

Introduction
to

Linux
Commands

and
Features

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 2

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following
statement:
Copyright ©2011 sheepsqueezers.com. This

work is reproduced and distributed with the

permission of the copyright holder.

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is intended, and all outside source materials are
copyright of their respective author(s).

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 3

Table of Contents

Introduction .. 5

Linux Definitions (pids, directories, files, links, commands, permissions) .. 6

Basic Linux Commands (pwd, ls, mkdir, rm ,mv, cd) ... 8

Running SAS from the Linux Command Prompt .. 11

More Linux Commands (touch, cp, mkdir, groups, du, df, gzip, head , tail, man, cat, grep) 14

Submitting a SAS Job to Batch .. 19

Editing Text Files ... 21

Using the VI Editor ... 23

Regular Expressions .. 25

Stream Editor ... 26

Linux Scripting ... 27

AWK Programming Language ... 28

Using Secure Copy (scp) To Move Files Between Your Windows PC and Linux Machine 29

Linux Reminder Flashcards (Give ‘em out to friends! You’ll be the life of the party!) 30

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 4

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 5

Introduction

This document is a brief introduction on Linux commands. Rather than trying to make you Linux experts, this
document focuses on getting you up-and-running as fast as possible without all the gory details. There are
numerous websites and books available to teach you Linux in more detail, and we mention them at the end of
this document.

You can use Linux in much the same way as you use Microsoft Windows. There is a Graphical User
Interface (GUI) which allows you to use graphical applications such as an editor, file manager, web access,
SAS Display Manager, etc. There is also a command line interface -- much like MS-DOS -- that allows you to
enter commands at a command line to copy files from one place to another, delete files, run batch jobs, etc.
Almost all of the commands you execute at the command line you can do using the GUI interfaces, but many
people feel that entering commands at the command line is faster than using a GUI tool. We’ll show you both
methods and let you make that decision yourself.

If Microsoft Windows and Linux are so similar, then why choose one over the other? Why not use Microsoft
Windows instead and be done with it? As is usual, but not always, the case, cost is a factor. Linux is much
less expensive than Microsoft Windows and, in many cases, is free. Linux is more dependable than Windows
in many regards, one of which is the way it manages memory allocation. Windows servers will need to be
rebooted on a frequent basis in order to “clean up” memory. This can affect uptime of production servers.
Also, Linux is ahead of Microsoft in security. More often than not, Windows servers come under attack
because of flaws Microsoft refuses to acknowledge in a timely manner. Linux is a world-wide community-
based software, so security fixes are made available very quickly.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 6

Linux Definitions (pids, directories, files, links, commands, permissions)

Before we get into Linux commands, we want to start with some definitions.

Whenever you run a command, either at the command prompt or by starting a GUI application, you are starting a
process, which is a fancy name for an executing program. Each process is given a unique number called its process
ID, or PID. Each user can have one or more running processes on a Linux machine. When a user logs into a Linux
machine, a process is automatically started – called the parent process -- and any other command the user runs is a
child process of that parent process.

A file is a collection of data that’s stored on disk and that can be manipulated as a single unit based on its name.

A directory acts as a folder for files. A directory can also contain other directories (called subdirectories); a directory
that contains another directory is called the parent directory of the directory it contains.

Both Microsoft Windows and Linux file systems look like an inverted tree. For example, on Windows, you usually start
at the C-Drive (or C:\). Then you can move down to a subdirectory, like C:\TEMP. And further down, say, to
C:\TEMP\MyMusic. The Linux file system starts at the root of the inverted tree, but is designated as a forward slash (/)
rather than C:\. Moving down to the TEMP directory, in Linux it would be designated /TEMP. And futher still to
/TEMP/MyMusic. You can compare the two:

When a user logs into a Linux machine, the user is (usually) placed in his or her home directory; that is, a folder where
the user can store his or her files, such as SAS programs, SAS datasets, text files, perl programs, etc. This home
directory is usually designated /home/your-user-name, like /home/bsmith. You can create as many

subdirectories as you want. You can place your SAS programs in /home/your-user-name or any subdirectory you

decide to create. An interesting side note, in order to create a subdirectory in Linux you use the command mkdir

subdirectory-name, which is the same command for Microsoft Windows DOS. The same goes for changing

directories: cd new-directory.

As you move up and down subdirectories during the course of your work, the directory you are currently in is known as
your current working directory. The current working directory is sometimes denoted by a period (.). The parent
directory, or the directory one level up from the current working directory, is sometimes denoted by two periods (..). You
can use this period notation in nearly any command you run at the command line when you want to refer to the current
working directory or the parent directory. Some of the GUI tools occasionally show a single or double period in the open
or save dialog box:

C:\
 \TEMP
 \MyMusic

/
 /TEMP

/MyMusic

C:\TEMP\MyMusic /TEMP/MyMusic

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 7

A symbolic link is a way to represent a file or subdirectory, but that file or subdirectory is actually located in a completely
different location on disk. The user can place files in this subdirectory and they are redirected automatically to a
completely different location. The user then doesn’t have to worry about managing disk space…well…at least not too
much.

Unix permissions are defined by 9 attributes for each file or directory—read, write and execute for the file owner, read,

write and execute for the group, and read, write and execute for all others (or world). The ls –l command shows the

file type attribute followed by the list of permissions—rwxrwxrwx. Permissions NOT granted on the file will appear as a

hyphen rather than a letter. For example, file with permissions r-x------ can only be read or executed by the owner

and no one else. To set permissions, see the chmod command below.

A group is a set of users created to share files and to facilitate collaboration. Each member of a group can work with the
group's files and make new files that belong to the group. We talk more about groups later on.

A Linux command is a piece of software that is run at the Linux command prompt to perform an action. Following many of
the Linux commands, you can have one or more options, usually a single dash followed by a single letter. The options

modify how the command operates. For example, at the MS-DOS command prompt you can type DIR /O-S to display

file sorted in descending size order, while in Linux you would use ls -lS. Here “-lS” is made up of two options, the l

and the S.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 8

Basic Linux Commands (pwd, ls, mkdir, rm ,mv, cd)

In this section, we show you several useful Linux commands you can run at the Linux command prompt. This list is by
no means exhaustive. Before we get started, log into your Linux machine using either an X Windows session or a
terminal session via Putty or other software.

Remember that when you first log into your Linux session, you are placed in your /home/your-username directory.

