

Introduction
to the
SAS

Output
Delivery
System
(ODS)

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 2

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following
statement:
Copyright ©2011 sheepsqueezers.com. This

work is reproduced and distributed with the

permission of the copyright holder.

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is intended, and all outside source materials are
copyright of their respective author(s).

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 3

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 4

INTRODUCTION

This document introduces you to the basics of the SAS Output Delivery System (ODS).
ODS provides a multitude of choices for reporting and displaying analytical results from the
SAS System. For example, you can create Adobe Acrobat Portable Document Format
(PDF) files, HTML files for use on the internet, and Rich Text Format (RTF) files for use
with Microsoft Word or WordPad that contain your SAS procedure output, SAS graphs, etc.
But, this is just the tip of the iceberg with SAS ODS, as you will see in the remaining part of
this document.

As many of you are aware, several SAS procedures like FREQ, MEANS, etc. give the user
the ability to create an output SAS dataset containing the results of the procedure. Both
FREQ and MEANS have the OUT= option which allows you to specify the name of your
output SAS dataset. Some of you may have noticed that the newer SAS procedures, like
SURVEYMEANS, SURVEYREG, etc., do not come with this functionality. The ability to
create an output SAS dataset from these procedures is via the SAS Output Delivery
System (ODS) and its ODS OUTPUT statement.

And, as they say on those late-night television commercials: But, wait! There’s more!

The SAS Output Delivery System (ODS) allows you to modify the look-and-feel of the
reports based on the fonts, colors, etc. – the style, if you please – that you want to use
rather than settling for SAS-supplied defaults. You have control over styles for the column
headers, table headers, table footers, cell data, etc. No longer do you have to settle for
SAS’s line printer-like output…blech!

And, as they say on those early-morning television commercials: But, wait! There’s even
more!

The SAS Output Delivery System (ODS) allows you to output in formats like Extensible
Markup Language (XML), Comma-Separated Values (CSV) and Web Markup Language
(WML) formats – known as tagsets. And, you can even define your own tagsets, if you
want!

And, as they say on those mid-afternoon television commercials: But, wait! There’s still
more!

You can save your ODS results in a special ODS file called a document so that you can
“replay” one or more of them at a later time without having to re-run you analysis! No more
waiting for analyses to re-run if you just want to see or use the results again!

Finally, as they say on those early-evening television commercials: What are you waiting
for?

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 5

PART I

ODS Kick Start

This section briefly introduces the basic features of
the SAS Output Delivery System (ODS) which you
are most likely to use on a day-to-day basis as you
work with the SAS System. This section is
arranged in a Question and Answer format so that
the reader does not have to search through pages
and pages of material to find the desired topic.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 6

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 7

Q.1: How do I create a SAS dataset from a SAS procedure when there’s no OUT= statement?

A.1:

In order to create a SAS dataset from a SAS procedure that does not have an OUT=
statement – or even with a SAS procedure that does have one – you must first
determine the special names SAS gives to each part of the desired SAS procedure
output. This special name is known as a path in ODS terminology. For example, given
the SAS dataset below,

data FatKids;

infile cards;

input @1 KidName $char8.

 @10 HeightInInches 2.

 @15 WeightInPounds 3.;

cards;

ALBERT 45 150

ROSEMARY 35 123

TOMMY 78 167

BUDDY 12 189

FARQUAR 76 198

SIMON 87 256

LAUREN 54 876

;

run;

Let’s assume we want to run a UNIVARIATE procedure on the variable
WeightInPounds from the FatKids dataset. The first thing we have to do is run the
UNIVARIATE procedure with the ODS TRACE statement turned on, followed by the
UNIVARIATE and the the ODS TRACE statement turned back off:

ods trace on;

proc univariate data=FatKids;

 var WeightInPounds;

run;

ods trace off;

The output from these commands appears in the SAS Log and looks like this:

Output Added:

Name: Moments

Label: Moments

Template: base.univariate.Moments

Path: Univariate.WeightInPounds.Moments

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 8

Output Added:

Name: BasicMeasures

Label: Basic Measures of Location and Variability

Template: base.univariate.Measures

Path: Univariate.WeightInPounds.BasicMeasures

Output Added:

Name: TestsForLocation

Label: Tests For Location

Template: base.univariate.Location

Path: Univariate.WeightInPounds.TestsForLocation

Output Added:

Name: Quantiles

Label: Quantiles

Template: base.univariate.Quantiles

Path: Univariate.WeightInPounds.Quantiles

Output Added:

Name: ExtremeObs

Label: Extreme Observations

Template: base.univariate.ExtObs

Path: Univariate.WeightInPounds.ExtremeObs

You will notice that there are five sections above, each one corresponds to the five
sections produced by the SAS UNIVARIATE procedure. The Name and Label in each
section above nearly corresponds to the title of each section produced from the
UNIVARIATE procedure itself. We discuss the Template later on in this document. The
most important thing to know is the Path name. In the above, the Path name for the
moments is Univariate.WeightInPounds.Moments. Clearly, this period-delimited text
string is the name of the SAS procedure, followed by the variable of interest, followed by
the name SAS ODS gives to the moments section from the UNIVARIATE procedure.
Now, let’s say we want to create a SAS dataset containing the moments for
WeightInPounds. You would use these commands to accomplish this:

ods output

Univariate.WeightInPounds.Moments=FatMomentsDataSet;

proc univariate data=FatKids;

 var WeightInPounds;

run;

ods output close;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 9

Note that the command ODS OUTPUT is followed by name of the desired Path
associated with the Moments section of the UNIVARIATE procedure followed by an
equal sign followed by the name of our SAS dataset FatMomentsDataset. Here is what
that dataset looks like:

 VarName Label1 cValue1 nValue1 Label2 cValue2 nValue2

WeightInPounds N 7 7.000000 Sum Weights 7 7.000000

WeightInPounds Mean 279.857143 279.857143 Sum Observations 1959 1959.000000

WeightInPounds Std Deviation 266.181284 266.181284 Variance 70852.4762 70852

WeightInPounds Skewness 2.51231272 2.512313 Kurtosis 6.44913858 6.449139

WeightInPounds Uncorrected SS 973355 973355 Corrected SS 425114.857 425115

WeightInPounds Coeff Variation 95.1132716 95.113272 Std Error Mean 100.607069 100.607069

Take note that the dataset FatMomentsDataSet is layed out in a similar format as the
actual UNIVARIATE Moments output. That is, instead of there being one row per
statistic, there two sets of three columns with six rows of data. One set of three
columns contains the N, Mean, Std Deviation, Skewness, Uncorrected SS, and Coeff
Variation statistics while the other set of three columns contains the Sum Weights, Sum
Observations, Variance, Kurtosis, Corrected SS and Std Error Mean statistics. Be
aware of this and you’ll be able to sleep better at night. Note also that cValue1 and
cValue2 are the character representations of nValue1 and nValue2.

