521";

run;

proc print data=dbMYIDS;

run;

libname dbMYDB clear;

run;

4. Create a SAS data using the Oracle table MYIDS:

proc sql noprint;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 create table ThosePeskyITEMs as

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

quit;

5. Granting the BSMTIH user read access to the MYIDS table in your account:

proc sql;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 execute(GRANT SELECT ON MYIDS TO BSMITH) by MYDB;

 disconnect from MYDB;

quit;

6. Dropping a table when you are done:

/* Using PROC SQL */

proc sql noprint;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 12

 execute(DROP TABLE MYIDS) by MYDB;

 disconnect from MYDB;

quit;

/* …or… using PROC DATASETS */

/* Assign a libname to the database */

libname dbMYDB oledb init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521";

run;

proc datasets library=dbMYDB nolist;

 delete MYIDS;

run;

quit;

libname dbMYDB clear;

run;

7. Create a SAS dataset by reading from the table MY_DB_TABLE:

proc sql;

connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 create table TinyTable as

 select * from connection to MYDB (

 SELECT *

 FROM MY_DB_TABLE

 WHERE ROWNUM<=10

);

quit;

8. Create an index on the column ITEM in your MYIDS table:

proc sql;

 connect to oledb as MYDB (init_string="Provider=OraOLEDB.Oracle;SERVER=mydbserver;Data

Source=mydbname;USER ID=USERID;PASSWORD=PASSWORD;PORT=1521");

 execute(CREATE INDEX IDX_ITEM ON MYIDS(ITEM_KEY)) by MYDB;

 disconnect from MYDB;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 13

Using SAS/Access to ODBC to Access an Oracle Database from Base SAS on Your Desktop

Here are some quick examples using SAS/Access to ODBC to access an Oracle Database via Base SAS
installed on your desktop. Be sure the replace DSN, USERID and PASSWORD below with your own data source

name, username and password.

Note that you will need to setup an ODBC connection to your user account on the Oracle database on your
desktop. You can do this yourself from the “Data Sources (ODBC)” Applet (START…Control
Panel…Administrative Tools…Data Sources(ODBC)). Please contact your Help Desk if you are having problems.
Let’s assume that your ODBC connection to your user account is called dsnMyUserAcct. This will be used in the
examples below.

Also note that the SQL code highlighted in red is passed directly to the database and, thus, SAS does not get
involved in these cases.

1. Create a table in your user account:

/* Using PROC SQL */

proc sql noprint;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 execute(CREATE TABLE MYIDS (ITEM_KEY VARCHAR2(11))) by MYDB;

 disconnect from MYDB;

quit;

/* …or… Using SAS DATA step */

/* Assign a libname to the database */

libname dbMYDB odbc (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

run;

data dbMYIDS;

 length ITEM_KEY $ 11;

 ITEM_KEY="11111111111";output;

run;

libname dbMYDB clear;

run;

2. Insert data from a SAS dataset into a table in your user account:

/* Create your ITEMs */

data ITEMS(keep=ITEM_KEY);

 length ITEM_KEY $ 11;

 do I=1 to 1000;

 ITEM_KEY='11111111111';

 output;

 end;

run;

/* Assign a libname to the database */

libname dbMYDB odbc (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

run;

/* Using PROC SQL, insert the data into the table MYIDS in your user account */

proc sql noprint;

 insert into dbMYIDS(insertbuff=1000)

 SELECT ITEM_KEY

 FROM ITEMS;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 14

/* …or… Using PROC DATASETS, insert the data into the table MYIDS in your user account */

proc datasets library=dbMYDB nolist;

 append base=dbMYIDS(insertbuff=1000) data=work.ITEMS;

run;

quit;

/* Clear the libname statement */

libname dbMYDB clear;

run;

3. Read from the MYIDS table you created and print it off:

/* Using PROC SQL */

proc sql;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

 disconnect from MYDB;

quit;

/* …or… Using PROC PRINT */

/* Assign a libname to the database */

libname dbMYDB odbc (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

run;

proc print data=dbMYIDS;

run;

libname dbMYDB clear;

run;

4. Create a SAS data using the Oracle table MYIDS:

proc sql noprint;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 create table ThosePeskyITEMs as

 select * from connection to MYDB (

 SELECT *

 FROM MYIDS

);

quit;