You can see what directory you are in by entering the command pwd and hitting the Enter key. PWD stands for print

working directory:

[bsmith@biglinux bsmith]$ pwd

/home/bsmith

[bsmith@biglinux bsmith]$

If you want to see all of your files, type ls and hit the Enter key. LS stands for List Stuff:

[bsmith@biglinux bsmith]$ ls

gskvaccine sasdata sas_renewal sasuser.v91 sasv9.cfg test1.sas test2.sas tests tmp

[bsmith@biglinux bsmith]$

From the list above, you could never tell which name indicates a subdirectory and which indicates a file. You can make
ls give you more information by entering the command ls –l (or its alias ll command) and hitting the Enter key. The

–l option forces ls to return a long listing:

[bsmith@biglinux bsmith]$ ls -l

total 24

drwxrwxr-x 2 bsmith sasusers 4096 May 19 09:21 vaccine

lrwxrwxrwx 1 bsmith sasusers 15 Mar 10 14:53 sasdata -> /sasdata/bsmith

drwxrwxr-x 2 bsmith sasusers 4096 Mar 11 15:43 sasuser.v91

-rw-r--r-- 1 bsmith sasusers 2364 Mar 10 14:52 sasv9.cfg

-rw-r--r-- 1 bsmith sasusers 0 May 22 15:32 test1.sas

-rw-r--r-- 1 bsmith sasusers 0 May 23 11:55 test2.sas

drwxrwxr-x 2 bsmith sasusers 4096 May 18 09:11 tests

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 tmp

[bsmith@biglinux bsmith]$

If you take a look at the first letter of the first column, you’ll see the letter “d” for some of the entries. This stands for
“directory”. If you see a dash “-”, then that row represents a file rather than a directory. If you see the letter “l”, then this
is a symbolic link to another directory, as you see above for the sasdata folder.

If you want to make a directory, say MyStuff, you use the mkdir subdirectory-name command. MKDIR stands for

make directory. For example, type mkdir MyStuff at the command line and hit the Enter key. You can then use ls

–l to show the new subdirectory:

[bsmith@biglinux bsmith]$ mkdir MyStuff

[bsmith@biglinux bsmith]$ ls -l

total 28

drwxr-xr-x 2 bsmith sasusers 4096 May 24 15:35 MyStuff

lrwxrwxrwx 1 bsmith sasusers 15 Mar 10 14:53 sasdata -> /sasdata/bsmith

drwxrwxr-x 2 bsmith sasusers 4096 Mar 11 15:43 sasuser.v91

-rw-r--r-- 1 bsmith sasusers 2364 Mar 10 14:52 sasv9.cfg

-rw-r--r-- 1 bsmith sasusers 0 May 22 15:32 test1.sas

-rw-r--r-- 1 bsmith sasusers 0 May 23 11:55 test2.sas

drwxrwxr-x 2 bsmith sasusers 4096 May 18 09:11 tests

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 tmp

[bsmith@biglinux bsmith]$

As you see from the listing above, our two test SAS programs, test1.sas and test2.sas, are still there. Let’s delete one
of these files. You can remove a file or files by using the rm filename command. RM stands for remove. Type rm

test1.sas at the command prompt and hit the Enter key:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 9

[bsmith@biglinux bsmith]$ rm test1.sas

rm: remove regular empty file `test1.sas'? y

[bsmith@biglinux bsmith]$ ls -l

total 28

drwxr-xr-x 2 bsmith sasusers 4096 May 24 15:35 MyStuff

lrwxrwxrwx 1 bsmith sasusers 15 Mar 10 14:53 sasdata -> /sasdata/bsmith

drwxrwxr-x 2 bsmith sasusers 4096 Mar 11 15:43 sasuser.v91

-rw-r--r-- 1 bsmith sasusers 2364 Mar 10 14:52 sasv9.cfg

-rw-r--r-- 1 bsmith sasusers 0 May 23 11:55 test2.sas

drwxrwxr-x 2 bsmith sasusers 4096 May 18 09:11 tests

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 tmp

[bsmith@biglinux bsmith]$

Notice that the operating system asks you if you really want to remove test1.sas. If you enter the letter “y” and hit the

Enter key, the file is removed. Note that once you remove a file, there is NO way to undelete it!! Also note that not
all Linux systems are setup to query the user when removing a file. If you feel this is appropriate for you, ask your Linux
System Administrator to help you set up an alias for the rm command.

Let’s say that you want to rename test2.sas to test1.sas. To do that you use the mv from-filename to-filename

command. Type mv test2.sas test1.sas at the command prompt and hit the Enter key:

[bsmith@biglinux bsmith]$ mv test2.sas test1.sas

[bsmith@biglinux bsmith]$ ls -l

total 28

drwxr-xr-x 2 bsmith sasusers 4096 May 24 15:35 MyStuff

lrwxrwxrwx 1 bsmith sasusers 15 Mar 10 14:53 sasdata -> /sasdata/bsmith

drwxrwxr-x 2 bsmith sasusers 4096 Mar 11 15:43 sasuser.v91

-rw-r--r-- 1 bsmith sasusers 2364 Mar 10 14:52 sasv9.cfg

-rw-r--r-- 1 bsmith sasusers 0 May 23 11:55 test1.sas

drwxrwxr-x 2 bsmith sasusers 4096 May 18 09:11 tests

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 tmp

[bsmith@biglinux bsmith]$

MV stands for move. This command is not just for renaming, but for moving files from one location to another. For

example, you can move your test1.sas program to the /home/your-username/MyStuff directory. The syntax in

this case is mv from-filename to-directory. For example, type mv test1.sas /home/your-

username/MyStuff at the command prompt and hit the Enter key:

[bsmith@biglinux bsmith]$ mv test1.sas /home/bsmith/MyStuff

[bsmith@biglinux bsmith]$

Are you completely amazed by the lack of information when the mv command completes? Just to make sure our file did

actually make it to the sasdata subdirectory, let’s move to the subdirectory. To move to another subdirectory, you use
the cd subdirectory command. CD stands for change directory. Let’s move down into the MyStuff subdirectory

and see if the file exists:

[bsmith@biglinux bsmith]$ cd MyStuff

[bsmith@biglinux MyStuff]$ pwd

/home/bsmith/MyStuff

[bsmith@biglinux MyStuff]$ ls -l

total 0

-rw-r--r-- 1 bsmith sasusers 0 May 23 11:55 test1.sas

[bsmith@biglinux MyStuff]$

Recall above that we mentioned that two periods represent the parent directory. If you want to move one subdirectory
above where you are (which would be the parent directory), you type in cd .. and hit the Enter key. Notice that there

is a single space between the “cd” and the two periods. If you do not leave a space, Linux will complain that the
command is not recognized. Let’s try that now and then show the current working directory using the pwd command:

[bsmith@biglinux MyStuff]$ cd ..