You might be wondering what would happen if you asked for a UNIVARIATE on both
variables WeightInPounds and HeightInInches. Based on the SAS code above, you
would still ONLY get the moments for WeightInPounds because that is the Path you
specified above. In order to get all of the variables to appear in your output SAS
dataset, you would need to use the Name rather than the Path in the code above:

ods output Moments=FatMoments;

proc univariate data=FatKids;

 var WeightInPounds HeightInInches;

run;

ods output close;

Here is what the dataset FatMoments looks like:

 VarName Label1 cValue1 nValue1 Label2 cValue2 nValue2

WeightInPounds N 7 7.000000 Sum Weights 7 7.000000

WeightInPounds Mean 279.857143 279.857143 Sum Observations 1959 1959.000000

WeightInPounds Std Deviation 266.181284 266.181284 Variance 70852.4762 70852

WeightInPounds Skewness 2.51231272 2.512313 Kurtosis 6.44913858 6.449139

WeightInPounds Uncorrected SS 973355 973355 Corrected SS 425114.857 425115

WeightInPounds Coeff Variation 95.1132716 95.113272 Std Error Mean 100.607069 100.607069

HeightInInches N 7 7.000000 Sum Weights 7 7.000000

HeightInInches Mean 55.2857143 55.285714 Sum Observations 387 387.000000

HeightInInches Std Deviation 26.9054783 26.905478 Variance 723.904762 723.904762

HeightInInches Skewness -0.4556582 -0.455658 Kurtosis -0.8111112 -0.811111

HeightInInches Uncorrected SS 25739 25739 Corrected SS 4343.42857 4343.428571

HeightInInches Coeff Variation 48.6662398 48.666240 Std Error Mean 10.1693149 10.169315

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 10

Notice that both WeightInPounds and HeightInInches appear in the SAS dataset
FatMoments.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 11

Q.2: How do I create an Adobe Acrobat PDF File from all of my SAS procedures?

A.2:

In order to create a PDF file – or an RTF file, or HTML file, etc. – you need to specify
the ODS statement followed by your desired output option like PDF, RTF, HTML, etc.
These options are known as an output destination in ODS lingo. You then follow this
with as many SAS procedures as you want and the output from each one is placed in
your desired destination. Next, you must “close” the destination using the ODS CLOSE
statement. Here is an example using our FatKids dataset to create an Adobe Acrobat
PDF file:

ods listing close;

ods pdf file="C:\FatKids_Analysis1.pdf";

proc univariate data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Univariate on the FatKids';

run;

proc print data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'FatKids Data';

run;

proc corr data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Correlation on the FatKids';

run;

ods pdf close;

ods listing;

Note that we first closed the LISTING destination in order to prevent the procedure
output from being also created in the SAS Listing. Next, we opened up the PDF output
destination and specified where we wanted our PDF to be stored, here in
C:\FatKids_Analysis1.pdf. We then ran threeSAS procedures and then closed the PDF
output destination and re-opened the LISTING output destination. The closing and
opening of the LISTING output destination is a best practice you should adhere to.

Below is a screenshot when we open up the PDF file in Adobe Acrobat reader and
moved to the correlations output page:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 12

As you can see, the correlation between height and weight in the FatKids dataset leads
us to believe that there is no relationship between the variables HeightInInches and
WeightInPounds, and clearly leads us to conclude that fat kids in general have no
concept of basic statistics.

If you are not very impressed by the black-and-white output you see above, SAS
provides several different built-in styles which allow you to put a little bling-bling into
your output. If we included the option STYLE=BarrettsBlue on the code

 ODS PDF FILE="C:\FatKids_Analysis1.pdf";

like this

ods pdf style=BarrettsBlue file="C:\FatKids_Analysis2.pdf";

we would see output like this:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 13

Take note of the pretty colors. SAS provides the following built-in styles for you to use
with the STYLE= option:

Listing of: SASHELP.TMPLMST

Path Filter is: Styles

Sort by: PATH/ASCENDING

Obs Path Type

 1 Styles Dir

 2 Styles.Analysis Style

 3 Styles.Astronomy Style

 4 Styles.Banker Style

 5 Styles.BarrettsBlue Style

 6 Styles.Beige Style

 7 Styles.Brick Style

 8 Styles.Brown Style

 9 Styles.Curve Style

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 14

10 Styles.D3d Style

11 Styles.Default Style

12 Styles.EGDefault Style

13 Styles.Education Style

14 Styles.Electronics Style

15 Styles.Festival Style

16 Styles.FestivalPrinter Style

17 Styles.Gears Style

18 Styles.Journal Style

19 Styles.Magnify Style

20 Styles.Meadow Style

21 Styles.MeadowPrinter Style

22 Styles.Minimal Style

23 Styles.Money Style

24 Styles.NoFontDefault Style

25 Styles.Normal Style

26 Styles.NormalPrinter Style

27 Styles.Printer Style

28 Styles.Rsvp Style

29 Styles.Rtf Style

30 Styles.Sasweb Style

31 Styles.Sasweb2 Style

32 Styles.Science Style

33 Styles.Seaside Style

34 Styles.SeasidePrinter Link

35 Styles.Sketch Style

36 Styles.Statdoc Style

37 Styles.Statistical Style

38 Styles.Theme Style

39 Styles.Torn Style

40 Styles.Watercolor Style

41 Styles.blockPrint Style

42 Styles.fancyPrinter Style

43 Styles.sansPrinter Style

44 Styles.sasdocPrinter Style

45 Styles.serifPrinter Style

Try several different styles and impress your friends!

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 15

Q.3: How do I create an HTML file from all of my SAS procedures for use on the web?

A.3:

Similar to creating a PDF file in Q.2 above, instead of providing the PDF output
destination, we provide the HTML output destination:

ods listing close;

ods html style=BarrettsBlue file="C:\FatKids_Analysis2.html";

proc univariate data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Univariate on the FatKids';

run;

proc print data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'FatKids Data';

run;

proc corr data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Correlation on the FatKids';

run;

ods html close;

ods listing;

Note that we still provided the FILE= option and we closed the HTML output destination
after we finished adding all of our procedures. A screenshot from Internet Explorer
appears below:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 16

Now, if we wanted to get really fancy, we could have ODS create a web document with
several frames appearing in Internet Explorer. Here is how to do that:

ods listing close;

ods html style=BarrettsBlue body="C:\FatKids_body.html"

contents="C:\FatKids_contents.html"

 frame="C:\FatKids_frame.html"

 page="C:\FatKids_page.html";

proc univariate data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Univariate on the FatKids';

run;

proc print data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'FatKids Data';

run;

proc corr data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Correlation on the FatKids';

run;

ods html close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 17

If you open up the FatKids_frame.html page in Internet Explorer and move to the
correlations section, here is what you will see:

Note that the frame on the right contains the web page FatKids_body.html, the frame on
the upper-left contains the web page FatKids_contents.html, and the frame on the
lower-left contains the web page FatKids_page.html.

Notice that the style BarrettsBlue works equally well in a PDF file as it does in a web
page. This is true for almost all of the output destinations and styles you provide.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 18

Q.4: Can I create a comma-delimited text file from my SAS dataset using ODS?

