www.sheepsqueezers.com

Creating
Oracle
External
Functions
IN
C

http://www.sheepsqueezers.com/

This work may be reproduced and redistributed, in whole or
in part, without alteration and without prior written
permission, provided all copies contain the following

statement:
Copyright ©2011 sheepsqueezers.com. This

work 1s reproduced and distributed with the
permission of the copyright holder.

This presentation as well as other presentations and
documents found on the sheepsqueezers.com website may
contain quoted material from outside sources such as
books, articles and websites. It is our intention to diligently
reference ‘all outside sources. Occasionally, though, a
reference may be missed. No copyright infringement
whatsoever is.intended, and all outside source materials are
copyright of their respective author(s).

Copyright ©2011 sheepsqueezers.com Page 2

http://www.sheepsqueezers.com/

Table of Contents

TADIE OF CONTENTS ... s 3
g oo [0 (o] o H PP PRR PR 4
Steps to Creating a C External Function With EXamMPIeuuuuiiiiiiiiiiiiiiiiii e 5
Compiling Pro*C APPIICALIONS ON LINUX......euvuteiiiiiiiiiiiiiiiiiieiieeesseeseesaesssesseseesessssessssssssssssssssesssssssssssnnsssnnnnes 10

Copyright ©2011 sheepsqueezers.com Page 3

http://www.sheepsqueezers.com/

Introduction
This is a basic introduction about how to create a C function on the Linux operating system that will
be used in PL/SQL or SQL. That is, you can create a C “DLL” or “Shared Object” called, say,
GetItHere (), that can be used like this:

SELECT GetItHere(123)
FROM DUAL;

or

SET SERVEROUTPUT ON
DECLARE

result NUMBER;
BEGIN
dbms output.enable;

result := sys.GetItHere(1l9);
dbms output.put line(result);

END;
/

There is also a section at the end on how to compile Pro*C applications.

Copyright ©2011 sheepsqueezers.com Page 4

http://www.sheepsqueezers.com/

Steps to Creating a C External Function with Example

Stepl: Create your C program containing the functions you want to use in SQL or PL/SQL

//* Program: mylib.c
//* Program Type: C

//* Authors:

//* Date:

//* Application: Test

//* Abstract: This C-Program contains a function which is used by an Oracle
//* PL/SQL function via a LIBNAME created with CREATE LIBRARY.

//* Invocation: None.

//*

//* Assumptions: Users must have EXECUTE privilege on the library.
//*

//* Parameters: N/A

//*

//* Input: N/A

//* Output: mylib.so
//* Example: None.

//* Notes: None.

o ok ok ko k. ok X 3 Xk b X ok ok X ok Xk ok ok ok %

//* Modification History:
//* Date Prog Mod # Reason

~ 0~
~ 0~
* ot
|

[
[
[
[
[
[
[
[
[
|

|

|

|

|

[
[
[I
[
|

|

I

|

L
[
[
[
[
|

|

|

[
[
[
[
[
[N
[
(B
[I|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
|

*

#include "stdio.h"
#include "stdlib.h"
#include "string.h"

//* __ *
//* Function Prototypes *
//* __ *

void cmdexec (char*);
short int addone (short int);

//* __ *
//* Name: cmdexec *
//* Purpose: Executes a<command at the Linux command prompt. &
//* __ *

void cmdexec (char *cmd) {
int iRC;

iRC=system (cmd) ;

//* __ *
//* Name: addone *
//* Purpose: Adds one to an incoming integer. *
//* __ *

short int addone (short int anInt) {
return ++anInt;

}

Copyright ©2011 sheepsqueezers.com Page 5

http://www.sheepsqueezers.com/

Step2: Create a test C Program to Test that the Function Works Properly

//* Program: testl.c
//* Program Type: C

//* Authors:

//* Date:

//* Application: Test
//* Bbstract: Test Program
//* Invocation: None.
//* Assumptions:

//*

//* Parameters: N/A

//* Input: N/A

//* Output: testl

//* Example: None.

//* Notes:

D T e e

//* Modification History:
//* Date Prog Mod # Reason

extern int cmdline (char *);
extern int addone (int) ;

int main (void) {

char astr[9]={"1ls —-alF\0"};

printf ("STRING FROM PROGRAM===>%s\n",astr);
printf ("RETURN CODE===>%d\n", cmdexec (astr));

printf ("RETURN CODE===>%d\n",addone(5)) ;

return 0;

Copyright ©2011 sheepsqueezers.com Page 6

http://www.sheepsqueezers.com/

Step3: Run the Following Script to Compile Your Functions and the Test Program

#!/bin/bash

Set up the Load Library Path to the location where your C Program is located as well as Oracle libraries

LD LIBRARY PATH=/home/oracle/tld/cprogs/OracleCProgs:/usr/local/app/oracle/product/9.2.0/1ib:/1ib:/usr/lib:/usr/local/lib
export LD LIBRARY PATH

echo "SLDiLIBRARYiPATHZ” SLDiLIBRARYiPATH

Remove the previous Shared Object mylib.so
rm -f testl mylib.so

Compile the C program containing your functions. Note that -shared keyword to make a .so file and not a stand-alone
executable.
gcc -o /home/oracle/tld/cprogs/OracleCProgs/mylib.so -shared -L/usr/local/app/oracle/product/9.2.0/rdbms/demo mylib.c

Print out some useful information about the shared object using the file command.
file mylib.so

Compile the test C program.
gcc -o testl -L/home/oracle/tld/cprogs/OracleCProgs mylib.so testl.c