[bsmith@biglinux bsmith]$ pwd

/home/bsmith

[bsmith@biglinux bsmith]$

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 10

You can flip back-and-forth between the directory you cd’d to and the directory you cd’d from by using the cd –

command; that is cd followed by a single dash.

[bsmith@biglinux bsmith]$ pwd

/home/bsmith

[bsmith@biglinux bsmith]$ cd MyStuff

[bsmith@biglinux MyStuff]$ cd -

/home/bsmith

[bsmith@biglinux bsmith]$

If you just type cd followed by the Enter key, you will be take back to your home directory, /home/your-username.

Also, you are probably getting tired of all of this typing. At the command prompt, you can hit the tab key while you are in
the middle of typing a filename or directory, and if you have supplied enough of the letters, Linux will try to complete the
filename or directory name:

[bsmith@biglinux bsmith]$ ll

total 28

drwxrwxr-x 2 bsmith sasusers 4096 May 24 15:12 gskvaccine

drwxr-xr-x 2 bsmith sasusers 4096 May 26 13:41 MyStuff

lrwxrwxrwx 1 bsmith sasusers 15 Mar 10 14:53 sasdata -> /sasdata/bsmith

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 sas_renewal

drwxrwxr-x 2 bsmith sasusers 4096 Mar 11 15:43 sasuser.v91

-rw-r--r-- 1 bsmith sasusers 2364 Mar 10 14:52 sasv9.cfg

drwxrwxr-x 2 bsmith sasusers 4096 May 18 09:11 tests

drwxrwxr-x 2 bsmith sasusers 4096 May 17 13:32 tmp

[bsmith@biglinux bsmith]$ cd MyS<HIT THE TAB KEY>

[bsmith@biglinux bsmith]$ cd MyStuff Linux finished the subdirectory name for you!!

If you have not supplied enough of the text for Linux to complete the filename or subdirectory name, continue to hit the
tab key until Linux gives you a list of matching entries:

[bsmith@biglinux MyStuff]$ ll test<HIT TAB KEY SEVERAL TIMES>

test1.log test1.lst test1.sas test2_BACKUP.sas test2.sas

If the command ll does not work for you, just use ls –l instead.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 11

Running SAS from the Linux Command Prompt

In this section, we show you how to run SAS from the Linux command prompt. Although you might favor running SAS
Display Manager, you might have to run SAS from the command prompt if you want to run SAS programs at night or on
a timely basis in batch

First, make sure you are in the MyStuff subdirectory by typing pwd at the command prompt and hitting the Enter key.

Next, we want to put a small piece of SAS code into the file test1.sas. You can either use the GUI Text Editor, but this
is a chance for us to show you some more Linux commands. Type the following command at the command prompt and
hit the Enter key:

echo “proc setinit noalias;” > test1.sas

The echo command just spits out – or echoes – the text in the double-quotes. The greater-than symbol says “take the

output of the command appearing to the left of me and place it into what appears to the right of me”. Thus, the text
“proc setinit noalias;” is put into the file test1.sas. Note that if there was any text in test1.sas before you

ran this command, it all would be replaced by “proc setinit noalias;”.

You can use the cat command in order to see what is currently in the file test1.sas. Type cat test1.sas at the

command prompt and hit the Enter key:

[bsmith@biglinux MyStuff]$ echo "proc setinit noalias;" > test1.sas

[bsmith@biglinux MyStuff]$ cat test1.sas

proc setinit noalias;

[bsmith@biglinux MyStuff]$

In order to append to test1.sas, instead of using one greater-than symbol, use two greater-than symbols. At the

command line, type echo “run;” >> test1.sas and then cat this file to see what’s in it:

[bsmith@biglinux MyStuff]$ echo "run;" >> test1.sas

[bsmith@biglinux MyStuff]$ cat test1.sas

proc setinit noalias;

run;

[bsmith@biglinux MyStuff]$

Next, we want to run this SAS program at the command prompt and view any SAS Log and Listing files the program
produces. In order to run a SAS program at the command prompt, type in the following and hit the Enter key:

[bsmith@biglinux MyStuff]$ sas test1.sas

[bsmith@biglinux MyStuff]$

Do a long listing (ls –l) to see what the SAS program produced:

[bsmith@biglinux MyStuff]$ ls -l

total 8

-rw-r--r-- 1 bsmith sasusers 2131 May 24 16:29 test1.log

-rw-r--r-- 1 bsmith sasusers 27 May 24 16:27 test1.sas

[bsmith@biglinux MyStuff]$

Notice that our SAS program only produced a SAS Log file and no SAS Listing file. (The PROC SETINIT puts its output
in the Log file and does not produce any Listing file.) In order to see the text in the Log file, type cat test1.log at

the command prompt followed by the Enter key:

[bsmith@biglinux MyStuff]$ cat test1.log

1 The SAS System

16:29 Tuesday, May 24, 2005

NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) 9.1 (TS1M3)

 Licensed to YOUR COMPANY, Site 0000000000.

NOTE: This session is executing on the Linux 2.4.21-27.0.4.ELsmp platform.

NOTE: SAS 9.1.3 Service Pack 2

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 12

You are running SAS 9. Some SAS 8 files will be automatically converted

by the V9 engine; others are incompatible. Please see

http://support.sas.com/rnd/migration/planning/platform/64bit.html

PROC MIGRATE will preserve current SAS file attributes and is

recommended for converting all your SAS libraries from any

SAS 8 release to SAS 9. For details and examples, please see

http://support.sas.com/rnd/migration/index.html

This message is contained in the SAS news file, and is presented upon

initialization. Edit the file "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

 real time 0.05 seconds

 cpu time 0.05 seconds

1 proc setinit noalias;

2 run;

NOTE: PROCEDURE SETINIT used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

Original site validation data

Site name: 'YOUR COMPANY'.

Site number: 00000000.

Expiration: 15MAR2006.

Grace Period: 45 days (ending 29APR2006).

Warning Period: 45 days (ending 13JUN2006).

System birthday: 01JAN1989.

Operating System: LINUX .

