
SAS® 9.2
Language Reference
Dictionary
Third Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2010.
SAS ® 9.2 Language Reference: Dictionary, Third Edition. Cary, NC: SAS Institute Inc.

SAS® 9.2 Language Reference: Dictionary, Third Edition
Copyright © 2010, SAS Institute Inc., Cary, NC, USA
ISBN 978-1-60764-492-7
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, or otherwise, without the prior written permission of the publisher, SAS
Institute Inc.
For a Web download or e-book: Your use of this publication shall be governed by the
terms established by the vendor at the time you acquire this publication.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st electronic book, May 2010
1st printing, June 2010
SAS® Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

SAS System Features viii

SAS Language Elements x

P A R T 1 Dictionary of Language Elements 1

Chapter 1 � Introduction to the SAS 9.2 Language Reference: Dictionary 3
The SAS Language Reference: Dictionary 3

Syntax Conventions for the SAS Language 4

Chapter 2 � SAS Data Set Options 9
Definition of Data Set Options 10

Syntax 10

Using Data Set Options 10

Data Set Options by Category 12

Dictionary 14

Data Set Options Documented in Other SAS Publications 71

Chapter 3 � Formats 81
Definition of Formats 84

Syntax 84

Using Formats 85

Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms 88

Data Conversions and Encodings 89

Working with Packed Decimal and Zoned Decimal Data 90

Working with Dates and Times Using the ISO 8601 Basic and Extended Notations 94

Formats by Category 99

Dictionary 108

Formats Documented in Other SAS Publications 285

Chapter 4 � Functions and CALL Routines 295
Definitions of Functions and CALL Routines 305

Syntax 305

Using Functions and CALL Routines 307

Function Compatibility with SBCS, DBCS, and MBCS Character Sets 312

Using Random-Number Functions and CALL Routines 313

Date and Time Intervals 326

Pattern Matching Using Perl Regular Expressions (PRX) 331

Using Perl Regular Expressions in the DATA Step 332

Writing Perl Debug Output to the SAS Log 341

Perl Artistic License Compliance 342

iv

Base SAS Functions for Web Applications 342

Functions and CALL Routines by Category 342

Dictionary 368

Functions and CALL Routines Documented in Other SAS Publications 1207

References 1213

Chapter 5 � Informats 1215
Definition of Informats 1217

Syntax 1218

Using Informats 1219

Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms 1221

Working with Packed Decimal and Zoned Decimal Data 1223

Reading Dates and Times Using the ISO 860 Basic and Extended Notations 1227

Informats by Category 1232

Dictionary 1238

Informats Documented in Other Base SAS Publications 1374

Chapter 6 � Statements 1381
Definition of Statements 1383

DATA Step Statements 1383

Global Statements 1389

Dictionary 1392

SAS Statements Documented in Other SAS Publications 1757

Chapter 7 � SAS System Options 1765
Definition of System Options 1769

Syntax 1769

Using SAS System Options 1770

Comparisons 1777

SAS System Options by Category 1778

Dictionary 1791

SAS System Options Documented in Other SAS Publications 1997

P A R T 2 Dictionary of Component Object Language Elements 2019

Chapter 8 � Component Objects 2021
DATA Step Component Objects 2021

The DATA Step Component Interface 2021

Dot Notation and DATA Step Component Objects 2022

Rules When Using Component Objects 2023

Chapter 9 � Hash and Hash Iterator Object Language Elements 2025

Chapter 10 � Java Object Language Elements 2083
Java Object Methods by Category 2083

Dictionary 2084

v

P A R T 3 Appendixes 2107

Appendix 1 � DATA Step Debugger 2109
Introduction 2110

Basic Usage 2111

Advanced Usage: Using the Macro Facility with the Debugger 2112

Examples 2113

Commands 2125

Dictionary 2126

Appendix 2 � Perl Regular Expression (PRX) Metacharacters 2141
Tables of Perl Regular Expression (PRX) Metacharacters 2141

Appendix 3 � SAS Utility Macro 2149

Appendix 4 � Recommended Reading 2153
Recommended Reading 2153

Index 2155

vi

vii

What’s New

Overview

The SAS 9.2 Base new features, language elements, and enhancements to the
language elements continue to expand the capabilities of SAS:

� SAS now supports the next generation Internet Protocol, IPv6, as well as IPv4.
� The DATA step component Java object enables instantiation of Java classes and

accessing fields and methodsChapter 10, “Java Object Language Elements,” on
page 2083 on resultant objects.

� The SAS logging facility is a new logging subsystem that can be used to collect,
categorize, and filter log events and write them to various output devices. The
logging facility can be used to log SAS server events or events that are initiated
from SAS programs. This feature is new for SAS 9.2 Phase 2.

� In addition to SAS Monospace and SAS Monospace Bold TrueType fonts, new
TrueType fonts are available when you install SAS.

� Universal Printing now supports Scalable Vector Graphics (SVG), Portable
Network Graphics (PNG), and PDFA-1b print output formats.

� You can access remote files by using the Secure File Transfer Protocol (SFTP)
access method.

� SAS now reads and writes ISO 8601 dates, time, and intervals.
� In support of batch programming, if a program terminates without completion, the

new checkpoint mode enables programs to be resubmitted in restart mode,
resuming with the DATA or PROC step that was executing when the program
terminated.

� In the “Functions and CALL Routines ”section there are several new and
enhanced functions as well as functions that were previously in other products and
that are now part of Base SAS. The functions that moved from the Risk
Dimensions product calculate the call and put prices from European options on
futures, based on various models. The functions that moved from SAS/ETS return
information about various date and time intervals. The functions from SAS
High-Performance Forecasting return specific dates.

� The documentation for string functions and CALL routines now has a restriction
that identifies whether theses functions and CALL routines support Single Byte

viii What’s New

Character Sets (SBCS), Double Byte Character Sets (DBCS), or Multi-Byte
Character Sets (MBCS). This distinction is important because improper use of
these functions and CALL routines can result in unexpected behavior in programs
that are written in a non-English language. The description for the restrictions is
located in the Function Compatibility with DBCS, MBCS, and SBCS Character
Sets section of the documentation.

� In a DATA step, you can track the execution of code within a DO group. The DATA
statement has an optional argument for you to write a note to the SAS log when
the DO statement begins and ends.

� New SAS system options enable you to set a default record length, specify options
for accessing PDF files, specify values for Scalable Vector Graphics, support the
checkpoint mode and the restart mode, and support fonts.

� Some of the new features for the DATA step object attributes, operators, and
methods remove all items from the hash object without deleting the instance of the
hash object, consolidate the FIND and ADD methods into a single method call,
return the number of items in the hash object, and specifies a starting key item for
iteration.

� In previous versions of SAS Language Reference: Dictionary, references to
language elements in other publications were included in their respective
dictionary for each language element type. For example, you could find a reference
for the $BIDI format in the format dictionary entries. You can now find references
to language elements that are documented in other publications within each
section for the language element types. Online, this section appears just before the
dictionary entries for each language element type. In the PDF or print copy, this
section appears as the last topic for each language element type.

A section that describes how SAS syntax is written has been added. This section
contains examples of how to interpret the syntax.

SAS System Features

Checkpoint Mode and Restart Mode
If a batch program terminates before it completes and it was started in checkpoint

mode, the program can be resubmitted in restart mode, resuming with the DATA or
PROC step that was executing when the program terminated. DATA and PROC steps
that have already completed do not need to be rerun. See “Checkpoint Mode and
Restart Mode” in SAS Language Reference: Concepts.

Support for ISO 8601 Basic and Extended Time Notations
In SAS 9.1.3, the formats and informats that support the ISO 8601 basic and

extended time notations were documented in the SAS 9.1.3 XML LIBNAME: User’s
Guide. These formats and informats have been renamed and are now documented in
SAS Language Reference: Dictionary.

The new names clearly distinguish the basic and extended formats and informats.
You can see the renamed formats and informats in their respective sections in the
topics that follow. In addition, a new CALL routine, IS8601_CONVERT, converts ISO
8601 intervals to datetime and duration values, and datetime and duration values to an
ISO 8601 interval.

What’s New ix

Support for IPv6
SAS 9.2 introduces support for the "next generation" of Internet Protocol, IPv6,

which is the successor to the current Internet Protocol, IPv4. Rather than replacing
IPv4 with IPv6, SAS 9.2 supports both protocols. A primary reason for the new protocol
is that the limited supply of 32-bit IPv4 address spaces is being depleted. IPv6 uses a
128-bit address scheme, which provides more IP addresses than IPv4 did.

For more information, see Internet Protocol Version 6 (IPV6) in SAS Language
Reference: Concepts.

Universal Printing and New TrueType Fonts
In SAS 9.2, all Universal Printers and many SAS/GRAPH devices use the FreeType

engine to render TrueType fonts for output in all of the operating environments that
SAS software supports. In addition, by default, many SAS/GRAPH device drivers and
all Universal Printers generate output using ODS styles, and these ODS styles use
TrueType fonts.

In addition to SAS Monospace and SAS Monospace Bold, 40 additional fonts
(TrueType) are available when you install SAS:

� Three Latin fonts compatible with Microsoft
� Ten graphic symbol fonts
� Eight multilingual Unicode fonts
� Nineteen monolingual Asian fonts

In the third maintenance release for SAS 9.2, the MingLiU_HKSCS TruType font is
new. In addition, the HeiT, MingLiU, MingLiU_HKSCS, and PMingLiu fonts support
the HKSCS2004 (Hong Kong Supplemental Character Set) characters.

New Universal printers include the following:

PDFA produces an archivable PDF compliant with PDF/A-1b .

PNG produces Portable Network Graphics, which is a raster image format
that is designed to replace the older simple GIF and the more
complex TIFF format.

PNGt produces transparent Portable Network Graphics.

SVG produces Scalable Vector Graphics, which is a language for
describing two-dimensional graphics and graphical applications in
XML.

SVGt produces transparent Scalable Vector Graphics.

SVGnotip produces Scalable Vector Graphics without tooltips.

SVGView produces Scalable Vector Graphics with controls to navigate through
multi-page SVG documents.

SVGZ produces compressed Scalable Vector Graphics.

For more information, see Printing with SAS in SAS Language Reference: Concepts.

SAS Logging Facility Language Elements
The SAS logging facility is a flexible, configurable logging subsystem that you can

use to collect, categorize, and filter log events and write them to a variety of output

x What’s New

devices. The SAS language now includes autocall macros, functions, and DATA step
component objects for creating logging facility components that categorize log events.
The logging facility and the SAS log are two separate logging systems. For more
information, including the reference documentation for the logging facility language
elements, see SAS Logging: Configuration and Programming Reference. This feature is
new for SAS 9.2 Phase 2.

WHERE-Expression Processing
In a WHERE expression, the LIKE operator now supports an escape character. The

escape character enables you to search for the percent sign (%) and the underscore (_)
characters in values. For more information, see “Syntax of WHERE Expression” in SAS
Language Reference: Concepts.

DATA Step Java Object
The DATA step component Java object enables you to instantiate Java classes and

access fields and methods on the resultant objects. Although the documentation for the
DATA step component Java object for SAS 9.2 Phase 1 has been available on
http://support.sas.com, the documentation is available in SAS Help and
Documentation for SAS 9.2 Phase 2.

Viewing Help and ODS Output in the Remote Browser
The remote browser has been used in some operating environments in prior releases

of SAS to view SAS Help and ODS HTML output. You can now view SAS Help and
ODS HTML output, and PDF and RTF output under z/OS, OpenVMS, UNIX, and
Windows 64-bit environments. Windows 32-bit environments use the SAS browser to
view Help and ODS output.

You enable remote browsing by configuring these system options:

HELPBROWSER= specifies whether you want to use the remote browser or the SAS
browser.

HELPHOST= specifies the name of the computer where the remote browser sends
Help and ODS output.

HELPPORT= specifies the port number for the remote browser client.

For more information about remote browsing, see the Help documentation for your
operating environment: OpenVMS, UNIX, Windows, z/OS

SAS Language Elements

Data Set Options
The DLDMGACTION=NOINDEX data set option has a new argument.
The NOINDEX argument automatically repairs the data set without the indexes and

integrity constraints, deletes the index file, updates the data file to reflect the disabled
indexes and integrity constraints, and limits the data file to be opened only in INPUT
mode.

What’s New xi

Formats
� The following formats are new:

$BASE64X
converts character data to ASCII text using Base 64 encoding.

$N8601B
writes ISO 8601 duration, datetime, and interval forms using the basic
notations PnYnMnDTnHnMnS and yyyymmddThhmmss.

$N8601BA
writes ISO 8601 duration, datetime, and interval forms using the basic
notations PyyyymmddThhmmss and yyyymmddThhmmss.

$N8601E
writes ISO 8601 duration, datetime, and interval forms using the extended
notations PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss.

$N8601EA
writes ISO 8601 duration, datetime, and interval forms using the extended
notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

$N8601EH
writes ISO 8601 duration, datetime, and interval forms for the extended
notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using a
hyphen (-)for omitted components.

$N8601EX
writes ISO 8601 duration, datetime, and interval forms for the extended
notations Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using an x for
each digit of an omitted component.

$N8601H
writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS
and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values
and using a hyphen (-)for omitted components in datetime values.

$N8601X
writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS
and yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values
and using an x for each digit of an omitted component in datetime values.

B8601DA
writes date values using the IOS 8601 base notation yyyymmdd.

B8601DN
writes the date from a datetime value using the ISO 8601 basic notation
yyyymmdd.

B8601DT
writes datetime values in the ISO 8601 basic notation
yyyymmddThhmmssffffff.

B8601DZ
writes datetime values in the Coordinated Universal Time (UTC) time scale
using the ISO 8601 datetime and time zone basic notation
yyyymmddThhmmss+|–hhmm.

xii What’s New

B8601LZ
writes time values as local time by appending a time zone offset difference
between the local time and UTC, using the ISO 8601 basic time notation
hhmmss+|–hhmm.

B8601TM
writes time values using the ISO 8601 basic notation hhmmssffff.

B8601TZ
adjusts time values to the Coordinated Universal Time (UTC) and writes
them using the ISO 8601 basic time notation hhmmss+|–hhmm.

BESTD
prints numeric values, lining up decimal places for values of similar
magnitude, and prints integers without decimals.

E8601DA
writes date values using the ISO 8601 extended notation yyyy-mm-dd.

E8601DN
writes the date from a SAS datetime value using the ISO 8601 extended
notation yyyy-mm-dd.

E8601DT
writes datetime values in the ISO 8601 extended notation
yyyy-mm-ddThh:mm:ss.ffffff.

E8601DZ
writes datetime values in the Coordinated Universal Time (UTC) time scale
using the ISO 8601 datetime and time zone extended notation
yyyy-mm-ddThh:mm:ss+|–hh:mm.

E8601LX
writes time values as local time, appending the Coordinated Universal Time
(UTC) offset for the local SAS session, using the ISO 8601 extended time
notation hh:mm:ss+|–hh:mm.

E8601TM
writes time values using the ISO 8601 extended notation hh:mm:ss.ffffff.

E8601TZ
adjusts time values to the Coordinated Universal Time (UTC) and writes the
values using the ISO 8601 extended notation hh:mm:ss+|–hh:mm.

MDYAMPM
writes datetime values in the form mm/dd/yy<yy> hh:mm AM|PM. The year
can be either two or four digits. This feature is new for SAS 9.2 Phase 2 and
later.

PERCENTN
produces percentages, using a minus sign for negative values.

SIZEK
writes a numeric value in the form nK for kilobytes. This feature is new for
SAS 9.2 Phase 2 and later.

SIZEKB
writes a numeric value in the form nKB for kilobytes. This feature is new for
SAS 9.2 Phase 2 and later.

SIZEKMG
writes a numeric value in the form nKB for kilobytes, nMB for megabytes, or
nGB for gigabytes. This feature is new for SAS 9.2 Phase 2 and later.

What’s New xiii

VMSZN
generates VMS and MicroFocus COBOL zoned numeric data.

� The following formats were previously documented in other publications and are
now part of this document:

WEEKUw.
writes a week number in decimal format by using the U algorithm.

WEEKVw.
writes a week number in decimal format by using the V algorithm.

WEEKWw.
writes a week number in decimal format by using the W algorithm.

� The following format is enhanced:

DATEw.
In addition to writing dates in the form ddmmmyy or ddmmmyyyy, the
DATEw. format now writes dates in the form dd-mmm-yyyy.

Functions and CALL Routines
� In the second maintenance release for SAS 9.2, best practices for custom interval

names for date and time functions is new.

� The following functions and CALL routines are new:

ALLCOMB
generates all combinations of the values of n variables taken k at a time in a
minimal change order.

ALLPERM
generates all permutations of the values of several variables in a minimal
change order.

ARCOSH
returns the inverse hyperbolic cosine.

ARSINH
returns the inverse hyperbolic sine.

ARTANH
returns the inverse hyperbolic tangent.

CALL ALLCOMB
generates all combinations of the values of n variables taken k at a time in a
minimal change order.

CALL ALLCOMBI
generates all combinations of the indices of n objects taken k at a time in a
minimal change order.

CALL GRAYCODE
generates all subsets of n items in a minimal change order.

CALL ISO8601_CONVERT
converts an ISO 8601 interval to datetime and duration values, or converts
datetime and duration values to an ISO 8601 interval.

CALL LEXCOMB
generates all distinct combinations of the nonmissing values of n variables
taken k at a time in lexicographic order.

xiv What’s New

CALL LEXCOMBI
generates all combinations of the indices of n objects taken k at a time in
lexicographic order.

CALL LEXPERK
generates all distinct permutations of the nonmissing values of n variables
taken k at a time in lexicographic order.

CALL LEXPERM
generates all distinct permutations of the nonmissing values of several
variables in lexicographic order.

CALL SORTC
sorts the values of character arguments.

CALL SORTN
sorts the values of numeric arguments.

CATQ
concatenates character or numeric values by using a delimiter to separate
items and by adding quotation marks to strings that contain the delimiter.

CHAR
returns a single character from a specified position in a character string.

CMISS
counts the number of missing arguments.

COUNTW
counts the number of words in a character expression.

DIVIDE
returns the result of a division that handles special missing values for ODS
output.

ENVLEN
returns the length of an environment variable.

EUCLID
returns the Euclidean norm of the nonmissing arguments.

FINANCE
computes financial calculations such as deprecation, maturation, accrued
interest, net present value, periodic savings, and internal rates of return.

FINDW
searches a character string for a word.

FIRST
returns the first character in a character string.

GCD
returns the greatest common divisor for one or more integers.

GEODIST
returns the geodetic distance between two latitude and longitude coordinates.

GRAYCODE
generates all subsets of n items in a minimal change order.

INTFIT
returns a time interval that is aligned between two dates.

What’s New xv

INTGET
returns an interval based on three date or datetime values.

INTSHIFT
returns the shift interval that corresponds to the base interval.

INTTEST
returns 1 if a time interval is valid, and returns 0 if a time interval is invalid.

LCM
returns the smallest multiple that is exactly divisible by every number in a
set of numbers.

LCOMB
computes the logarithm of the COMB function—that is, the logarithm of the
number of combinations of n objects taken r at a time.

LEXCOMB
generates all distinct combinations of the nonmissing values of n variables
taken k at a time in lexicographic order.

LEXCOMBI
generates all combinations of the indices of n objects taken k at a time in
lexicographic order.

LEXPERK
generates all distinct permutations of the nonmissing values of n variables
taken k at a time in lexicographic order.

LEXPERM
generates all distinct permutations of the nonmissing values of several
variables in lexicographic order.

LFACT
computes the logarithm of the FACT (factorial) function.

LOG1PX
returns the log of 1 plus the argument.

LPERM
computes the logarithm of the PERM function—that is, the logarithm of the
number of permutations of n objects, with the option of including r number of
elements.

LPNORM
returns the Lp norm of the second argument and subsequent nonmissing
arguments.

MD5
returns the result of the message digest of a specified string.

MODEXIST
determines whether a software image exists in the version of SAS that you
have installed.

MSPLINT
returns the ordinate of a monotonicity-preserving interpolating spline.

RENAME
renames a member of a SAS library, an external file, or a directory.

SUMABS
returns the sum of the absolute values of the nonmissing arguments.

xvi What’s New

TRANSTRN
removes or replaces all occurrences of a substring in a character string.

WHICHC
searches for a character value that is equal to the first argument, and returns
the index of the first matching value.

WHICHN
searches for a numeric value that is equal to the first argument, and returns
the index of the first matching value.

ZIPCITYDISTANCE
returns the geodetic distance between two ZIP code locations.

� The descriptions of the arguments in the following functions are enhanced:

DOPEN
opens a directory, and returns a directory identifier value.

EXIST
verifies the existence of a SAS library member.

FOPEN
opens an external file and returns a file identifier value.

FEXIST
verifies the existence of an external file that is associated with a fileref.

FILENAME
assigns or deassigns a fileref to an external file, a directory, or an output
device.

FILEREF
verifies whether a fileref has been assigned for the current SAS session.

LIBNAME
assigns or deassigns a libref for a SAS library.

LIBREF
verifies that a libref has been assigned.

MOPEN
opens a file by directory ID and member name, and returns either the file
identifier or a 0.

PATHNAME
returns the physical name of a SAS library or an external file, or returns a
blank.

� The following functions were previously in Risk Dimensions, and are now in Base
SAS:

BLACKCLPRC
calculates the call price for European options on futures, based on the Black
model.

BLACKPTPRC
calculates the put price for European options on futures, based on the Black
model.

BLKSHCLPRT
calculates the call price for European options, based on the Black-Scholes
model.

What’s New xvii

BLKSHPTPRT
calculates the put price for European options, based on the Black-Scholes
model.

GARKHCLPRC
calculates the call price for European options on stocks, based on the
Garman-Kohlhagen model.

GARKHPTPRC
calculates the put price for European options on stocks, based on the
Garman-Kohlhagen model.

MARGRCLPRC
calculates the call price for European options on stocks, based on the
Margrabe model.

MARGRPTPRC
calculates the put price for European options on stocks, based on the
Margrabe model.

� The following functions were previously in SAS/ETS, and are now in Base SAS:

INTCINDEX
returns the cycle index, given a date, time, or datetime value.

INTCYCLE
returns the date, time, or datetime interval at the next higher seasonal cycle,
given a date, time, or datetime interval.

INTFMT
returns a recommended format, given a date, time, or datetime interval.

INTINDEX
returns the seasonal index, given a date, time, or datetime interval and value.

INTSEAS
returns the length of the seasonal cycle, given a date, time, or datetime
interval.

� The following functions were previously in SAS High-Performance Forecasting,
and are now in Base SAS:

HOLIDAY
returns the date of the specified holiday for the specified year.

NWKDOM
returns the date for the nth occurrence of a weekday for the specified month
and year.

� The following functions were moved from SAS Language Reference: Dictionary to
the SAS/IML documentation:

MODULEIC
calls an external routine and returns a character value (in the IML
environment only).

MODULEIN
calls an external routine and returns a numeric value (in the IML
environment only).

CALL MODULEI
calls an external routine without any return code (in the IML environment
only).

� The following functions and CALL routines are enhanced:

xviii What’s New

CALL POKE
can now write floating-point numbers directly into memory on a 32–bit
platform.

CALL POKELONG
can now write floating-point numbers directly into memory on 32-bit and
64-bit platforms.

CALL SCAN
returns the position and length of a given word from a character expression.

DATDIF
now has new values for the basis argument, and has a reference to a
document that is published by the Securities Industry Association.

FSEP
now has an optional argument for a hexadecimal character delimiter.

INDEX
now has an example that shows how leading and trailing spaces are handled.

INDEXW
can now have alternate delimiters. If you use an alternate delimiter, then
INDEXW does not recognize the end of the text as the end data. Another
example has also been added to the function.

INTCK
now has a fifth argument in the syntax. Retail calendar intervals that are
ISO 8601 compliant, and custom intervals have been added.

INTNX
can now use retail calendar intervals that are ISO 8601 compliant.

INTCINDEX, INTCYCLE, INTFIT, INTFMT, INTGET, INTINDEX, INTSEAS,
INTSHIFT, and INTTEST

are now able to use retail calendar intervals that are ISO 8601 compliant.

LAG
now has more information about memory limits.

LIBNAME
now has sections that explain how to use the LIBNAME function with one,
two, three, and four arguments.

OPEN
has a new fourth argument. This argument specifies whether the first
argument is a two-level name (data set name) or a filename.

SCAN
returns the nth word from a character expression.

TRANSTRN
has been rewritten.

TRANWRD
has an updated Comparisons section and a new example.

WEEK
now has enhanced documentation for the U, V, and W descriptors.

ZIPSTATE
now has information about Army Post Office (APO) and Fleet Post Office
(FPO) codes.

What’s New xix

� The RX set of functions and CALL routines have been removed from the
documentation. They have been replaced by a set of PRX functions and CALL
routines, which have been available in previous versions of SAS, and which
provide superior functionality.

The following table lists the RX functions and CALL routines and their PRX
replacements:

RX Function PRX Replacement

CALL RXCHANGE CALL PRXCHANGE

CALL RXFREE CALL PRXFREE

CALL RXSUBSTR CALL PRXSUBSTR

RXMATCH PRXMATCH

RXPARSE PRXPARSE

� The SCANQ function and the CALL SCANQ routine have been removed from the
documentation and replaced by the superior functionality of the SCAN function
and CALL SCAN routine.

Informats
� The following informats are new:

$BASE64X
converts ASCII text to character data by using Base 64 encoding.