A.4:

Similar to creating a PDF and HTML file above, we can use the CSV or CSVALL output
destinations in association with the PRINT procedure. The CSV destination creates a
comma-delimited file from your dataset with each character column surrounded by
double-quotes. CSVALL is the same except titles and footnotes are placed in the file as
well. Here is the code to run both output destinations and their output data:

ods listing close;

ods csv file="C:\FatKids_Data.csv";

proc print data=FatKids noobs;

 var KidName HeightInInches WeightInPounds;

 title1 "FatKid Data";

run;

ods csv close;

ods listing;

"KidName","HeightInInches","WeightInPounds"

"ALBERT",45,150

"ROSEMARY",35,123

"TOMMY",78,167

"BUDDY",12,189

"FARQUAR",76,198

"SIMON",87,256

"LAUREN",54,876

ods listing close;

ods csvall file="C:\FatKids_Data.csvall";

proc print data=FatKids noobs;

 var KidName HeightInInches WeightInPounds;

 title1 "FatKid Data";

run;

ods csvall close;

ods listing;

FatKid Data

"KidName","HeightInInches","WeightInPounds"

"ALBERT",45,150

"ROSEMARY",35,123

"TOMMY",78,167

"BUDDY",12,189

"FARQUAR",76,198

"SIMON",87,256

"LAUREN",54,876

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 19

Note that it seems like overkill to be doing a PROC PRINT just to output data to a text
file. We can accomplish a similar task using a DATA _NULL_ step:

ods listing close;

ods csv file="C:\FatKids_DataStep.csv";

data _null_;

 set FatKids;

 file print ods=(

 variables=(

 KidName HeightInInches WeightInPounds

)

);

 put _ods_;

run;

ods csv close;

ods listing;

"KidName","HeightInInches","WeightInPounds"

"ALBERT",45,150

"ROSEMARY",35,123

"TOMMY",78,167

"BUDDY",12,189

"FARQUAR",76,198

"SIMON",87,256

"LAUREN",54,876

Note that we specify FILE PRINT ODS= in the data step along with a list of the variables
we want to keep. Next, we issue a PUT _ODS_ statement to tell SAS to output the data
to the CSV file.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 20

Q.5: How can I limit the results output by my SAS procedures when I use ODS?

A.5:

SAS procedures occasionally output a lot of information that you may not want to put in
your PDF or HTML file when using ODS. You can limit the output by using the ODS
SELECT command by specifying the path, name or label from the ODS TRACE
command. For example, when using the UNIVARIATE procedure, say you only wanted
the moments and the extreme observations to output. From the ODS TRACE in Q.1
above, you know that the output name for the moments results is Moments and the
output for the extreme observations is ExtremeObs. Using the ODS SELECT
command, you can limit your output like this:

ods select Moments

 ExtremeObs;

ods listing close;

ods pdf file="C:\FatKids_Analysis1.pdf";

proc univariate data=FatKids;

 var WeightInPounds HeightInInches;

 title1 'Univariate on the FatKids';

run;

ods pdf close;

ods listing;

ods select ALL;

Make sure the issue ODS SELECT ALL so that you can clear out your previous
selections.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 21

PART II

Things Momma Never Taught You

This section briefly discusses PROC REPORT as

well as introduces you to HTML (the layout

language used in creating web pages) and
Cascading Style Sheets (the formatting language
used to provide web pages with font and color
styles). Although they may appear to be unrelated
to SAS ODS, the concepts presented in this section
are similar to ODS styles and PROC TEMPLATE

presented in Part III.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 22

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 23

Brief Introduction to PROC REPORT

Without going too deep into the details of how to write PROC REPORT code, we show two
comprehensive examples and explain the parts. For this example, assume we are using
the FatKids data:

proc report data=FatKids headline split="*" nowindows spacing=1 ls=256;

 column KidName HeightInInches WeightInPounds FattyIndex;

 define KidName/group 'First Name' width=10;

 define HeightInInches/analysis sum 'Height*(inches)' width=10 format=comma10.0;

 define WeightInPounds/analysis sum 'Weight*(pounds)' width=10 format=comma10.0;

 define FattyIndex/computed 'Fatty*Index' width=10 format=comma10.2;

 compute FattyIndex;

 FattyIndex=(10*_c2_ + 20*_c3_)/1000;

 endcomp;

 title1 "Fat Kid FattyIndex Computation";

 title2 "Fat Year: 2006";

run;

As usual, DATA= defines the name of the input dataset. The option SPLIT=”*” defines the
asterisk as the split character in the column header names. The option NOWINDOWS tells
SAS not to display the PROC REPORT window, but instead place the output in the SAS
Listing window. The SPACING=1 option specifies the number of blank columns between
the columns of data. The LS=256 option tells PROC REPORT that the maximum linesize
for the report is 256 characters.

Next, we define all of the columns we are going to use in our report. Note that the column
FATTYINDEX does not appear in the FatKids dataset, but is created in the COMPUTE
section below and is required to be on the COLUMN line if it is going to be displayed. Next,
we define all of our columns. We define the column KIDNAME to be a GROUP column
with a header name of ‘First Name’ and a maximum width of 10 characters. We then
define the HeightInInches and WeightInPounds columns to be ANALYSIS columns which
will be summed. Note that although we provide GROUP and ANALYSIS variables, no
actual summing by KidName will take place since the FatKid dataset is already
summarized to the KIDNAME level.

Next, we define the column FATTYINDEX which is a computed column. We then move on
to define the computation for the FATTYINDEX column by using the formula 10 times the
HeightInInches plus 20 times the WeightInPounds all divided by 1000. Note how the code
uses _C2_ to represent the 2nd column HeightInInches, and _C3_ to represent the 3rd
column WeightInPounds.

Here is the corresponding output:

Fat Kid FattyIndex Computation

Fat Year: 2006

 Height Weight Fatty

 First Name (inches) (pounds) Index

 ALBERT 45 150 3.45

 BUDDY 12 189 3.90

 FARQUAR 76 198 4.72

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 24

 LAUREN 54 876 18.06

 ROSEMARY 35 123 2.81

 SIMON 87 256 5.99

 TOMMY 78 167 4.12

For this next example, assume we have a SAS dataset similar to the FatKids data, but has
an additional column called STAT_DATE containing the day the height and weight were
taken for each kid. Using PROC REPORT, we can define the column STAT_DATE to be
an ACROSS column which will show the date across the top of the page. Note how the
COLUMN definition has changed. We have the column STAT_DATE followed by a comma
follwed by a space-separated list of variables in parentheses. This indicated to PROC
REPORT that STAT_DATE goes across the top of the report and that the two columns
HEIGHTININCHES and WEIGHTINPOUNDS appear as columns under the corresponding
STAT_DATE. The code and output follows:

proc report data=FatKidsOverTime headline split="*" nowd missing spacing=1

ls=256;

 column KidName Stat_Date,(HeightInInches WeightInPounds) FattyIndex;

 define KidName/group 'First Name' width=10;

 define Stat_Date/across format=monyy6. order=data '-Quarter-';

 define HeightInInches/analysis sum 'Height*(inches)' width=10 format=comma10.0;

 define WeightInPounds/analysis sum 'Weight*(pounds)' width=10 format=comma10.0;

 define FattyIndex/computed 'Fatty*Index' width=10 format=comma10.2;

 compute FattyIndex;

 FattyIndex=(10*(_c2_+_c4_+_c6_+_c8_) + 20*(_c3_+_c5_+_c7_+_c9_))/1000;

 endcomp;

 title1 "Fat Kid FattyIndex Computation Over Time";

 title2 "Fat Year: 2006";

run;

Fat Kid FattyIndex Computation Over Time

Fat Year: 2006

 ---Quarter---

 JAN06 APR06 JUL06 OCT06

 Height Weight Height Weight Height Weight Height Weight Fatty

 First Name (inches) (pounds) (inches) (pounds) (inches) (pounds) (inches) (pounds) Index

 ALBERT 45 150 45 160 45 170 45 190 15.20

 BUDDY 12 189 12 199 12 219 12 249 17.60

 FARQUAR 76 198 76 198 76 218 76 218 19.68

 LAUREN 54 876 54 886 54 896 54 976 74.84

 ROSEMARY 35 123 35 133 35 143 35 163 12.64

 SIMON 87 256 87 266 87 276 87 356 26.56

 TOMMY 78 167 78 177 78 187 78 217 18.08

Note that we also had to update the FATTYINDEX since there are now more columns in
the PROC REPORT due to the ACROSS option provided on STAT_DATE.