Product expiration dates:

---Base Product 15MAR2006

---SAS/CONNECT 15MAR2006

---SAS/ACCESS Interface to MYSQL 15MAR2006

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.06 seconds

 cpu time 0.07 seconds

[bsmith@biglinux MyStuff]$

In some cases, you may want to pass parameters to your SAS program to control what is happening within the SAS
program. To do this, you add the -sysparm option to the sas command and add your parameters in double-quotes:

sas -sysparm “ABC” -sysin test1.sas

Within your SAS program, you can capture the ABC by using the automatic SAS macro variable SYSPARM. Let’s add
one more line to our SAS program, run it and then cat the Log file:

[bsmith@biglinux MyStuff]$ echo "%put ==>&sysparm.<==;" >> test1.sas

[bsmith@biglinux MyStuff]$ cat test1.sas

proc setinit noalias;

run;

%put ==>&sysparm.<==

[bsmith@biglinux MyStuff]$ sas -nodms -sysparm "ABC" -sysin test1.sas

[bsmith@biglinux MyStuff]$ cat test1.log

1 The SAS System

16:53 Tuesday, May 24, 2005

NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) 9.1 (TS1M3)

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 13

 Licensed to YOUR COMPANY, Site 0000000000.

NOTE: This session is executing on the Linux 2.4.21-27.0.4.ELsmp platform.

NOTE: SAS 9.1.3 Service Pack 2

You are running SAS 9. Some SAS 8 files will be automatically converted

by the V9 engine; others are incompatible. Please see

http://support.sas.com/rnd/migration/planning/platform/64bit.html

PROC MIGRATE will preserve current SAS file attributes and is

recommended for converting all your SAS libraries from any

SAS 8 release to SAS 9. For details and examples, please see

http://support.sas.com/rnd/migration/index.html

This message is contained in the SAS news file, and is presented upon

initialization. Edit the file "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: SAS initialization used:

 real time 0.04 seconds

 cpu time 0.04 seconds

1 proc setinit noalias;

2 run;

NOTE: PROCEDURE SETINIT used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

Original site validation data

Site name: 'YOUR COMPANY'.

Site number: 00000000.

Expiration: 15MAR2006.

Grace Period: 45 days (ending 29APR2006).

Warning Period: 45 days (ending 13JUN2006).

System birthday: 01JAN1989.

Operating System: LINUX .

Product expiration dates:

---Base Product 15MAR2006

---SAS/CONNECT 15MAR2006

---SAS/ACCESS Interface to MYSQL 15MAR2006

3 %put ==>&sysparm.<==;

==>ABC<==

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.05 seconds

 cpu time 0.06 seconds

[bsmith@biglinux MyStuff]$

Notice that the %put spits out ABC.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 14

More Linux Commands (touch, cp, mkdir, groups, du, df, gzip, head , tail, man, cat, grep)

In this section we introduce more advanced Linux commands that will send you screaming into the night.

Ensure you are in the MyStuff subdirectory.

If you want to create a blank file, you can use the touch filename command. At the command prompt, type touch

test2.sas and hit the Enter key, then show a long listing of the files:

[bsmith@biglinux MyStuff]$ touch test2.sas

[bsmith@biglinux MyStuff]$ ls -l

total 8

-rw-r--r-- 1 bsmith sasusers 2173 May 24 16:53 test1.log

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

If you would like to show the most recently created file first, use the -t option. At the command line, type ls –lt and hit
the Enter key:

[bsmith@biglinux MyStuff]$ ls -lt

total 8

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

-rw-r--r-- 1 bsmith sasusers 2173 May 24 16:53 test1.log

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

[bsmith@biglinux MyStuff]$

Notice that the newly created file test2.sas appears first. If you want to sort by largest file first, use the –S option

instead of the –t option.

Next, let’s make a backup copy of the SAS program test2.sas and call it test2_BACKUP.sas. You use the Linux cp

filename new-filename to make a copy. CP stands for copy. At the command prompt, type cp test2.sas

test2_BACKUP.sas and hit the Enter key:

[bsmith@biglinux MyStuff]$ cp test2.sas test2_BACKUP.sas

[bsmith@biglinux MyStuff]$ ls -l

total 8

-rw-r--r-- 1 bsmith sasusers 2173 May 24 16:53 test1.log

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:31 test2_BACKUP.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

[bsmith@biglinux MyStuff]$

Next, let’s make a sacrificial subdirectory called StarTrekExtra. At the command prompt type mkdir

StarTrekExtra and hit the Enter key:

[bsmith@biglinux MyStuff]$ mkdir StarTrekExtra

[bsmith@biglinux MyStuff]$ ls -lt

total 12

drwxr-xr-x 2 bsmith sasusers 4096 May 24 17:33 StarTrekExtra

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:31 test2_BACKUP.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

-rw-r--r-- 1 bsmith sasusers 2173 May 24 16:53 test1.log

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

[bsmith@biglinux MyStuff]$

Next, in order to remove that directory, you first have to ensure that there are no files within that directory. If there are,
you can use the rm command to remove the files. To remove a subdirectory, use the rmdir subdirectory-name

command. RMDIR stands for remove directory. At the command prompt, type rmdir StarTrekExtra and hit the

phasers…er…Enter key:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 15

[bsmith@biglinux MyStuff]$ rmdir StarTrekExtra

[bsmith@biglinux MyStuff]$ ls -lt

total 8

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:31 test2_BACKUP.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

-rw-r--r-- 1 bsmith sasusers 2173 May 24 16:53 test1.log

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

[bsmith@biglinux MyStuff]$

As mentioned above, each user can be a part of one or more groups. In order to the groups you are in, type groups at

the Linux command line and hit the Enter key:

[bsmith@biglinux MyStuff]$ groups

sasusers

[bsmith@biglinux MyStuff]$

If you want to know the total number of bytes in the current working directory, you use the du command. DU stands for

disk usage. At the command line, type du -h . and hit the Enter key:

[bsmith@biglinux MyStuff]$ du –h .

12K .

[bsmith@biglinux MyStuff]$

Notice that we are using the single period to represent the current working directory. As you see, the MyStuff

subdirectory contains about 12 kilobytes of data.

If you would like to see the current disk used and free space across your Linux machine, use the df -h command. DF

stands for disk freespace. At the command line, type df –h and hit the Enter key:

[bsmith@biglinux bsmith]$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/cciss/c0d0p1 34G 4.9G 27G 16% /

none 3.5G 0 3.5G 0% /dev/shm

/dev/cciss/c0d1p1 201G 2.1G 189G 2% /home

/dev/cciss/c1d1p1 234G 33M 222G 1% /saswork

/dev/cciss/c1d0p1 401G 113G 269G 30% /sasdata

[bsmith@biglinux bsmith]$

This means that the /sasdata drives are 30% used (or 70% free). The /saswork drives are 1% used (99% free) and

the home directories (/home) are 2% used (98% free).