$N8601B
reads complete, truncated, and omitted forms of ISO 8601 duration, datetime,
and interval values that are specified in either the basic or extended
notations.

$N8601E
reads ISO 8601 duration, datetime, and interval values that are specified in
the extended notation.

B8601DA
reads date values that are specified in the ISO 8601 basic notation yyyymmdd.

B8601DN
reads date values that are specified the ISO 8601 basic notation yyyymmdd
and returns SAS datetime values where the time portion of the value is
000000.

B8601DT
reads datetime values that are specified in the ISO 8601 basic notation
yyyymmddThhmmssffffff.

B8601DZ
reads datetime values that are specified in the Coordinated Universal Time
(UTC) time scale using the ISO 8601 datetime basic notation
yyyymmddThhmmss+|–hhmm or yyyymmddThhmmssffffffZ.

B8601TM
reads time values that are specified in the ISO 8601 basic notation
hhmmssffffff.

xx What’s New

B8601TZ
reads time values that are specified in the ISO 8601 basic time notation
hhmmssfffff+|–hhmm or hhmmssffffffZ.

E8601DA
reads date values that are specified in the ISO 8601 extended notation
yyyy-mm-dd.

E8601DN
reads date values that are specified in the ISO 8601 extended notation
yyyy-mm-dd and returns SAS datetime values where the time portion of the
value is 000000.

E8601DT
reads datetime values that are specified in the ISO 8601 extended notation
yyyy-mm-ddThh:mm:ss.ffffff.

E8601DZ
reads datetime values that are specified in the Coordinated Universal Time
(UTC) time scale using the ISO 8601 datetime extended notation
hh:mm:ss+|–hh:mm.fffff orhh:mm:ss.fffffZ.

E8601LZ
reads Coordinated Universal Time (UTC) values that are specified in the ISO
8601 extended notation hh:mm:ss+|–hh:mm.fffff or hh:mm:ss.fffffZ and
converts them to the local time.

E8601TM
reads time values that are specified in the ISO 8601 extended notation
hh:mm:ss.ffffff.

E8601TZ
reads time values that are specified in the ISO 8601 extended time notation
hh:mm:ss+|–hh:mm.ffffff or hh:mm:ssZ.

S3270FZDB
reads zoned decimal data in which zeros have been left blank. This feature is
new for SAS 9.2 Phase 2 and later.

SIZEKMG
reads numeric data that is appended to the letters K, M, or G. This feature is
new for SAS 9.2 Phase 2 and later.

VMSZN
reads VMS and MicroFocus COBOL zoned numeric data.

� The following informat is enhanced:

TRAILSGN
In addition to reading trailing plus (+) and minus (–) signs, the TRAILSGN
informat now reads values that contain commas.

� The following informats were previously documented in other publications and are
now part of this document:

WEEKUw.
reads the format of the number-of-week value within the year and returns a
SAS date value using the U algorithm.

WEEKVw.
reads the format of the number-of-week value within the year and returns a
SAS date value using the V algorithm.

What’s New xxi

WEEKWw.
reads the format of the number-of-week value within the year and returns a
SAS date value using the W algorithm.

Statements
� The following statements are new:

CHECKPOINT EXECUTE_ALWAYS
enables you to execute the DATA or PROC step that immediately follows
without considering the checkpoint-restart data.

FILENAME, SFTP Access Method
enables you to access remote files by using the SFTP protocol.

SYSECHO
enables IOM clients to manually track the progress of a segment of a
submitted SAS program.

� The following statements are enhanced:

%INCLUDE
� The filename of a file that is located in an aggregate storage location

and does not have a valid SAS name can be used as a fileref if the
filename is enclosed in quotation marks.

� The maximum line limit is now 6K.

ABORT
Two new optional arguments enable you to do the following:

� cause the execution of the submitted statements to be canceled.
� suppress the output of all variables to the SAS log.

ATTRIB
The TRANSCODE=NO attribute is not supported by some SAS Workspace
Server clients. In SAS 9.2, if the attribute is not supported, variables with
TRANSCODE=NO are replaced (masked) with asterisks (*). Before SAS 9.2,
variables with TRANSCODE=NO were transcoded.

BY
The BY statement honors the linguistic collation of data that is sorted by
using the SORT procedure with the SORTSEQ=LINGUISTIC option.

DATA
Three new optional arguments enable you to do the following:

� write a note to the SAS log for the beginning and end of each level of
nesting DO statements.

� specify the maximum number of nested LINK statements.
� suppress the output of all variables to the SAS log.

DECLARE
� Data set options can now be used with the dataset: argument tag.
� Three new argument tags enable you to do the following:

� maintain a summary count of hash object keys.
� ignore duplicate keys when loading a data set into the hash object.
� specify whether multiple data items are allowed for each key.

FILE

xxii What’s New

� The filename of a file that is located in an aggregate storage location
and does not have a valid SAS name can be used as a fileref if the
filename is enclosed in quotation marks.

� A new option enables you to specify a character string as an alternate
delimiter (other than a blank) to be used for LIST output.

FILENAME, CATALOG Access Method
You can now specify RECFM=S (stream–record format).

FILENAME, EMAIL (SMTP) Access Method
� You can now specify a file attachment without an extension.
� A new option enables you to specify the priority of the e-mail message.

FILENAME, FTP Access Method
Seven new FTP options enable you to do the following:

� specify the name of an authentication domain metadata object that
references credentials (user ID and password) in order to connect to the
FTP server without your having to explicitly specify the credentials.

� specify that the member type of DATA is automatically appended to the
member name when you use the DIR option.

� enable autocall macro retrieval of lowercase directory or member names
from FTP servers.

� save the user ID and password after the user ID and password prompt
are successfully executed.

� specify the line delimiter to use for variable-record formats: carriage
return followed by a line feed, a line feed only, or a NULL character.

� specify the length of the FTP server response message.
� in the second maintenance release for SAS 9.2, specify an FTP response

wait time in milliseconds.

FILENAME, SFTP Access Method
In SAS 9.2 Phase 2 and later, two new SFTP options enable you to do the
following:

� specify the fully qualified pathname and the filename of the batch file
that contains the SFTP commands. These commands are submitted
when the SFTP access method is executed.

� specify an SFTP response wait time in milliseconds.

FILENAME, URL Access Method
� N can now be used as an alias for a stream-record format (RECFM=S).
� Five new URL options enable you to do the following:

� specify the name of an authentication domain metadata object that
references credentials (user ID and password) in order to connect to
the proxy or Web server without your having to explicitly specify the
credentials.

� specify a fileref to which the header information is written when a file
is opened using the URL access method. The header information is
the same information that is written to the SAS log.

� specify a user name with which you can access the proxy server.
� specify a password with which you can access the proxy server.
� specify the line delimiter to use when RECFM=V.

FILENAME, WebDAV Access Method

What’s New xxiii

� For SAS 9.2 Phase 2 and later, the FILENAME statement, WebDAV
Access Method is available for use in the z/OS operating environment.

� The SASBAMW keyword in the FILENAME statement syntax has been
changed to WEBDAV.

� Three new WebDAV options enable you to do the following:

� access directory files.

� specify that a file extension is automatically appended to the filename
when you use the DIR option.

� retry lowercase directory or member names from WebDAV servers by
using an autocall macro.

FOOTNOTE
a new argument enables you to specify formatting options for the ODS
HTML, RTF, and PRINTER(PDF) destinations.

INFILE

� The filename of a file that is located in an aggregate storage location
and does not have a valid SAS name can be used as a fileref if the
filename is enclosed in quotation marks.

� A new option enables you to specify a character string as an alternate
delimiter (other than a blank) to be used for LIST input.

� A new optional argument specifies the type of device or the access
method that is used if the fileref points to an input or output device or
location that is not a physical file.

LIBNAME for WebDAV Server Access

� When you assign a libref to a file on a WebDAV server, the path (URL
location), user ID, and password are associated with that libref. After
the first libref is assigned, the user ID and password will be validated
on subsequent attempts to assign another libref to the same library.

� SAS will honor a lock request on a file on a WebDAV server only if the
file is already locked by another user.

� Two new WebDAV options enable you to do the following:

� specify the name of an authentication domain metadata object that
references credentials (user ID and password) in order to connect to
the WebDAV server without your having to explicitly specify the
credentials.

� prompt the user for an ID and password.

MERGE
a new argument enables you to specify at least two existing SAS data sets by
using either a numbered range list or a named prefix list.

SET

� a new argument creates and names a variable that stores the name of
the SAS data set from which the current observation is read. The stored
name can be a data set name or a physical name. The physical name is
the name by which the operating environment recognizes the file.

� a new argument enables you to specify at least two existing SAS data
sets by using either a numbered range list or a named prefix list.

xxiv What’s New

TITLE
added an argument that enables you to specify formatting options for the
ODS HTML, RTF, and PRINTER(PDF) destinations.

System Options
� The following system options are new:

CGOPTIMIZE
specifies the level of optimization to perform during code optimization. This
feature is new for SAS 9.2 Phase 2 and later.

CMPMODEL=
specifies the output model type for the MODEL procedure.

DEFLATION=
specifies the level of compression for device drivers that support the Deflate
compression algorithm.

DMSPGMLINESIZE=
specifies the maximum number of characters in a Program Editor line.

EMAILFROM
when sending an e-mail that uses SMTP, specifies whether the e-mail option
FROM is required in either the FILE or the FILENAME statement.

FILESYNC=
specifies when operating system buffers that contain contents of permanent
SAS files are written to disk.

FONTEMBEDDING
specifies whether font embedding is enabled in Universal Printer and SAS/
GRAPH printing.

FONTRENDERING=
specifies whether SAS/GRAPH devices that are based on the SASGDGIF,
SASGDTIF, and SASGDIMG modules render fonts by using the operating
system or by using the FreeType font engine.

GSTYLE
specifies whether ODS styles can be used in the generation of graphs that are
stored as GRSEG catalog entries.

HELPBROWSER=
specifies the browser to use for SAS Help and ODS output. This feature is
new for SAS 9.2 Phase 2 and later.

HELPHOST=
specifies the name of the computer where the remote browser is to send Help
and ODS output. This feature is new for SAS 9.2 Phase 2 and later.

HELPPORT=
specifies the port number for the remote browser client. This feature is new
for SAS 9.2 Phase 2 and later.

HTTPSERVERPORTMAX=
specifies the highest port number that can be used by the SAS HTTP server
for remote browsing. This feature is new for SAS 9.2 Phase 2 and later.

HTTPSERVERPORTMIN=
specifies the lowest port number that can be used by the SAS HTTP server
for remote browsing. This feature is new for SAS 9.2 Phase 2 and later.

What’s New xxv

IBUFNO=
specifies an optional number of extra buffers to be allocated for navigating an
index file. SAS automatically allocates a minimal number of buffers in order
to navigate the index file. Typically, you do not need to specify extra buffers.
However, using IBUFNO= to specify extra buffers could improve execution
time by limiting the number of input/output operations that are required for
a particular index file.

INTERVALDS=
specifies a SAS data set that contains user-supplied holidays that can be used
by the INTNX and INTCK functions. This feature is new for SAS 9.2 Phase 2
and later.

JPEGQUALITY
specifies the JPEG quality factor that determines the ratio of image quality
to the level of compression for JPEG files processed by the SAS/GRAPH
JPEG device driver.

LRECL=
specifies the default logical record length to use for reading and writing
external files.

PDFACCESS
specifies whether text and graphics from PDF documents can be read by
screen readers for the visually impaired.

PDFASSEMBLY
specifies whether PDF documents can be assembled.

PDFCOMMENT
specifies whether PDF document comments can be modified.

PDFCONTENT
specifies whether the contents of a PDF document can be changed.

PDFCOPY
specifies whether text and graphics from a PDF document can be copied.

PDFFILLIN
specifies whether PDF forms can be filled in.

PDFPAGELAYOUT
specifies the page layout for PDF documents.

PDFPAGEVIEW
specifies the page viewing mode for PDF documents.

PDFPASSWORD
specifies the password to use to open a PDF document and the password used
by a PDF document owner.

PDFPRINT
specifies the resolution to print PDF documents.

PDFSECURITY
specifies the printing permissions for PDF documents.

PRIMARYPROVIDERDOMAIN=
specifies the domain name of the primary authentication provider. This
feature is new for SAS 9.2 Phase 2 and later.

RLANG
specifies whether SAS executes R language statements.

xxvi What’s New

S2V
specifies the starting position to begin reading a file specified in a
%INCLUDE statement, an autoexec file, or an autocall macro file with a
variable length format.

SORTVALIDATE
specifies whether the SORT procedure verifies that a data set is sorted
according to the variables in the BY statement when the sort indicator
metadata indicates a user-specified sort order.

SQLCONSTDATETIME
specifies whether the SQL procedure replaces references to the DATE, TIME,
DATETIME, and TODAY functions in a query with their equivalent constant
values before the query executes.

SQLREDUCEPUT
for the SQL procedure, specifies the engine type that a query uses for which
optimization is performed by replacing a PUT function in a query with a
logically equivalent expression.

SQLREDUCEPUTOBS
for the SQL procedure when the SQLREDUCEPUT= system option is set to
NONE, specifies the minimum number of observations that must be in a
table for PROC SQL to consider optimizing the PUT function in a query.

SQLREDUCEPUTVALUES=
for the SQL procedure when the SQLREDUCEPUT= system option is set to
NONE, specifies the minimum number of SAS format values that can exist in
a PUT function expression in order for PROC SQL to consider optimizing the
PUT function in a query.

SQLREMERGE
specifies whether the SQL procedure can process queries that use remerging
of data.

SQLUNDOPOLICY=
specifies whether the SQL procedure keeps or discards updated data if errors
occur while the data is being updated.

STEPCHKPT
specifies whether to run a batch program in checkpoint-restart mode. In
checkpoint-restart mode, if a batch program terminates during execution, the
program can be restarted beginning with the DATA or PROC step that was
executing when the program terminated.

STEPCHKPTLIB
specifies the libref which identifies the library that contains the
checkpoint-restart data.

STEPRESTART
specifies whether to start a batch program using the checkpoint data.

SVGCONTROLBUTTONS
specifies whether to display the paging control buttons and an index in a
multi-page SVG document.

SVGHEIGHT
specifies the height of the viewport unless the SVG output is embedded in
another SVG output; specifies the value of the HEIGHT attribute of the
outermost <svg> element in the SVG file.

SVGPRESERVEASPECTRATIO

What’s New xxvii

specifies whether to force uniform scaling of SVG output; sets the
preserveAspectRatio attribute on the outermost <svg> element.

SVGTITLE
specifies the title in the title bar of the SVG output; specifies the value of the
<title> element in the SVG file.

SVGVIEWBOX
specifies the coordinates, width, and height that are used to set the viewBox
attribute on the outermost <svg> element, which enables SVG output to scale
to the viewport.

SVGWIDTH
specifies the width of the viewport unless the SVG output is embedded in
another SVG output; specifies the value of the width attribute of the
outermost <svg> element in the SVG file.

SVGX
specifies the x-axis coordinate of one corner of the rectangular region into
which an embedded <svg> element is placed; specifies the x attribute on the
outermost <svg> element of the SVG file.

SVGY
specifies the y-axis coordinate of one corner of the rectangular region into
which an embedded <svg> element is placed; specifies the y attribute on the
outermost <svg> element of the SVG file.

UPRINTCOMPRESSION
specifies whether to enable compression of Universal Printer and
SAS/GRAPH print files.

VARLENCHK=
specifies the type of message to write to the SAS log if the length of a
variable is increased when the input data set is read using the SET, MERGE,
UPDATE, or MODIFY statements. This option is new for SAS 9.2 Phase 2.

� The following system options have a new argument:

DLDMGACTION=NOINDEX
For data sets, automatically repairs the data set without the indexes and
integrity constraints, deletes the index file, updates the data file to reflect the
disabled indexes and integrity constraints, and limits the data file to be
opened only in INPUT mode.

CMPOPT=FUNCDIFFERENCING
specifies whether analytic derivatives are computed for user-defined functions.

� The following system options are enhanced:

ECHOAUTO
SAS writes the autoexec file statements to the SAS log.

EMAILHOST
You can now specify multiple Simple Mail Transfer Protocol (SMTP) mail
servers.

EMAILPW
In the third maintenance release for SAS 9.2, you can use encoded e-mail
passwords. These passwords are encoded with PROC PWENCODE.

E-mail system options
All e-mail system options can now be set at any time. They are no longer
restricted to being set when SAS starts.

xxviii What’s New

OVP
The default value for the OVP system option is now NOOVP.

SYSPRINTFONT=
You can specify the name of a Universal Printer to which the
SYSPRINTFONT system option setting applies.

� The syntax for the following system options is different when these system options
are used after SAS starts, as compared to the syntax that is used when SAS
starts. For the syntax to use when SAS starts, see the documentation for your
operating environment. This feature is new for SAS 9.2 Phase 2:

APPEND=
Appends a value to the existing value of the specified system option.

INSERT=
Inserts the specified value as the first value of the specified system option.

� The following system options are no longer supported and have been removed from
the documentation:

BATCH
no longer has an impact on the settings for the LINESIZE, OVP, PAGESIZE,
and SOURCE system options when SAS executes.

GISMAPS
SAS 9.2 no longer supplies U.S. Census Tract maps for SAS/GIS.

� The following system option has been deleted from SAS:

CONSOLELOG=

DATA Step Object Attributes, Operators, and Methods
� For SAS 9.2 Phase 2 and later, the Java object language elements in Chapter 10,

“Java Object Language Elements,” on page 2083 are now documented in SAS
Language Reference: Dictionary.

� The following hash and hash iterator methods are new:

CLEAR
removes all items from the hash object without deleting the hash object
instance.

EQUALS
determines whether two hash objects are equal.

FIND_NEXT
sets the current list item to the next item in the current key’s multiple item
list and sets the data for the corresponding data variables.

FIND_PREV
sets the current list item to the previous item in the current key’s multiple
item list and sets the data for the corresponding data variables.

HAS_NEXT
determines whether there is a next item in the current key’s multiple data
item list.

HAS_PREV
determines whether there is a previous item in the current key’s multiple
data item list.

What’s New xxix

REF
consolidates the FIND and ADD methods into a single method call.

REMOVEDUP
removes the data that is associated with the specified key’s current data item
from the hash object.

REPLACEDUP
replaces the data that is associated with the current key’s current data item
with new data.

SETCUR
specifies a starting key item for iteration.

SUM
retrieves the summary value for a given key from the hash table and stores
the value in a DATA step variable.

SUMDUP
retrieves the summary value for the current data item of the current key and
stores the value in a DATA step variable.

� The following hash object method is enhanced:

DEFINEDONE
added an optional argument that enables recovery from memory failure when
loading a data set into a hash object.

� The following hash object attribute is new:

ITEM_SIZE
returns the number of items in the hash object.

� The _NEW_ statement has been reclassified as an operator.
� For SAS 9.2 Phase 2 and later, the items in a multiple data item list are now

maintained in the order in which you insert them.

xxx What’s New

1

P A R T1

Dictionary of Language Elements

Chapter 1.Introduction to the SAS 9.2 Language Reference:
Dictionary 3

Chapter 2.SAS Data Set Options 9

Chapter 3.Formats 81

Chapter 4.Functions and CALL Routines 295

Chapter 5.Informats 1215

Chapter 6.Statements 1381

Chapter 7.SAS System Options 1765

2

3

C H A P T E R

1
Introduction to the SAS 9.2
Language Reference: Dictionary

The SAS Language Reference: Dictionary 3
Syntax Conventions for the SAS Language 4

Overview of Syntax Conventions for the SAS Language 4

Syntax Components 4

Style Conventions 5

Special Characters 6
References to SAS Libraries and External Files 6

The SAS Language Reference: Dictionary
SAS Language Reference: Dictionary provides detailed reference information for the

major language elements of Base SAS software:
� data set options
� formats
� functions and CALL routines
� informats
� statements
� SAS system options.
� hash and hash iterator DATA step component object attributes and methods
� Java DATA step component object attributes and methods

It also includes the following four appendixes:
� DATA step debugger
� Perl Regular Expression (PRX) Metacharacters
� SAS utility macro
� Recommended reading.

For extensive conceptual information about the SAS System and the SAS language,
including the DATA step, see SAS Language Reference: Concepts.

4 Syntax Conventions for the SAS Language � Chapter 1

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language

elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

� syntax components
� style conventions
� special characters
� references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and

arguments. For some language elements only a keyword is necessary. For other
language elements the keyword is followed by an equal sign (=).

keyword specifies the name of the SAS language element that you use when
you write your program. Keyword is a literal that is usually the first
word in the syntax. In a CALL routine, the first two words are
keywords.

In the following examples of SAS syntax, the keywords are the
first words in the syntax:

CHAR (string, position)

CALL RANBIN (seed, n, p, x);

ALTER (alter-password)

BEST w.

REMOVE <data-set-name>

In the following example, the first two words of the CALL routine
are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword
without arguments:

DO;
... SAS code ...

END;

Some system options require that one of two keyword values be
specified:

DUPLEX | NODUPLEX

argument specifies a numeric or character constant, variable, or expression.
Arguments follow the keyword or an equal sign after the keyword.
The arguments are used by SAS to process the language element.
Arguments can be required or optional. In the syntax, optional
arguments are enclosed between angle brackets.

SAS 9.2 Language Reference: Dictionary � Style Conventions 5

In the following example, string and position follow the keyword
CHAR. These arguments are required arguments for the CHAR
function:

CHAR (string, position)

Each argument has a value. In the following example of SAS
code, the argument string has a value of ’summer’, and the
argument position has a value of 4:

x=char(’summer’, 4);

In the following example, string and substring are required
arguments, while modifiers and startpos are optional.

FIND(string, substring <,modifiers> <,startpos>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the code
that you write. �

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase

bold, uppercase, and italic:

UPPERCASE
BOLD

identifies SAS keywords such as the names of functions or
statements. In the following example, the keyword ERROR is
written in uppercase bold:

ERROR<message>;

UPPERCASE identifies arguments that are literals.

In the following example of the CMPMODEL= system option, the
literals include BOTH, CATALOG, and XML:

CMPMODEL = BOTH | CATALOG | XML

italics identifies arguments or values that you supply. Items in italics
represent user-supplied values that are either one of the following:

� nonliteral arguments

In the following example of the LINK statement, the
argument label is a user-supplied value and is therefore
written in italics:

LINK label;

� nonliteral values that are assigned to an argument

In the following example of the FORMAT statement, the
argument DEFAULT is assigned the variable default-format:

FORMAT = variable-1 <, ..., variable-n format ><DEFAULT
= default-format>;

Items in italics can also be the generic name for a list of
arguments from which you can choose (for example, attribute-list). If
more than one of an item in italics can be used, the items are
expressed as item-1, ..., item-n.

6 Special Characters � Chapter 1

Special Characters
The syntax of SAS language elements can contain the following special characters:

= an equal sign identifies a value for a literal in some language
elements such as system options.

In the following example of the MAPS system option, the equal
sign sets the value of MAPS:

MAPS = location-of-maps

< > angle brackets identify optional arguments. Any argument that is
not enclosed in angle brackets is required.

In the following example of the CAT function, at least one item is
required:

CAT (item-1 < , ..., item-n>)

| a verticle bar indicates that you can choose one value from a group
of values. Values that are separated by the vertical bar are mutually
exclusive.

In the following example of the CMPMODEL= system option, you
can choose only one of the arguments:

CMPMODEL = BOTH | CATALOG | XML

... an ellipsis indicates that the argument or group of arguments
following the ellipsis can be repeated. If the ellipsis and the
following argument are enclosed in angle brackets, then the
argument is optional.

In the following example of the CAT function, the ellipsis
indicates that you can have multiple optional items:

CAT (item-1 < , ..., item-n>)

’value’ or “value” indicates that an argument enclosed in single or double quotation
marks must have a value that is also enclosed in single or double
quotation marks.

In the following example of the FOOTNOTE statement, the
argument text is enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options ’text’ | “text”>;

; a semicolon indicates the end of a statement or CALL routine.