Print out some useful information about the test program.

file testl

echo M e e e e — — — —— ——————— e *x "
echo "* BEGIN TEST PROGRAM NOW!! B
echo T K e e * "

Run the test program

./testl

echo T K e e e e e e e e o —————— o —— o —— *x "
echo "* END TEST PROGRAM NOW!! xn
echo M e e e — — — ———————— o — — *x "

Copy the Shared Object to a general location.here I put it with the other Oracle libraries.
cp -v mylib.so /usr/local/app/oracle/product/9.2.0/1lib/mylib.so

exit

Copyright ©2011 sheepsqueezers.com

Page 7

http://www.sheepsqueezers.com/

Step4: Log into the database as SYS and tell Oracle Where the External Functions Are Located

Note that you may have to GRANT CREATE LIBRARY access to the user who is running the following
DDL.

--Place the exact location of the Shared Object in tick marks.
CREATE OR REPLACE LIBRARY mylib AS '/usr/local/app/oracle/product/9.2.0/1lib/mylib.so"
/

SHOW ERRORS

/

--Create a Procedure to Reference the C Procedure “cmdexec”
CREATE OR REPLACE PROCEDURE CMDEXEC (cmd IN CHAR)

AS EXTERNAL

NAME "cmdexec"

LIBRARY mylib

LANGUAGE C

PARAMETERS (cmd STRING) ;

/

SHOW ERRORS

/

--Create a Function to Reference the C Function ADDAONE
CREATE OR REPLACE FUNCTION ZADDAONE (inint IN BINARY INTEGER) RETURN BINARY INTEGER
AS LANGUAGE C

NAME "addone"

LIBRARY mylib

PARAMETERS (inint short, RETURN short) ;

/

SHOW ERRORS

/

Copyright ©2011 sheepsqueezers.com Page 8

http://www.sheepsqueezers.com/

Step5: Test Your Function Using PL/SQL and/or SQL

Note that you may have to GRANT EXECUTE ANY PROCEDURE access to the procedure cmdexec and the
function zaddaone.

SET SERVEROUTPUT ON
DECLARE

result NUMBER;
BEGIN
dbms output.enable;

--rc := sys.cmdexec('ls -alF');
--sys.cmdexec('ls -alfF');

result := sys.zaddaone(19);
dbms_output.put line(result);

--USE SQL INTO
SELECT SYS.ZADDAONE (100)
INTO :result

FROM DUAL;

dbms_output.put line(result);

END;
/

Copyright ©2011 sheepsqueezers.com Page 9

http://www.sheepsqueezers.com/

Compiling Pro*C Applications on Linux
Here are the step needed to compile a Pro*C program on a Linux machine:
1. Ensure the Pro*C software is installed. You can find the proc binary in
/usr/local/app/oracle/product/9.2.0/bin/proc
If you cannot find it, then you need to run the OUI to install the Pro*C software.

2. Update the file /usr/local/app/oracle/product/9.2.0/precomp/admin/pcscfg.cfg. Here is an
Example pcscfg.cfg file:

[oracle@marlin CPrograms]$ cat /usr/local/app/oracle/product/9.2.0/precomp/admin/pcscfg.cfg
sys_include=(/usr/lib/gcc-1ib/i386-redhat-1linux/3.2.3/include, /usr/include, /usr/lib/gcc-1ib/i486-suse-
linux/2.95.3/include, /usr/lib/gcc-1ib/i386-redhat-1inux/2.96/include)

ltype=short

include=(/usr/lib/gcc-1ib/i386-redhat-1inux/3.2.3/include)

include=(/usr/include/linux)

Write your Pro*C program, and make sure the extention is .pc and not c.

Run proc on your Pro*C program: proc program.pc. This creates a C program called program.c
Next, compile the C program: make —-f demo proc.mk build OBJS=program.o EXE=program
You now have an executable called program.

oo kW

You can find demo_proc.mk in /usr/local/app/oracle/product/9.2.0/precomp/demo/proc.

Here is a sample script to compile your Pro*C program:

[oracle@marlin CPrograms]$ cat makePROCEXE

#!/bin/bash

#LD LIBRARY PATH=/home/oracle/tld/cprogs/OracleCProgs:/usr/local/app/oracle/product/9.2.0/1ib:/1lib:/usr/lib:
/usr/loecal/lib

#export: LD LIBRARY PATH

#echo "SLD LIBRARY PATH=" SLD LIBRARY PATH

echo "Compiling==>$1"

#rm -f $1

proc $l.pc

#gcc -03 -frerun-loop-opt -o $1 $l.c

make -f demo proc.mk build OBJS=$1l.0 EXE=$51
exit

Copyright ©2011 sheepsqueezers.com Page 10

http://www.sheepsqueezers.com/

(SUDDOI"[sheepsqueezers.com \
If you found this information helpful, please consider
supporting sheepsqueezers.com. There are

several ways to support our site:

[l Buy me a cup of coffee by clicking on the
following link and donate to my PayPal
account: Buy Me A Cup Of Coffee?.

I Visit my Amazon.com Wish list at the
following link and purchase an item:
http://amzn.com/w/30BK1KA4EIWIR6

Please let me know if this document was useful by
e-mailing me at comments@sheepsqueezers.com.

\.

Copyright ©2011 sheepsqueezers.com Page 11

http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/
http://www.sheepsqueezers.com/joomla/index.php?option=com_content&view=article&id=92&Itemid=71
http://amzn.com/w/3OBK1K4EIWIR6