Sometimes we can’t remember where we put a file. In order to help find where we put that file, we use the Linux find
command. The syntax is find . –name "filename". Note that we are using the single period to represent the

current working directory, but the find command automatically searches any subdirectories below the working directory.
Let’s move back up to our /home/your-username directory. We can do that by issuing the cd /home/your-

username command, or we can just type cd and hit the Enter key. Either way we’ll be back in Kansas! Next, type

find . –name "test2_BACKUP.sas" and hit the Enter key:

[bsmith@biglinux MyStuff]$ cd

[bsmith@biglinux bsmith]$ pwd

/home/bsmith

[bsmith@biglinux bsmith]$ find . -name "test2_BACKUP.sas"

./MyStuff/test2_BACKUP.sas

[bsmith@biglinux bsmith]$

Notice that the ever-present single period rears its ugly head again. You can think of
./MyStuff/test2_BACKUP.sas as really meaning /home/bsmith/MyStuff/test2_BACKUP.sas. Why? If you

take a look at the result of the pwd command, you’ll see that the current working directory is /home/bsmith, and as we

mentioned above, the single period is just short-hand for the current working directory. Instead of using the single
period in the find command, you could actually put in any subdirectory name you want: find /home/bsmith -name

“test2_BACKUP.sas”, so you are not limited to just the current working directory and below:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 16

[bsmith@biglinux bsmith]$ find /home/bsmith -name "test2_BACKUP.sas"

/home/bsmith/MyStuff/test2_BACKUP.sas

[bsmith@biglinux bsmith]$

Also, you can use the asterisk (*) in the double-quoted string after the -name option. The asterisk has the same

meaning in Linux as it does in Microsoft Windows DOS: zero, one, or more characters or numbers. So, if we wanted to
find all our SAS programs, we could type find . –name "*.sas" and hit the Enter key:

[bsmith@biglinux bsmith]$ find . -name "*.sas"

./MyStuff/test1.sas

./MyStuff/test2.sas

./MyStuff/test2_BACKUP.sas

[bsmith@biglinux bsmith]$

If you would like to compress a file to save space, just like WinZip on Microsoft Windows, you can use the gzip

filename command. Let’s move back to the MyStuff subdirectory (cd MyStuff and hit Enter), and let’s compress

the test1.log file:

[bsmith@biglinux MyStuff]$ gzip test1.log

[bsmith@biglinux MyStuff]$ ls -l

total 8

-rw-r--r-- 1 bsmith sasusers 1017 May 24 16:53 test1.log.gz

-rw-r--r-- 1 bsmith sasusers 48 May 24 16:53 test1.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:31 test2_BACKUP.sas

-rw-r--r-- 1 bsmith sasusers 0 May 24 17:25 test2.sas

[bsmith@biglinux MyStuff]$

Note that the file test1.log was replaced with test1.log.gz. The .gz indicates that this file was compressed with

the gzip command. If you would like to decompress this file, type gzip –d test1.log.gz and you will get back

test1.log. The -d option means to decompress. Go ahead and decompress test1.log.gz now.

If you would like to see just the last 10 lines of, for example, a SAS Log file while the SAS program is running, you can
use the tail filename command. Type tail test1.log at the command prompt and hit the Enter key:

[bsmith@biglinux MyStuff]$ tail test1.log

---SAS/CONNECT 15MAR2006

---SAS/ACCESS Interface to MYSQL 15MAR2006

3 %put ==>&sysparm.<==

==>ABC<==

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.05 seconds

 cpu time 0.06 seconds

[bsmith@biglinux MyStuff]$

In a similar fashion to tail, there is the head filename command which shows you the top 10 lines of the filename.

For both head and tail, you can add an optional parameter to increase the number of lines shown. Normally, both

head and tail show 10 lines, but tail -200 filename will show 200 lines from the bottom of filename, while

head -50 filename will show the top 50 lines from filename.

Recall that when you use the cat filename command, the entire contents of the file is spewed out onto the screen.

This makes it very difficult to see anything if the file is very large. Instead, you can use the more filename command

to view the file one page at a time. At the command prompt, type more test1.log and hit the Enter key. To move to

the next page, hit the spacebar; to scroll down one line at a time, hit the Enter key; to quit, hit the letter q.

At this point, all of the commands and their options are swimming around in your head. Built into Linux is a help-like
functionality which can be accessed by the command man Linux-command. For example, if you type in man cat at

the command prompt and hit the Enter key, you will see this information:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 17

[bsmith@biglinux MyStuff]$ man cat

CAT(1) FSF CAT(1)

NAME

 cat - concatenate files and print on the standard output

SYNOPSIS

 cat [OPTION] [FILE]...

DESCRIPTION

 Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all

 equivalent to -vET

 -b, --number-nonblank

 number nonblank output lines

 -e equivalent to -vE

 -E, --show-ends

 display $ at end of each line

 -n, --number

 number all output lines

 -s, --squeeze-blank

 never more than one single blank line

 -t equivalent to -vT

 -T, --show-tabs

 display TAB characters as ^I

 -u (ignored)

 -v, --show-nonprinting

 use ^ and M- notation, except for LFD and TAB

 --help display this help and exit

 --version

 output version information and exit

 With no FILE, or when FILE is -, read standard input.

AUTHOR

 Written by Torbjorn Granlund and Richard M. Stallman.

REPORTING BUGS

 Report bugs to <bug-coreutils@gnu.org>.

COPYRIGHT

 Copyright © 2002 Free Software Foundation, Inc.

 This is free software; see the source for copying conditions. There is

 NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR

 PURPOSE.

SEE ALSO

 The full documentation for cat is maintained as a Texinfo manual. If

 the info and cat programs are properly installed at your site, the com-

 mand

As you can see in the DESCRIPTION section, the cat command has several options we haven’t even explored yet!

Type q to quit out.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 18

Occasionally, you’ll transfer text files – like SAS programs, flat-files containing data, etc. -- from your Windows PC to
your Linux machine. In some cases, you may need to run the dos2unix command to convert from MS-DOS to Linux.

I tend to run this command as a matter of course when transferring text files to the Linux machine. The command is
dos2unix filename.

If you would like to search for a string of text in your files, you can use the grep command. They syntax is grep

"search-text" filename. For example, if you want to search for “proc setinit” in all your SAS programs, you would

type the following at the command line and hit the Enter key:

[bsmith@biglinux MyStuff]$ grep "proc setinit" *.sas

test2.sas:proc setinit noalias;

[bsmith@biglinux MyStuff]$

You’ll notice that grep returns the filename containing the search text. By default, grep is case sensitive, but you can
disable that using the –i option:

[bsmith@biglinux MyStuff]$ grep -i "PROC SETINIT" *.sas

test2.sas:proc setinit noalias;

[bsmith@biglinux MyStuff]$

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 19

Submitting a SAS Job to Batch

At this point, we’d like to continue our discussion about running SAS jobs on a Linux machine. As mentioned above,
you can run any SAS program from the Linux command prompt like this:

sas -nodms -sysin SAS-program-name.sas

or more easily

sas SAS-program-name.sas

If your SAS program runs for a long time, Linux will not return a command prompt to you. You’ll just have to wait until
the SAS program finishes before doing any more work. In this case, you are running your job in the foreground.