5. Granting the BSMITH user access to the MYIDS table in your account:

proc sql;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 execute(GRANT SELECT ON MYIDS TO BSMITH) by MYDB;

 disconnect from MYDB;

quit;

6. Dropping a table when you are done:

/* Using PROC SQL */

proc sql noprint;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 execute(DROP TABLE MYIDS) by MYDB;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 15

 disconnect from MYDB;

quit;

/* …or… using PROC DATASETS */

/* Assign a libname to the database */

libname dbMYDB odbc (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

run;

proc datasets library=dbMYDB nolist;

 delete MYIDS;

run;

quit;

libname dbMYDB clear;

run;

7. Create a SAS dataset by reading from the table MY_DB_TABLE:

proc sql;

connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 create table TinyTable as

 select * from connection to MYDB (

 SELECT *

 FROM MY_DB_TABLE

 WHERE ROWNUM<=10

);

quit;

8. Create an index on the column ITEM in your MYIDS table:

proc sql;

 connect to odbc as MYDB (dsn="dsnMyUserAcct" user="USERID" password="PASSWORD" autocommit=yes);

 execute(CREATE INDEX IDX_ITEM ON MYIDS(ITEM_KEY)) by MYDB;

 disconnect from MYDB;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 16

Using the SASTRACE Option to Determine SQL Passed to the Database

If you would like to see what SQL code SAS is passing to the database – which is a good idea when
you are developing your code – try turning on the SASTRACE option. This will place notes in your SAS

Log file containing exactly what SAS passed to the database.

options sastrace=",,,d" sastracelog=saslog nostsuffix;

run;

This will place the SAS tracing information in your SAS Log (sastracelog=saslog).

You can turn this off by using this:

options sastrace=none;

run;

Generally, if you are inserting a lot of rows, it’s best to turn SAS trace off using the sastrace=none

system option shown above. This should speed up your inserts.

Note that it has been my experience that if you forget to enter the nostsuffix option, your session

stops completely and won’t come back.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 17

Using the INSERTBUFF=, READBUFF=, DBCOMMIT= and BUFFSIZE= Options

If you find that reading from or writing to a database table seems to be very slow, you may want to

check out the INSERTBUFF=, READBUFF=, DBCOMMIT= and BUFFSIZE= options.

The options INSERTBUFF=, READBUFF= and DBCOMMIT= are available on the LIBNAME statement,

whereas the BUFFSIZE= option is allowed in the connection parentheses on the PROC SQL CONNECT

TO line.

INSERTBUFF specifies the number of rows to insert into a database table as a chunk. In many cases,

this value defaults to 1, so it’s a good idea to increase it.

READBUFF specifies the number of rows to read from a database table as a chunk.

DBCOMMIT specifies the number of rows to insert into a database table before forcing a COMMIT. Note

that if the value of DBCOMMIT is lower than INSERTBUFF, then the value of DBCOMMIT overrides

INSERTBUFF. I usually make them the same value.

BUFFSIZE is a general buffer size with a maximum of 32767. Below I specify 30000.

By default, INSERTBUFF, READBUFF and DBCOMMIT are set low. By changing these to higher values,

you will be able achieve faster reads from and writes to the database. In the examples below, I’ve
coded in my values based on my own trial-and-error. You should perform your own tests to see what
values achieve the greatest performance in your environment. Note that setting these values huge is
not the answer! There’s limited memory on your computer and this plays a big factor in which values
you will ultimately choose.

For example, here is the LIBNAME statement:

libname dbORA oracle user=”USERNAME” pass=”PASSWORD” path=”PATH”

 insertbuff=100000 readbuff=100000 dbcommit=100000;

run;

And here is the PROC SQL CONNECT TO line:

proc sql noprint noerrorstop;

 connect to oracle as ORADW (user=”USERNAME” pass=”PASSWORD” path=”PATH”

buffsize=30000);

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 18

Using SAS/Access to OLEDB to Significantly Decrease Load Times into a SQL Server Database

You can significantly decrease your SAS dataset load times into a SQL Server database table by
using the bulkload option on the SAS LIBNAME statement. Here is the new LIBNAME statement --
pointed to the my-init-cat database:

libname dbTOPAMAX oledb provider="SQLOLEDB.1" properties=('Integrated

Security'='SSPI' 'Persist Security Info'='False' 'Initial Catalog'='my_init-cat'