To relate this back to SAS ODS, the concept of defining columns and computing new
columns in PROC REPORT appears in a similar way in PROC TEMPLATE.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 25

Brief Introdution to HTML and CSS

Many of you are familiar with the web…that’s where you can find all sorts of information
related to porn. In order to make those informational webpages, you use the language of
the web called Hypertext Markup Language (HTML). For example, to display the following
in a webpage in Internet Explorer, all you have to do is open up a text editor, type in the
text and then open the file using Internet Explorer:

<HTML>

 <HEAD>

 <TITLE>

 This text appears in the title bar!

 </TITLE>

 </HEAD>

 <BODY>

 <H1>Emilio Estavez</H1>

 </BODY>

</HTML>

As you can see, HTML is made up of HTML tags such as <HTML>, <HEAD>, <BODY>,
etc. These HTML tags tell Internet Explorer how to display information like the name Emilio
Estavez. All HTML files start with the starting HTML tag <HTML> and end with ending
HTML tag </HTML>. There are two major sections that follow: the HEAD section, which
contains header-type information like what to display in the title bar; and the BODY section,
which is what is actually displayed on the page. The code in the HEAD section is never
displayed in the webpage. As you can see above, in the HEAD section, we define the
TITLE to be displayed at the top of Internet Explorer, while in the BODY section we display
the name Emilio Estavez in the largest font available by using the H1 tag. Note that what
appears in Internet Explorer is not very stylistic because the HTML tags do not define style
but only define layout on the page. We’ll get to style later on.

Let’s create a more interesting web page using the data for the FatKids. In this case, we
use the TABLE tag to create an Excel-like spreadsheet. Within the TABLE we have rows
and columns. Each row is defined by using a TR tag. Each column – the data appearing in
the rows, really – are defined by using the TD tag. Think of TR as meaning TABLE ROW
and TD as meaning TABLE DATA. Here is the HTML code to display the FatKids data:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 26

<HTML>

 <HEAD>

 <TITLE>

 FatKids 2006 Data

 </TITLE>

 </HEAD>

 <BODY>

 <TABLE>

 <TR> <TD>KidName </TD> <TD>Height</TD> <TD>Weight</TD> </TR>

 <TR> <TD>ALBERT </TD> <TD>45 </TD> <TD>150 </TD> </TR>

 <TR> <TD>ROSEMARY</TD> <TD>35 </TD> <TD>123 </TD> </TR>

 <TR> <TD>TOMMY </TD> <TD>78 </TD> <TD>167 </TD> </TR>

 <TR> <TD>BUDDY </TD> <TD>12 </TD> <TD>189 </TD> </TR>

 <TR> <TD>FARQUAR </TD> <TD>76 </TD> <TD>198 </TD> </TR>

 <TR> <TD>SIMON </TD> <TD>87 </TD> <TD>256 </TD> </TR>

 <TR> <TD>LAUREN </TD> <TD>54 </TD> <TD>876 </TD> </TR>

 </TABLE>

 </BODY>

</HTML>

Note that we define a table using the starting tag <TABLE> and the ending tag </TABLE>.
We define each row with the starting tag <TR> and the ending tag </TR>, and each data
element (or cell) using the starting tag <TD> and ending tag </TD>. When you open this
HTML file up in Internet Exporer, here is what you see:

Again, this is not very stylistic: the headers are not bold, the font is not Courier, the
numbers are not right-justified. Here is where Cascading Style Sheets (CSS) comes in.
CSS allows you to define the font, font size, and other more stylistic things for the individual
items in your webpage. For example, suppose I wanted to use the Arial 24-point bold font
for the headers. Here is what the code looks like to accomplish this:

<TR STYLE="font-family:Arial;font-size:24pt;font-weight:bold"><TD>KidName</TD><TD>Height</TD><TD>Weight</TD></TR>

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 27

As you can see, we are using the STYLE= element inside the TR tag that contains the
headers. To define the font we want, we use the font-family attribute followed by a colon
followed by the name of the font was want to use, Arial in this case. The define the font
size, we use the font-size attribute followed by a colon followed by the number of points we
want the font to be, 24pt in this case. To make the font bold, we use the font-weight
attribute followed by a colon followed by the word bold.
And here is what that looks like in Internet Explorer:

Next, let’s make each row of data appear as 24 point Courier font with the data right-
justified. Here is the code to do that (I only show one data row):

 <TR STYLE="font-family:CourierNew;font-size:24pt;text-align:right"><TD>ALBERT</TD><TD>45</TD><TD>150</TD></TR>

You’ll notice that I removed the font-weight attribute since I don’t want the text to be bold.
Here is what the webpage looks like now:

As you can see, the name also appear right-justified, which is not exactly what we want.
The reason that this occurred was that we put the STYLE= element inside each TR tag

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 28

which causes the entire row to be affected. If we had placed the STYLE= element inside
the TD tags containing the height and weight information, we would have this code (again
only one row is shown):

<TR>

 <TD>ALBERT</TD>

 <TD STYLE="font-family:CourierNew;font-size:24pt;text-align:right">45</TD>

 <TD STYLE="font-family:CourierNew;font-size:24pt;text-align:right">150</TD>

</TR>

Next, let’s change the kid name to be Courier 24-point as well, but ensure that it’ll be left-
justified (here is part of one row):

<TD STYLE="font-family:CourierNew;font-size:24pt;text-align:left">ALBERT</TD>

and here is the result:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 29

Next, let’s center the table in the Internet Explorer window, and put a double border around
the entire table. Here is the code to do that (only the TABLE row is shown):

<TABLE ALIGN="CENTER" STYLE="border:6pt double blue">

Note that we aligned the table using the ALIGN= element. In the STYLE= element use
used the border attribute. The border attribute is followed by three space-delimited options:
the size of the border (6pt in this example), the type of line to draw around the border
(double in this example) and the color of the border (blue in this example).

And here is the result:

You can go crazy with stylistic changes, but I think you get the idea. The ability to change
font family, font size, colors, alignments, etc. we’ve presented here is very similar to how
SAS ODS approaches displaying SAS procedure output in a PDF, RTF, HTML, or
whatever output destination you choose.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 30

PART III

Easing Our Way to Style

Three Base SAS procedures – PRINT, REPORT
and TABULATE – allow you to change some of the
ODS style elements, such as font size and
background colors, directly from the SAS procedure
code itself. This differs from the remaining
procedures which require you to use PROC

TEMPLATE to achieve the same style changes. In

this section we discuss how to change the style
elements for the PRINT procedure and leave it up
to the interested reader to look into REPORT and
TABULATE. We discuss PROC TEMPLATE in the

next section.

Note that the procedures PRINT, REPORT and
TABULATE produce output in a tabular format
similar to using the <TABLE> HTML tag described
in the previous section…keep this in mind when
reading through this section.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 31

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 32

USING SAS ODS TO CHANGE PROC PRINT OUTPUT

If we were to run a PROC PRINT on the FatKids data, we would see the following output in
the SAS Listing window:

proc print data=FatKids split="*" n;

 id KidName;

 var HeightInInches WeightInPounds;

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

2006 Fat Kid Data

Name of Height Weight

Child (inches) (pounds)

ALBERT 45 150

ROSEMARY 35 123

TOMMY 78 167

BUDDY 12 189

FARQUAR 76 198

SIMON 87 256

LAUREN 54 876

N = 7

No surprise, but this output is rather dull and is lacking in style. The PRINT procedure
allows you to modify fonts, font sizes, colors and more for specific areas of the procedure
output.