Linux has the ability to run a job in the background as a batch job – a program running behind the scenes -- and return

the command prompt back to you immediately. In order to do this, just place an ampersand (&) at the end of your sas

command and hit the Enter key. The ampersand indicates to Linux to run the SAS program in the background and
return the command prompt to the user immediately. For example, let’s rerun our test1.sas program in the MyStuff

subdirectory in the background:

[bsmith@biglinux MyStuff]$ sas test1.sas &

[1] 1610

[bsmith@biglinux MyStuff]$

[1]+ Done sas test1.sas

[bsmith@biglinux MyStuff]$

Note that when you submit the SAS job like this, you may have to hit the Enter key a few times in order for your
command prompt to show up.

Notice the number 1610? This is your process ID (or PID) for the SAS program you just submitted to batch. Each time
you submit a job to batch, you are given a PID. Knowing the PID allows you to kill a batch job, if need be. You can see
the status of your running batch job(s), by using the process status command ps at the command line. Type ps at the

command line and hit enter:

[bsmith@biglinux MyStuff]$ ps

 PID TTY TIME CMD

 5762 pts/5 00:00:00 bash

 1610 pts/5 00:00:00 sas

 5820 pts/5 00:00:00 ps

[bsmith@biglinux MyStuff]$

Notice the row for PID 1610; do you see the word sas at the end of that line? This is your SAS program running in

batch. If you decide you want to kill this running process – maybe you determined your SAS code is wrong (highly
unlikely, though…tee-hee…) – you can kill it by using the kill PID command followed by two Enter key hits:

[bsmith@biglinux MyStuff]$ ps

 PID TTY TIME CMD

 5762 pts/5 00:00:00 bash

 5847 pts/5 00:00:03 sas

 5859 pts/5 00:00:00 ps

[bsmith@biglinux MyStuff]$ kill 5847

[bsmith@biglinux MyStuff]$

[1]+ Exit 5 sas test1.sas

[bsmith@biglinux MyStuff]$

At this point, your job is killed. If you have trouble killing a running batch job, contact your system administrator.

NOTE: Be very careful what you kill! If you kill the process named “bash”, you may be logged out!

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 20

If you are planning on submitting a long-running job and then logging out, Linux will complain that you have a job
running. You can prevent this by using the keyword nohup before your SAS command:

nohup sas SAS-program-name.sas &

NOHUP stands for no hangup and will not “hang up” your running SAS programs once you have logged out. This
means that you can submit a large SAS job to batch and then log out and go home secure in the fact that your program
is actually running.

Note that when using the nohup command, Linux will create/append information about running jobs to a file called

nohup.out in your current working directory. If there are any operating system errors, they can be found in

nohup.out.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 21

Editing Text Files

Recall that we created a SAS program using the echo command above. This is not very user-friendly. Just like
Notepad for Microsoft Windows, Linux gives you the Text Editor gedit. Depending on your Linux version, you may have
to use another available text editor. To start the Text Editor, click on the Red Hat icon at the bottom left of the screen,
then click on Accessories, then on Text Editor:

Here is what you will see:

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 22

The Text Editor works just like Notepad: New, Open, Save, etc. Let’s open up our test1.sas program. Click on the
folder icon above the word Open, navigate to /home/your-username/MyStuff and then select test1.sas.

Whatever is in test1.sas, delete it and replace it with the following SAS code:

options nocenter;

run;

data testdata;

 do i=1 to 10000;

 z=i*2;

 output;

 end;

run;

proc univariate data=testdata;

 var z;

run;

Next, save this file as test3.sas (don’t forget the .sas!!) by clicking on File…Save As..., entering test3.sas for the

filename. Next, go back to your Terminal window and ensure that test3.sas is there in the MyStuff directory by doing an
ls. Next, run this SAS program in batch mode. Once the program is completed – you may have to hit the Enter key a

few times for the completion message to come up – open the SAS Log test3.log in the Text Editor and review for

errors, then open up the SAS Listing test3.lst. Next, to quit out, click on File…Quit.

So, you have two choices to edit your SAS programs: using SAS Display Manager or using the Text Editor along with a
terminal session so that you can run your SAS programs in batch.

Some of you may have used the old MS-DOS editor EDIT and may wonder if there is something similar for the Linux
terminal session. There is, and it is called vi – pronouced “v” then “i”. While vi is the lowest common denominator

editor across all Linux/Unix platforms, its finger-twisting sequences to insert, delete and move lines around could
prevent you from ever playing the piano again and, thus, makes it a bad choice for novice Linux users such as yourself.
Nevertheless, I have included information on vi just in case you’re curious.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 23

Using the VI Editor

As mentioned above, the vi editor can be used in a terminal session to edit files. Here’s a list of useful vi

commands. This list is by no means exhaustive!

Command Name Command Description

i Insert Text (puts you in insert mode)

ESC (hit the Escape button) Brings you out of insert mode

x Delete a single character

dw Delete a single word

o (small letter oh) Places a blank line below cursor and puts
you in insert mode

O (capial letter oh) Places a blank line above cursor and puts
you in insert mode

ESC followed by :wq Saves the file and quits out returning you to
the command prompt

d$ Delete to the end of the line

Dd Deletes one single line

CTRL-f Moves down a page (toward the bottom)

CTRL-b Move up a page (toward the top)

0 (number zero, not letter oh) Brings you to column one on the current line

Shift-R Overwrite mode (use ESC to come out)

u Undo (undoes what you just did)

Let’s try using the commands above to edit a file. Recall that we created the file test3.sas. Let’s use vi to edit
this SAS program. At the command prompt, type vi test3.sas and hit the Enter key. You will see

something like this:

At this point, you can use your arrow keys to move up, down, left, and right just as in the Text Editor. Move your
cursor to the blank line just above “data testdata;” and insert the SAS comment /* Create test data */. You

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 24

do this by using your arrow keys to get to the blank line, then you hit the “i” key, type in the comment, and then
hit the ESC button to bring you out of insert mode.

Next, let’s insert a blank line just above this comment so that there is a nice space between the comment and
the run; following the options statement. All you have to do it hit a capital letter O followed by the ESC button.
Why did we hit the ESC button? When you use o or O you are placed in insert mode – that is, you can type text
– so to get out of insert mode, we hit the ESC button.