'Data Source'='my-db-datasrc') dbcommit=30000 insert_sql=yes bulkload=yes

oledb_services=no;

run;

You can play with the DBCOMMIT option, which indicates how many records to commit to the
database at one time. Above, I specified dbcommit=30000, which will commit to the database after
every 30000 rows of data. Naturally, you will have to

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 19

Creating a Comma-Delimited List using PROC SQL’s SEPARATED BY Clause

Many SQL WHERE clauses make use of the IN() functionality. In order to use the IN() functionality, you must
provide a comma-delimited list of values. This can be done using the trusty DATA _NULL_ statement, or a
quicker way of accomplishing the same thing, as shown below, using PROC SQL:

DATA myDataSet;

 myVariable="A";OUTPUT;

 myVariable="B";OUTPUT;

 myVariable="C";OUTPUT;

RUN;

PROC SQL NOPRINT;

 SELECT myVariable

 INTO :myLIST separated by ","

 FROM myDataSet;

RUN;

%PUT ===>&myLIST.<===;

The results will be

===>A,B,C<===

If quotes are desired around the resulting values, then the following will work:

DATA myDataSet;

 myVariable="A";OUTPUT;

 myVariable="B";OUTPUT;

 myVariable="C";OUTPUT;

RUN;

PROC SQL NOPRINT;

 SELECT "'" || trim(left(myVariable)) || "'"

 INTO :myLIST separated by ","

 FROM myDataSet;

RUN;

%PUT ===>&myLIST.<===;

The result will be

===>'A','B','C'<===

This can be very useful for pass-through SQL to Oracle. If the number of selection criteria values is relatively
small – there is an upper bound to the amount of IN-clause data that can be used with pass-through to Oracle
– rather than joining tables, use an IN-clause if possible.

One way to subset data at the database using the technique shown above refers is shown in the following
example:

DATA MYITEMS;

 LENGTH ITEM_KEY $ 11;

 ITEM_KEY="11111111111";OUTPUT;

 ITEM_KEY="22222222222";OUTPUT;

 ITEM_KEY="33333333333";OUTPUT;

RUN;

PROC SQL NOPRINT;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 20

 SELECT DISTINCT "'" || TRIM(LEFT(ITEM_KEY)) || "'"

 INTO :MYITEMS SEPARATED BY ","

 FROM MYITEMS;

 CONNECT TO ORACLE AS MYDB (USER="USERNAME" PASS="PASSWORD" PATH="PATH");

 CREATE TABLE MY_SUBSET_DATA as

 SELECT *

 FROM CONNECTION TO MYDB

 (

 SELECT *

 FROM MY_DB_TABLE

 WHERE ITEM_KEY IN (&MYITEMS.)

)

 ;

 DISCONNECT FROM MYDB;

QUIT;

And here is part of the SAS Log showing the SQL query passed to the database (when SASTRACE has been
turned on):

DEBUG: PREPARE SQL statement: 78 1394917872 no_name 0 SQL

 SELECT * FROM MY_DB_TABLE WHERE ITEM_KEY IN

('11111111111','22222222222','33333333333') 79 1394917872 no_name 0 SQL

Notice that all of the ITEM_KEYs are passed directly to Oracle subsetting the data at the database rather than
pulling all of the data back to your SAS session! As mentioned above, there is an upper-limit to the amount of
data you can pass-through to Oracle in this manner. If you have a lot of data, it might be better to create a
table and insert data into it rather than using the IN()-functionality.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 21

HMMM….WHERE DID I PUT THAT TABLE?

Occasionally, you will forget what tables you’ve created or what indexes you’ve created on those tables. You

can use the Oracle system table ALL_TABLES to search for tables that you’ve created, ALL_TAB_COLUMNS to

find out the column names for a specific table, ALL_INDEXES to search for indexes created on a specific table,

and ALL_IND_COLUMNS to search for indexes on the columns in a table. Below are the layouts for those

tables (I have highlighted the most important fields):

 ALL_TABLES

 Name Null? Type

 --- -------- --------------------------

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 TABLESPACE_NAME VARCHAR2(30)

 CLUSTER_NAME VARCHAR2(30)

 IOT_NAME VARCHAR2(30)