Note that these style changes do NOT work when using the LISTING output destination
since it is simply text output. So, we will use the HTML output destination instead to
produce a single webpage from our PRINT output. Here is the modified code and the
corresponding output:

ods listing close;

ods html file="C:\FatKids_Data1.html";

proc print data=FatKids split="*" n;

 id KidName;

 var HeightInInches WeightInPounds;

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 33

As you can see, the headings have a grey background with blue colored text. Let’s change
this PRINT output so that the headings have a white background and black colored
italicized text. Here is the same PRINT code as above with a STYLE= option on the PROC
PRINT line added in:

ods listing close;

ods html file="C:\FatKids_Data1.html";

proc print data=FatKids split="*" n

 style(HEADER)={font_style=italic foreground=black

background=white};

 id KidName;

 var HeightInInches WeightInPounds;

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 34

Take note that we specified the option STYLE followed by the word HEADER in
parentheses, followed by an equal sign followed by three style attributes similar to the
STYLE attributes we introduced in the previous section on Cascading Style Sheets. Note
that in the PROC PRINT STYLE= option, we use blanks to delimit the attributes rather than
using semi-colons.

Note that the Name of Child column was not affected by our HEADER style change. This
is because the variable KidName is actually specified on the ID line and not the VAR line.
The ID line has its own STYLE command. Let’s try our PRINT again as above, but let’s fix
the ID column to have a black background and white italicized text:

ods listing close;

ods html file="C:\FatKids_Data1.html";

proc print data=FatKids split="*" n

 style(HEADER)={font_style=italic foreground=black background=white};

 id KidName/style(HEADER)={font_style=italic foreground=white background=black};

 var HeightInInches WeightInPounds;

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

As you can see, we placed a STYLE option on the ID line after the slash. Here is the
result:

Next, let’s change the height and weight values to be the Courier font:

ods listing close;

ods html file="C:\FatKids_Data1.html";

proc print data=FatKids split="*" n

 style(HEADER)={font_style=italic foreground=black background=white};

 id KidName/style(HEADER)={font_style=italic foreground=white background=black};

 var HeightInInches WeightInPounds/style(DATA)={font_face=Courier};

 label KidName="Name of*Child"

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 35

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

Here is the result:

As you can see, the font in the cells has changed to Courier. Next, let’s make the text
N=7 at the bottom of the SAS PRINT output bold as well. Here is the code and the
resulting webpage:

ods listing close;

ods html file="C:\FatKids_Data1.html";

proc print data=FatKids split="*" n

 style(HEADER)={font_style=italic foreground=black

background=white}

 style(N)={font_weight=bold};

 id KidName/style(HEADER)={font_style=italic foreground=white

background=black};

 var HeightInInches WeightInPounds/style(DATA)={font_face=Courier};

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 36

By now, you get the idea, so here is a list of all of the PROC PRINT sections you can
change with the STYLE option: BYLABEL, DATA, GRANDTOTAL, HEADER, N, OBS,
OBSHEADER, TABLE, and TOTAL. You can look up the style attributes you can
change in the PROC PRINT section of the Base SAS Procedures Guide.

The remaining two procedures, REPORT and TABULATE, also have the ability the
change style attributes just like PRINT. Please refer to the Base SAS Procedures
Guide to learn more about these two procedures.

Note that we have been using curly braces ({}) to delimit the style attributes in this
section. SAS also allows you to use brackets ([]) to delimit the style attributes. I
decided to use curly braces in this section and the remaining sections as as reminder to
the reader of the style attributes we encountered in the section on HTML and Cascading
Style Sheets above.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 37

PART IV

PROC TEMPLATE is Life!

You can smoke a cigarette if you want to…or not.
It’s your decision because you have ultimate control
over your body.

And PROC TEMPLATE gives you ultimate control

over how to create personalized styles for your
procedure output.

Sure, the last two sentences were trite and
completely unrelated, but you didn’t have to read
them…it was your decision, smarty-pants!

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 38

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 39

Baby’s Got BarrettsBlue Eyes

In Part I, when we tried the style named BarrettsBlue, the more curious of you may have
wondered just where that style came from…and what style is used when BarrettsBlue is not
used. As all of us SAS heads know, when we want to save a SAS dataset for later use, we
can make a permanent SAS dataset; when we want to save a user-defined format for later
use, we create a permanent format catalog; when we want save our graphs for later use in
PROC REPLAY, say, we create a permanent graphics catalog. SAS comes with two pre-
created permanent catalogs containing the SAS-defined templates. These catalogs are
known as item stores in SAS ODS lingo. You can show the location of these two item
stores -- and any item stores you define yourself -- by using the ODS PATH statement as
shown below:

ods path show;

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)

2. SASHELP.TMPLMST(READ)

You’ll note the very familiar two-level SAS names, SASUSER and SASHELP. The first
specifies that the item store TEMPLAT is located in SASUSER while the second,
TMPLMST, is located in SASHELP. Note that the first item store, SASUSER.TEMPLAT,
can be updated by you. While the second, SASHELP.TMPLMST, is read-only.

So, what’s in these item stores? To list the items in each item store, use the PROC
TEMPLATE LIST statement like this:

proc template;

 list/store=sashelp.tmplmst;

run;

Listing of: SASHELP.TMPLMST

Path Filter is: *

Sort by: PATH/ASCENDING

Obs Path Type

<skipped some lines>

 206 Base.Univariate Dir

 207 Base.Univariate.BinPercents Table

 208 Base.Univariate.Bins Table

 209 Base.Univariate.ConfLimits Table

 210 Base.Univariate.ExtObs Table

 211 Base.Univariate.ExtVal Table

 212 Base.Univariate.FitGood Table

 213 Base.Univariate.FitParms Table

 214 Base.Univariate.FitQuant Table

 215 Base.Univariate.Frequency Table

 216 Base.Univariate.LocCount Table

 217 Base.Univariate.Location Table

 218 Base.Univariate.Measures Table

 219 Base.Univariate.Missings Table

 220 Base.Univariate.Modes Table

 221 Base.Univariate.Moments Link

 222 Base.Univariate.Normal Table

 223 Base.Univariate.PValue Link

 224 Base.Univariate.Quantiles Table

 225 Base.Univariate.Robustscale Table

 226 Base.Univariate.Trim Table

 227 Base.Univariate.Wins Table

<skipped some lines>

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 40

What you see in the table above is all of the templates associated with the UNIVARIATE
procedure. Recall from Part I that when we surrounded our PROC UNIVARIATE code with
the ODS TRACE commands, we saw trace output like this:

Output Added:

Name: Moments

Label: Moments

Template: base.univariate.Moments

Path: Univariate.WeightInPounds.Moments

You’ll note that this trace tells you that the template associated with the UNIVARIATE

procedure’s moments output is base.univariate.Moments. You’ll also notice that this

template is located in the item store SASHELP.TMPLMST as you can see on the previous
page. You could probably guess that the word “base” refers to the Base SAS procedures,
the “univariate” refers to the procedure itself, and the “Moments” refers to the output. Each
SAS procedure has one or more templates associated with it, one for each output.