Next, let’s change that 10000 to 50000. Move your cursor to the left of 10000 and hit Shift-R. At this point, you
are in replace mode meaning you can overwrite the text that is there. Type 50000 then hit the ESC button. If
you made a mistake, you can hit the letter u to undo what you just did.

Hey, have you noticed yet that the word INSERT appears at the bottom of the screen when you hit the letter i, o,
or O; and the word REPLACE appears when you hit SHIFT-R? If you hit the ESC button, these words
disappear
and you know that you are out of insert or replace mode.

Next, let’s save this file and quit out. Make sure that you are out of insert/replace mode by hitting the ESC
button. Next, hit the colon button (SHIFT-:), then hit the letter w and q followed by the Enter key. Your program
has now been saved and you are back at the command prompt.

As you can see, using vi can be very tedious, but it will work in a pinch. It’s good to keep this in your toolbox!

There is much more on Regular Expressions. Check out the following books for more on how to automate tasks
(click on the title(s) to see more information on Amazon.com:

 Leaning the Vi and Vim Editors, Arnold Robbins, et. al. (ISBN-13: 978-0596529833)

http://www.sheepsqueezers.com/
http://www.amazon.com/gp/product/059652983X?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=059652983X

Copyright ©2011 sheepsqueezers.com Page 25

Regular Expressions

In many places throughout this document, we have used the asterisk (*) as a wildcard; that is, a representation
for any amount of letters and numbers. For example, if we had three SAS programs test1.sas, test2.sas

and test3.sas in our MyStuff subdirectory, we could do ll test*.sas to get a long listing of all SAS

programs beginning with the word test and ending with .sas. A regular expression is a formula for matching

strings that follow some pattern. In our example, the pattern is test*.sas. Regular expressions may initially

look confusing, but once you are used to all of the wildcards – known as metacharacters in regular expression
lingo – you’ll be using them all the time.

Suppose, instead of matching all SAS programs beginning with test and ending in .sas, we want to match

only SAS programs beginning with test followed by either a 1 or 2 followed by .sas. Here is what the regular

expression would look like: test[12].sas. The square brackets will match any one character at a time:

test1.sas, test2.sas. Note that you can place letters and/or numbers in the square brackets:

test[12ab].sas will match test1.sas, test2.sas, testa.sas, and testb.sas.

There is much more to regular expressions than explained here. Check out the Adobe Acrobat Reader file
http://www.cs.colorado.edu/~schenkc/UNIX_Regular_Expressions.pdf for more information.

There is much more on Regular Expressions. Check out the following books for more on how to automate tasks
(click on the title(s) to see more information on Amazon.com:

 Mastering Regular Expressions, Jeffrey E. F. Friedl (ISBN-13: 978-0596528126)

http://www.sheepsqueezers.com/
http://www.cs.colorado.edu/~schenkc/UNIX_Regular_Expressions.pdf
:/www.amazon.com/gp/product/0596528124?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596528124

Copyright ©2011 sheepsqueezers.com Page 26

Stream Editor

With a SAS macro, you can automatically replace text by the parameters you pass to the macro program. If you
have created a “template” SAS program -- or other text file -- you can use the Linux sed command to replace
key words or numbers that must be changed to create a final program or text file. SED stand for stream editor.

You pass sed a substitution string (from-string and to-string) and a filename and it looks for the from-

string in filename and replaces it with to-string. Your original file is not damaged. For example, in

test3.sas we loop around 50000 times. Suppose we want to loop around 15000 time instead. Do this at the
command line:

sed "s/50000/15000/g" test3.sas

The 50000 is the from-string and the 15000 is the to-string. The letter s means substitute. The g means

global substitution.

[bsmith@biglinux MyStuff]$ sed "s/50000/15000/g" test3.sas

options nocenter;

run;

/* Create test data */

data testdata;

 do i=1 to 15000;

 z=i*2;

 output;

 end;

run;

proc univariate data=testdata;

 var z;

run;

[bsmith@biglinux MyStuff]$

Notice that 50000 was replaced by 15000 above. If you want to save your new program, use the greater-than
symbol to save to a new file:

sed "s/50000/15000/g" test3.sas > test3A.sas

You can find much more at http://sed.sourceforge.net/grabbag/tutorials/ or see the book references in the AWK
section below.

http://www.sheepsqueezers.com/
http://sed.sourceforge.net/grabbag/tutorials/

Copyright ©2011 sheepsqueezers.com Page 27

Linux Scripting

There may be times you need to submit multiple SAS jobs, or rename multiple SAS programs, or make backup
copies of multiple SAS datasets, but you don’t want to type them all in by hand because it is tedious and error
prone. This section explains how to create a Linux script which performs multiple actions just like a Microsoft

DOS BAT file. For example, using the Text Editor or vi, create a text file called doit with the following three

lines in it:

cp test3.sas test3_BACKUP1.sas

cp test3.sas test3_BACKUP2.sas

cp test3.sas test3_BACKUP3.sas

in order to “run” this script, you have to let Linux know that doit is a script. You do this by using the chmod

command to indicate that the file doit is a script: chmod +x doit. Next, to run this script, at the command

line, type in ./doit and hit the Enter key. Do a long listing and you will see the three backup files are there.

There is much more on Linux scripting. Check out the following books for more on how to automate tasks (click
on the title(s) to see more information on Amazon.com:

 Linux Shell Scripting with Bash, Ken Burtch (ISBN-13: 978-0672326424)
 Linux Command Line and Shell Scripting Bible, Richard Blum (ISBN-13: 978-0470251287)

http://www.sheepsqueezers.com/
http://www.amazon.com/gp/product/0672326426?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0672326426
http://www.amazon.com/gp/product/047025128X?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=047025128X

Copyright ©2011 sheepsqueezers.com Page 28

AWK Programming Language

AWK is a small programming language we use mostly for creating many Linux commands at once or for
chopping out columns of text data. For example, if you have 10 SAS programs you want to make backup
copies of but you don’t want to actually type them in by hand, you can use awk to create the commands for you
and then save them to a script which you can run later on. For example:

ll test[123].sas | awk '{printf("cp %s %s_BACKUP\n",$9,$9);}'

Let’s take this one piece at a time. Here is what ll test[123].sas looks like:

[bsmith@biglinux MyStuff]$ ll test[123].sas

-rw-r--r-- 1 bsmith sasusers 118 May 26 13:41 test1.sas

-rw-r--r-- 1 bsmith sasusers 27 May 27 08:57 test2.sas

-rw-r--r-- 1 bsmith sasusers 166 May 27 11:31 test3.sas'

[bsmith@biglinux 'MyStuff]$

Notice that the text test1.sas, test2.sas and test3.sas are in the 9

th
 column of each long listing line. We’ll use

this fact next.