 PCT_FREE NUMBER

 PCT_USED NUMBER

 INI_TRANS NUMBER

 MAX_TRANS NUMBER

 INITIAL_EXTENT NUMBER

 NEXT_EXTENT NUMBER

 MIN_EXTENTS NUMBER

 MAX_EXTENTS NUMBER

 PCT_INCREASE NUMBER

 FREELISTS NUMBER

 FREELIST_GROUPS NUMBER

 LOGGING VARCHAR2(3)

 BACKED_UP VARCHAR2(1)

 NUM_ROWS NUMBER

 BLOCKS NUMBER

 EMPTY_BLOCKS NUMBER

 AVG_SPACE NUMBER

 CHAIN_CNT NUMBER

 AVG_ROW_LEN NUMBER

 AVG_SPACE_FREELIST_BLOCKS NUMBER

 NUM_FREELIST_BLOCKS NUMBER

 DEGREE VARCHAR2(10)

 INSTANCES VARCHAR2(10)

 CACHE VARCHAR2(5)

 TABLE_LOCK VARCHAR2(8)

 SAMPLE_SIZE NUMBER

 LAST_ANALYZED DATE

 PARTITIONED VARCHAR2(3)

 IOT_TYPE VARCHAR2(12)

 TEMPORARY VARCHAR2(1)

 SECONDARY VARCHAR2(1)

 NESTED VARCHAR2(3)

 BUFFER_POOL VARCHAR2(7)

 ROW_MOVEMENT VARCHAR2(8)

 GLOBAL_STATS VARCHAR2(3)

 USER_STATS VARCHAR2(3)

 DURATION VARCHAR2(15)

 SKIP_CORRUPT VARCHAR2(8)

 MONITORING VARCHAR2(3)

 CLUSTER_OWNER VARCHAR2(30)

 DEPENDENCIES VARCHAR2(8)

 ALL_TAB_COLUMNS

 Name Null? Type

 --- -------- ----------------------------

 OWNER NOT NULL VARCHAR2(30)

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 22

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME NOT NULL VARCHAR2(30)

 DATA_TYPE VARCHAR2(106)

 DATA_TYPE_MOD VARCHAR2(3)

 DATA_TYPE_OWNER VARCHAR2(30)

 DATA_LENGTH NOT NULL NUMBER

 DATA_PRECISION NUMBER

 DATA_SCALE NUMBER

 NULLABLE VARCHAR2(1)

 COLUMN_ID NUMBER

 DEFAULT_LENGTH NUMBER

 DATA_DEFAULT LONG

 NUM_DISTINCT NUMBER

 LOW_VALUE RAW(32)

 HIGH_VALUE RAW(32)

 DENSITY NUMBER

 NUM_NULLS NUMBER

 NUM_BUCKETS NUMBER

 LAST_ANALYZED DATE

 SAMPLE_SIZE NUMBER

 CHARACTER_SET_NAME VARCHAR2(44)

 CHAR_COL_DECL_LENGTH NUMBER

 GLOBAL_STATS VARCHAR2(3)

 USER_STATS VARCHAR2(3)

 AVG_COL_LEN NUMBER

 CHAR_LENGTH NUMBER

 CHAR_USED VARCHAR2(1)

 V80_FMT_IMAGE VARCHAR2(3)

 DATA_UPGRADED VARCHAR2(3)

 ALL_INDEXES
 Name Null? Type

 --- -------- ----------------------------

 OWNER NOT NULL VARCHAR2(30)

 INDEX_NAME NOT NULL VARCHAR2(30)

 INDEX_TYPE VARCHAR2(27)

 TABLE_OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 TABLE_TYPE CHAR(5)

 UNIQUENESS VARCHAR2(9)

 COMPRESSION VARCHAR2(8)

 PREFIX_LENGTH NUMBER

 TABLESPACE_NAME VARCHAR2(30)

 INI_TRANS NUMBER

 MAX_TRANS NUMBER

 INITIAL_EXTENT NUMBER

 NEXT_EXTENT NUMBER

 MIN_EXTENTS NUMBER

 MAX_EXTENTS NUMBER

 PCT_INCREASE NUMBER

 PCT_THRESHOLD NUMBER

 INCLUDE_COLUMN NUMBER

 FREELISTS NUMBER

 FREELIST_GROUPS NUMBER

 PCT_FREE NUMBER

 LOGGING VARCHAR2(3)

 BLEVEL NUMBER

 LEAF_BLOCKS NUMBER

 DISTINCT_KEYS NUMBER

 AVG_LEAF_BLOCKS_PER_KEY NUMBER

 AVG_DATA_BLOCKS_PER_KEY NUMBER

 CLUSTERING_FACTOR NUMBER

 STATUS VARCHAR2(8)