Let’s try this again, but this time let’s search for all of the templates associated with the
SURVEYMEANS procedure in the SAS STAT module. Here is the PROC TEMPLATE
LIST code you can use to see all of the templates associated with all output generated by
the SURVEYMEANS procedure:

proc template;

 list stat.surveymeans/store=sashelp.tmplmst;

run;

Listing of: SASHELP.TMPLMST

Path Filter is: Stat.Surveymeans

Sort by: PATH/ASCENDING

Obs Path Type

 1 Stat.SurveyMeans Dir

 2 Stat.SurveyMeans.CLHeadMean Header

 3 Stat.SurveyMeans.CLHeadRatio Header

 4 Stat.SurveyMeans.CLHeadSum Header

 5 Stat.SurveyMeans.ClassVarInfo Table

 6 Stat.SurveyMeans.Column Column

 7 Stat.SurveyMeans.Df Link

 8 Stat.SurveyMeans.Domain Table

 9 Stat.SurveyMeans.EqualSign Column

10 Stat.SurveyMeans.Factoid Link

11 Stat.SurveyMeans.Header Header

12 Stat.SurveyMeans.L1SideCLHeadMean Header

13 Stat.SurveyMeans.L1SideCLHeadSum Header

14 Stat.SurveyMeans.LCLMean Header

15 Stat.SurveyMeans.LCLSum Header

16 Stat.SurveyMeans.Probt Link

17 Stat.SurveyMeans.Ratio Table

18 Stat.SurveyMeans.StackingDomain Table

19 Stat.SurveyMeans.StackingStatistics Table

20 Stat.SurveyMeans.StackingStrataInfo Table

21 Stat.SurveyMeans.Statistics Table

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 41

22 Stat.SurveyMeans.StdErr Link

23 Stat.SurveyMeans.StrataInfo Table

24 Stat.SurveyMeans.U1SideCLHeadMean Header

25 Stat.SurveyMeans.U1SideCLHeadSum Header

26 Stat.SurveyMeans.UCLMean Header

27 Stat.SurveyMeans.UCLSum Header

28 Stat.SurveyMeans.tValue Link

As you can see in both the UNIVARIATE and SURVEYMEANS list of templates, there is a
single line labeled Dir under the Types heading. Dir stands for Directory. Item stores are
arranged in an hierarchical fashion meaning that there is top-level directory and items
below it. (Ignore the remaining Types for now.)

That’s all well and good, but where does BarrettsBlue come from? Well, if you scanned the
entire PROC TEMPLATE LIST, you’ll notice a directory labeled Styles. Under this
directory, there is Styles.BarrettsBlue as well as the default style Styles.Default, which is
used when you do not specify a style like BarrettsBlue. As a reminder, here is the code we
used in Part I:

ods pdf style=BarrettsBlue file="C:\FatKids_Analysis2.pdf";

You can specify the STYLE= option for PDF, HTML and any other output destination
except for LISTING and OUTPUT. Note that LISTING is plain-text and is not affected by
colors and fonts and OUTPUT is used to create a SAS dataset which is equally not affected
by colors and fonts.

Take note that there is no mention of either SASUSER.TEMPLAT or SASHELP.TMPLMST
when referring to Styles.BarrettsBlue. That’s because all item stores are searched until a
match is found. The output of the ODS PATH SHOW command lists the search path in
order.

So, how does knowing all of this help you out? Well, with PROC TEMPLATE you have the
choice of either creating your own templates from scratch, or using a pre-defined template
and just modifying the styles you are concerned with. The rest of this chapter focuses on
modifying pre-defined templates.

Recall from Part III that we modified styles in the PRINT procedure of the FatKids data to
change the header fonts, colors, etc. Let’s try that example again, but we wi ll use the
default style Styles.Default and modify it. The first thing we have to know is: what does
Styles.Default looks like from a SAS code standpoint? To see the PROC TEMPLATE code
behind Styles.Default, issue the following command:

proc template;

 source Styles.Default;

run;

We won’t show the code here because there is a lot to it, but be aware that the HEADER
and DATA that we modified in the PRINT procedure in Part III are the same names you use
in your PROC TEMPLATE. Here is the PROC TEMPLATE code to mimic the PRINT
procedure from Part III:

proc template;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 42

 define style MyNewStyle;

 parent=Styles.Default;

 style HEADER from HEADER/font_style=italic

 foreground=black

 background=white;

 style DATA from DATA/font_face=CourierNew;

 style NOTECONTENT from NOTECONTENT/font_weight=Bold;

 end;

run;

As with other SAS procedures, you start off with PROC TEMPLATE. Next, you issue a
DEFINE STYLE command followed by the name of your new style,here we called it
MyNewStyle. Next, we tell PROC TEMPLATE that we are going to inherit the style
information from Styles.Default so that we do not have to define all of the styles. Next, we
change three styles. The first two are familiar: HEADER and DATA. These two have the
same meaning as the styles in the PRINT procedure from Part III. Note that in order to
change the style for the HEADERs, we let PROC TEMPLATE know that we are inheriting
all of the default header information from Styles.Default by using the syntax: style header
from header. Then, we go ahead and change the header font and colors after the forward
slash in a similar way to the PRINT procedure.

Next, the NOTECONTENT is associated with the N=7 information from the PRINT
procedure in PART III. I determined that I needed to modify the NOTECONTENT by
looking at the CLASS= attribute in the HTML that is generated by the ODS HTML output
file. Here is what the N=7 row looks like at the bottom of the HTML file
FatKids_Data1.html:

<td class="l NOTECONTENT" colspan="3">N = 7</td>

The lowercase letter “L” means to left-justify the text N=7 in the table data field. Take note
of the NOTECONTENT class. This indicates to SAS what the style is called and how we
knew what style to modify in the PROC TEMPLATE code.

Here is the ODS HTML code that uses MyNewStyle:

ods listing close;

ods html style=MyNewStyle file='C:\FatKids_Data1.html';

proc print data=FatKids split="*" n;

 id KidName;

 var HeightInInches WeightInPounds;

 label KidName="Name of*Child"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)";

 title1 "2006 Fat Kid Data";

run;

ods html close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 43

As you can see, the headers all have a white background, but the results from our PRINT
procedure in Part III had a black background for the text “Name of Child”. Based on the
discussion thus far, there is no way to change the background color of just a single column
of data. We will, of course, show you how to get around this later on.

Now, if you are happy with the style MyNewStyle you have created, you probably want to
save it in your own item store. Note that by default any new style is stored in
SASUSER.TEMPLAT in the Styles “directory”. If you want to create your own item store to
contain just your own styles, you can define a SAS Libname to a location of your choice
and store your style there. Here is an example of how to create your own item store and
place your new style MyNewStyle in a directory called MyStyles:

libname MyItmStr "C:\";

run;

ods path (PREPEND) MyItmStr.MyStyles(UPDATE);

ods path show;

proc template;

 define style MyStyles.MyNewStyle;

 parent=Styles.Default;

 style HEADER from HEADER/font_style=Italic

 foreground=black

 background=white;

 style DATA from DATA/font_face=CourierNew;

 style NOTECONTENT from NOTECONTENT/font_weight=Bold;

 end;

run;

proc template;

 list /store=MyItmStr.MyStyles;

run;

Note that we set up a SAS Libname to the location of the item store. Item stores have an
extension of .sas7bitm. Next, recall that we said that SASUSER.TEMPLAT and