In the following example each statement ends with a semicolon:

data namegame;
length color name $8;
color = ’black’;
name = ’jack’;
game = trim(color) || name;

run;

References to SAS Libraries and External Files
Many SAS statements and other language elements refer to SAS libraries and

external files. You can choose whether to make the reference through a logical name (a

SAS 9.2 Language Reference: Dictionary � References to SAS Libraries and External Files 7

libref or fileref) or use the physical filename enclosed in quotation marks. If you use a
logical name, you usually have a choice of using a SAS statement (LIBNAME or
FILENAME) or the operating environment’s control language to make the association.
Several methods of referring to SAS libraries and external files are available, and some
of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase
file-specification. In the examples that use SAS libraries, SAS documentation uses the
italicized phrase SAS-library. Note that SAS-library is enclosed in quotation marks:

infile file-specification obs = 100;
libname libref ’SAS-library’;

8

9

C H A P T E R

2
SAS Data Set Options

Definition of Data Set Options 10
Syntax 10

Using Data Set Options 10

Using Data Set Options with Input or Output SAS Data Sets 10

How Data Set Options Interact with System Options 11

Data Set Options by Category 12
Dictionary 14

ALTER= Data Set Option 14

BUFNO= Data Set Option 15

BUFSIZE= Data Set Option 16

CNTLLEV= Data Set Option 18

COMPRESS= Data Set Option 19
DLDMGACTION= Data Set Option 21

DROP= Data Set Option 22

ENCRYPT= Data Set Option 23

FILECLOSE= Data Set Option 24

FIRSTOBS= Data Set Option 25
GENMAX= Data Set Option 27

GENNUM= Data Set Option 28

IDXNAME= Data Set Option 30

IDXWHERE= Data Set Option 31

IN= Data Set Option 33
INDEX= Data Set Option 34

KEEP= Data Set Option 36

LABEL= Data Set Option 37

OBS= Data Set Option 39

OBSBUF= Data Set Option 44

OUTREP= Data Set Option 46
POINTOBS= Data Set Option 48

PW= Data Set Option 49

PWREQ= Data Set Option 50

READ= Data Set Option 51

RENAME= Data Set Option 52
REPEMPTY= Data Set Option 54

REPLACE= Data Set Option 55

REUSE= Data Set Option 56

SORTEDBY= Data Set Option 57

SPILL= Data Set Option 59
TOBSNO= Data Set Option 66

TYPE= Data Set Option 66

WHERE= Data Set Option 67

10 Definition of Data Set Options � Chapter 2

WHEREUP= Data Set Option 69
WRITE= Data Set Option 71

Data Set Options Documented in Other SAS Publications 71

SAS Companion for Windows 72

SAS Companion for OpenVMS on HP Integrity Servers 72

SAS Companion for UNIX Environments 72
SAS Companion for z/OS 73

SAS National Language Support: Reference Guide 73

SAS Scalable Performance Data Engine: Reference 74

SAS/ACCESS for Relational Databases: References 74

Definition of Data Set Options

Data set options specify actions that apply only to the SAS data set with which they
appear. They let you perform the following operations:

� renaming variables

� selecting only the first or last n observations for processing

� dropping variables from processing or from the output data set

� specifying a password for a data set

Syntax

Specify a data set option in parentheses after a SAS data set name. To specify
several data set options, separate them with spaces.

(option-1=value-1<...option-n=value-n>)

These examples show data set options in SAS statements:

� data scores(keep=team game1 game2 game3);

� data mydata(index=(b k) label=’label for my data set’ drop=p read=secret);

� data new(drop=i n index=(j combo=(x1 a1 a20 b1 b50)));

� data idxdup2(compress=yes index=(ok1 ok2 ssn/unique ok3));

� proc print data=new(drop=year);

� set old(rename=(date=Start_Date));

Using Data Set Options

Using Data Set Options with Input or Output SAS Data Sets
Most SAS data set options can apply to either input or output SAS data sets in DATA

steps or procedure (PROC) steps. If a data set option is associated with an input data
set, the action applies to the data set that is being read. If the option appears in the
DATA statement or after an output data set specification in a PROC step, SAS applies
the action to the output data set. In the DATA step, data set options for output data
sets must appear in the DATA statement, not in any OUTPUT statements that might
be present.

SAS Data Set Options � How Data Set Options Interact with System Options 11

Some data set options, such as COMPRESS=, are meaningful only when you create a
SAS data set because they set attributes that exist for the duration of the data set. To
change or cancel most data set options, you must re-create the data set. You can change
other options (such as PW= and LABEL=) with PROC DATASETS. For more
information, see the “DATASETS Procedure” in Base SAS Procedures Guide.

When data set options appear on both input and output data sets in the same DATA
or PROC step, first SAS applies data set options to input data sets. Then SAS evaluates
programming statements or applies data set options to output data sets. Likewise, data
set options that are specified for the data set being created are applied after
programming statements are processed. For example, when using the RENAME= data
set option, the new names are not associated with the variables until the DATA step
ends.

In some instances, data set options conflict when they are used in the same
statement. For example, you cannot specify both the DROP= and KEEP= data set
options for the same variable in the same statement. Timing can also be an issue in
some cases. For example, if using KEEP= and RENAME= on a data set specified in the
SET statement, KEEP= needs to use the original variable names. SAS processes
KEEP= before the data set is read. The new names specified in RENAME= apply to the
programming statements that follow the SET statement.

How Data Set Options Interact with System Options
Many system options and data set options share the same name and have the same

function. System options remain in effect for all DATA and PROC steps in a SAS job or
session unless they are respecified.

The data set option overrides the system option for the data set in the step in which
it appears. In this example, the OBS= system option in the OPTIONS statement
specifies that only the first 100 observations are processed from any data set within the
SAS job. The OBS= data set option in the SET statement, however, overrides the
system option for data set TWO and specifies that only the first five observations are
read from data set TWO. The PROC PRINT step prints the data set FINAL. This data
set contains the first 5 observations from data set TWO, followed by the first 100
observations from data set THREE:

options obs=100;

data final;
set two(obs=5) three;

run;

proc print data=final;
run;

12 Data Set Options by Category � Chapter 2

Data Set Options by Category

Table 2.1 Categories and Descriptions of SAS Data Set Options

Category SAS Data Set Options Description

Data Set Control “ALTER= Data Set
Option” on page 14

Assigns an ALTER password to a SAS file that prevents
users from replacing or deleting the file, and enables
access to a read- and write-protected file.

“BUFNO= Data Set
Option” on page 15

Specifies the number of buffers to be allocated for
processing a SAS data set.

“BUFSIZE= Data Set
Option” on page 16

Specifies the size of a permanent buffer page for an
output SAS data set.

“CNTLLEV= Data Set
Option” on page 18

Specifies the level of shared access to a SAS data set.

“COMPRESS= Data Set
Option” on page 19

Specifies how observations are compressed in a new
output SAS data set.

“DLDMGACTION= Data
Set Option” on page 21

Specifies the action to take when a SAS data set in a
SAS library is detected as damaged.

“ENCRYPT= Data Set
Option” on page 23

Specifies whether to encrypt an output SAS data set.

“GENMAX= Data Set
Option” on page 27

Requests generations for a new data set, modifies the
number of generations for an existing data set, and
specifies the maximum number of versions.

“GENNUM= Data Set
Option” on page 28

Specifies a particular generation of a SAS data set.

“INDEX= Data Set Option”
on page 34

Defines an index for a new output SAS data set.

“LABEL= Data Set
Option” on page 37

Specifies a label for a SAS data set.

“OBSBUF= Data Set
Option” on page 44

Determines the size of the view buffer for processing a
DATA step view.

“OUTREP= Data Set
Option” on page 46

Specifies the data representation for the output SAS data
set.

“PW= Data Set Option” on
page 49

Assigns a READ, WRITE, and ALTER password to a SAS
file, and enables access to a password-protected SAS file.

“PWREQ= Data Set
Option” on page 50

Specifies whether to display a dialog box to enter a SAS
data set password.

“READ= Data Set Option”
on page 51

Assigns a READ password to a SAS file that prevents
users from reading the file, unless they enter the
password.

“REPEMPTY= Data Set
Option” on page 54

Specifies whether a new, empty data set can overwrite an
existing SAS data set that has the same name.

SAS Data Set Options � Data Set Options by Category 13

Category SAS Data Set Options Description

“REPLACE= Data Set
Option” on page 55

Specifies whether a new SAS data set that contains data
can overwrite an existing data set that has the same
name.

“REUSE= Data Set
Option” on page 56

Specifies whether new observations can be written to
freed space in compressed SAS data sets.

“SORTEDBY= Data Set
Option” on page 57

Specifies how a data set is currently sorted.

“SPILL= Data Set Option”
on page 59

Specifies whether to create a spill file for non-sequential
processing of a DATA step view.

“TOBSNO= Data Set
Option” on page 66

Specifies the number of observations to send in a client/
server transfer.

“TYPE= Data Set Option”
on page 66

Specifies the data set type for a specially structured SAS
data set.

“WRITE= Data Set
Option” on page 71

Assigns a WRITE password to a SAS file that prevents
users from writing to a file, unless they enter the
password.

Miscellaneous “FILECLOSE= Data Set
Option” on page 24

Specifies how a tape is positioned when a SAS data set is
closed.

Observation Control “FIRSTOBS= Data Set
Option” on page 25

Specifies the first observation that SAS processes in a
SAS data set.

“IN= Data Set Option” on
page 33

Creates a Boolean variable that indicates whether the
data set contributed data to the current observation.

“OBS= Data Set Option”
on page 39

Specifies the last observation that SAS processes in a
data set.

“POINTOBS= Data Set
Option” on page 48

Specifies whether SAS creates compressed data sets
whose observations can be randomly accessed or
sequentially accessed.

“WHERE= Data Set
Option” on page 67

Specifies specific conditions to use to select observations
from a SAS data set.

“WHEREUP= Data Set
Option” on page 69

Specifies whether to evaluate new observations and
modified observations against a WHERE expression.

User Control of SAS Index
Usage

“IDXNAME= Data Set
Option” on page 30

Directs SAS to use a specific index to match the
conditions of a WHERE expression.

“IDXWHERE= Data Set
Option” on page 31

Specifies whether SAS uses an index search or a
sequential search to match the conditions of a WHERE
expression.

Variable Control “DROP= Data Set Option”
on page 22

For an input data set, excludes the specified variables
from processing; for an output data set, excludes the
specified variables from being written to the data set.

14 Dictionary � Chapter 2

Category SAS Data Set Options Description

“KEEP= Data Set Option”
on page 36

For an input data set, specifies the variables to process;
for an output data set, specifies the variables to write to
the data set.

“RENAME= Data Set
Option” on page 52

Changes the name of a variable.

Dictionary

ALTER= Data Set Option

Assigns an ALTER password to a SAS file that prevents users from replacing or deleting the file,
and enables access to a read- and write-protected file.

Valid in: DATA step and PROC steps

Category: Data Set Control

See: ALTER= Data Set Option in the documentation for your operating environment.

Syntax

ALTER=alter-password

Syntax Description

alter-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details

The ALTER= option applies to all types of SAS files except catalogs. You can use this
option to assign a password to a SAS file or to access a read-protected, write-protected,
or alter-protected SAS file.

When replacing a SAS data set that is protected with an ALTER password, the new
data set inherits the ALTER password. To change the ALTER password for the new
data set, use the MODIFY statement in the DATASETS procedure.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

SAS Data Set Options � BUFNO= Data Set Option 15

See Also

Data Set Options:
“ENCRYPT= Data Set Option” on page 23
“PW= Data Set Option” on page 49
“READ= Data Set Option” on page 51
“WRITE= Data Set Option” on page 71

“File Protection” in SAS Language Reference: Concepts

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

BUFNO= Data Set Option

Specifies the number of buffers to be allocated for processing a SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control
See: BUFNO= Data Set Option in the documentation for your operating environment.

Syntax
BUFNO= n | nK | hexX | MIN | MAX

Syntax Description

n | nK
specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes). For
example, a value of 8 specifies 8 buffers, and a value of 1k specifies 1024 buffers.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0-9), followed by an X. For example, the value 2dx sets the
number of buffers to 45 buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment. This is the default.

16 BUFSIZE= Data Set Option � Chapter 2

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231-1, or
approximately 2 billion.

Details
The buffer number is not a permanent attribute of the data set; it is valid only for the
current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.
A larger number of buffers can speed up execution time by limiting the number of

input and output (I/O) operations that are required for a particular SAS data set.
However, the improvement in execution time comes at the expense of increased memory
consumption.

To reduce I/O operations on a small data set as well as speed execution time, allocate
one buffer for each page of data to be processed. This technique is most effective if you
read the same observations several times during processing.

Operating Environment Information: The default value for BUFNO= is determined by
your operating environment and is set to optimize sequential access. To improve
performance for direct (random) access, you should change the value for BUFNO=. For
the default setting and possible settings for direct access, see the BUFNO= data set
option in the SAS documentation for your operating environment. �

Comparisons
� If the BUFNO= data set option is not specified, then the value of the BUFNO=

system option is used. If both are specified in the same SAS session, the value
specified for the BUFNO= data set option overrides the value specified for the
BUFNO= system option.

� To request that SAS allocate the number of buffers based on the number of data
set pages and index file pages, use the SASFILE global statement.

See Also

Data Set Options:
“BUFSIZE= Data Set Option” on page 16

System Options:
“BUFNO= System Option” on page 1797

Statements:
“SASFILE Statement” on page 1703

BUFSIZE= Data Set Option

Specifies the size of a permanent buffer page for an output SAS data set.

Valid in: DATA step and PROC steps

SAS Data Set Options � BUFSIZE= Data Set Option 17

Category: Data Set Control
Restriction: Use with output data sets only.
See: BUFSIZE= Data Set Option in the documentation for your operating environment.

Syntax
BUFSIZE= n | nK | nM | nG | hexX | MAX

Syntax Description

n | nK | nM | nG
specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). For example, a value of 8 specifies a page
size of 8 bytes, and a value of 4k specifies a page size of 4096 bytes.

The default is 0, which causes SAS to use the minimum optimal page size for the
operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0-9), followed by an X. For example, the value 2dx sets the page size
to 45 bytes.

MAX
sets the page size to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 231-1, or approximately 2 billion
bytes.

Details
The page size is the amount of data that can be transferred for a single I/O operation to
one buffer. The page size is a permanent attribute of the data set and is used when the
data set is processed.

A larger page size can speed up execution time by reducing the number of times SAS
has to read from or write to the storage medium. However, the improvement in
execution time comes at the cost of increased memory consumption.

To change the page size, use a DATA step to copy the data set and either specify a
new page or use the SAS default. To reset the page size to the default value in your
operating environment, use BUFSIZE=0.

Note: If you use the COPY procedure to copy a data set to another library that is
allocated with a different engine, the specified page size of the data set is not retained. �

Operating Environment Information: The default value for BUFSIZE= is determined
by your operating environment and is set to optimize sequential access. To improve
performance for direct (random) access, you should change the value for BUFSIZE=.
For the default setting and possible settings for direct access, see the BUFSIZE= data
set option in the SAS documentation for your operating environment. �

18 CNTLLEV= Data Set Option � Chapter 2

See Also

Data Set Options:

“BUFNO= Data Set Option” on page 15

System Options:

“BUFSIZE= System Option” on page 1799

CNTLLEV= Data Set Option

Specifies the level of shared access to a SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Specify for input data sets only.

Syntax
CNTLLEV=LIB | MEM | REC

Syntax Description

LIB
specifies that concurrent access is controlled at the library level. Library-level control
restricts concurrent access to only one update process to the library.

MEM
specifies that concurrent access is controlled at the SAS data set (member) level.
Member-level control restricts concurrent access to only one update or output process
to the SAS data set. If the data set is open for an update or output process, then no
other operation can access the data set. If the data set is open for an input process,
then other concurrent input processes are allowed but no update or output process is
allowed.

REC
specifies that concurrent access is controlled at the observation (record) level.
Record-level control allows more than one update access to the same SAS data set,
but it denies concurrent update of the same observation.

Details
The CNTLLEV= option specifies the level at which shared update access to a SAS data
set is denied. A SAS data set can be opened concurrently by more than one SAS session
or by more than one statement, window, or procedure within a single session. By
default, SAS procedures permit the greatest degree of concurrent access possible while
they guarantee the integrity of the data and the data analysis. Therefore, you do not
typically use the CNTLLEV= data set option.

SAS Data Set Options � COMPRESS= Data Set Option 19

Use this option when
� your application controls the access to the data, such as in SAS Component

Language (SCL), SAS/IML software, or DATA step programming
� you access data through an interface engine that does not provide member-level

control of the data.

If you use CNTLLEV=REC and the SAS procedure needs member-level control for
integrity of the data analysis, SAS prints a warning to the SAS log that inaccurate or
unpredictable results can occur if the data are updated by another process during the
analysis.

Examples

Example 1: Changing the Shared Access Level In the following example, the first SET
statement includes the CNTLLEV= data set option in order to override the default level
of shared access from member-level control to record-level control. The second SET
statement opens the SAS data set with the default member-level control.

set datalib.fuel (cntllev=rec) point=obsnum;
.
.
.

set datalib.fuel;
by area;

COMPRESS= Data Set Option

Specifies how observations are compressed in a new output SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Syntax Description

NO
specifies that the observations in a newly created SAS data set are uncompressed
(fixed-length records).

YES | CHAR
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RLE (Run Length Encoding). RLE compresses
observations by reducing repeated consecutive characters (including blanks) to
two-byte or three-byte representations.
Alias: ON

20 COMPRESS= Data Set Option � Chapter 2

Tip: Use this compression algorithm for character data.
Note: COMPRESS=CHAR is accepted by Version 7 and later versions. �

BINARY
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RDC (Ross Data Compression). RDC
combines run-length encoding and sliding-window compression to compress the file.
Tip: This method is highly effective for compressing medium to large (several

hundred bytes or larger) blocks of binary data (numeric variables). Because the
compression function operates on a single record at a time, the record length needs
to be several hundred bytes or larger for effective compression.

Details
Compressing a file is a process that reduces the number of bytes required to represent
each observation. Advantages of compressing a file include reduced storage
requirements for the file and fewer I/O operations necessary to read or write to the data
during processing. However, more CPU resources are required to read a compressed file
(because of the overhead of uncompressing each observation), and there are situations
where the resulting file size might increase rather than decrease.

Use the COMPRESS= data set option to compress an individual file. Specify the
option for output data sets only—that is, data sets named in the DATA statement of a
DATA step or in the OUT= option of a SAS procedure. Use the COMPRESS= data set
option only when you are creating a SAS data file (member type DATA). You cannot
compress SAS views, because they contain no data.

After a file is compressed, the setting is a permanent attribute of the file, which
means that to change the setting, you must re-create the file. That is, to uncompress a
file, specify COMPRESS=NO for a DATA step that copies the compressed file.

Comparisons
The COMPRESS= data set option overrides the COMPRESS= option in the LIBNAME
statement and the COMPRESS= system option.

The data set option POINTOBS=YES, which is the default, determines that a
compressed data set can be processed with random access (by observation number)
rather than sequential access. With random access, you can specify an observation
number in the FSEDIT procedure and the POINT= option in the SET and MODIFY
statements.

When you create a compressed file, you can also specify REUSE=YES (as a data set
option or system option) in order to track and reuse space. With REUSE=YES, new
observations are inserted in space freed when other observations are updated or
deleted. When the default REUSE=NO is in effect, new observations are appended to
the existing file.

POINTOBS=YES and REUSE=YES are mutually exclusive—that is, they cannot be
used together. REUSE=YES takes precedence over POINTOBS=YES. That is, if you set
REUSE=YES, SAS automatically sets POINTOBS=NO.

The TAPE engine supports the COMPRESS= data set option, but the engine does not
support the COMPRESS= system option.

The XPORT engine does not support compression.

See Also

Data Set Options:
“POINTOBS= Data Set Option” on page 48

SAS Data Set Options � DLDMGACTION= Data Set Option 21

“REUSE= Data Set Option” on page 56
Statements:

“LIBNAME Statement” on page 1607
System Options:

“COMPRESS= System Option” on page 1817
“REUSE= System Option” on page 1924

“Compressing Data Files” in SAS Language Reference: Concepts

DLDMGACTION= Data Set Option

Specifies the action to take when a SAS data set in a SAS library is detected as damaged.

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
DLDMGACTION=FAIL | ABORT | REPAIR | NOINDEX | PROMPT

Syntax Description

FAIL
stops the step, issues an error message to the log immediately. This is the default for
batch mode.

ABORT
terminates the step, issues an error message to the log, and terminates the SAS
session.

REPAIR
automatically repairs and rebuilds indexes and integrity constraints, unless the data
file is truncated. You use the REPAIR statement in PROC DATASETS to restore a
truncated data set. It issues a warning message to the log. This is the default for
interactive mode.

NOINDEX
automatically repairs the data file without the indexes and integrity constraints,
deletes the index file, updates the data file to reflect the disabled indexes and
integrity constraints, and limits the data file to be opened only in INPUT mode. A
warning is written to the SAS log instructing you to execute the PROC DATASETS
REBUILD statement to correct or delete the disabled indexes and integrity
constraints.
See also: “REBUILD Statement” in the “DATASETS Procedure” in Base SAS

Procedures Guide
“Recovering Disabled Indexes and Integrity Constraints” in SAS Language

Reference: Concepts

PROMPT
displays a dialog box that asks you to select the FAIL, ABORT, REPAIR, or
NOINDEX action.

22 DROP= Data Set Option � Chapter 2

DROP= Data Set Option

For an input data set, excludes the specified variables from processing; for an output data set,
excludes the specified variables from being written to the data set.

Valid in: DATA step and PROC steps

Category: Variable Control

Syntax
DROP=variable-1 <...variable-n>

Syntax Description

variable-1 <...variable-n>
lists one or more variable names. You can list the variables in any form that SAS
allows.

Details
If the option is associated with an input data set, the variables are not available for
processing. If the DROP= data set option is associated with an output data set, SAS
does not write the variables to the output data set, but they are available for processing.

Comparisons
� The DROP= data set option differs from the DROP statement in these ways:

� In DATA steps, the DROP= data set option can apply to both input and
output data sets. The DROP statement applies only to output data sets.

� In DATA steps, when you create multiple output data sets, use the DROP=
data set option to write different variables to different data sets. The DROP
statement applies to all output data sets.

� In PROC steps, you can use only the DROP= data set option, not the DROP
statement.

� The KEEP= data set option specifies a list of variables to be included in processing
or to be written to the output data set.

Examples

Example 1: Excluding Variables from Input In this example, the variables SALARY
and GENDER are not included in processing and they are not written to either output
data set:

data plan1 plan2;
set payroll(drop=salary gender);
if hired<’01jan98’d then output plan1;
else output plan2;

run;

SAS Data Set Options � ENCRYPT= Data Set Option 23

You cannot use SALARY or GENDER in any logic in the DATA step because DROP=
prevents the SET statement from reading them from PAYROLL.

Example 2: Processing Variables without Writing Them to a Data Set In this example,
SALARY and GENDER are not written to PLAN2, but they are written to PLAN1:

data plan1 plan2(drop=salary gender);
set payroll;
if hired<’01jan98’d then output plan1;
else output plan2;

run;

See Also

Data Set Options:

“KEEP= Data Set Option” on page 36

Statements:

“DROP Statement” on page 1452

ENCRYPT= Data Set Option

Specifies whether to encrypt an output SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Syntax
ENCRYPT=YES | NO

Syntax Description

YES
encrypts the file. This encryption uses passwords that are stored in the data set. At
a minimum, you must specify the READ= or the PW= data set option at the same
time that you specify ENCRYPT=YES. Because the encryption method uses
passwords, you cannot change any password on an encrypted data set without
re-creating the data set.

CAUTION:
Record all passwords when using ENCRYPT=YES. If you forget the passwords, you
cannot reset it without assistance from SAS. The process is time-consuming and
resource-intensive. �

NO
does not encrypt the file.

24 FILECLOSE= Data Set Option � Chapter 2

Details
When using ENCRYPT=YES, the following list applies:

� To copy an encrypted data file, the output engine must support the encryption.
Otherwise, the data file is not copied.

� Encrypted files work only in SAS 6.11 or later.

� You cannot encrypt SAS views, because they contain no data.
� If the data file is encrypted, all associated indexes are also encrypted.
� Encryption requires approximately the same amount of CPU resources as

compression.

� You cannot use PROC CPORT on SAS Proprietary encrypted data files.

Using the ENCRYPT=YES Option

This example creates an encrypted SAS data set using encryption:

data salary(encrypt=yes read=green);
input name $ yrsal bonuspct;
datalines;

Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To use this data set, specify the read password:

proc contents data=salary(read=green);
run;

See Also

Data Set Options:
“ALTER= Data Set Option” on page 14

“PW= Data Set Option” on page 49
“READ= Data Set Option” on page 51
“WRITE= Data Set Option” on page 71

“SAS Data File Encryption” in SAS Language Reference: Concepts

FILECLOSE= Data Set Option

Specifies how a tape is positioned when a SAS data set is closed.

Valid in: DATA step and PROC steps
Category: Miscellaneous

See: FILECLOSE= Data Set Option in the documentation for your operating
environment.

SAS Data Set Options � FIRSTOBS= Data Set Option 25

Syntax
FILECLOSE=DISP | LEAVE | REREAD | REWIND

Syntax Description

DISP
positions the tape volume according to the disposition specified in the operating
environment’s control language.

LEAVE
positions the tape at the end of the file that was just processed. Use
FILECLOSE=LEAVE if you are not repeatedly accessing the same files in a SAS
program but you are accessing one or more subsequent SAS files on the same tape.

REREAD
positions the tape volume at the beginning of the file that was just processed. Use
FILECLOSE=REREAD if you are accessing the same SAS data set on tape several
times in a SAS program.

REWIND
rewinds the tape volume to the beginning. Use FILECLOSE=REWIND if you are
accessing one or more previous SAS files on the same tape, but you are not
repeatedly accessing the same files in a SAS program.

Operating Environment Information: These values are not recognized by all operating
environments. Additional values are available on some operating environments. See
the appropriate sections of the SAS documentation for your operating environment for
more information about using SAS libraries that are stored on tape. �

FIRSTOBS= Data Set Option

Specifies the first observation that SAS processes in a SAS data set.

Valid in: DATA step and PROC steps
Category: Observation Control
Restriction: Valid for input (read) processing only.
Restriction: Cannot use with PROC SQL views.

Syntax
FIRSTOBS= n| nK | nM | nG | hexX | MIN | MAX

26 FIRSTOBS= Data Set Option � Chapter 2

Syntax Description

n | nK | nM | nG
specifies the number of the first observation to process in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). For example, a value
of 8 specifies the 8th observation, and a value of 3k specifies 3,072.

hexX
specifies the number of the first observation to process as a hexadecimal value. You
must specify the value beginning with a number (0-9), followed by an X. For example,
the value 2dx sets the 45th observation as the first observation to process.