 NUM_ROWS NUMBER

 SAMPLE_SIZE NUMBER

 LAST_ANALYZED DATE

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 23

 DEGREE VARCHAR2(40)

 INSTANCES VARCHAR2(40)

 PARTITIONED VARCHAR2(3)

 TEMPORARY VARCHAR2(1)

 GENERATED VARCHAR2(1)

 SECONDARY VARCHAR2(1)

 BUFFER_POOL VARCHAR2(7)

 USER_STATS VARCHAR2(3)

 DURATION VARCHAR2(15)

 PCT_DIRECT_ACCESS NUMBER

 ITYP_OWNER VARCHAR2(30)

 ITYP_NAME VARCHAR2(30)

 PARAMETERS VARCHAR2(1000)

 GLOBAL_STATS VARCHAR2(3)

 DOMIDX_STATUS VARCHAR2(12)

 DOMIDX_OPSTATUS VARCHAR2(6)

 FUNCIDX_STATUS VARCHAR2(8)

 JOIN_INDEX VARCHAR2(3)

 ALL_IND_COLUMNS
 Name Null? Type

 --- -------- ----------------------------

 INDEX_OWNER NOT NULL VARCHAR2(30)

 INDEX_NAME NOT NULL VARCHAR2(30)

 TABLE_OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME VARCHAR2(4000)

 COLUMN_POSITION NOT NULL NUMBER

 COLUMN_LENGTH NOT NULL NUMBER

 CHAR_LENGTH NUMBER

 DESCEND VARCHAR2(4)

For example, to determine all of the indexes on the columns for a specific table owned by BSMITH, you can
use ALL_IND_COLUMNS, like this:

SELECT TABLE_NAME,INDEX_NAME,SUBSTR(COLUMN_NAME,1,50) "COLUMN_NAME"

 FROM ALL_IND_COLUMNS

 WHERE TABLE_OWNER='BSMITH'

 ORDER BY 1,2,3

The results of this query for the BSMITH user are:

TABLE_NAME INDEX_NAME COLUMN_NAME

------------------------------ ------------------------------ -------------------------

ITEM_INFO IDX_ITEM ITEM

ITEM_INFO IDX_ITEM_STATUS ITEM

ITEM_INFO IDX_ITEM_STATUS STATUS

ITEM_INFO IDX_STATUS STATUS

This means there are three indexes on the table ITEM_INFO: IDX_NDX, IDX_ITEM_STATUS, and

IDX_STATUS. The index IDX_ITEM_STATUS is a composite index involving two columns, ITEM and

STATUS. The remaining two indexes are simple indexes involving only one column each. Since the column

COLUMN_NAME in ALL_IND_COLUMNS is defined as a VARCHAR2(4000), I substringed COLUMN_NAME
to a reasonable length of 50.

If you just want a list of the tables you have created in your own schema, try this:

SELECT TABLE_NAME

 FROM ALL_TABLES

 WHERE OWNER='BSMITH'

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 24

The results for the BSMITH user are:

TABLE_NAME

ITEM_INFO

TESTTAB1

Or, equivalently,

SELECT TABLE_NAME

 FROM USER_TABLES

The table USER_TABLES is the same as ALL_TABLES except it subsets the data based on your
own schema (the one you are logged into at the time).

To get all of the columns for these tables, try this:

SELECT TABLE_NAME,COLUMN_NAME

 FROM ALL_TAB_COLUMNS

 WHERE OWNER='BSMITH'

 ORDER BY 1,2

The results for the BSMITH user are:

TABLE_NAME COLUMN_NAME

------------------------------ -------------

ITEM_INFO ITEM

ITEM_INFO ITEM_DESC

ITEM_INFO STATUS

TESTTAB1 COL1

Finally, to get a list of only the indexes on a table (without the columns involved), try this:

SELECT TABLE_NAME,INDEX_NAME

 FROM ALL_INDEXES

 WHERE TABLE_OWNER='BSMITH'

 ORDER BY 1,2

TABLE_NAME INDEX_NAME

------------------------------ --------------------

ITEM_INFO IDX_ITEM

ITEM_INFO IDX_ITEM_STATUS

ITEM_INFO IDX_STATUS

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 25

SAS/Access and Oracle’s Bulk Load Feature

As you have seen, you can insert data into an Oracle table using the INSERT statement in PROC SQL.
Depending on your site, you can use Oracle’s SQL*Loader to load data into your table much faster than an
INSERT Statement.