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 44

SASHELP.TMPLMST are SAS-defined default item stores. As we explained before, these
two item stores are searched in order based on the results of issuing an ODS PATH SHOW
command. In order for out new style to be found in the search path when we are creating a
brand new item store, we must add our item store to the search path. In this case, we are
prepending our item store to the search path so that our new style is found quickly and SAS
does not have to search through all of the item stores to find it. Next, we enter in the
libname followed by a dot followed by the work MyStyles. MyStyles is the name of our
directory and any styles we create will appear under that directory. Next, we ensure that
we can update our new item store by entering the keyword UPDATE in parentheses. Next,
we issue an ODS PATH SHOW command to see if the path has been updated. Here are
the results of this command in the SAS Log file:

Current ODS PATH list is:

1. MYITMSTR.MYSTYLES(UPDATE)

2. SASUSER.TEMPLAT(UPDATE)

3. SASHELP.TMPLMST(READ)

Next, we rerun out PROC TEMPLATE only this time we tell the DEFINE STYLE statement
where to place our new style: MyStyles.MyNewStyle. If you list your item store, this is
what you will see:

proc template;

 list/store=MyItmStr.MyStyles;

run;

Listing of: MYITMSTR.MYSTYLES

Path Filter is: *

Sort by: PATH/ASCENDING

Obs Path Type

 1 MyStyles Dir

 2 MyStyles.MyNewStyle Style

If you want to see the PROC TEMPLATE source code for your style MyNewStyles, you
issue this code and your PROC TEMPLATE source code will appear in the SAS Log file:

proc template;

 source MyStyles.MyNewStyle/store=MyItmStr.MyStyles;

run;

1520 proc template;

1521 source MyStyles.MyNewStyle/store=MyItmStr.MyStyles;

NOTE: Path 'MyStyles.MyNewStyle' is in: MYITMSTR.MYSTYLES.

define style MyStyles.MyNewStyle / store = MYITMSTR.MYSTYLES;

 parent = Styles.Default;

 style HEADER from HEADER /

 background = white

 foreground = black

 font_style = Italic;

 style DATA from DATA /

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 45

 font_face = CourierNew;

 style NOTECONTENT from NOTECONTENT /

 font_weight = Bold;

end;

1522 run;

NOTE: PROCEDURE TEMPLATE used (Total process time):

 real time 0.01 seconds

 cpu time 0.02 seconds

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 46

The Author’s a Big Fat Liar!

Recall in Part II we briefly introduced PROC REPORT and then said that PROC
TEMPLATE and PROC REPORT had many things in common. The previous section
focused on just styles – my little white lie to you – but PROC TEMPLATE gives you more
than just the ability to change fonts and colors, it allows you to define columns just like
PROC REPORT. In fact, PROC TEMPLATE goes even futher in that you can define
headers, footers, and can even change the color of a cell based on the value of the data.
Recall I mentioned that you should consider SAS procedure output as just a table of data.
In fact, in order to use PROC TEMPLATE to its fullest, you begin by defining a table and
then within the table you define columns, headers, footers, styles, etc.

Let’s design a template for the FatKid data:

proc template;

 /* Here we start to define the table definition */

 define table FatKidTable;

 /* Define the columns…these are not the same as the */

 /* column names in the dataset. */

 column tFatKidName tFatKidHeight tFatKidWeight;

 /* Let PROC TEMPLATE know what the TITLE1 is called */

 header hdr1;

 /* Define TITLE1 */

 define header hdr1;

 text "2006 Fat Kid Data";

 style=header{font_size=4 just=left};

 end;

 /* Define the column representing the KidName */

 define tFatKidName;

 /* Define the header of this column */

 define header hdrName;

 text "Name of Child";

 style=header{font_size=2 font_weight=bold};

 just=center;

 end;

 id=on; /* Force this column to repeat when there are several pages */

 just=left;

 vjust=middle; /* vjust is the vertical justification */

 style=data{font_size=2 background=grey font_weight=bold};

 header=hdrName;

 end;

 /* Define the column representing the Height */

 define tFatKidHeight;

 /* Define the header of this column */

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 47

 define header hdrHt;

 text "Height*(inches)";

 style=header{font_size=2 font_weight=bold};

 just=center;

 split="*";

 end;

 id=off;

 just=right;

 vjust=middle;

 style=data{font_size=2};

 header=hdrHt;

 end;

 /* Define the column representing the Weight */

 define tFatKidWeight;

 /* Define the header of this column */

 define header hdrWt;

 text "Weight*(pounds)";

 style=header{font_size=2 font_weight=bold};

 just=center;

 split="*";

 end;

 id=off;

 just=right;

 vjust=middle;

 header=hdrWt;

 style=data{font_size=2};

 /* Create a CellStyle that will turn the font bold and colored red */

 /* if WeightInPounds is more than 500. */

 cellstyle _val_>500 as data{font_size=2

 font_weight=bold

 foreground=red};

 end;

 end;

run;

Here is the code to use our newly defined template. Note that the COLUMNS associate a
column in the table definition above with the columns we have in the dataset FatKids:

ods listing close;

ods html file="C:\FatKids_MyTable.html";

data _null_;

 set FatKids;

 file print ods=(

 template="FatKidTable"

 columns=(

 tFatKidName=KidName

 tFatKidHeight=HeightInInches

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 48

 tFatKidWeight=WeightInPounds

)

);

 put _ods_;

run;

ods html close;

ods listing;

Here are the results:

It may not surprise you that there are many more things you can do with PROC
TEMPLATE than we discussed in this little chapter. Consult the SAS Output Delivery
System manual for much more!!

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 49

PART V

Tag! You’re It!

Besides creating style and table definitions, PROC

TEMPLATE allows you to create your own tagset. A

tagset enables you to create your own markup
language like XML or HTML, or as you will see
below, you can output anything you like.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 50

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 51

Quick Intro to Tagsets

The SAS Output Delivery System comes with several built-in tagsets, as you can see from
the code below:

proc template;

 list Tagsets;

run;