MIN
sets the number of the first observation to process to 1. This is the default.

MAX
sets the number of the first observation to process to the maximum number of
observations in the data set, up to the largest eight-byte, signed integer, which is
263-1, or approximately 9.2 quintillion observations.

Details
The FIRSTOBS= data set option affects a single, existing SAS data set. Use the
FIRSTOBS= system option to affect all steps for the duration of your current SAS
session.

FIRSTOBS= is valid for input (read) processing only. Specifying FIRSTOBS= is not
valid for output or update processing.

You can apply FIRSTOBS= processing to WHERE processing. For more information,
see “Processing a Segment of Data That Is Conditionally Selected” in SAS Language
Reference: Concepts.

Comparisons
� The FIRSTOBS= data set option overrides the FIRSTOBS= system option for the

individual data set.

� While the FIRSTOBS= data set option specifies a starting point for processing, the
OBS= data set option specifies an ending point. The two options are often used
together to define a range of observations to be processed.

� When external files are read, the FIRSTOBS= option in the INFILE statement
specifies which record to read first.

Examples

This PROC step prints the data set STUDY beginning with observation 20:

proc print data=study(firstobs=20);
run;

This SET statement uses both FIRSTOBS= and OBS= to read-only observations 5
through 10 from the data set STUDY. Data set NEW contains six observations.

data new;
set study(firstobs=5 obs=10);

run;

SAS Data Set Options � GENMAX= Data Set Option 27

See Also

Data Set Options:

“OBS= Data Set Option” on page 39

Statements:

“INFILE Statement” on page 1543

“WHERE Statement” on page 1739

System Options:

“FIRSTOBS= System Option” on page 1851

GENMAX= Data Set Option

Requests generations for a new data set, modifies the number of generations for an existing data
set, and specifies the maximum number of versions.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Syntax

GENMAX=number-of-generations

Syntax Description

number-of-generations
requests generations for a data set and specifies the maximum number of versions to
maintain. The value can be from 0 to 1000. The default is GENMAX=0, which means
that no generation data sets are requested.

Details

You use GENMAX= to request generations for a new data set and to modify the number
of generations for an existing data set. The first time the data set is replaced, SAS
keeps the replaced version and appends a four-character version number to its member
name, which includes # and a three-digit number. For example, for a data set named A,
a historical version would be A#001.

After generations of a data set are requested, the member name is limited to 28
characters (rather than 32), because the last four characters are reserved for the
appended version number. When the GENMAX= data set option is set to 0, the member
name can be up to 32 characters.

If you reduce the number of generations for an existing data set, SAS deletes the
oldest versions above the new limit.

28 GENNUM= Data Set Option � Chapter 2

Examples

Example 1: Requesting Generations When You Create a Data Set This example shows
how to request generations for a new data set. The DATA step creates a data set named
WORK.A that can have as many as 10 generations (one current version and nine
historical versions):

data a(genmax=10);
x=1;
output;

run;

Example 2: Modifying the Number of Generations on an Existing Data Set This
example shows how to change the number of generations on the data set MYLIB.A to 4:

proc datasets lib=mylib;
modify a(genmax=4);

run;

See Also

Data Set Option:
“GENNUM= Data Set Option” on page 28

“Understanding Generation Data Sets” in “SAS Data Files” in SAS Language
Reference: Concepts

GENNUM= Data Set Option

Specifies a particular generation of a SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with input data sets only.

Syntax
GENNUM=integer

Syntax Description

integer
is a number that references a specific version from a generation group. Specifying a
positive number is an absolute reference to a specific generation number that is
appended to a data set’s name. Specifying a negative number is a relative reference
to a historical version in relation to the base version, from the youngest to the oldest.
Typically, a value of 0 refers to the current (base) version.

Note: The DATASETS procedure provides a variety of statements for which
specifying GENNUM= has additional functionality:

SAS Data Set Options � GENNUM= Data Set Option 29

� For the DATASETS and DELETE statements, GENNUM= supports the
additional values ALL, HIST, and REVERT.

� For the CHANGE statement, GENNUM= supports the additional value ALL.

� For the CHANGE statement, specifying GENNUM=0 refers to all versions
rather than just the base version.

�

Details

After generations for a data set have been requested using the GENMAX= data set
option, use GENNUM= to request a specific version. For example, specifying
GENNUM=3 refers to the historical version #003, while specifying GENNUM=-1 refers
to the youngest historical version.

Note that after 999 replacements, the youngest version would be #999. After 1,000
replacements, SAS rolls over the youngest version number to #000. Therefore, if you
want the historical version #000, specify GENNUM=1000.

Both an absolute reference and a relative reference refer to a specific version. A
relative reference does not skip deleted versions. Therefore, when working with a
generation group that includes one or more deleted versions, using a relative reference
results in an error if the version being referenced has been deleted. For example, if you
have the base version AIR and three historical versions (AIR#001, AIR#002, and
AIR#003) and you delete AIR#002, the following statements return an error, because
AIR#002 does not exist. SAS does not assume you mean AIR#003:

proc print data=air (gennum= -2);
run;

Examples

Example 1: Requesting a Version Using an Absolute Reference This example prints
the historical version #003 for data set A, using an absolute reference:

proc print data=a(gennum=3);
run;

Example 2: Requesting A Version Using a Relative Reference The following PRINT
procedure prints the data set three versions back from the base version:

proc print data=a(gennum=-3);
run;

See Also

Data Set Option:

“GENMAX= Data Set Option” on page 27

“Understanding Generation Data Sets” in “SAS Data Files” in SAS Language
Reference: Concepts

“The DATASETS Procedure” in Base SAS Procedures Guide

30 IDXNAME= Data Set Option � Chapter 2

IDXNAME= Data Set Option

Directs SAS to use a specific index to match the conditions of a WHERE expression.

Valid in: DATA step and PROC steps
Category: User Control of SAS Index Usage
Restriction: Use with input data sets only
Restriction: Mutually exclusive with IDXWHERE= data set option

Syntax
b IDXNAME=index-name

Syntax Description

index-name
specifies the name (up to 32 characters) of a simple or composite index for the SAS
data set. SAS does not attempt to determine whether the specified index is the best
one or whether a sequential search might be more resource efficient.
Interaction: The specification is not a permanent attribute of the data set and is

valid only for the current use of the data set.
Tip: To request that IDXNAME= usage be noted in the SAS log, specify the system

option MSGLEVEL=I.

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS identifies zero or more candidate indexes that could be used to optimize the
WHERE expression. From the list of candidate indexes, SAS determines the one that
provides the best performance, or rejects all of the indexes if a sequential pass of the
data is expected to be more efficient.

Because the index SAS selects might not always provide the best optimization, you
can direct SAS to use one of the candidate indexes by specifying the IDXNAME= data
set option. If you specify an index that SAS does not identify as a candidate index, then
IDXNAME= does not process the request. That is, IDXNAME= does not allow you to
specify an index that would produce incorrect results.

SAS Data Set Options � IDXWHERE= Data Set Option 31

Comparisons
IDXWHERE= enables you to override the SAS decision about whether to use an index.

Example

This example uses the IDXNAME= data set option in order to direct SAS to use a
specific index to optimize the WHERE expression. SAS then disregards the possibility
that a sequential search of the data set might be more resource efficient and does not
attempt to determine whether the specified index is the best one. (Note that the
EMPNUM index was not created with the NOMISS option.)

data mydata.empnew;
set mydata.employee (idxname=empnum);
where empnum < 2000;

run;

See Also

Data Set Option:
“IDXWHERE= Data Set Option” on page 31

“Using an Index for WHERE Processing” in SAS Language Reference: Concepts

“WHERE-Expression Processing” in SAS Language Reference: Concepts

IDXWHERE= Data Set Option

Specifies whether SAS uses an index search or a sequential search to match the conditions of a
WHERE expression.

Valid in: DATA step and PROC steps
Category: User Control of SAS Index Usage
Restriction: Use with input data sets only.
Restriction: Mutually exclusive with IDXNAME= data set option

Syntax
IDXWHERE=YES | NO

32 IDXWHERE= Data Set Option � Chapter 2

Syntax Description

YES
tells SAS to choose the best index to optimize a WHERE expression, and to disregard
the possibility that a sequential search of the data set might be more
resource-efficient.

NO
tells SAS to ignore all indexes and satisfy the conditions of a WHERE expression
with a sequential search of the data set.

Note: You cannot use IDXWHERE= to override the use of an index to process a
BY statement. �

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS decides whether to use an index or to read the data set sequentially. The
software estimates the relative efficiency and chooses the method that is more efficient.

You might need to override the software’s decision by specifying the IDXWHERE=
data set option because the decision is based on general rules that might occasionally
not produce the best results. That is, by specifying the IDXWHERE= data set option,
you are able to determine the processing method.

Note: The specification is not a permanent attribute of the data set and is valid only
for the current use of the data set. �

Note: If you issue the system option MSGLEVEL=I, you can request that
IDXWHERE= usage be noted in the SAS log if the setting affects index processing. �

Comparisons
IDXNAME= enables you to direct SAS to use a specific index.

Examples

Example 1: Specifying Index Usage This example uses the IDXWHERE= data set
option to tell SAS to decide which index is the best to optimize the WHERE expression.
SAS then disregards the possibility that a sequential search of the data set might be
more resource-efficient:

data mydata.empnew;
set mydata.employee (idxwhere=yes);
where empnum < 2000;

SAS Data Set Options � IN= Data Set Option 33

Example 2: Specifying No Index Usage This example uses the IDXWHERE= data set
option to tell SAS to ignore any index and to satisfy the conditions of the WHERE
expression with a sequential search of the data set:

data mydata.empnew;
set mydata.employee (idxwhere=no);
where empnum < 2000;

See Also

Data Set Option:
“IDXNAME= Data Set Option” on page 30

“Understanding SAS Indexes” in the “SAS Data Files” section in SAS Language
Reference: Concepts

“WHERE-Expression Processing” in SAS Language Reference: Concepts

IN= Data Set Option

Creates a Boolean variable that indicates whether the data set contributed data to the current
observation.

Valid in: DATA step
Category: Observation Control
Restriction: Use with the SET, MERGE, MODIFY, and UPDATE statements only.

Syntax
IN=variable

Syntax Description

variable
names the new variable whose value indicates whether that input data set
contributed data to the current observation. Within the DATA step, the value of the
variable is 1 if the data set contributed to the current observation, and 0 otherwise.

34 INDEX= Data Set Option � Chapter 2

Details
Specify the IN= data set option in parentheses after a SAS data set name in the SET,
MERGE, MODIFY, and UPDATE statements only. Values of IN= variables are available
to program statements during the DATA step, but the variables are not included in the
SAS data set that is being created, unless they are assigned to a new variable.

When you use IN= with BY–group processing, and when a data set contributes an
observation for the current BY group, the IN= value is 1. The value remains as long as
that BY group is still being processed and the value is not reset by programming logic.

Examples

In this example, IN= creates a new variable, OVERSEAS, that denotes international
flights. The variable I has a value of 1 when the observation is read from the NONUSA
data set. Otherwise, it has a value of 0. The IF-THEN statement checks the value of I
to determine whether the data set NONUSA contributed data to the current
observation. If I=1, the variable OVERSEAS receives an asterisk (*) as a value.

data allflts;
set usa nonusa(in=i);
by fltnum;
if i then overseas=’*’;

run;

See Also

Statements:
“BY Statement” on page 1407
“MERGE Statement” on page 1630
“MODIFY Statement” on page 1634
“SET Statement” on page 1712
“UPDATE Statement” on page 1734

“BY-Group Processing” in SAS Language Reference: Concepts

INDEX= Data Set Option

Defines an index for a new output SAS data set.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

SAS Data Set Options � INDEX= Data Set Option 35

Syntax
INDEX=(index-specification-1 ...< index-specification-n>)

Syntax Description

index-specification
names and describes a simple or a composite index to be built. Index-specification
has this form:

index= (variable(s) </UNIQUE> </NOMISS>)

index
is the name of a variable that forms the index or the name you choose for a
composite index.

variable or variables
is a list of variables to use in making a composite index.

UNIQUE
specifies that the values of the key variables must be unique. If you specify
UNIQUE for a new data set and multiple observations have the same values for
the index variables, the index is not created. A slash (/) must precede the
UNIQUE option.

NOMISS
excludes all observations with missing values from the index. Observations with
missing values are still read from the data set but not through the index. A slash
(/) must precede the NOMISS option.

Examples

Example 1: Defining a Simple Index The following INDEX= data set option defines a
simple index for the SSN variable:

data new(index=(ssn));

Example 2: Defining a Composite Index The following INDEX= data set option defines
a composite index named CITYST that uses the CITY and STATE variables:

data new(index=(cityst=(city state)));

36 KEEP= Data Set Option � Chapter 2

Example 3: Defining a Simple and a Composite Index The following INDEX= data set
option defines a simple index for SSN and a composite index for CITY and STATE:

data new(index=(ssn cityst=(city state)));

Example 4: Defining a Simple Index with the UNIQUE Option The following INDEX=
data set option defines a simple index for the SSN variable with unique values:

data new(index=(ssn /unique));

Example 5: Defining a Simple Index with the NOMISS Option The following INDEX=
data set option defines a simple index for the SSN variable, excluding all observations
with missing values from the index:

data new(index=(ssn /nomiss));

Example 6: Defining Multiple Indexes Using the UNIQUE and NOMISS Options The
following INDEX= data set option defines a simple index for the SSN variable and a
composite index for CITY and STATE. Each variable must have a UNIQUE and
NOMISS option:

data new(index=(ssn /unique/nomiss cityst=(city state)/unique/nomiss));

See Also

INDEX CREATE statement in “The DATASETS Procedure” in Base SAS Procedures
Guide

CREATE INDEX statement in “The SQL Procedure” in Base SAS Procedures Guide

“Understanding SAS Indexes” in the “SAS Data Files” section of SAS Language
Reference: Concepts

KEEP= Data Set Option

For an input data set, specifies the variables to process; for an output data set, specifies the
variables to write to the data set.

Valid in: DATA step and PROC steps
Category: Variable Control

Syntax
KEEP=variable-1 <...variable-n>

Syntax Description

variable-1 <...variable-n>
lists one or more variable names. You can list the variables in any form that SAS
allows.

SAS Data Set Options � LABEL= Data Set Option 37

Details

If the KEEP= data set option is associated with an input data set, only those variables
that are listed after the KEEP= data set option are available for processing. If the
KEEP= data set option is associated with an output data set, only the variables listed
after the option are written to the output data set, but all variables are available for
processing.

Comparisons

� The KEEP= data set option differs from the KEEP statement in the following ways:

� In DATA steps, the KEEP= data set option can apply to both input and
output data sets. The KEEP statement applies only to output data sets.

� In DATA steps, when you create multiple output data sets, use the KEEP=
data set option to write different variables to different data sets. The KEEP
statement applies to all output data sets.

� In PROC steps, you can use only the KEEP= data set option, not the KEEP
statement.

� The DROP= data set option specifies variables to omit during processing or to omit
from the output data set.

Example

In this example, only IDNUM and SALARY are read from PAYROLL, and they are
the only variables in PAYROLL that are available for processing:

data bonus;
set payroll(keep=idnum salary);
bonus=salary*1.1;

run;

See Also

Data Set Options:

“DROP= Data Set Option” on page 22

Statements:

“KEEP Statement” on page 1600

LABEL= Data Set Option

Specifies a label for a SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

38 LABEL= Data Set Option � Chapter 2

Syntax
LABEL=’label’

Syntax Description

’label’
specifies a text string of up to 256 characters. If the label text contains single
quotation marks, use double quotation marks around the label, or use two single
quotation marks in the label text and surround the string with single quotation
marks. To remove a label from a data set, assign a label that is equal to a blank that
is enclosed in quotation marks.

Details
You can use the LABEL= option on both input and output data sets. When you use
LABEL= on input data sets, it assigns a label for the file for the duration of that DATA
or PROC step. When it is specified for an output data set, the label becomes a
permanent part of that file and can be printed using the CONTENTS or DATASETS
procedure, and modified using PROC DATASETS.

A label assigned to a data set remains associated with that data set when you update
a data set in place, such as when you use the APPEND procedure or the MODIFY
statement. However, a label is lost if you use a data set with a previously assigned label
to create a new data set in the DATA step. For example, a label previously assigned to
data set ONE is lost when you create the new output data set ONE in this DATA step:

data one;
set one;

run;

Comparisons
� The LABEL= data set option enables you to specify labels only for data sets. You

can specify labels for the variables in a data set using the LABEL statement.
� The LABEL= option in the ATTRIB statement also enables you to assign labels to

variables.

Examples

These examples assign labels to data sets:

data w2(label=’1976 W2 Info, Hourly’);

data new(label=’Peter’’s List’);

data new(label="Hillside’s Daily Account");

data sales(label=’Sales For May(NE)’);

SAS Data Set Options � OBS= Data Set Option 39

See Also

Statements:

“ATTRIB Statement” on page 1403

“LABEL Statement” on page 1601

“MODIFY Statement” on page 1634

“The CONTENTS Procedure” in Base SAS Procedures Guide

“The DATASETS Procedure” in Base SAS Procedures Guide

OBS= Data Set Option

Specifies the last observation that SAS processes in a data set.

Valid in: DATA step and PROC steps

Category: Observation Control

Default: MAX

Restriction: Use with input data sets only

Restriction: Cannot use with PROC SQL views

Syntax
OBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies a number to indicate when to stop processing observations, with n being an
integer. Using one of the letter notations results in multiplying the integer by a
specific value. That is, specifying K (kilo) multiplies the integer by 1,024, M (mega)
multiplies by 1,048,576, G (giga) multiplies by 1,073,741,824, or T (tera) multiplies
by 1,099,511,627,776. For example, a value of 20 specifies 20 observations, while a
value of 3m specifies 3,145,728 observations.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8x in order to specify the
decimal equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to indicate when to stop processing to 0. Use OBS=0 in order to
create an empty data set that has the structure, but not the observations, of another
data set.

Interaction: If OBS=0 and the NOREPLACE option is in effect, then SAS can still
take certain actions because it actually executes each DATA and PROC step in the

40 OBS= Data Set Option � Chapter 2

program, using no observations. For example, SAS executes procedures, such as
CONTENTS and DATASETS, that process libraries or SAS data sets.

MAX
sets the number to indicate when to stop processing to the maximum number of
observations in the data set, up to the largest 8-byte, signed integer, which is 263-1, or
approximately 9.2 quintillion. This is the default.

Details
OBS= tells SAS when to stop processing observations. To determine when to stop
processing, SAS uses the value for OBS= in a formula that includes the value for OBS=
and the value for FIRSTOBS=. The formula is

(obs - firstobs) + 1 = results
For example, if OBS=10 and FIRSTOBS=1 (which is the default for FIRSTOBS=),

the result is ten observations, that is (10 - 1) + 1 = 10. If OBS=10 and
FIRSTOBS=2, the result is nine observations, that is (10 - 2) + 1 = 9. OBS= is
valid only when an existing SAS data set is read.

Comparisons
� The OBS= data set option overrides the OBS= system option for the individual

data set.
� While the OBS= data set option specifies an ending point for processing, the

FIRSTOBS= data set option specifies a starting point. The two options are often
used together to define a range of observations to be processed.

� The OBS= data set option enables you to select observations from SAS data sets.
You can select observations to be read from external data files by using the OBS=
option in the INFILE statement.

Examples

Example 1: Using OBS= to Specify When to Stop Processing Observations This
example illustrates the result of using OBS= to tell SAS when to stop processing
observations. This example creates a SAS data set and executes the PRINT procedure
with FIRSTOBS=2 and OBS=12. The result is 11 observations, that is (12 - 2) + 1 =
11. The result of OBS= in this situation appears to be the observation number that
SAS processes last, because the output starts with observation 2, and ends with
observation 12. This situation is only a coincidence.

data Ages;
input Name $ Age;
datalines;

Miguel 53
Brad 27
Willie 69
Marc 50
Sylvia 40
Arun 25
Gary 40
Becky 51
Alma 39
Tom 62

SAS Data Set Options � OBS= Data Set Option 41

Kris 66
Paul 60
Randy 43
Barbara 52
Virginia 72
;
proc print data=Ages (firstobs=2 obs=12);
run;

Output 2.1 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 1

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
11 Kris 66
12 Paul 60

Example 2: Using OBS= with WHERE Processing This example illustrates the result of
using OBS= along with WHERE processing. The example uses the data set that was
created in Example 1, which contains 15 observations.

First, here is the PRINT procedure with a WHERE statement. The subset of the
data results in 12 observations:

proc print data=Ages;
where Age LT 65;

run;

Output 2.2 PROC PRINT Output Using a WHERE Statement

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
12 Paul 60
13 Randy 43
14 Barbara 52

Executing the PRINT procedure with the WHERE statement and OBS=10 results in
10 observations, that is (10 - 1) + 1 = 10. Note that with WHERE processing, SAS
first subsets the data and applies OBS= to the subset.

42 OBS= Data Set Option � Chapter 2

proc print data=Ages (obs=10);
where Age LT 65;

run;

Output 2.3 PROC PRINT Output Using a WHERE Statement and OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
12 Paul 60

The result of OBS= appears to be how many observations to process, because the
output consists of 10 observations, ending with the observation number 12. However,
the result is only a coincidence. If you apply FIRSTOBS=2 and OBS=10 to the subset,
then the result is nine observations, that is (10 - 2) + 1 = 9. OBS= in this situation
is neither the observation number to end with nor how many observations to process;
the value is used in the formula to determine when to stop processing.

proc print data=Ages (firstobs=2 obs=10);
where Age LT 65;

run;

Output 2.4 PROC PRINT Output Using WHERE Statement, OBS=, and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
12 Paul 60

Example 3: Using OBS= When Observations Are Deleted This example illustrates the
result of using OBS= for a data set that has deleted observations. The example uses the
data set that was created in Example 1, with observation 6 deleted.

First, here is PROC PRINT output of the modified file:

proc print data=Ages;
run;

SAS Data Set Options � OBS= Data Set Option 43

Output 2.5 PROC PRINT Output Showing Observation 6 Deleted

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43
14 Barbara 52
15 Virginia 72

Executing the PRINT procedure with OBS=12 results in 12 observations, that is (12
- 1) + 1 = 12:

proc print data=Ages (obs=12);
run;

Output 2.6 PROC PRINT Output Using OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

The result of OBS= appears to be how many observations to process, because the
output consists of 12 observations, ending with the observation number 13. However, if
you apply FIRSTOBS=2 and OBS=12, the result is 11 observations, that is (12 - 2) +
1 = 11. OBS= in this situation is neither the observation number to end with nor how
many observations to process; the value is used in the formula to determine when to
stop processing.

proc print data=Ages (firstobs=2 obs=12);
run;

44 OBSBUF= Data Set Option � Chapter 2

Output 2.7 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

See Also

Data Set Options:

“FIRSTOBS= Data Set Option” on page 25

Statements:

“INFILE Statement” on page 1543

“WHERE Statement” on page 1739

System Options:

“OBS= System Option” on page 1890

For more information about using OBS= with WHERE processing, see “Processing a
Segment of Data That Is Conditionally Selected” in SAS Language Reference:
Concepts.

OBSBUF= Data Set Option

Determines the size of the view buffer for processing a DATA step view.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Valid only for a DATA step view

Syntax
OBSBUF=n

Syntax Description

n
specifies the number of observations that are read into the view buffer at a time.

SAS Data Set Options � OBSBUF= Data Set Option 45

Default: 32K bytes of memory are allocated for the default view buffer, which
means that the default number of observations that can be read into the view
buffer at one time depends on the observation length. Therefore, the default is the
number of observations that can fit into 32K bytes. If the observation length is
larger than 32K, then only one observation can be read into the buffer at a time.

Tip: To determine the observation length, which is its size in bytes, use PROC
CONTENTS for the DATA step view.

CAUTION:
The maximum value for the OBSBUF= option depends on the amount of available
memory. If you specify a value so large that the memory allocation of the view
buffer fails, an out-of- memory error results. If you specify a value that is larger
than the amount of available real memory and your operating environment allows
SAS to perform the allocation using virtual memory, the result can be a decrease
in performance due to excessive paging. �

Details

The OBSBUF= data set option specifies the number of observations that can be read
into the view buffer at a time. The view buffer is a segment of memory that is allocated
to hold output observations that are generated from a DATA step view. The size of the
buffer determines how much data can be held in memory at one time. OBSBUF=
enables you to tune the performance of reading data from a DATA step view.

The view buffer is shared between the request that opens the DATA step view (for
example, a SAS procedure) and the DATA step view itself. Two computer tasks
coordinate between requesting data and generating and returning the data as follows:

1 When a request task, such as a PRINT procedure, requests data, task switching
occurs from the request task to the view task in order to execute the DATA step
view and generate the observations. The DATA step view fills the view buffer with
as many observations as possible.

2 When the view buffer is full, task switching occurs from the view task back to the
request task in order to return the requested data. The observations are cleared
from the view buffer.

The size of the view buffer determines how many generated observations can be held.
The number of generated observations then determines how many times the computer
must switch between the request task and the view task. For example, OBSBUF=1
results in task switching for each observation, while OBSBUF=10 results in 10
observations being read into the view buffer at a time. The larger the view buffer is,
the less task switching is needed to process a DATA step view, which can speed up
execution time.