First, you must be using at least Oracle 9i and the Oracle SQL*Net client software must be at least version 9
on your server or desktop computer. Please check with your local SAS or Oracle administrator for more
information.

If the requirements above have been met, you can use SQL*Loader. Here is an example:

OPTIONS linesize=150 nocenter nodate sastrace=',,,d' sastraceloc=saslog;

RUN;

DATA ITEMS(KEEP=ITEM_KEY);

 LENGTH ITEM_KEY $ 11;

 DO I=1 TO 1000;

 ITEM_KEY='11111111111';

 OUTPUT;

 END;

RUN;

LIBNAME dbMYDB ORACLE USER="USERNAME" PASSWORD="PASSWORD" PATH="PATH";

RUN;

PROC SQL NOPRINT;

 INSERT INTO dbMYDB.MYITEMS(BULKLOAD=YES,BL_LOAD_METHOD=APPEND,BL_DIRECT_PATH=YES)

 SELECT ITEM_KEY

 FROM WORK.ITEMS;

QUIT;

LIBNAME dbMYDB CLEAR;

RUN;

Note that if your site did not meet the requirements, your SAS Log will have the following Oracle SQL*Loader
error message in it:

ORA-02352: Direct path connection must be homogeneous

Despite the note in the SAS Log telling you that the data was loaded into your table, the error message above
indicates that your data was not loaded.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 26

Creating Excel Spreadsheets and Access Databases using SAS/Access to OLEDB

Note: You MUST create a blank Access database BEFORE using the method outlined below for
Access databases.

You can create a new Excel spreadsheet or read from an existing Excel spreadsheet using
SAS/Access to OLEDB in this manner.

This option may only work on 32-bit machines. The Microsoft Jet database driver is not available on
64-bit machines…although this may change in the future.

--;

* Libname to read from/write to a Microsoft Excel Spreadsheet. *;

* If your sheet does NOT contain column names, change hdr=yes to hdr=no. *;

--;

libname olexls oledb provider='Microsoft.Jet.OLEDB.4.0'

 properties=('data source'='LOCATION-OF-YOUR-EXCEL-WORKBOOK\WORKBOOK-NAME.xls')

 provider_string='Excel 8.0;hdr=yes';

run;

proc print data=olexls.'YOUR-SHEET-NAME'n;

run;

libname olexls clear;

run;

--;

* Libname to an Access Database. *;

* LOCATION-OF-ACCESS-DATABASE can be an UNC or directory location. *;

--;

libname olemdb oledb provider="Microsoft.Jet.OLEDB.4.0"

 properties=('data source'="LOCATION-OF-ACCESS-DATABASE\ACCESS-DATABASE.mdb");

run;

data SAS-DATASET-NAME;

 set olemdb.'ACCESS-TABLE-NAME'n;

run;

libname olemdb clear;

run;

Note that you can use Pass-Through SQL to read from and write to an Access database as well. Here
is an example:

libname dbPROD01 oledb init_string="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=

C:\MyAccessDB.mdb" INSERTBUFF=50000 DBCOMMIT=50000;

run;

proc sql noprint noerrorstop;

 connect to oledb as PROD01 (init_string="Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\MyAccessDB.mdb");

 execute(DROP TABLE MYTABLE) by PROD01;

 execute(CREATE TABLE MYTABLE(COL1 BYTE,

 COL2 BYTE,

 COL3 TEXT(255),

 COL4 SINGLE)) by PROD01;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 27

 insert into dbPROD01.MYTABLE

 select COL1,COL2,COL3,COL4

 from work.MYTABLE;

 execute(CREATE INDEX IX_MYTAB ON MYTABLE(COL1,COL2)) by PROD01;

 disconnect from PROD01;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 28

Support sheepsqueezers.com
If you found this information helpful, please consider
supporting sheepsqueezers.com. There are
several ways to support our site:

 Buy me a cup of coffee by clicking on the

following link and donate to my PayPal

account: Buy Me A Cup Of Coffee?.

 Visit my Amazon.com Wish list at the

following link and purchase an item:

http://amzn.com/w/3OBK1K4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