The symbol | is called a pipe and indicates that the output coming from the command on the left is passed as
input to the command on the right. This is different from the greater-than or double-greater-than symbols since

these just replace or add to the end of a file. You can actually string as many pipes as you want. An awk

program always looks like this:

 awk ‘{ stuff }’

That is, the command awk is followed by an apostrophe, the left curly brace, then the programming stuff,

followed by the right curly brace followed by an apostrophe. Next, let’s look at the stuff. In this case, stuff is the
printf() function followed by a semicolon. Just like SAS, each line of an AWK program ends in a semicolon.

Inside the parentheses of the printf() function are two sections delimited by a comma:

"text-to-output",column-you-want-separated-by-commas.

In this case, the text-to-output is the copy command cp and the column-you-want is the 9

th
 column because that

column contains our SAS program names. Let’s look more closely at the text-to-output:

"cp %s %s_BACKUP\n"

Recall the general syntax for the copy command is cp from-filename to-filename. If you were to make

the backup copy by hand, you would do this: cp test1.sas test1.sas_BACKUP, and so on. As you can

see, I am replacing test1.sas with a %s. The %s just means a string is going to be placed at that point. Notice

that %s appears twice, once for the first test1.sas and again for test1.sas_BACKUP. Just before the last

double-quote, we have \n which is Linux short-hand for go to the next line.

Next, for each %s in our text-to-output, we must have a corresponding column name, indicated by a dollar-sign

followed by the column number. In our case, we have two $9 because we have two %s. In AWK, columns of

data are indicated by a dollar sign follwed by the column number. By default, columns are delimited by spaces.
If your data is delimited by something else, like a tilde (~), then you can run the AWK command with the –

Fdelimiter option. For example, try this out and see if you can guess what comes out:

echo "ABC~DEF~GHI" | awk -F~ '{printf("%s\n",$2);}'

If you guessed DEF, then you would be correct!

There is much more on AWK scripting. Check out the following books for more on how to automate tasks (click
on the title(s) to see more information on Amazon.com:

 sed & awk, Ken Burtch (ISBN-13: 978-1565922259)
 Effective awk Programming, Arnold Robbins (ISBN-13: 978-0596000707)

http://www.sheepsqueezers.com/
http://www.amazon.com/gp/product/1565922255?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=1565922255
http://www.amazon.com/gp/product/0596000707?ie=UTF8&tag=sheepsqueezer-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596000707

Copyright ©2011 sheepsqueezers.com Page 29

Using Secure Copy (scp) To Move Files Between Your Windows PC and Linux Machine

Many of you may be aware of a way to transfer files called FTP (File Transfer Protocol). Sadly, FTP is not the
most secure way of transferring data between two machines which is why many companies have decided to use
SCP (Secure Copy) instead.

In order to use SCP to transfer files from your Windows PC to your Linux machine, start a DOS command
prompt by clicking on Start…Programs…Accessories…Command Prompt. Change directories to the directory
containing the data you want to transfer to your Linux machine. The general syntax for scp is:

scp from-filename your-username@biglinux:/home/your-username/to-filename

This will copy from-filename from your Windows PC to your /home/your-username subdirectory on your

Linux machine. Once you hit the Enter key, scp will request your Linux machine password. Enter the password
and then hit enter. Scp will give you a percent complete status as it’s transferring the file(s) to your Linux
machine.

C:\>scp sqlnet.log bsmith@biglinux:/home/bsmith/sqlnet.log

bsmith@biglinux's password: <ENTER YOUR PASSWORD HERE>

sqlnet.log 100% 5021 4.9KB/s 00:00

C:\>

To transfer from your Linux machine to your Windows PC, reverse the syntax:

scp your-username@biglinux:/home/your-username/from-filename to-filename

Note that if you do not have scp installed on your Windows PC, email your Help Desk. They may be able to
provide more assistance.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 30

Linux Reminder Flashcards (Give ‘em out to friends! You’ll be the life of the party!)

Pwd

Shows the current directory.

ls

Lists files in directory.

ls –l

Long listing of files in

directory. Same as ll.

Mkdir directory-name

Creates a directory

directory-name.

rm filename

Removes the file filename.

mv from-file to-file

Renames from-file to to-file.

Cd subdir

Changes directory to subdir.

cd ..

Changes to parent directory

one level above.

cd –

Return to previous directory.

echo “text”

Prints out text.

sas sas-program.sas

Runs a SAS program.

> filename (Greater-than)

Replace text in filename with

output of previous command.

>> filename (Greater-thans)

Append text in filename with

output of previous command.

cat filename

Dumps filename to screen.

touch filename

Creates a blank file filename.

Ls –lt

Long listing sorted

descending date order.

cp from-filename to-filename

Copies from-filename to to-

filename.

rmdir directory-name

Removes directory directory-

name

groups

Shows all Linux groups you

belong to.

du –h .

Disk usage for current

working directory.

cd

Returns you back to the

/home/username directory.

df –h

Show disk usage across

system

find subdir –name “search”

Searches subdir down looking

for files matching search.

gzip filename

Compresses filename. Can use

wildcard (*) here as well.

tail -# filename

Prints # lines from the

bottom of filename.

head -# filename

Prints # lines from the top

of filename.

more filename

Prints filename to screen one

page at a time.

man Linux-command

Shows manual page for Linux-

command.

dos2unix filename

Converts DOS text in filename

to Linux text format.

grep “search” filename

Searches filename for search.

Use –i for case insensitive.

& (Ampersand)

End commands with & to

submit to batch.

kill PID

Kills a running batch job

identified by process PID.

nohup command &

No hangup mode when submit to

batch. Can logout safely.

vi filename

Begins VI text editor with

file filename.

sed “s/from/to/” filename

Replaces from with to in

filename. Prints to screen.

chmod +x filename

Makes filename an executable

script.

scp from to

Secure copy between

machines.

http://www.sheepsqueezers.com/

Copyright ©2011 sheepsqueezers.com Page 31

Support sheepsqueezers.com
If you found this information helpful, please consider
supporting sheepsqueezers.com. There are
several ways to support our site:

 Buy me a cup of coffee by clicking on the

following link and donate to my PayPal

account: Buy Me A Cup Of Coffee?.

 Visit my Amazon.com Wish list at the

following link and purchase an item:

http://amzn.com/w/3OBK1K4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