Listing of: SASHELP.TMPLMST

Path Filter is: Tagsets

Sort by: PATH/ASCENDING

Obs Path Type

--

 1 Tagsets Dir

 2 Tagsets.Accessible Tagset

 3 Tagsets.Cascading_stylesheet Tagset

 4 Tagsets.Chtml Tagset

 5 Tagsets.Colorlatex Tagset

 6 Tagsets.Config_debug Tagset

 7 Tagsets.Csv Tagset

 8 Tagsets.Csvall Tagset

 9 Tagsets.Csvbyline Tagset

10 Tagsets.Default Tagset

11 Tagsets.Docbook Tagset

12 Tagsets.Event_map Tagset

13 Tagsets.ExcelXP Tagset

14 Tagsets.Graph Tagset

15 Tagsets.Graph_rtf Tagset

16 Tagsets.Html4 Tagset

17 Tagsets.Htmlcss Tagset

18 Tagsets.Htmlpanel Tagset

19 Tagsets.Imode Tagset

20 Tagsets.Latex Tagset

21 Tagsets.MSOffice2k Tagset

22 Tagsets.Mvshtml Tagset

23 Tagsets.Namedhtml Tagset

24 Tagsets.Odsapp Tagset

25 Tagsets.Odsgraph Tagset

26 Tagsets.Odsstyle Tagset

27 Tagsets.Odsxrpcs Tagset

28 Tagsets.Phtml Tagset

29 Tagsets.Pmml Tagset

30 Tagsets.Pyx Tagset

31 Tagsets.Rtf Tagset

32 Tagsets.SASReport10 Tagset

33 Tagsets.SASReport11 Tagset

34 Tagsets.SASReport12 Link

35 Tagsets.SASReport13 Link

36 Tagsets.SASReport14 Link

37 Tagsets.SASReport15 Link

38 Tagsets.SASReport_html Link

39 Tagsets.SASReport_html1 Link

40 Tagsets.Sasreport_html10 Tagset

41 Tagsets.Sasreport_html11 Tagset

42 Tagsets.Sasxmacc Tagset

43 Tagsets.Sasxmacc2002 Tagset

44 Tagsets.Sasxmacc2003 Tagset

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 52

45 Tagsets.Sasxmdtd Tagset

46 Tagsets.Sasxmiss Tagset

47 Tagsets.Sasxmnmis Tagset

48 Tagsets.Sasxmnsp Tagset

49 Tagsets.Sasxmodm Tagset

50 Tagsets.Sasxmog Tagset

51 Tagsets.Sasxmoh Tagset

52 Tagsets.Sasxmoim Tagset

53 Tagsets.Sasxmor Tagset

54 Tagsets.Sasxmphp Tagset

55 Tagsets.Sasxmxsd Tagset

56 Tagsets.Short_map Tagset

57 Tagsets.Simplelatex Tagset

58 Tagsets.Statgraph Tagset

59 Tagsets.Style_display Tagset

60 Tagsets.Style_popup Tagset

61 Tagsets.Supermap Tagset

62 Tagsets.Tablesonlylatex Tagset

63 Tagsets.Text_map Tagset

64 Tagsets.Tpl_style_list Tagset

65 Tagsets.Tpl_style_map Tagset

66 Tagsets.Troff Tagset

67 Tagsets.Wml Tagset

68 Tagsets.Wmlolist Tagset

69 Tagsets.XMLcdisc Tagset

70 Tagsets.Xhtml Tagset

71 Tagsets.sasFMT Tagset

72 Tagsets.sasXML Tagset

73 Tagsets.sasioXML Tagset

We can create our own tagset by inheriting the tagset information from one of the
previously defined tagsets above. In the code below, we inherit from the CSV tagset and
change how the tagset code works so that given an incoming dataset, the output is a series
of Oracle INSERT INTO statements.

proc template;

 define tagset OracleInserts; /* OracleInserts is the name of out tagset */

 parent=Tagsets.Csv;

 /* Define TBLNAME as an incoming macro variable that defines the */

 /* name of the table. */

 mvar tblname;

 /* Initialize two variables, $flag which indicates whether we can */

 /* write the row and $totcols which is the total number of columns */

 /* in the dataset. */

 define event initialize;

 eval $flag 0;

 eval $totcols 0;

 end;

 /* We undefine the event HEADER so that we don’t print the column */

 /* headers to our file…Oracle wouldn’t like this!! */

 define event header;

 end;

 /* Use the COL_HEADER_LABEL event to count the total number of */

 /* columns in the dataset…this event occurs before the data rows */

 /* are processed by PROC TEMPLATE. */

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 53

 define event col_header_label;

 eval $totcols $totcols+1;

 end;

 /* For each row of data, we output the text INSERT INTO tblname VALUES (*/

 /* only if our $flag is not zero. We finish the row event by outputting */

 /* the final right parenthesis and the slash for Oracle. */

 /* Note that we start counting of the current column at zero. */

 define event row;

 start:

 eval $curcol 0;

 put 'INSERT INTO ' tblname ' VALUES('/if $flag;

 finish:

 put ")" nl "/" nl/if $flag;

 end;

 /* Write out the actual data values by surrounding text with quotes and */

 /* leaving numbers along. Dates will also be surrounded by quotes. */

 define event data;

 start:

 eval $curcol $curcol+1;

 put 'INSERT INTO ' tblname ' VALUES('/if ^$flag;

 put '"' VALUE '"'/if cmp("string",type);

 put VALUE/if !cmp("string",type);

 eval $diff $curcol-$totcols;

 put ','/if $diff;

 finish:

 eval $flag 1;

 end;

 end;

run;

Here is the SAS code used to create our INSERT statements. Notice how we define the
SAS macro variable TBLNAME to be the name of the table we are inserting data into:

%Let tblname=FATTY_TABLE;

ods markup file="C:\Fatty_Table_Inserts.sql" tagset=OracleInserts;

proc print data=FatKids noobs;

 var KidName HeightInInches WeightInPounds;

run;

ods markup close;

And this is what the output looks like:

INSERT INTO FATTY_TABLE VALUES("ALBERT",45,150)

/

INSERT INTO FATTY_TABLE VALUES("ROSEMARY",35,123)

/

INSERT INTO FATTY_TABLE VALUES("TOMMY",78,167)

/

INSERT INTO FATTY_TABLE VALUES("BUDDY",12,189)

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 54

/

INSERT INTO FATTY_TABLE VALUES("FARQUAR",76,198)

/

INSERT INTO FATTY_TABLE VALUES("SIMON",87,256)

/

INSERT INTO FATTY_TABLE VALUES("LAUREN",54,876)

/

Note that you can use the CSV tagset to create comma-separated values from your SAS
dataset.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 55

PART VI

Zen ODS!

Two new ODS features available in SAS Version 9

are ODS LAYOUT and ODS REGION. These two

features allow you put more than one report or
graph on a single page in a similar way to PROC

GREPLAY except it’s easier! We like easy!

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 56

Quick Example of ODS LAYOUT and ODS REGION

Below is an example SAS program that places four graphical images on a single page.
The graph appears at the end.

options center nodate nonumber;

run;

data FatKids;

infile cards;

input @1 KidName $char8.

 @10 HeightInInches 2.

 @15 WeightInPounds 3.;

 FattyIndex=WeightInPounds/HeightInInches;

cards;

ALBERT 45 150

ROSEMARY 35 123

TOMMY 78 167

BUDDY 12 189

FARQUAR 76 198

SIMON 87 256

LAUREN 54 876

;

run;

goptions reset=symbol;

run;

title1 "Fat Kid Data and Graphs";

title2;

ods listing close;

ods pdf style=BarrettsBlue file="c:\temp\FatKidData.pdf" notoc;

ods layout start width=8.5in height=11in;

ods region x=.25in y=.25in width=8in height=2.5in;

proc print data=FatKids label split="*" noobs;

 var KidName HeightInInches WeightInPounds FattyIndex;

 label KidName="Kid Name"

 HeightInInches="Height*(inches)"

 WeightInPounds="Weight*(pounds)"

 FattyIndex="Fatty*Index";

run;

symbol1 interpol=none value=dot height=.5in;

ods region x=.25in y=2.5in width=7in height=3.5in;

proc gplot data=FatKids;

 plot HeightInInches*WeightInPounds/frame grid;

 title1;

 title2;

run;

quit;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 57

ods region x=.25in y=6.25in width=3.5in height=3.8in;

proc gchart data=FatKids;

 vbar KidName/sumvar=HeightInInches frame;

 title1;

 title2;

run;

quit;

ods region x=4.25in y=6.25in width=3.5in height=3.8in;

proc gchart data=FatKids;

 vbar KidName/sumvar=WeightInPounds frame;

 title1;

 title2;

run;

quit;

ods layout end;

ods pdf close;

ods listing;

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 58

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 59

Support sheepsqueezers.com
If you found this information helpful, please consider
supporting sheepsqueezers.com. There are
several ways to support our site:

 Buy me a cup of coffee by clicking on the

following link and donate to my PayPal

account: Buy Me A Cup Of Coffee?.

 Visit my Amazon.com Wish list at the

following link and purchase an item:

http://amzn.com/w/3OBK1K4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