To improve efficiency, first determine how many observations fits into the default
buffer size, then set the view buffer so that it can hold more generated observations.

Note: Using OBSBUF= can improve processing efficiency by reducing task
switching. However, the larger the view buffer size, the more time it takes to fill. This
delays the task switching from the view task back to the request task in order to return
the requested data. The delay is more apparent in interactive applications. For
example, when you use the Viewtable window, the larger the view buffer, the longer it
takes to display the requested observations, because the view buffer must be filled
before even one observation is returned to the Viewtable. Therefore, before you set a
very large view buffer size, consider the type of application that you are using to process
the DATA step view as well as the amount of memory that you have available. �

46 OUTREP= Data Set Option � Chapter 2

Example

For this example, the observation length is 10K, which means that the default view
buffer size, which is 32K, would result in three observations at a time to be read into the
view buffer. The default view buffer size causes the execution time to be slower, because
the computer must do task switching for every three observations that are generated.

To improve performance, the OBSBUF= data set option is set to 100, which causes
one hundred observations at a time to be read into the view buffer and reduces task
switching in order to process the DATA step view with the PRINT procedure:

data testview / view=testview;
... more SAS statements ...

run;

proc print data=testview (obsbuf=100);
run;

See Also

Data Set Options:

“SPILL= Data Set Option” on page 59

OUTREP= Data Set Option

Specifies the data representation for the output SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

See: OUTREP= Data Set Option in the documentation for your operating environment.

Syntax
OUTREP=format

Syntax Description

format
specifies the data representation, which is the form in which data is stored in a
particular operating environment. Different operating environments use different
standards or conventions for storing floating-point numbers (for example, IEEE or
IBM Mainframe); for character encoding (ASCII or EBCDIC); for the ordering of
bytes in memory (big Endian or little Endian); for word alignment (4-byte boundaries
or 8-byte boundaries); for integer data-type length (16-bit, 32-bit, or 64-bit); and for
doubles (byte-swapped or not).

Native data representation refers to an environment in which the data
representation is comparable to the CPU that is accessing the file. For example, a

SAS Data Set Options � OUTREP= Data Set Option 47

file that is in Windows data representation is native to the Windows operating
environment.

By default, SAS creates a new SAS data set by using the native data
representation of the CPU that is running SAS. Specifying the OUTREP= option
enables you to create a SAS data set within the native environment that uses a
foreign environment data representation. For example, in a UNIX environment, you
can create a SAS data set that uses Windows data representation.

Values for OUTREP= are listed in the following table:

Table 2.2 Data Representation Values for OUTREP= Option

OUTREP= Value Alias* Environment

ALPHA_TRU64 ALPHA_OSF Tru64 UNIX

ALPHA_VMS_32 ALPHA_VMS OpenVMS on Alpha

ALPHA_VMS_64 OpenVMS on Alpha

HP_IA64 HP_ITANIUM HP-UX on Itanium 64-bit platform

HP_UX_32 HP_UX HP-UX on 32-bit platform

HP_UX_64 HP-UX on 64-bit platform

INTEL_ABI ABI UNIX on Intel 32-bit platform

LINUX_32 LINUX Linux for Intel Architecture on 32-bit
platform

LINUX_IA64 Linux for Itanium-based system on
64-bit platform

LINUX_X86_64 LINUX on x64 64-bit platform

MIPS_ABI ABI UNIX on 32-bit platform

MVS_32 MVS z/OS on 32-bit platform

OS2 OS/2 on Intel 32-bit platform

RS_6000_AIX_32 RS_6000_AIX AIX UNIX on 32-bit RS/6000

RS_6000_AIX_64 AIX UNIX on 64-bit RS/6000

SOLARIS_32 SOLARIS Solaris on SPARC 32-bit platform

SOLARIS_64 Solaris on SPARC 64-bit platform

SOLARIS_X86_64 Solaris on x64 64-bit platform

VAX_VMS OpenVMS VAX

VMS_IA64 OpenVMS for HP Integrity servers
64-bit platform

WINDOWS_32 WINDOWS Microsoft Windows on 32-bit platform

WINDOWS_64 Microsoft Windows 64-bit Edition (for
both Itanium-based systems and x64)

* It is recommended that you use the current values. The aliases are available for compatibility
only.

48 POINTOBS= Data Set Option � Chapter 2

Details
CAUTION:

Transcoding could result in character data loss when encodings are incompatible. For
information about encoding and transcoding, see SAS National Language Support
(NLS): Reference Guide. �

See Also

Statements:

OUTREP= option in “LIBNAME Statement” on page 1607

“Processing Data Using Cross-Environment Data Access (CEDA)” in SAS Language
Reference: Concepts

POINTOBS= Data Set Option

Specifies whether SAS creates compressed data sets whose observations can be randomly
accessed or sequentially accessed.

Valid in: DATA step and PROC steps

Category: Observation Control

Restriction: POINTOBS= is effective only when creating a compressed data set.
Otherwise it is ignored.

Syntax
POINTOBS=YES | NO

Syntax Description

YES
causes SAS software to produce a compressed data set that might be randomly
accessed by observation number. This is the default.

Examples of accessing data directly by observation number are:

� the POINT= option of the MODIFY and SET statements in the DATA step

� going directly to a specific observation number with PROC FSEDIT.

Tip: Specifying POINTOBS=YES does not affect the efficiency of retrieving
information from a data set, but it does increase CPU usage by approximately 10%
when creating a compressed data set and when updating or adding information to
it.

NO
suppresses the ability to randomly access observations in a compressed data set by
observation number.

SAS Data Set Options � PW= Data Set Option 49

Tip: Specifying POINTOBS=NO is desirable for applications where the ability to
point directly to an observation by number within a compressed data set is not
important.

If you do not need to access data by observation number, then you can improve
performance by approximately 10% when creating a compressed data set and
when updating or adding observations to it by specifying POINTOBS=NO.

Details
Note that REUSE=YES takes precedence over POINTOBS=YES. For example:

data test(compress=yes pointobs=yes reuse=yes);

results in a data set that has POINTOBS=NO. Because POINTOBS=YES is the default
when you use compression, REUSE=YES causes POINTOBS= to change to NO.

See Also

Data Set Options:

“COMPRESS= Data Set Option” on page 19

“REUSE= Data Set Option” on page 56

System Options:

“COMPRESS= System Option” on page 1817

“REUSE= System Option” on page 1924

PW= Data Set Option

Assigns a READ, WRITE, and ALTER password to a SAS file, and enables access to a
password-protected SAS file.

Valid in: DATA step and PROC steps

Category: Data Set Control

See: under UNIX in the documentation for your operating environment.

Syntax
PW=password

Syntax Description

password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

50 PWREQ= Data Set Option � Chapter 2

Details
The PW= option applies to all types of SAS files except catalogs. You can use this option
to assign a password to a SAS file or to access a password-protected SAS file.

When replacing a SAS data set that is protected by an ALTER password, the new
data set inherits the ALTER password. To change the ALTER password for the new
data set, use the MODIFY statement in the DATASETS procedure.

Operating Environment Information: See the appropriate sections of the SAS
documentation for your operating environment for more information about using
passwords. �

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:

“ALTER= Data Set Option” on page 14

“ENCRYPT= Data Set Option” on page 23

“READ= Data Set Option” on page 51

“WRITE= Data Set Option” on page 71

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

“File Protection” in SAS Language Reference: Concepts

PWREQ= Data Set Option

Specifies whether to display a dialog box to enter a SAS data set password.

Valid in: DATA and PROC steps

Category: Data Set Control

Syntax
PWREQ=YES | NO

Syntax Description

YES
specifies to display a dialog box.

NO
prevents a dialog box from displaying. If a missing or invalid password is entered,
the data set is not opened and an error message is written to the SAS log.

SAS Data Set Options � READ= Data Set Option 51

Details

In an interactive SAS session, the PWREQ= option controls whether a dialog box
displays after a user enters an incorrect or a missing password for a SAS data set that
is password protected. PWREQ= applies to data sets with read, write, or alter
passwords. PWREQ= is most useful in SCL applications.

See Also

Data Set Options:

“ALTER= Data Set Option” on page 14

“ENCRYPT= Data Set Option” on page 23

“PW= Data Set Option” on page 49

“READ= Data Set Option” on page 51

“WRITE= Data Set Option” on page 71

READ= Data Set Option

Assigns a READ password to a SAS file that prevents users from reading the file, unless they enter
the password.

Valid in: DATA step and PROC steps

Category: Data Set Control

Syntax

READ=read-password

Syntax Description

read-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details

The READ= option applies to all types of SAS files except catalogs. You can use this
option to assign a password to a SAS file or to access a read-protected SAS file.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

52 RENAME= Data Set Option � Chapter 2

See Also

Data Set Options:

“ALTER= Data Set Option” on page 14
“ENCRYPT= Data Set Option” on page 23

“PW= Data Set Option” on page 49
“WRITE= Data Set Option” on page 71

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

“File Protection” in SAS Language Reference: Concepts

RENAME= Data Set Option

Changes the name of a variable.

Valid in: DATA step and PROC steps
Category: Variable Control

Syntax
RENAME=(old-name-1=new-name-1 < ...old-name-n=new-name-n>)

Syntax Description

old-name
the variable you want to rename.

new-name
the new name of the variable. It must be a valid SAS name.

Details
If you use the RENAME= data set option when you create a data set, the new variable
name is included in the output data set. If you use RENAME= on an input data set, the
new name is used in DATA step programming statements.

If you use RENAME= on an input data set that is used in a SAS procedure, SAS
changes the name of the variable in that procedure. If you use RENAME= with
WHERE processing such as a WHERE statement or a WHERE= data set option, the
new name is applied before the data is processed. You must use the new name in the
WHERE expression.

If you use RENAME= in the same DATA step with either the DROP= or the KEEP=
data set option, the DROP= and the KEEP= data set options are applied before
RENAME=. You must use the old name in the DROP= and KEEP= data set options.
You cannot drop and rename the same variable in the same statement.

Note: The RENAME= data set option has an effect only on data sets that are
opened in output mode. �

SAS Data Set Options � RENAME= Data Set Option 53

Comparisons
� The RENAME= data set option differs from the RENAME statement in the

following ways:
� The RENAME= data set option can be used in PROC steps and the RENAME

statement cannot.
� The RENAME statement applies to all output data sets. If you want to

rename different variables in different data sets, you must use the
RENAME= data set option.

� To rename variables before processing begins, you must use a RENAME=
data set option on the input data set or data sets.

� Use the RENAME statement or the RENAME= data set option when program
logic requires that you rename variables such as two input data sets that have
variables with the same name. To rename variables as a file management task,
use the DATASETS procedure.

Examples

Example 1: Renaming a Variable at Time of Output This example uses RENAME= in
the DATA statement to show that the variable is renamed at the time it is written to
the output data set. The variable keeps its original name, X, during the DATA step
processing:

data two(rename=(x=keys));
set one;
z=x+y;

run;

Example 2: Renaming a Variable at Time of Input This example renames variable X to
a variable named KEYS in the SET statement, which is a rename before DATA step
processing. KEYS, not X, is the name to use for the variable for DATA step processing.

data three;
set one(rename=(x=keys));
z=keys+y;

run;

Example 3: Renaming a Variable for a SAS Procedure with WHERE Processing This
example renames variable Score1 to a variable named Score2 for the PRINT procedure.
Because the new name is applied before the data is processed, the new name must be
specified in the WHERE statement.

proc print data=test (rename=(score1=score2));
where score2 gt 75;

run;

See Also

Data Set Options:
“DROP= Data Set Option” on page 22
“KEEP= Data Set Option” on page 36

Statements:
“RENAME Statement” on page 1691

“The DATASETS Procedure” in Base SAS Procedures Guide

54 REPEMPTY= Data Set Option � Chapter 2

REPEMPTY= Data Set Option

Specifies whether a new, empty data set can overwrite an existing SAS data set that has the same
name.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
REPEMPTY=YES | NO

Syntax Description

YES
specifies that a new empty data set with a given name replaces an existing data set
with the same name. This is the default.
Interaction: When REPEMPTY=YES and REPLACE=NO, then the data set is not

replaced.

NO
specifies that a new empty data set with a given name does not replace an existing
data set with the same name.
Tip: Use REPEMPTY=NO to prevent the following syntax error from replacing the

existing data set B with the new empty data set B that is created by mistake:

data mylib.a set b;

Tip: For both the convenience of replacing existing data sets with new ones that
contain data and the protection of not overwriting existing data sets with new
empty ones that are created by accident, set REPLACE=YES and
REPEMPTY=NO.

Comparisons
� For an individual data set, the REPEMPTY= data set option overrides the

REPEMPTY= option in the LIBNAME statement.
� The REPEMPTY= and REPLACE= data set options apply to both permanent and

temporary SAS data sets. The REPLACE system option, however, only applies to
permanent SAS data sets.

See Also

Data Set Options:
“REPLACE= Data Set Option” on page 55

Statement Options:
REPEMPTY= in the LIBNAME statement on page 1611

System Options:

SAS Data Set Options � REPLACE= Data Set Option 55

“REPLACE System Option” on page 1923

REPLACE= Data Set Option

Specifies whether a new SAS data set that contains data can overwrite an existing data set that
has the same name.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Restriction: This option is valid only when creating a SAS data set.

Syntax
REPLACE=NO | YES

Syntax Description

NO
specifies that a new data set with a given name does not replace an existing data set
with the same name.

YES
specifies that a new data set with a given name replaces an existing data set with
the same name.

Comparisons
� The REPLACE= data set option overrides the REPLACE system option for the

individual data set.

� The REPLACE system option only applies to permanent SAS data sets.

Example

Using the REPLACE= data set option in this DATA statement prevents SAS from
replacing a permanent SAS data set named ONE in a library referenced by MYLIB:

data mylib.one(replace=no);

SAS writes a message in the log that tells you that the file has not been replaced.

See Also

System Options:

“REPLACE System Option” on page 1923

56 REUSE= Data Set Option � Chapter 2

REUSE= Data Set Option

Specifies whether new observations can be written to freed space in compressed SAS data sets.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
REUSE=NO | YES

Syntax Description

NO
does not track and reuse space in compressed data sets. New observations are
appended to the existing data set. Specifying the NO argument results in less
efficient data storage if you delete or update many observations in the SAS data set.

YES
tracks and reuses space in compressed SAS data sets. New observations are inserted
in the space that is freed when other observations are updated or deleted.

If you plan to use procedures that add observations to the end of SAS data sets
(for example, the APPEND and FSEDIT procedures) with compressed data sets, use
the REUSE=NO argument. REUSE=YES causes new observations to be added
wherever there is space in the file, not necessarily at the end of the file.

Details
By default, new observations are appended to existing compressed data sets. If you
want to track and reuse free space by deleting or updating other observations, use the
REUSE= data set option when you create a compressed SAS data set.

REUSE= has meaning only when you are creating new data sets with the
COMPRESS=YES data set option or system option. Using the REUSE= data set option
when you are accessing an existing SAS data set has no effect.

Comparisons
The REUSE= data set option overrides the REUSE= system option.

REUSE=YES takes precedence over POINTOBS=YES. For example, the following
statement results in a data set that has POINTOBS=NO:

data test(compress=yes pointobs=yes reuse=yes);

Because POINTOBS=YES is the default when you use compression, REUSE=YES
causes POINTOBS= to change to NO.

SAS Data Set Options � SORTEDBY= Data Set Option 57

See Also

Data Set Options:

“COMPRESS= Data Set Option” on page 19

System Options:

“REUSE= System Option” on page 1924

SORTEDBY= Data Set Option

Specifies how a data set is currently sorted.

Valid in: DATA step and PROC steps

Category: Data Set Control

Syntax
SORTEDBY=by-clause </ collate-name> | _NULL_

Syntax Description

by-clause < / collate-name>
indicates how the data is currently sorted.

by-clause names the variables and options that you use in a BY statement
in a PROC SORT step.

collate-name names the collating sequence that is used for the sort. By default,
the collating sequence is that of your operating environment. A
slash (/) must precede the collating sequence.

Operating Environment Information: For details about collating
sequences, see the SAS documentation for your operating
environment. �

NULL
removes any existing sort indicator.

Details
SAS determines whether a data set is already sorted by the key variable or variables in
ascending order by checking the sort indicator. The sort indicator is stored in the data
set descriptor information and is set from a previous sort. For detailed information
about how the sort indicator is used and how it improves performance, see “The Sort
Indicator” in SAS Language Reference: Concepts and the “SORTVALIDATE= System
Option” in the SAS Language Reference: Dictionary.

The following example of the CONTENTS procedure Sort Information section
containing the Validated attribute set to NO, indicates that the data set was sorted
using the SORTEDBY= data set option.

58 SORTEDBY= Data Set Option � Chapter 2

Sort Information
Sortedby var1
Validated NO
Character Set ANSI

Comparisons
� Use the CONTENTS statement in the DATASETS procedure to see how a data set

is sorted.
� The SORTEDBY= option indicates how the data is sorted, but does not cause a

data set to be sorted.

Examples

This example uses the SORTEDBY= data set option to specify how the data are
currently sorted. The data set ORDERS is sorted by PRIORITY and by the descending
values of INDATE. Once the data set is created, the sort indicator is stored with it.
These statements create the data set ORDERS and record the sort indicator:

libname mylib ’SAS-library’;
options yearcutoff=1920;

data mylib.orders(sortedby=priority
descending indate);

input priority 1. +1 indate date7.
+1 office $ code $;

format indate date7.;
datalines;

1 03may01 CH J8U
1 21mar01 LA M91
1 01dec00 FW L6R
1 27feb99 FW Q2A
2 15jan00 FW I9U
2 09jul99 CH P3Q
3 08apr99 CH H5T
3 31jan99 FW D2W
;

See Also

The CONTENTS statement in “The DATASETS Procedure” in Base SAS Procedures
Guide

“The SORT Procedure” in Base SAS Procedures Guide

“The SQL Procedure” in Base SAS Procedures Guide

SAS Data Set Options � SPILL= Data Set Option 59

SPILL= Data Set Option

Specifies whether to create a spill file for non-sequential processing of a DATA step view.

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Valid only for a DATA step view

Syntax
SPILL=YES | NO

Syntax Description

YES
creates a spill file for non-sequential processing of a DATA step view. This is the
default.
Interaction: A spill file is never created for sequential processing of a DATA step

view.
Tip: A DATA step view that generates large amounts of observations can result in a

very large spill file. You must have enough disk space to accommodate the spill file.

NO
does not create a spill file or reduces the size of a spill file.
Interaction: For direct (random) access, a spill file is always created even if you

specify SPILL=NO.
Tip: If you do not have enough disk space to accommodate a resulting spill file from

a DATA step view that generates a large amount of data, specify SPILL=NO.
Tip: For SAS procedures that process BY-group data, consider specifying

SPILL=NO in order to write only the current BY group to the spill file.

Details
When a DATA step view is opened for non-sequential processing, a spill file is created
by default. The spill file contains the observations that are generated by a DATA step
view. Subsequent requests for data read the observations from the spill file rather than
execute the DATA step view again. The spill file is a temporary file in the WORK library.

Non-sequential processing includes the following access methods, which are
supported by several SAS statements and procedures. How the SPILL= data set option
operates with each of the access methods is described below:

random access retrieves observations directly either by an observation number or by
the value of one or more variables through an index without reading
all observations sequentially. Whether SPILL=YES or SPILL=NO, a
spill file is always created, because the processing time to restart a
DATA step view for each observation would be costly.

BY-group access uses a BY statement to process observations that are ordered,
grouped, or indexed according to the values of one or more variables.
SPILL=YES creates a spill file the size of all the data that is

60 SPILL= Data Set Option � Chapter 2

requested from the DATA step view. SPILL=NO writes only the
current BY group to the spill file. The largest size of the spill file is
a size to store the largest BY group.

two-pass access performs multiple sequential passes through the data. With
SPILL=NO, no spill file is created. Instead, after the first pass
through the data, the DATA step view is restarted for each
subsequent pass through the data. If small amounts of data are
returned by the DATA step view for each restart, the processing
time to restart the view might become significant.

Note: With SPILL=NO, subsequent passes through the data
could result in generating different data. Some processing might
require using a spill file; for example, results from using random
functions and computing values that are based on the current time
of day could affect the data. �

Examples

Example 1: Using a Spill File for a Small Number of Large BY Groups This example
creates a DATA step view that generates a large amount of random data and uses the
UNIVARIATE procedure with a BY statement. The example illustrates the effects of
SPILL= with a small number of large BY groups.

With SPILL=YES, all observations that are requested from the DATA step view are
written to the spill file. With SPILL=NO, only the observations that are in the current
BY group are written to the spill file. The information messages that are produced by
this example show that the size of the spill file is reduced with SPILL=NO. However,
the time to truncate the spill file for each BY group might add to the overall processing
time for the DATA step view.

options msglevel=i;

data vw_few_large / view=vw_few_large;
drop i;

do byval = ’Group A’, ’Group B’, ’Group C’;
do i = 1 to 500000;

r = ranuni(4);
output;

end;
end;

run;

proc univariate data=vw_few_large (spill=yes) noprint;
var r;
by byval;

run;

proc univariate data=vw_few_large (spill=no) noprint;
var r;
by byval;

run;

SAS Data Set Options � SPILL= Data Set Option 61

Output 2.8 SAS Log Output

1 options msglevel=i;
2 data vw_few_large / view=vw_few_large;
3 drop i;
4
5 do byval = ’Group A’, ’Group B’, ’Group C’;
6 do i = 1 to 500000;
7 r = ranuni(4);
8 output;
9 end;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_FEW_LARGE.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 21.57 seconds
cpu time 1.31 seconds

12 proc univariate data=vw_few_large (spill=yes) noprint;
INFO: View WORK.VW_FEW_LARGE open mode: BY-group rewind.
13 var r;
14 by byval;
15 run;

INFO: View WORK.VW_FEW_LARGE opening spill file for output observations.
INFO: View WORK.VW_FEW_LARGE deleting spill file. File size was 22506120 bytes.
NOTE: View WORK.VW_FEW_LARGE.VIEW used (Total process time):

real time 40.68 seconds
cpu time 12.71 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 57.63 seconds
cpu time 13.12 seconds

16
17 proc univariate data=vw_few_large (spill=no) noprint;
INFO: View WORK.VW_FEW_LARGE open mode: BY-group rewind.
18 var r;
19 by byval;
20 run;

INFO: View WORK.VW_FEW_LARGE opening spill file for output observations.
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7502040 bytes.
NOTE: The above message was for the following by-group:

byval=Group A
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7534800 bytes.
NOTE: The above message was for the following by-group:

byval=Group B
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7534800 bytes.
NOTE: The above message was for the following by-group:

byval=Group C
INFO: View WORK.VW_FEW_LARGE deleting spill file. File size was 32760 bytes.
NOTE: View WORK.VW_FEW_LARGE.VIEW used (Total process time):

real time 11.03 seconds
cpu time 10.95 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 11.04 seconds
cpu time 10.96 seconds

62 SPILL= Data Set Option � Chapter 2

Example 2: Using a Spill File for a Large Number of Small BY Groups This example
creates a DATA step view that generates a large amount of random data and uses the
UNIVARIATE procedure with a BY statement. This example illustrates the effects of
SPILL= with a large number of small BY groups.

With SPILL=YES, all observations that are requested from the DATA step view are
written to the spill file. With SPILL=NO, only the observations that are in the current
BY group are written to the spill file. The information messages that are produced by
this example show that the size of the spill file is reduced with SPILL=NO, and with
small BY groups, this results in a large disk space savings.

options msglevel=i;
data vw_many_small / view=vw_many_small;

drop i;

do byval = 1 to 100000;
do i = 1 to 5;

r = ranuni(4);
output;

end;
end;

run;

proc univariate data=vw_many_small (spill=yes) noprint;
var r;
by byval;

run;

proc univariate data=vw_many_small (spill=no) noprint;
var r;
by byval;

run;

SAS Data Set Options � SPILL= Data Set Option 63

Output 2.9 SAS Log Output

1 options msglevel=i;
2 data vw_many_small / view=vw_many_small;
3 drop i;
4
5 do byval = 1 to 100000;
6 do i = 1 to 5;
7 r = ranuni(4);
8 output;
9 end;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_MANY_SMALL.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 0.56 seconds
cpu time 0.03 seconds

12 proc univariate data=vw_many_small (spill=yes) noprint;
INFO: View WORK.VW_MANY_SMALL open mode: BY-group rewind.
13 var r;
14 by byval;
15 run;

INFO: View WORK.VW_MANY_SMALL opening spill file for output observations.
INFO: View WORK.VW_MANY_SMALL deleting spill file. File size was 8024240 bytes.
NOTE: View WORK.VW_MANY_SMALL.VIEW used (Total process time):

real time 30.73 seconds
cpu time 29.59 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 30.96 seconds
cpu time 29.68 seconds

16
17 proc univariate data=vw_many_small (spill=no) noprint;
INFO: View WORK.VW_MANY_SMALL open mode: BY-group rewind.
18 var r;
19 by byval;
20 run;

INFO: View WORK.VW_MANY_SMALL opening spill file for output observations.
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=410
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=819
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=1229
.
. Deleted many INFO and NOTE messages for BY groups
.

INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=99894
INFO: View WORK.VW_MANY_SMALL deleting spill file. File size was 32752 bytes.
NOTE: View WORK.VW_MANY_SMALL.VIEW used (Total process time):

real time 29.43 seconds
cpu time 28.81 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 29.43 seconds
cpu time 28.81 seconds

64 SPILL= Data Set Option � Chapter 2

Example 3: Using a Spill File with Two-Pass Access This example creates a DATA
step view that generates a large amount of random data and uses the TRANSPOSE
procedure. The example illustrates the effects of SPILL= with a procedure that requires
two-pass access processing.

When PROC TRANSPOSE processes a DATA step view, the procedure must make
two passes through the observations that the view generates. The first pass counts the
number of observations and the second pass performs the transposition. With
SPILL=YES, a spill file is created during the first pass, and the second pass reads the
observations from the spill file. With SPILL=NO, a spill file is not created—after the
first pass, the DATA step view is restarted.

Note that for the first TRANSPOSE procedure, which does not include the SPILL=
data set option, even though a spill file is used by default, the informative message
about the open mode is not displayed. This action occurs to reduce the amount of
messages in the SAS log for users who are not using the SPILL= data set option.

options msglevel=i;
data vw_transpose/view=vw_transpose;

drop i j;
array x[10000];
do i = 1 to 10;

do j = 1 to dim(x);
x[j] = ranuni(4);

end;
output;

end;
run;
proc transpose data=vw_transpose out=transposed;
run;
proc transpose data=vw_transpose(spill=yes) out=transposed;
run;
proc transpose data=vw_transpose(spill=no) out=transposed;
run;

SAS Data Set Options � SPILL= Data Set Option 65

Output 2.10 SAS Log Output

1 options msglevel=i;
2 data vw_transpose/view=vw_transpose;
3 drop i j;
4 array x[10000];
5 do i = 1 to 10;
6 do j = 1 to dim(x);
7 x[j] = ranuni(4);
8 end;
9 output;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_TRANSPOSE.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 0.68 seconds
cpu time 0.18 seconds

12 proc transpose data=vw_transpose out=transposed;
13 run;

INFO: View WORK.VW_TRANSPOSE opening spill file for output observations.
INFO: View WORK.VW_TRANSPOSE deleting spill file. File size was 880000 bytes.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 2.37 seconds
cpu time 1.17 seconds

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 4.17 seconds
cpu time 1.51 seconds

14 proc transpose data=vw_transpose (spill=yes) out=transposed;
INFO: View WORK.VW_TRANSPOSE open mode: sequential.
15 run;

INFO: View WORK.VW_TRANSPOSE reopen mode: two-pass.
INFO: View WORK.VW_TRANSPOSE opening spill file for output observations.
INFO: View WORK.VW_TRANSPOSE deleting spill file. File size was 880000 bytes.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 0.95 seconds
cpu time 0.92 seconds

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 1.01 seconds
cpu time 0.98 seconds

16 proc transpose data=vw_transpose (spill=no) out=transposed;
INFO: View WORK.VW_TRANSPOSE open mode: sequential.
17 run;

INFO: View WORK.VW_TRANSPOSE reopen mode: two-pass.
INFO: View WORK.VW_TRANSPOSE restarting for another pass through the data.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 1.34 seconds
cpu time 1.32 seconds

NOTE: The View WORK.VW_TRANSPOSE was restarted 1 times. The following view statistics
only apply to the last view restart.

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 1.42 seconds
cpu time 1.40 seconds

66 TOBSNO= Data Set Option � Chapter 2

See Also

Data Set Options:

“OBSBUF= Data Set Option” on page 44

TOBSNO= Data Set Option

Specifies the number of observations to send in a client/server transfer.

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: The TOBSNO= option is valid only for data sets that are accessed through a
SAS server via the REMOTE engine.

Syntax
TOBSNO=n

Syntax Description

n
specifies the number of observations to be transmitted.

Details
If the TOBSNO= option is not specified, its value is calculated based on the observation
length and the size of the server’s transmission buffers, as specified by the PROC
SERVER statement TBUFSIZE= option.

The TOBSNO= option is valid only for data sets that are accessed through a SAS
server via the REMOTE engine. If this option is specified for a data set opened for
update or accessed via another engine, it is ignored.

See Also
“FOPEN Function” in SAS Component Language: Reference.

TYPE= Data Set Option

Specifies the data set type for a specially structured SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

SAS Data Set Options � WHERE= Data Set Option 67

Syntax

TYPE=data-set-type

Syntax Description

data-set-type
specifies the special type of the data set.

Details

Use the TYPE= data set option in a DATA step to create a special SAS data set in the
proper format, or to identify the special type of the SAS data set in a procedure
statement.

You can use the CONTENTS procedure to determine the type of a data set.
Most SAS data sets do not have a specified type. However, there are several specially

structured SAS data sets that are used by some SAS/STAT procedures. These SAS data
sets contain special variables and observations, and they are usually created by SAS
statistical procedures. Because most of the special SAS data sets are used with
SAS/STAT software, they are described in the SAS/STAT User’s Guide. Some of the
special data sets are CORR, COV, SSPC, EST, or FACTOR.

Other values are available in other SAS software products and are described in the
appropriate documentation.

Note: If you use a DATA step with a SET statement to modify a special SAS data
set, you must specify the TYPE= option in the DATA statement. The data-set-type is not
automatically copied to the data set that is created. �

See Also

“Special SAS Data Sets” in the SAS/STAT User’s Guide

“The CONTENTS Procedure” in the Base SAS Procedures Guide

WHERE= Data Set Option

Specifies specific conditions to use to select observations from a SAS data set.

Valid in: DATA step and PROC steps

Category: Observation Control

Restriction: Cannot be used with the POINT= option in the SET and MODIFY
statements.

Syntax

WHERE=(where-expression-1<logical-operator where-expression-n>)

68 WHERE= Data Set Option � Chapter 2

Syntax Description

where-expression
is an arithmetic or logical expression that consists of a sequence of operators,
operands, and SAS functions. An operand is a variable, a SAS function, or a
constant. An operator is a symbol that requests a comparison, logical operation, or
arithmetic calculation. The expression must be enclosed in parentheses.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

Details
� Use the WHERE= data set option with an input data set to select observations

that meet the condition specified in the WHERE expression before SAS brings
them into the DATA or PROC step for processing. Selecting observations that
meet the conditions of the WHERE expression is the first operation SAS performs
in each iteration of the DATA step.

You can also select observations that are written to an output data set. In
general, selecting observations at the point of input is more efficient than selecting
them at the point of output. However, there are some cases when selecting
observations at the point of input is not practical or not possible.

� You can apply OBS= and FIRSTOBS= processing to WHERE processing. For more
information see “Processing a Segment of Data That is Conditionally Selected” in
SAS Language Reference: Concepts.

� You cannot use the WHERE= data set option with the POINT= option in the SET
and MODIFY statements.

� If you use both the WHERE= data set option and the WHERE statement in the
same DATA step, SAS ignores the WHERE statement for data sets with the
WHERE= data set option. However, you can use the WHERE= data set option
with the WHERE command in SAS/FSP software.

Note: Using indexed SAS data sets can improve performance significantly when you
are using WHERE expressions to access a subset of the observations in a SAS data set.
See “Understanding SAS Indexes” in SAS Language Reference: Concepts for a complete
discussion of WHERE expression processing with indexed data sets and a list of
guidelines to consider before indexing your SAS data sets. �

Comparisons
� The WHERE statement applies to all input data sets, whereas the WHERE= data

set option selects observations only from the data set for which it is specified.
� Do not confuse the purpose of the WHERE= data set option. The DROP= and

KEEP= data set options select variables for processing, while the WHERE= data
set option selects observations.

SAS Data Set Options � WHEREUP= Data Set Option 69

Examples

Example 1: Selecting Observations from an Input Data Set This example uses the
WHERE= data set option to subset the SALES data set as it is read into another data
set:

data whizmo;
set sales(where=(product=’whizmo’));

run;

Example 2: Selecting Observations from an Output Data Set This example uses the
WHERE= data set option to subset the SALES output data set:

data whizmo(where=(product=’whizmo’));
set sales;

run;

See Also

Statements:

“WHERE Statement” on page 1739

“WHERE-Expression Processing” in SAS Language Reference: Concepts

WHEREUP= Data Set Option

Specifies whether to evaluate new observations and modified observations against a WHERE
expression.

Valid in: DATA step and PROC steps

Category: Observation Control

Syntax
WHEREUP=NO | YES

Syntax Description

NO
does not evaluate added observations and modified observations against a WHERE
expression.

YES
evaluates added observations and modified observations against a WHERE
expression.

70 WHEREUP= Data Set Option � Chapter 2

Details

Specify WHEREUP=YES when you want any added observations or modified
observations to match a specified WHERE expression.

Examples

Example 1: Accepting Updates That Do Not Match the WHERE Expression This
example shows how WHEREUP= permits observations to be updated and added even
though the modified observation does not match the WHERE expression:

data a;
x=1;
output;
x=2;
output;

run;

data a;
modify a(where=(x=1) whereup=no);
x=3;
replace; /* Update does not match WHERE expression */
output; /* Add does not match WHERE expression */

run;

In this example, SAS updates the observation and adds the new observation to the
data set.

Example 2: Rejecting Updates That Do Not Match the WHERE Expression In this
example, WHEREUP= does not permit observations to be updated or added when the
update and the add do not match the WHERE expression:

data a;
x=1;
output;
x=2;
output;

run;

data a;
modify a(where=(x=1) whereup=yes);
x=3;
replace; /* Update does not match WHERE expression */
output; /* Add does not match WHERE expression */

run;

In this example, SAS does not update the observation nor does it add the new
observation to the data set.

See Also

Data Set Option:

“WHERE= Data Set Option” on page 67

SAS Data Set Options � Data Set Options Documented in Other SAS Publications 71

WRITE= Data Set Option

Assigns a WRITE password to a SAS file that prevents users from writing to a file, unless they
enter the password.

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
WRITE=write-password

Syntax Description

write-password
must be a valid SAS name.
See: “Rules for Words and Names in the SAS Language” in SAS Language

Reference: Concepts

Details
The WRITE= option applies to all types of SAS files except catalogs. You can use this
option to assign a password to a SAS file or to access a write-protected SAS file.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:
“ALTER= Data Set Option” on page 14
“ENCRYPT= Data Set Option” on page 23
“PW= Data Set Option” on page 49
“READ= Data Set Option” on page 51

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

Data Set Options Documented in Other SAS Publications
In addition to data set options documented in SAS Language Reference: Dictionary,

data set options are also documented in the following publications:
“SAS Companion for Windows” on page 72
“SAS Companion for OpenVMS on HP Integrity Servers” on page 72
“SAS Companion for UNIX Environments” on page 72

72 SAS Companion for Windows � Chapter 2

“SAS Companion for z/OS” on page 73
“SAS National Language Support: Reference Guide” on page 73
“SAS Scalable Performance Data Engine: Reference” on page 74
“SAS/ACCESS for Relational Databases: References” on page 74

SAS Companion for Windows

Data Set Option Description

SGIO= Activates the Scatter/Gather I/O feature for a dataset.

SAS Companion for OpenVMS on HP Integrity Servers
The data set options listed here are documented only in SAS Companion for

OpenVMS on HP Integrity Servers. Other data set options in SAS Companion for
OpenVMS on HP Integrity Servers contain information specific to the OpenVMS
operating environment, where the main documentation is in SAS Language Reference:
Dictionary. These latter data set options are not listed here.

Data Set Option Description

ALQ= Specifies how many disk blocks to initially allocate to a new SAS
data set.

ALQMULT= Specifies the number of pages that are preallocated to a file.

BKS= Specifies the bucket size for a new data set.

CACHENUM= Specifies the number of I/O data caches used per SAS file.

CACHESIZE= Controls the size of the I/O data cache that is allocated for a SAS
file.

DEQ= Specifies how many disk blocks to add when OpenVMS
automatically extends a SAS data set during a write operation.

DEQMULT= Specifies the number of pages to extend a SAS file.

LOCKREAD Specifies whether to read a record if a lock cannot be obtained for
the record.

LOCKWAIT Indicates whether SAS should wait for a locked record.

MBF Specifies the multibuffer count for a data set.

SAS Companion for UNIX Environments
The data set options listed here are documented only in SAS Companion for UNIX

Environments. Other data set options in SAS Companion for UNIX Environments
contain information specific to the UNIX operating environment, where the main

SAS Data Set Options � SAS National Language Support: Reference Guide 73

documentation is in SAS Language Reference: Dictionary. These latter data set options
are not listed here.

Data Set Option Description

ALTER= Specifies a password for a SAS file that prevents users from replacing
or deleting the file, but permits read and write access.

BUFNO= Specifies the number of buffers to be allocated for processing a SAS
data set.

BUFSIZE= Specifies the size of a permanent buffer page for an output SAS data
set.

FILECLOSE= Specifies how a tape is positioned when a SAS data set is closed.

PW= Assigns a READ, WRITE, or ALTER password to a SAS file, and
enables access to a password-protected SAS file.

USEDIRECTIO Turns on direct I/O for a library that contains the file to which the
ENABLEDIRECTIO option has been applied.

SAS Companion for z/OS
The data set options listed here are documented only in SAS Companion for z/OS.

Other data set options in SAS Companion for z/OS contain information specific to the
z/OS operating environment, where the main documentation is in SAS Language
Reference: Dictionary. These latter data set options are not listed here.

Data Set Option Description

ALTER= Assigns an alter password to a SAS file and enables access to a
password-protected SAS file.

BUFSIZE= Specifies the permanent buffer page size for an output SAS data set.

FILEDISP= Specifies the initial disposition for a sequential access bound SAS
data library.

SAS National Language Support: Reference Guide

Data Set Option Description

ENCODING= Overrides the encoding to use for reading or writing a SAS data set.

74 SAS Scalable Performance Data Engine: Reference � Chapter 2

SAS Scalable Performance Data Engine: Reference

Data Set Option Description

ASYNCINDEX= Specifies to create the indexes in parallel when creating multiple
indexes on an SPD Engine data set.

BYNOEQUALS= Specifies whether the output order of data set observations with
identical values for the BY variable are guaranteed to be in data set
order.

BYSORT= Specifies for the SPD Engine to perform an automatic sort when it
encounters a BY statement.

COMPRESS= Specifies to compress SPD Engine data sets on disk as they are being
created.

ENCRYPT= Specifies whether to encrypt an output SPD Engine data set.

ENDOBS= Specifies the end observation number in a user-defined range of
observations to be processed.

IDXWHERE= Specifies to use indexes when processing WHERE expressions in the
SPD Engine.

IOBLOCKSIZE= Specifies the number of observations in a block to be stored in or read
from an SPD Engine data component file that is compressed.

LISTFILES= Specifies whether the CONTENTS procedure lists the complete
pathnames of all the component files.

PADCOMPRESS= Specifies a number of bytes to add to compression blocks in a data set
opened for UPDATE.

PARTSIZE= When an SPD Engine data set is created, specifies the largest size (in
megabytes) that the data component partitions can be. This is a fixed
size. This specification applies only to the data component files.

STARTOBS= Specifies the starting observation number in a user-defined range of
observations to be processed.

SYNCADD= Specifies to process one observation at a time or multiple observations
at a time.

THREADNUM= Specifies the number of I/O threads the SPD Engine can spawn for
processing an SPD Engine data set.

UNIQUESAVE= Specifies to save observations with non-unique key values (the
rejected observations) to a separate data set when appending or
inserting observations to data sets with unique indexes.

WHERENOINDEX= Specifies, when making WHERE expression evaluations, a list of
indexes to exclude.

SAS/ACCESS for Relational Databases: References

SAS Data Set Options � SAS/ACCESS for Relational Databases: References 75

Data Set Option Description

AUTHID= Enables you to qualify the specified table with an authorization ID,
user ID, or group ID.

AUTOCOMMIT= Specifies whether to enable the DBMS autocommit capability.

BL_ALLOW_READ_ACCESS=Specifies that the original table data is still visible to readers during
bulk load.

BL_ALLOWWRITE_ACCESS=Specifies that table data is still accessible to readers and writers
while import is in progress.

BL_BADDATA_FILE= Specifies where to put records that failed to process internally.

BL_BADFILE= Identifies a file that contains records that were rejected during a bulk
load.

BL_CODEPAGE= Identifies the codepage that the DBMS engine uses to convert SAS
character data to the current database codepage during a bulk load.

BL_CONTROL= Identifies a file containing SQLLDR control statements that describe
the data to be included in a bulk load.

BL_COPY_LOCATION= Specifies the directory to which DB2 saves a copy of the loaded data.
This option is valid only when used in conjunction with
BL_RECOVERABLE=YES.

BL_CPU_PARALLELISM= Specifies the number of processes or threads that are used when
building table objects.

BL_DATA_BUFFER_SIZE= Specifies the total amount of memory that is allocated for the bulk
load utility to use as a buffer for transferring data.

BL_DATAFILE= Identifies the file that contains the data that is loaded or appended
into a DBMS table during a bulk load.

BL_DB2CURSOR= Specifies a string that contains a valid DB2 SELECT statement that
points to either local or remote objects (tables or views).

BL_DB2DEVT_PERM= Specifies the unit address or generic device type that is used for the
permanent data sets created by the LOAD utility, as well as SYSIN,
SYSREC, and SYSPRINT when they are allocated by SAS.

BL_DB2DEVT_TEMP= Specifies the unit address or generic device type that is used for the
temporary data sets created by the LOAD utility (PNCH, COPY1,
COPY2, RCPY1, RCPY2, WORK1, WORK2).

BL_DB2DISC= Specifies the SYSDISC data set name for the LOAD utility.

BL_DB2ERR= Specifies the SYSERR data set name for the LOAD utility.

BL_DB2IN= Specifies the SYSIN data set name for the LOAD utility

BL_DB2LDCT1= Specifies a string in the LOAD utility control statement, between
LOAD DATA and INTO TABLE.

BL_DB2LDCT2= Specifies a string in the LOAD utility control statement, between
INTO TABLE table-name and (field-specification).

BL_DB2LDCT3= Specifies a string in the LOAD utility control statement, after
(field-specification)

BL_DB2LDEXT= Specifies the mode of execution for the DB2 LOAD utility.

BL_DB2MAP= Specifies the SYSMAP data set name for the LOAD utility.

BL_DB2PRINT= Specifies the SYSPRINT data set name for the LOAD utility.

76 SAS/ACCESS for Relational Databases: References � Chapter 2

Data Set Option Description

BL_DB2PRNLOG= Determines whether the SYSPRINT output is written to the SAS log.

BL_DB2REC= Specifies the SYSREC data set name for the LOAD utility

BL_DB2RECSP= Determines the number of cylinders to specify as the primary
allocation for the SYSREC data set when it is created.

BL_DB2RSTRT= Tells the LOAD utility whether the current load is a restart and, for a
restart, indicates where to begin.

BL_DB2SPC_PERM= Determines the number of cylinders to specify as the primary
allocation for the permanent data sets that are created by the LOAD
utility.

BL_DB2SPC_TEMP= Determines the number of cylinders to specify as the primary
allocation for the temporary data sets that are created by the LOAD
utility.

BL_DB2TBLXST= Indicates whether the LOAD utility runs against an existing table

BL_DB2UTID= Specifies a unique identifier for a given run of the DB2 LOAD utility.

BL_DELETE_DATAFILE= Deletes the data file that is created for the DBMS bulk load facility.

BL_DELIMITER= Specifies override of the default delimiter character for separating
columns of data during data transfer or retrieval during bulk load or
bulk unload.

BL_DIRECT_PATH= Sets the Oracle SQL*Loader DIRECT option.

BL_DISCARDFILE= Identifies the file that contains the records that were filtered out of a
bulk load because they did not match the criteria specified in the
CONTROL file.

BL_DISCARDS= "Specifies whether and when to stop processing a job, based on the
number of discarded records.

BL_DISK_PARALLELISM= Specifies the number of processes or threads that are used when
writing data to disk.

BL_ERRORS= Specifies whether and when to stop processing a job based on the
number of failed records.

BL_EXCEPTION= Specifies the exception table into which rows in error are copied.

BL_FAILEDDATA= Specifies where to put records that could not be written to the
database.

BL_INDEX_OPTIONS= Enables you to specify SQL*Loader Index options with bulk loading.

BL_INDEXING_MODE= Used to indicate which scheme the DB2 load utility should use with
respect to index maintenance.

BL_KEEPIDENTITY= Determines whether the identity column that is created during a
bulk load is populated with values generated by Microsoft SQL
Server or with values provided by the user.

BL_KEEPNULLS= Indicates how NULL values in Microsoft SQL Server columns that
accept NULL are handled during a bulk load.

BL_LOAD_METHOD= Specifies the method by which data is loaded into an Oracle table
during bulk loading.

BL_LOAD_REPLACE= Specifies whether DB2 appends or replaces rows during bulk loading

SAS Data Set Options � SAS/ACCESS for Relational Databases: References 77

Data Set Option Description

BL_LOG= Identifies a log file that contains information such as statistics and
error information for a bulk load.

BL_METHOD= Specifies which bulk loading method to use for DB2.

BL_OPTIONS= Passes options to the DBMS bulk load facility, affecting how it loads
and processes data.

BL_PARFILE= Creates a file that contains the SQL*Loader command line options.

BL_PORT_MAX= Sets the highest available port number for concurrent uploads.

BL_PORT_MIN= Sets the lowest available port number for concurrent uploads.

BL_PRESERVE_BLANKS= Determines how the SQL*Loader handles requests to insert blank
spaces into CHAR/VARCHAR2 columns with the NOT NULL
constraint.

BL_RECOVERABLE= Determines whether the LOAD process is recoverable.

BL_REMOTE_FILE= Specifies the base filename and location of DB2 LOAD temporary files.

BL_RETRIES= Specifies the number of attempts to make for a job.

BL_RETURN_
WARNINGS_AS_
ERRORS=

Specifies whether SQL*Loader (bulkload) warnings should surface in
SAS through the SYSERR macro warnings or as errors.

BL_SERVER_DATAFILE= Specifies the name and location of the data file as seen by the DB2
server instance.

BL_SQLLDR_PATH= Specifies the location of the SQLLDR executable file.

BL_SUPPRESS_NULLIF= Indicates whether to suppress the NULLIF clause for the specified
columns when a table is created in order to increase performance.

BL_USE_PIPE= Specifies a named pipe for data transfer.

BL_WARNING_COUNT= Specifies the maximum number of row warnings to allow before you
abort the load operation.

BUFFERS= Specifies the number of shared memory buffers to be used for
transferring data from SAS to Teradata.

BULK_BUFFER= Specifies the number of bulk rows that the SAS/ACCESS engine can
buffer for output.

BULKLOAD= Loads rows of data as one unit.

BULKUNLOAD Rapidly retrieves (fetches) large number of rows from a data set.

CAST= Specifies whether data conversions should be performed on the
Teradata DBMS server or by SAS.

CAST_OVERHEAD_
MAXPERCENT=

Specifies the overhead limit for data conversions to be performed in
Teradata instead of SAS.

COMMAND_TIMEOUT= Specifies the number of seconds to wait before a command times out.

CURSOR_TYPE= Specifies the cursor type for read only and updatable cursors.

DBCOMMIT= Causes an automatic COMMIT (a permanent writing of data to the
DBMS) after a specified number of rows have been processed.

DBCONDITION= Specifies criteria for subsetting and ordering DBMS data.

78 SAS/ACCESS for Relational Databases: References � Chapter 2

Data Set Option Description

DBCREATE_TABLE_OPTS= Specifies DBMS-specific syntax to be added to the CREATE TABLE
statement.

DBFORCE= Specifies whether to force the truncation of data during insert
processing.

DBGEN_NAME= Specifies how SAS renames columns automatically when they contain
characters that SAS does not allow.

DBINDEX= Detects and verifies that indexes exist on a DBMS table. If they do
exist and are of the correct type, a join query that is passed to the
DBMS might improve performance.

DBKEY= Specifies a key column to optimize DBMS retrieval. Can improve
performance when you are processing a join that involves a large
DBMS table and a small SAS data set or DBMS table.

DBLABEL= Specifies whether to use SAS variable labels or SAS variable names
as the DBMS column names during output processing.

DBLINK= Specifies a link from your default database to another database on
the server to which you are connected in the Sybase interface; and
specifies a link from your local database to database objects on
another server in the Oracle interface.

DBMASTER= Designates which table is the larger table when you are processing a
join that involves tables from two different types of databases.

DBMAX_TEXT= Determines the length of any very long DBMS character data type
that is read into SAS or written from SAS when you are using a SAS/
ACCESS engine.

DBNULL= Indicates whether NULL is a valid value for the specified columns
when a table is created.

DBNULLKEYS= Controls the format of the WHERE clause with regard to NULL
values when you use the DBKEY= data set option.

DBPROMPT= Specifies whether SAS displays a window that prompts you to enter
DBMS connection information.

DBSASLABEL= Specifies how the engine returns column labels.

DBSASTYPE= Specifies data types to override the default SAS data types during
input processing.

DBSLICE= Specifies user-supplied WHERE clauses to partition a DBMS query
for threaded reads.

DBSLICEPARM= Controls the scope of DBMS threaded reads and the number of
DBMS connections.

DBTYPE= Specifies a data type to use instead of the default DBMS data type
when SAS creates a DBMS table.

DEGREE= Determines whether DB2 uses parallelism.

DISTRIBUTE_ON Specifies a column name to use in the DISTRIBUTE ON clause of the
CREATE TABLE statement.

ERRLIMIT= Specifies the number of errors that are allowed before SAS stops
processing and issues a rollback.

SAS Data Set Options � SAS/ACCESS for Relational Databases: References 79

Data Set Option Description

ESCAPE_BACKSLASH= Specifies whether backslashes in literals are preserved during data
copy from a SAS data set to a table.

IGNORE_
READ_ONLY_COLUMNS=

Specifies whether to ignore or include columns whose data types are
read-only when generating an SQL statement for inserts or updates.

IN= Enables you to specify the database or tablespace in which you want
to create a new table.

INSERT_SQL= Determines the method that is used to insert rows into a data source.

INSERTBUFF= Specifies the number of rows in a single DBMS insert.

KEYSET_SIZE= Specifies the number of rows in the cursor that are key set driven.

LOCATION= Enables you to further specify exactly where a table resides.

LOCKTABLE= Places exclusive or shared locks on tables.

MBUFFSIZE= Specifies the size of the shared memory buffers to be used for
transferring data from SAS to Teradata.

ML_CHECKPOINT= Specifies the interval between checkpoint operation, in minutes.

ML_ERROR1= Specifies the name of a temporary table that MultiLoad uses to track
errors that were generated during the acquisition phase of a
bulk-load operation.

ML_ERROR2= Specifies the name of a temporary table that MultiLoad uses to track
errors that were generated during the application phase of a
bulk-load operation.

ML_LOG= Specifies a prefix for the names of the temporary tables that
MultiLoad uses during a bulk-load operation.

ML_RESTART= Specifies the name of a temporary table that is used by MultiLoad to
track checkpoint information.

ML_WORK= Specifies the name of a temporary table that MultiLoad uses to store
intermediate data.

MULTILOAD= Specifies whether Teradata insert and append operations should use
the Teradata MultiLoad utility.

MULTISTMT= Specifies whether insert statements are to be sent to Teradata one at
a time or in a group.

NULLCHAR= Indicates how missing SAS character values are handled during
insert, update, DBINDEX=, and DBKEY= processing.

NULLCHARVAL= Defines the character string that replaces missing SAS character
values during insert, update, DBINDEX=, and DBKEY= processing.

OR_PARTITION= Allows reading, updating, and deleting from a particular partition in
a partitioned table, also inserting and bulk-loading into a particular
partition in a partitioned table.

OR_UPD_NOWHERE= Specifies whether SAS uses an extra WHERE clause when updating
rows with no lockingSpecifies whether SAS uses an extra WHERE
clause when updating rows with no locking.

ORHINTS= Specifies Oracle hints to pass to Oracle from a SAS statement or SQL
procedure.

80 SAS/ACCESS for Relational Databases: References � Chapter 2

Data Set Option Description

PRESERVE_COL_NAMES= Preserves spaces, special characters, and case-sensitivity in DBMS
column names when you create DBMS tables.

QUALIFIER= Specifies the qualifier to use when you are reading database objects,
such as DBMS tables and views.

QUERY_TIMEOUT= Specifies the number of seconds of inactivity to wait before canceling
a query.

READ_ISOLATION_LEVEL= Specifies which level of read isolation locking to use when you are
reading data.

READ_LOCK_TYPE= Specifies how data in a DBMS table is locked during a read
transaction.

READ_MODE_WAIT= Specifies during SAS/ACCESS read operations whether Teradata
waits to acquire a lock or fails your request when the DBMS resource
is locked by a different user.

READBUFF= Specifies the number of rows of DBMS data to read into the buffer.

SASDATEFMT= Changes the SAS date format of a DBMS column.

SCHEMA= Enables you to read a data source, such as a DBMS table and view,
in the specified schema.

SEGMENT_NAME= Enables you to control the segment in which you create a table.

SET= Specifies whether duplicate rows are allowed when creating a table.

SLEEP= Specifies the number of minutes that MultiLoad waits before it
retries logging in to Teradata.

TENACITY= Specifies how many hours MultiLoad continues to retry logging on to
Teradata if the maximum number of Teradata utilities are already
running.

TRAP151= Enables columns that cannot be updated to be removed from a FOR
UPDATE OF clause so updating of columns can proceed as normal.

UPDATE_ISOLATION_
LEVEL=

Defines the degree of isolation of the current application process from
other concurrently running application processes.

UPDATE_LOCK_TYPE= Specifies how data in a DBMS table is locked during an update
transaction.

UPDATE_MODE_WAIT= Specifies during SAS/ACCESS update operations whether the DBMS
waits to acquire a lock or fails your request when the DBMS resource
is locked by a different user.

UPDATE_SQL= Determines the method that is used to update and delete rows in a
data source.

UPDATEBUFF= Specifies the number of rows that are processed in a single DBMS
update or delete operation.

81

C H A P T E R

3
Formats

Definition of Formats 84
Syntax 84

Using Formats 85

Ways to Specify Formats 85

PUT Statement 85

PUT Function 86
%SYSFUNC 86

FORMAT Statement 86

ATTRIB Statement 86

Permanent versus Temporary Association 87

User-Defined Formats 87

Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms 88
Definitions 88

How Bytes are Ordered Differently 88

Writing Data Generated on Big Endian or Little Endian Platforms 88

Integer Binary Notation and Different Programming Languages 89

Data Conversions and Encodings 89
Working with Packed Decimal and Zoned Decimal Data 90

Definitions 90

Types of Data 90

Packed Decimal Data 90

Zoned Decimal Data 91
Packed Julian Dates 91

Platforms Supporting Packed Decimal and Zoned Decimal Data 91

Languages Supporting Packed Decimal and Zoned Decimal Data 92

Summary of Packed Decimal and Zoned Decimal Formats and Informats 92

Working with Dates and Times Using the ISO 8601 Basic and Extended Notations 94

ISO 8601 Formatting Symbols 94
Writing ISO 8601 Date, Time, and Datetime Values 95

Writing ISO 8601 Duration, Datetime, and Interval Values 96

Duration, Datetime, and Interval Formats 96

Writing Omitted Components 97

Writing Truncated Duration, Datetime, and Interval Values 98
Normalizing Duration Components 98

Fractions in Durations, Datetime, and Interval Values 98

Formats by Category 99

Dictionary 108

$ASCIIw. Format 108
$BASE64Xw. Format 109

$BINARYw. Format 110

$CHARw. Format 111

82 Contents � Chapter 3

$EBCDICw. Format 112
$HEXw. Format 113

$MSGCASEw. Format 114

$N8601Bw.d Format 115

$N8601BAw.d Format 117

$N8601Ew.d Format 118
$N8601EAw.d Format 119

$N8601EHw.d Format 121

$N8601EXw.d Format 122

$N8601Hw.d Format 123

$N8601Xw.d Format 125

$OCTALw. Format 126
$QUOTEw. Format 128

$REVERJw. Format 129

$REVERSw. Format 130

$UPCASEw. Format 131

$VARYINGw. Format 132
$w. Format 134

BESTw. Format 134

BESTDw.p Format 136

BINARYw. Format 137

B8601DAw. Format 138
B8601DNw. Format 139

B8601DTw.d Format 140

B8601DZw. Format 141

B8601LZw. Format 143

B8601TMw.d Format 144

B8601TZw. Format 145
COMMAw.d Format 147

COMMAXw.d Format 148

Dw.p Format 149

DATEw. Format 151

DATEAMPMw.d Format 153
DATETIMEw.d Format 154

DAYw. Format 156

DDMMYYw. Format 157

DDMMYYxw. Format 158

DOLLARw.d Format 160
DOLLARXw.d Format 161

DOWNAMEw. Format 162

DTDATEw. Format 163

DTMONYYw. Format 165

DTWKDATXw. Format 166

DTYEARw. Format 167
DTYYQCw. Format 168

Ew. Format 169

E8601DAw. Format 170

E8601DNw. Format 171

E8601DTw.d Format 172
E8601DZw. Format 173

E8601LZw. Format 174

E8601TMw.d Format 176

E8601TZw.d Format 178

FLOATw.d Format 180

Formats � Contents 83

FRACTw. Format 182
HEXw. Format 183

HHMMw.d Format 184

HOURw.d Format 187

IBw.d Format 188

IBRw.d Format 189
IEEEw.d Format 191

JULDAYw. Format 192

JULIANw. Format 193

MDYAMPMw.d Format 194

MMDDYYw. Format 195

MMDDYYxw. Format 197
MMSSw.d Format 199

MMYYw. Format 200

MMYYxw. Format 202

MONNAMEw. Format 203

MONTHw. Format 204
MONYYw. Format 205

NEGPARENw.d Format 207

NUMXw.d Format 208

OCTALw. Format 209

PDw.d Format 210
PDJULGw. Format 211

PDJULIw. Format 212

PERCENTw.d Format 214

PERCENTNw.d Format 215

PIBw.d Format 217

PIBRw.d Format 219
PKw.d Format 220

PVALUEw.d Format 221

QTRw. Format 222

QTRRw. Format 223

RBw.d Format 224
ROMANw. Format 226

S370FFw.d Format 227

S370FIBw.d Format 228

S370FIBUw.d Format 229

S370FPDw.d Format 231
S370FPDUw.d Format 233

S370FPIBw.d Format 234

S370FRBw.d Format 235

S370FZDw.d Format 237

S370FZDLw.d Format 238

S370FZDSw.d Format 239
S370FZDTw.d Format 240

S370FZDUw.d Format 241

SIZEKw.d Format 242

SIZEKBw.d Format 243

SIZEKMGw.d Format 244
SSNw. Format 245

TIMEw.d Format 246

TIMEAMPMw.d Format 248

TODw.d Format 250

VAXRBw.d Format 252

84 Definition of Formats � Chapter 3

VMSZNw.d Format 253
w.d Format 254

WEEKDATEw. Format 255

WEEKDATXw. Format 257

WEEKDAYw. Format 258

WEEKUw. Format 259
WEEKVw. Format 261

WEEKWw. Format 263

WORDDATEw. Format 265

WORDDATXw. Format 266

WORDFw. Format 267

WORDSw. Format 268
YEARw. Format 269

YYMMw. Format 270

YYMMxw. Format 271

YYMMDDw. Format 273

YYMMDDxw. Format 274
YYMONw. Format 276

YYQw. Format 277

YYQxw. Format 278

YYQRw. Format 280

YYQRxw. Format 281
Zw.d Format 283

ZDw.d Format 284

Formats Documented in Other SAS Publications 285

SAS National Language Support (NLS): Reference Guide 285

Definition of Formats

A format is an instruction that SAS uses to write data values. You use formats to
control the written appearance of data values, or, in some cases, to group data values
together for analysis. For example, the WORDS22. format, which converts numeric
values to their equivalent in words, writes the numeric value 692 as six hundred
ninety-two.

Syntax

SAS formats have the following form:

<$>format<w>.< d>

where

$
indicates a character format; its absence indicates a numeric format.

format
names the format. The format is a SAS format or a user-defined format that was
previously defined with the VALUE statement in PROC FORMAT. For more
information about user-defined formats, see “The FORMAT Procedure” in Base
SAS Procedures Guide.

Formats � Ways to Specify Formats 85

w
specifies the format width, which for most formats is the number of columns in the
output data.

d
specifies an optional decimal scaling factor in the numeric formats.

Formats always contain a period (.) as a part of the name. If you omit the w and the d
values from the format, SAS uses default values. The d value that you specify with a
format tells SAS to display that many decimal places. Formats never change or
truncate the internally stored data values.

For example, in DOLLAR10.2, the w value of 10 specifies a maximum of 10 columns
for the value. The d value of 2 specifies that two of these columns are for the decimal
part of the value, which leaves eight columns for all the remaining characters in the
value. The remaining columns include the decimal point, the remaining numeric value,
a minus sign if the value is negative, the dollar sign, and commas, if any.

If the format width is too narrow to represent a value, SAS tries to squeeze the value
into the space available. Character formats truncate values on the right. Numeric
formats sometimes revert to the BESTw.d format. SAS prints asterisks if you do not
specify an adequate width. In the following example, the result is x=**.

x=123;
put x= 2.;

If you use an incompatible format, such as using a numeric format to write character
values, SAS first attempts to use an analogous format of the other type. If this attempt
fails, an error message that describes the problem appears in the SAS log.

When the value of d is greater than fifteen, the precision of the decimal value after
the 15th decimal place might not be accurate.

Using Formats

Ways to Specify Formats
You can use formats in the following ways:

� in a PUT statement

� with the PUT, PUTC, or PUTN functions

� with the %SYSFUNC macro function

� in a FORMAT statement in a DATA step or a PROC step

� in an ATTRIB statement in a DATA step or a PROC step.

PUT Statement
The PUT statement with a format after the variable name uses a format to write

data values in a DATA step. For example, this PUT statement uses the DOLLARw.d
format to write the numeric value for AMOUNT as a dollar amount:

amount=1145.32;
put amount dollar10.2;

The DOLLARw.d format in the PUT statement produces this result:

$1,145.32

86 Ways to Specify Formats � Chapter 3

See “PUT Statement” on page 1657 for more information.

PUT Function
The PUT function converts a numeric variable, a character variable, or a constant

using any valid format and returns the resulting character value. For example, the
following statement converts the value of a numeric variable into a two-character
hexadecimal representation:

num=15;
char=put(num,hex2.);

The PUT function returns a value of 0F, which is assigned to the variable CHAR.
The PUT function is useful for converting a numeric value to a character value. See

“PUT Function” on page 1026 for more information.

%SYSFUNC
The %SYSFUNC (or %QSYSFUNC) macro function executes SAS functions or

user-defined functions and applies an optional format to the result of the function
outside a DATA step. For example, the following program writes a numeric value in a
macro variable as a dollar amount.

%macro tst(amount);
%put %sysfunc(putn(&amount,dollar10.2));

%mend tst;

%tst (1154.23);

For more information, see SAS Macro Language: Reference.

FORMAT Statement
The FORMAT statement permanently associates a format with a variable. SAS uses

the format to write the values of the variable that you specify. For example, the
following statement in a DATA step associates the COMMAw.d numeric format with
the variables SALES1 through SALES3:

format sales1-sales3 comma10.2;

Because the FORMAT statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. See “FORMAT Statement” on page 1528 for more information.

Note: If you assign formats with a FORMAT statement before a PUT statement, all
leading blanks are trimmed. Formats that are associated with variables by using a
FORMAT statement behave like formats that are used with a colon (:) modifier in a
subsequent PUT statement. For details about using the colon format modifier, see “PUT
Statement, List” on page 1679. �

ATTRIB Statement
The ATTRIB statement can also associate a format, as well as other attributes, with

one or more variables. For example, in the following statement the ATTRIB statement
permanently associates the COMMAw.d format with the variables SALES1 through
SALES3:

attrib sales1-sales3 format=comma10.2;

Formats � User-Defined Formats 87

Because the ATTRIB statement permanently associates a format with a variable, any
subsequent DATA step or PROC step uses COMMA10.2 to write the values of SALES1,
SALES2, and SALES3. See “ATTRIB Statement” on page 1403 for more information.

Permanent versus Temporary Association
When you specify a format in a PUT statement, SAS uses the format to write data

values during the DATA step but does not permanently associate the format with a
variable. To permanently associate a format with a variable, use a FORMAT statement
or an ATTRIB statement in a DATA step. SAS permanently associates a format with
the variable by modifying the descriptor information in the SAS data set.

Using a FORMAT statement or an ATTRIB statement in a PROC step associates a
format with a variable for that PROC step, as well as for any output data sets that the
procedure creates that contain formatted variables. For more information about using
formats in SAS procedures, see Base SAS Procedures Guide.

User-Defined Formats
In addition to the formats that are supplied with Base SAS software, you can create

your own formats. In Base SAS software, PROC FORMAT allows you to create your
own formats for both character and numeric variables. For more information, see “The
FORMAT Procedure” in Base SAS Procedures Guide.

When you execute a SAS program that uses user-defined formats, these formats
should be available. The two ways to make these formats available are

� to create permanent, not temporary, formats with PROC FORMAT
� to store the source code that creates the formats (the PROC FORMAT step) with

the SAS program that uses them.

To create permanent SAS formats, see “The FORMAT Procedure” in Base SAS
Procedures Guide.

If you execute a program that cannot locate a user-defined format, the result depends
on the setting of the FMTERR system option. If the user-defined format is not found,
then these system options produce these results:

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing and substitutes a default format,
usually the BESTw. or $w. format.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined format supplies.

To avoid problems, make sure that your program has access to all user-defined
formats that are used.

88 Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms � Chapter 3

Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms

Definitions
Integer values for binary integer data are typically stored in one of three sizes:

one-byte, two-byte, or four-byte. The ordering of the bytes for the integer varies
depending on the platform (operating environment) on which the integers were
produced.

The ordering of bytes differs between the “big endian” and “little endian” platforms.
These colloquial terms are used to describe byte ordering for IBM mainframes (big
endian) and for Intel-based platforms (little endian). In the SAS System, the following
platforms are considered big endian: AIX, HP-UX, IBM mainframe, Macintosh, and
Solaris on SPARC. The following platforms are considered little endian: Intel ABI,
Linux, OpenVMS Alpha, OpenVMS Integrity, Solaris on x64, Tru64 UNIX, and
Windows.

How Bytes are Ordered Differently
On big endian platforms, the value 1 is stored in binary and is represented here in

hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00
00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF. These representations result from the output of the
integer binary value –2 expressed in hexadecimal representation.

Writing Data Generated on Big Endian or Little Endian Platforms
SAS can read signed and unsigned integers regardless of whether they were

generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which format to use for various combinations of platforms.
In the Signed Integer column, “no” indicates that the number is unsigned and cannot be
negative. “Yes” indicates that the number can be either negative or positive.

Table 3.1 SAS Formats and Byte Ordering

Platform For Which the
Data Was Created

Platform That Writes the
Data

Signed
Integer

Format

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes S370FIB

Formats � Data Conversions and Encodings 89

Platform For Which the
Data Was Created

Platform That Writes the
Data

Signed
Integer

Format

big endian little endian no S370FPIB

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation and Different Programming Languages
The following table compares integer binary notation according to programming

language.

Table 3.2 Integer Binary Notation and Programming Languages

Language 2 Bytes 4 Bytes

SAS IB2. , IBR2., PIB2., PIBR2.,
S370FIB2., S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4., PIBR4.,
S370FIB4., S370FIBU4.,
S370FPIB4.

PL/I FIXED BIN(15) FIXED BIN(31)

Fortran INTEGER*2 INTEGER*4

COBOL COMP PIC 9(4) COMP PIC 9(8)

IBM assembler H F

C short long

Data Conversions and Encodings
An encoding maps each character in a character set to a unique numeric

representation, resulting in a table of all code points. A single character can have
different numeric representations in different encodings. For example, the ASCII
encoding for the dollar symbol $ is 24 hexadecimal. The Danish EBCDIC encoding for
the dollar symbol $ is 67 hexadecimal. In order for a version of SAS that normally uses
ASCII to properly interpret a data set that is encoded in Danish EBCDIC, the data
must be transcoded.

Transcoding is the process of moving data from one encoding to another. When
transcoding the ASCII dollar sign to the Danish EBCDIC dollar sign, the hexadecimal
representation for the character is converted from the value 24 to a 67.

90 Working with Packed Decimal and Zoned Decimal Data � Chapter 3

If you want to know the encoding of a particular SAS data set, for SAS 9 and above
follow these steps:

1 Locate the data set with SAS Explorer.
2 Right-click the data set.
3 Select Properties from the menu.
4 Click the Details tab.
5 The encoding of the data set is listed, along with other information.

Some situations where data might commonly be transcoded are:
� when you share data between two different SAS sessions that are running in

different locales or in different operating environments,
� when you perform text-string operations, such as converting to uppercase or

lowercase,
� when you display or print characters from another language,
� when you copy and paste data between SAS sessions running in different locales.

For more information about SAS features designed to handle data conversions from
different encodings or operating environments, see SAS National Language Support
(NLS): Reference Guide.

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
might become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal character. For
example, the value 15 is stored in two nibbles, using the hexadecimal characters 1 and 5.

Formats � Platforms Supporting Packed Decimal and Zoned Decimal Data 91

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:
� You can use the S370FPD format on all platforms to obtain the IBM mainframe

configuration.
� You can have unsigned packed data with no sign indicator. The packed decimal

format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:
� A zoned decimal representation stores a decimal digit in the low order nibble of

each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal character. For example, the value 15 is stored in two bytes. The first
byte contains the hexadecimal value F1 and the second byte contains the
hexadecimal value C5.

Packed Julian Dates
The following applies to packed Julian dates:
� The two formats and informats that handle Julian dates in packed decimal

representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2-digit or 4-digit years. If you use 2-digit
years, SAS uses the setting of the YEARCUTOFF= system option to determine the
true year.

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

92 Languages Supporting Packed Decimal and Zoned Decimal Data � Chapter 3

Languages Supporting Packed Decimal and Zoned Decimal Data
Several languages support packed decimal and zoned decimal data. The following

table shows how COBOL picture clauses correspond to SAS formats and informats.

IBM VS COBOL II clauses Corresponding S370Fxxx
formats/informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370FZDw.

PIC 9(W) DISPLAY S370FZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC
S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are
needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the Fortran or the C languages.

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Formats � Summary of Packed Decimal and Zoned Decimal Formats and Informats 93

Format Type of data
representation

Corresponding
informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hexadecimal 40) to EBCDIC
zero (hexadecimal F0);
corresponds to the informat
as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hexadecimal C0
(positive) or D0 (negative) in
format

S370FZDS Zoned decimal S370FZDS Leading sign of -
(hexadecimal 60) or +
(hexadecimal 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of -
(hexadecimal 60) or +
(hexadecimal 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

94 Working with Dates and Times Using the ISO 8601 Basic and Extended Notations � Chapter 3

Format Type of data
representation

Corresponding
informat

Comments

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

Working with Dates and Times Using the ISO 8601 Basic and Extended
Notations

ISO 8601 Formatting Symbols
The following list explains the formatting symbols that are used to notate the ISO

8601 dates, time, datetime, durations, and interval values:

n specifies a number that represents the number of years, months, or
days

P indicates that the duration that follows is specified by the number of
years, months, days, hours, minutes, and seconds

T indicates that a time value follows. Any value with a time must
begin with T.

Requirement: Time values that are read by the extended notation
informats that begin with the characters E8601 must use an
uppercase T.

W indicates that the duration is specified in weeks.

Z indicates that the time value is the time in Greenwich, England, or
UTC time.

+|- the + indicates the time zone offset to the east of Greenwich,
England. The - indicates the time zone offset to the west of
Greenwich, England.

yyyy specifies a four-digit year

mm as part of a date, specifies a two-digit month, 01 - 12

dd specifies a two-digit day, 01 - 31

hh specifies a two-digit hour, 00 - 24

mm as part of a time, specifies a two-digit minute, 00 - 59

Formats � Writing ISO 8601 Date, Time, and Datetime Values 95

ss specifies a two-digit second, 00 - 59

fff | ffffff specifies an optional fraction of a second using the digits 0 - 9:

fff use 1 - 3 digits for values read by the $N8601B
informat and the $N8601E informat

ffffff use 1 - 6 digits for informat other than the
$N8601B informat and the $N8601E informat

Y indicates that a year value proceeds this character in a duration

M as part of a date, indicates that a month value proceeds this
character in a duration

D indicates that a day value proceeds this character in a duration

H indicates that an hour value proceeds this character in a duration

M as part of a time, indicates that a minute value proceeds this
character in a duration

S indicates that a seconds value proceeds this character in a duration

Writing ISO 8601 Date, Time, and Datetime Values
SAS uses the formats in the following table to write date, time, and datetime values

in the ISO 8601 basic and extended notations from SAS date, time, and datetime values.

Table 3.3 Formats for Writing ISO 8601 Dates, Times, and Datetimes

Date, Time, or Datetime ISO 8601 Notation Example Format

Basic Notations

Date yyyymmdd 20080915 B8601DAw.

Time hhmmssffffff 155300322348 B8601TMw.d

Time with time zone hhmmss+|-hhmm 155300+0500 B8601TZw.d

hhmmssZ 155300Z B8601TZw.d

Convert to local time with
time zone

hhmmss+|-hhmm 155300+0500 B8601LZw.d

Datetime yyyymmddThhmmssffffff 20080915T155300 B8601DTw.d

Datetime with timezone yyyymmddThhmmss+|-
hhmm

20080915T155300+0500 B8601DZw.d

yyyymmddThhmmssZ 20080915T155300Z B8601DZw.d

Write the date from a
datetime

yyyymmdd 20080915 B8601DNw.

Extended Notations

Date yyyy-mm-dd 2008-09-15 E8601DAw.

Time hh:mm:ss.ffffff 15:53:00.322348 E8601TMw.d

Time with time zone hh:mm:ss.ffffff+|-hh:mm 15:53:00+05:00 E8601TZw.d

Convert to local time with
time zone

hh:mm:ss.ffffff+|-hh:mm 15:53:00+05:00 E8601LZw.d

96 Writing ISO 8601 Duration, Datetime, and Interval Values � Chapter 3

Date, Time, or Datetime ISO 8601 Notation Example Format

Datetime yyyy-mm-
ddThh:mm:ss.ffffff

2008-09-15T15:53:00 E8601TZw.d

Datetime with time zone yyyy-mm-
ddThh:mm:ss.nnnnnn+|-
hh:mm

2008-09-
15T15:53:00+05:00

E8601DZw.d

Write the date from a
datetime

yyyy-mm-dd 2008-09-15 E8601DNw.

An asterisk (*)used in place of a date or time formatted value that is out-of-range.

Writing ISO 8601 Duration, Datetime, and Interval Values

Duration, Datetime, and Interval Formats
SAS writes duration, datetime, and interval values from character data using these

formats:

Time Component ISO 8601 Notation Example Format

Duration - Basic
Notation

PyyyymmddThhmmssfff P20080915T155300 $N8601BA

-PyyyymmddThhmmssfff -P20080915T155300 $N8601BA

Duration - Extended
Notation

Pyyyy-mm-
ddThh:mm:ss.fff

P2008-09-15T15:53:00 $N8601EA

-Pyyyy-mm-
ddThh:mm:ss.fff

-P2008-09-15T15:53:00 $N8601EA

Duration - Basic and
Extended Notation

PnYnMnDTnHnMnS P2y10m14dT20h13m45s $N8601B

$N8601E

-PnYnMnDTnHnMnS -P2y10m14dT20h13m45s $N8601B

$N8601E

PnW (weeks) P6w $N8601B

$N8601E

Interval - Basic
Notation

yyyymmddThhmmssfff/
yyyymmddThhmmssfff

20080915T155300/
20101113T000000

$N8601BA

PnYnMnDTnHnMnS/
yyyymmddThhmmssfff

P2y10M14dT20h13m45s/
20080915T155300

$N8601B

yyyymmddThhmmssfff/
PnYnMnDTnHnMnS

20080915T155300/
P2y10M14dT20h13m45s

$N8601BA

Interval- Extended
Notation

yyyy-mm-
ddThh:mm:ss.fff/
yyyy-mm-
ddThh:mm:ss.fff

2008-09-15T15:53:00/
2010-11-13T00:00:00

$N8601EA

PnYnMnDTnHnMnS/
yyyy-mm-
ddThh:mm:ss.fff

P2y10M14dT20h13m45s/
2008-09-15T15:53:00

$N8601E

Formats � Writing ISO 8601 Duration, Datetime, and Interval Values 97

Time Component ISO 8601 Notation Example Format

yyyy-mm-
ddThh:mm:ss.fff/
PnYnMnDTnHnMnS

2008-09-15T15:53:00/
P2y10M14dT20h13m45s

$N8601EA

Datetime-Basic
Notation

yyyymmddThhmmss.fff+|-
hhmm

20080915T155300 $N8601BA

(all blank) $N8601B

$N8601BA

$N8601E

$N8601EA

Datetime-Extended
Notation

yyyy-mm-
ddThh:mm:ss.fff+|-
hhmm

2008-09-15T15:53:00

+04:30

$N8601EA

(all blank) $N8601B

$N8601BA

$N8601E

$N8601EA

Writing Omitted Components
An omitted component can be represented by a hyphen (-) or an x in the extended

datetime form yyyy-mm-ddThh:mm:ss and in the extended duration form
Pyyyy-mm-ddThh:mm:ss.

Omitted components in the durations form PnYnMnDTnHnMnS are dropped, they do
not contain a hyphen or x. For example, P2mT4H.

The following formats write omitted components that use the hyphen and the x:

Format Datetime Form Duration Form Examples

$N8601H yyyy-mm-
ddThh:mm:ss

PnYnMnDTnHnMnS –09-15T15:-:53

P2Y2DT4H5M6S/
–09-15T15:-:00

$N8601EH yyyy-mm-
ddThh:mm:ss

Pyyyy-mm-
ddThh:mm:ss

P000—02T02:55:20/
2008—15T-:-:45

$N8601X yyyy-mm-
ddThh:mm:ss

PnYnMnDTnHnMnS P2Y2DT4H5M6S/
x-09-15T15:x:00

$N8601EX yyyy-mm-
ddThh:mm:ss

Pyyyy-mm-
ddThh:mm:ss

P0003-x-02T02:55:20/
2008-x-15Tx:x:45

Datetime values with omitted components that are formatted with either the $N8601B
format or the $N8601BA format are formatted in the extended notation using the
hyphen for omitted components to ensure accurate data. For example, when the month
is an omitted component, the value 2008—15 is written and not 2008-15.

The extended notation with hyphens is also used in place of the basic notation if a
duration is formatted by using the $N8601BA format. Using the same date, P2008—15
is written and not P2008-15.

98 Writing ISO 8601 Duration, Datetime, and Interval Values � Chapter 3

Writing Truncated Duration, Datetime, and Interval Values
Duration, datetime, or interval values can be truncated when one or more lower

order values is 0 or is not significant. When SAS writes a truncated value using the
formats $N8601B, $N8601BA, $N8601E, and $N8601EA, the display of the value stops
at the last non-missing component.

When you format a truncated value by using either the $N8601H format or the
$N8601EH format, the lower order components are written with a hyphen. When you
format a truncated value by using the $N8601X format or the $N8601EX format, the
lower order components are written with an x.

The following examples show truncated values:
p00030202T1031

2008-09-15T15/2010-09-15T15:53

-p0003-03-03T-:-:-

P2y3m4dT5h6m

2008-09-xTx:x:x

2008

Normalizing Duration Components
When a value for a duration component is greater than the largest standard value

for a component, SAS normalizes the component except when the duration component
is a single component. The following table shows examples of normalized duration
components:

Duration Extended Normalized Duration

p3y13m p0004-01

pt24h24m65s P----01T-:25:05

p3y13mT24h61m P0004-01-01T01:01

p0004-13 p0005-01

p0003-02-61T15:61:61 P0003-04-01T16:02:01

p13m P13M

If a component contains the largest value, such as 60 for minutes or seconds, SAS
normalizes the value and replaces the value with a hyphen. For example, pT12:60:13
becomes PT13:-:13.

Thirty days is used to normalize a month.
Dates and times in a datetime value that are greater than the standard value for the

component are not normalized. They produce an error.

Fractions in Durations, Datetime, and Interval Values
Ending components can contain a fraction that consists of a period or a comma,

followed by one to three digits. The following examples show the use of fractions in
duration, datetime, and interval values:

200809.5

P2008-09-15T10.33

2008-09-15/P0003-03-03,333

Formats � Formats by Category 99

Formats by Category
There are four categories of formats in this list:

Category Description

Character instructs SAS to write character data values from character variables.

Date and Time instructs SAS to write data values from variables that represent dates,
times, and datetimes.

ISO 8601 instructs SAS to write date, time, and datetime values using the ISO
8601 standard.

Numeric instructs SAS to write numeric data values from numeric variables.

Formats that support national languages can be found in SAS National Language
Support (NLS): Reference Guide. A listing of national language formats is provided in
“Formats Documented in Other SAS Publications” on page 285.

Storing user-defined formats is an important consideration if you associate these
formats with variables in permanent SAS data sets, especially those data sets shared
with other users. For information about creating and storing user-defined formats, see
“The FORMAT Procedure” in Base SAS Procedures Guide.

The following table provides brief descriptions of the SAS formats. For more detailed
descriptions, see the dictionary entry for each format.

Table 3.4 Categories and Descriptions of Formats

Category Formats Description

Character “$ASCIIw. Format” on
page 108

Converts native format character data to ASCII
representation.

“$BASE64Xw. Format” on
page 109

Converts character data into ASCII text by using Base
64 encoding.

“$BINARYw. Format” on
page 110

Converts character data to binary representation.

“$CHARw. Format” on
page 111

Writes standard character data.

“$EBCDICw. Format” on
page 112

Converts native format character data to EBCDIC
representation.

“$HEXw. Format” on page
113

Converts character data to hexadecimal representation.

“$MSGCASEw. Format”
on page 114

Writes character data in uppercase when the MSGCASE
system option is in effect.

“$OCTALw. Format” on
page 126

Converts character data to octal representation.

“$QUOTEw. Format” on
page 128

Writes data values that are enclosed in double quotation
marks.

“$REVERJw. Format” on
page 129

Writes character data in reverse order and preserves
blanks.

100 Formats by Category � Chapter 3

Category Formats Description

“$REVERSw. Format” on
page 130

Writes character data in reverse order and left aligns

“$UPCASEw. Format” on
page 131

Converts character data to uppercase.

“$VARYINGw. Format” on
page 132

Writes character data of varying length.

“$w. Format” on page 134 Writes standard character data.

Date and Time “$N8601Bw.d Format” on
page 115

Writes ISO 8601 duration, datetime, and interval forms
using the basic notations PnYnMnDTnH nMnS and
yyyymmddThhmmss.

“$N8601BAw.d Format” on
page 117

Writes ISO 8601 duration, datetime, and interval forms
using the basic notations PyyyymmddThhmmss and
yyyymmdd Thhmmss.

“$N8601Ew.d Format” on
page 118

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations PnYnMnDTn HnMnS and
yyyy-mm-ddT hh:mm:ss.

“$N8601EAw.d Format” on
page 119

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss.

“$N8601EHw.d Format”
on page 121

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss, using a hyphen (-)for
omitted components.

“$N8601EXw.d Format” on
page 122

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss, using an x for digit of an
omitted component.

“$N8601Hw.d Format” on
page 123

Writes ISO 8601 duration, datetime, and interval forms
P nYnMnDTnHnM nS and yyyy-mm-ddThh:mm:ss,
dropping omitted components in duration values and
using a hyphen (-)for omitted components in datetime
values.

“$N8601Xw.d Format” on
page 125

Writes ISO 8601 duration, datetime, and interval forms
P nYnMnDTnHnM nS and yyyy-mm-ddThh:mm:ss,
dropping omitted components in duration values and
using an x for each digit of an omitted component in
datetime values.

“B8601DAw. Format” on
page 138

Writes date values using the IOS 8601 base notation
yyyymmdd .

“B8601DNw. Format” on
page 139

Writes the date from a datetime value using the ISO
8601 basic notation yyyymmdd.

“B8601DTw.d Format” on
page 140

Writes datetime values in the ISO 8601 basic notation
yyyymmdd Thhmmssffffff.

“B8601DZw. Format” on
page 141

Writes datetime values in the Coordinated Universal
Time (UTC) time scale using ISO 8601 datetime and
time zone basic notation yyyymmdd Thhmmss+|-hhmm.

Formats � Formats by Category 101

Category Formats Description

“B8601LZw. Format” on
page 143

Writes time values as local time by appending a time zone
offset difference between the local time and UTC, using
the ISO 8601 basic time notation hhmmss+|-hhmm.

“B8601TMw.d Format” on
page 144

Writes time values using the ISO 8601 basic notation
hhmmssffff .

“B8601TZw. Format” on
page 145

Adjusts time values to the Coordinated Universal Time
(UTC) and writes them using the ISO 8601 basic time
notation hhmmss+|- hhmm.

“DATEw. Format” on page
151

Writes date values in the form ddmmmyy, ddmmmyyyy ,
or dd-mmm-yyyy.

“DATEAMPMw.d Format”
on page 153

Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss with AM or PM.

“DATETIMEw.d Format”
on page 154

Writes datetime values in the form
ddmmmyy:hh:mm:ss.ss.

“DAYw. Format” on page
156

Writes date values as the day of the month.

“DDMMYYw. Format” on
page 157

Writes date values in the form ddmm<yy> yy or dd/mm/
<yy>yy , where a forward slash is the separator and the
year appears as either 2 or 4 digits.

“DDMMYYxw. Format” on
page 158

Writes date values in the form ddmm<yy> yy or
dd-mm-yy<yy>, where the x in the format name is a
character that represents the special character that
separates the day, month, and year, which can be a
hyphen (-), period (.), blank character, slash (/), colon (:),
or no separator; the year can be either 2 or 4 digits.

“DOWNAMEw. Format”
on page 162

Writes date values as the name of the day of the week.

“DTDATEw. Format” on
page 163

Expects a datetime value as input and writes date values
in the form ddmmmyy or ddmmmyyyy.

“DTMONYYw. Format” on
page 165

Writes the date part of a datetime value as the month
and year in the form mmmyy or mmmyyyy.

“DTWKDATXw. Format”
on page 166

Writes the date part of a datetime value as the day of the
week and the date in the form day-of-week, dd
month-name yy (or yyyy).

“DTYEARw. Format” on
page 167

Writes the date part of a datetime value as the year in
the form yy or yyyy.

“DTYYQCw. Format” on
page 168

Writes the date part of a datetime value as the year and
the quarter and separates them with a colon (:).

“E8601DAw. Format” on
page 170

Writes date values using the ISO 8601 extended notation
yyyy-mm-dd.

“E8601DNw. Format” on
page 171

Writes the date from a SAS datetime value using the
ISO 8601 extended notation yyyy-mm-dd.

“E8601DTw.d Format” on
page 172

Writes datetime values in the ISO 8601 extended
notation yyyy-mm-ddThh:mm:ss.ffffff.

102 Formats by Category � Chapter 3

Category Formats Description

“E8601DZw. Format” on
page 173

Writes datetime values in the Coordinated Universal
Time (UTC) time scale using ISO 8601 datetime and
time zone extended notations
yyyy-mm-ddThh:mm:ss+|-hh:mm.

“E8601LZw. Format” on
page 174

Writes time values as local time, appending the
Coordinated Universal Time (UTC) offset for the local
SAS session, using the ISO 8601 extended time notation
hh:mm:ss+|-hh:mm.

“E8601TMw.d Format” on
page 176

Writes time values using the ISO 8601 extended notation
hh:mm:ss.ffffff.

“E8601TZw.d Format” on
page 178

Adjusts time values to the Coordinated Universal Time
(UTC) and writes them using the ISO 8601 extended
notation hh:mm :ss+|-hh:mm.

“HHMMw.d Format” on
page 184

Writes time values as hours and minutes in the form
hh:mm .

“HOURw.d Format” on
page 187

Writes time values as hours and decimal fractions of
hours.

“JULDAYw. Format” on
page 192

Writes date values as the Julian day of the year.

“JULIANw. Format” on
page 193

Writes date values as Julian dates in the form yyddd or
yyyyddd.

“MMDDYYw. Format” on
page 195

Writes date values in the form mmdd<yy> yy or mm/dd/
<yy>yy , where a forward slash is the separator and the
year appears as either 2 or 4 digits.

“MMDDYYxw. Format” on
page 197

Writes date values in the form mmdd<yy> yy or
mm-dd-<yy>yy , where the x in the format name is a
character that represents the special character which
separates the month, day, and year. The special
character can be a hyphen (-), period (.), blank character,
slash (/), colon (:), or no separator; the year can be either
2 or 4 digits.

“MMSSw.d Format” on
page 199

Writes time values as the number of minutes and
seconds since midnight.

“MMYYw. Format” on
page 200

Writes date values in the form mmM<yy> yy, where M is
the separator and the year appears as either 2 or 4 digits.

“MMYYxw. Format” on
page 202

Writes date values in the form mm<yy> yy or
mm-<yy>yy, where the x in the format name is a
character that represents the special character that
separates the month and the year, which can be a
hyphen (-), period (.), blank character, slash (/), colon (:),
or no separator; the year can be either 2 or 4 digits.

“MONNAMEw. Format”
on page 203

Writes date values as the name of the month.

“MONTHw. Format” on
page 204

Writes date values as the month of the year.

Formats � Formats by Category 103

Category Formats Description

“MONYYw. Format” on
page 205

Writes date values as the month and the year in the
form mmmyy or mmmyyyy.

“PDJULGw. Format” on
page 211

Writes packed Julian date values in the hexadecimal
format yyyydddF for IBM.

“PDJULIw. Format” on
page 212

Writes packed Julian date values in the hexadecimal
format ccyydddF for IBM.

“QTRw. Format” on page
222

Writes date values as the quarter of the year.

“QTRRw. Format” on page
223

Writes date values as the quarter of the year in Roman
numerals.

“TIMEw.d Format” on
page 246

Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss.

“TIMEAMPMw.d Format”
on page 248

Writes time values as hours, minutes, and seconds in the
form hh:mm:ss.ss with AM or PM.

“TODw.d Format” on page
250

Writes SAS time values and the time portion of SAS
datetime values in the form hh:mm:ss.ss.

“WEEKDATEw. Format”
on page 255

Writes date values as the day of the week and the date
in the form day-of-week, month-name dd, yy (or yyyy).

“WEEKDATXw. Format”
on page 257

Writes date values as the day of the week and date in
the form day-of-week, dd month-name yy (or yyyy).

“WEEKDAYw. Format” on
page 258

Writes date values as the day of the week.

“WEEKUw. Format” on
page 259

Writes a week number in decimal format by using the U
algorithm.

“WEEKVw. Format” on
page 261

Writes a week number in decimal format by using the V
algorithm.

“WEEKWw. Format” on
page 263

Writes a week number in decimal format by using the W
algorithm.

“WORDDATEw. Format”
on page 265

Writes date values as the name of the month, the day,
and the year in the form month-name dd, yyyy.

“WORDDATXw. Format”
on page 266

Writes date values as the day, the name of the month,
and the year in the form dd month-name yyyy.

“YEARw. Format” on page
269

Writes date values as the year.

“YYMMw. Format” on
page 270

Writes date values in the form <yy>yyM mm, where M is
a character separator to indicate that the month number
follows the M and the year appears as either 2 or 4 digits.

“YYMMxw. Format” on
page 271

Writes date values in the form <yy>yymm or <yy>yy-mm,
where the x in the format name is a character that
represents the special character that separates the year
and the month, which can be a hyphen (-), period (.),
blank character, slash (/), colon (:), or no separator; the
year can be either 2 or 4 digits.

104 Formats by Category � Chapter 3

Category Formats Description

“YYMMDDw. Format” on
page 273

Writes date values in the form yymmdd or <
yy>yy-mm-dd, where a dash is the separator and the
year appears as either 2 or 4 digits.

“YYMMDDxw. Format” on
page 274

Writes date values in the form yymmdd or <
yy>yy-mm-dd, where the x in the format name is a
character that represents the special character which
separates the year, month, and day. The special
character can be a hyphen (-), period (.), blank character,
slash (/), colon (:), or no separator; the year can be either
2 or 4 digits.

“YYMONw. Format” on
page 276

Writes date values in the form yymmm or yyyymmm .

“YYQw. Format” on page
277

Writes date values in the form <yy>yyQ q, where Q is the
separator, the year appears as either 2 or 4 digits, and q
is the quarter of the year.

“YYQxw. Format” on page
278

Writes date values in the form <yy>yyq or <yy>yy-q,
where the x in the format name is a character that
represents the special character that separates the year
and the quarter or the year, which can be a hyphen (-),
period (.), blank character, slash (/), colon (:), or no
separator; the year can be either 2 or 4 digits.

“YYQRw. Format” on page
280

Writes date values in the form <yy>yyQ qr, where Q is the
separator, the year appears as either 2 or 4 digits, and qr
is the quarter of the year expressed in roman numerals.

“YYQRxw. Format” on
page 281

Writes date values in the form <yy>yy qr or <yy>yy-qr,
where the x in the format name is a character that
represents the special character that separates the year
and the quarter or the year, which can be a hyphen (-),
period (.), blank character, slash (/), colon (:), or no
separator; the year can be either 2 or 4 digits and qr is
the quarter of the year expressed in roman numerals.

ISO 8601 “$N8601Bw.d Format” on
page 115

Writes ISO 8601 duration, datetime, and interval forms
using the basic notations PnYnMnDTnH nMnS and
yyyymmddThhmmss.

“$N8601BAw.d Format” on
page 117

Writes ISO 8601 duration, datetime, and interval forms
using the basic notations PyyyymmddThhmmss and
yyyymmdd Thhmmss.

“$N8601Ew.d Format” on
page 118

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations PnYnMnDTn HnMnS and
yyyy-mm-ddT hh:mm:ss.

“$N8601EAw.d Format” on
page 119

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss.

“$N8601EHw.d Format”
on page 121

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss, using a hyphen (-)for
omitted components.

Formats � Formats by Category 105

Category Formats Description

“$N8601EXw.d Format” on
page 122

Writes ISO 8601 duration, datetime, and interval forms
using the extended notations Pyyyy-mm-ddThh:mm:ss
and yyyy-mm-ddThh:mm:ss, using an x for digit of an
omitted component.

“$N8601Hw.d Format” on
page 123

Writes ISO 8601 duration, datetime, and interval forms
P nYnMnDTnHnM nS and yyyy-mm-ddThh:mm:ss,
dropping omitted components in duration values and
using a hyphen (-)for omitted components in datetime
values.

“$N8601Xw.d Format” on
page 125

Writes ISO 8601 duration, datetime, and interval forms
P nYnMnDTnHnM nS and yyyy-mm-ddThh:mm:ss,
dropping omitted components in duration values and
using an x for each digit of an omitted component in
datetime values.

“B8601DAw. Format” on
page 138

Writes date values using the IOS 8601 base notation
yyyymmdd .

“B8601DNw. Format” on
page 139

Writes the date from a datetime value using the ISO
8601 basic notation yyyymmdd.

“B8601DTw.d Format” on
page 140

Writes datetime values in the ISO 8601 basic notation
yyyymmdd Thhmmssffffff.

“B8601DZw. Format” on
page 141

Writes datetime values in the Coordinated Universal
Time (UTC) time scale using ISO 8601 datetime and
time zone basic notation yyyymmdd Thhmmss+|-hhmm.

“B8601LZw. Format” on
page 143

Writes time values as local time by appending a time zone
offset difference between the local time and UTC, using
the ISO 8601 basic time notation hhmmss+|-hhmm.

“B8601TMw.d Format” on
page 144

Writes time values using the ISO 8601 basic notation
hhmmssffff .

“B8601TZw. Format” on
page 145

Adjusts time values to the Coordinated Universal Time
(UTC) and writes them using the ISO 8601 basic time
notation hhmmss+|- hhmm.

“E8601DAw. Format” on
page 170

Writes date values using the ISO 8601 extended notation
yyyy-mm-dd.

“E8601DNw. Format” on
page 171

Writes the date from a SAS datetime value using the
ISO 8601 extended notation yyyy-mm-dd.

“E8601DTw.d Format” on
page 172

Writes datetime values in the ISO 8601 extended
notation yyyy-mm-ddThh:mm:ss.ffffff.

“E8601DZw. Format” on
page 173

Writes datetime values in the Coordinated Universal
Time (UTC) time scale using ISO 8601 datetime and
time zone extended notations
yyyy-mm-ddThh:mm:ss+|-hh:mm.

“E8601LZw. Format” on
page 174

Writes time values as local time, appending the
Coordinated Universal Time (UTC) offset for the local
SAS session, using the ISO 8601 extended time notation
hh:mm:ss+|-hh:mm.

106 Formats by Category � Chapter 3

Category Formats Description

“E8601TMw.d Format” on
page 176

Writes time values using the ISO 8601 extended notation
hh:mm:ss.ffffff.

“E8601TZw.d Format” on
page 178

Adjusts time values to the Coordinated Universal Time
(UTC) and writes them using the ISO 8601 extended
notation hh:mm :ss+|-hh:mm.

Numeric “BESTw. Format” on page
134

SAS chooses the best notation.

“BESTDw.p Format” on
page 136

Prints numeric values, lining up decimal places for
values of similar magnitude, and prints integers without
decimals.

“BINARYw. Format” on
page 137

Converts numeric values to binary representation.

“COMMAw.d Format” on
page 147

Writes numeric values with a comma that separates
every three digits and a period that separates the
decimal fraction.

“COMMAXw.d Format” on
page 148

Writes numeric values with a period that separates every
three digits and a comma that separates the decimal
fraction.

“Dw.p Format” on page 149 Prints numeric values, possibly with a great range of
values, lining up decimal places for values of similar
magnitude.

“DOLLARw.d Format” on
page 160

Writes numeric values with a leading dollar sign, a
comma that separates every three digits, and a period
that separates the decimal fraction.

“DOLLARXw.d Format” on
page 161

Writes numeric values with a leading dollar sign, a
period that separates every three digits, and a comma
that separates the decimal fraction.

“Ew. Format” on page 169 Writes numeric values in scientific notation.

“FLOATw.d Format” on
page 180

Generates a native single-precision, floating-point value
by multiplying a number by 10 raised to the dth power.

“FRACTw. Format” on
page 182

Converts numeric values to fractions.

“HEXw. Format” on page
183

Converts real binary (floating-point) values to
hexadecimal representation.

“IBw.d Format” on page
188

Writes native integer binary (fixed-point) values,
including negative values.

“IBRw.d Format” on page
189

Writes integer binary (fixed-point) values in Intel and
DEC formats.

“IEEEw.d Format” on page
191

Generates an IEEE floating-point value by multiplying a
number by 10 raised to the dth power.

“NEGPARENw.d Format”
on page 207

Writes negative numeric values in parentheses.

“NUMXw.d Format” on
page 208

Writes numeric values with a comma in place of the
decimal point.

Formats � Formats by Category 107

Category Formats Description

“OCTALw. Format” on
page 209

Converts numeric values to octal representation.

“PDw.d Format” on page
210

Writes data in packed decimal format.

“PERCENTw.d Format” on
page 214

Writes numeric values as percentages.

“PERCENTNw.d Format”
on page 215

Produces percentages, using a minus sign for negative
values.

“PIBw.d Format” on page
217

Writes positive integer binary (fixed-point) values.

“PIBRw.d Format” on page
219

Writes positive integer binary (fixed-point) values in
Intel and DEC formats.

“PKw.d Format” on page
220

Writes data in unsigned packed decimal format.

“PVALUEw.d Format” on
page 221

Writes p-values.

“RBw.d Format” on page
224

Writes real binary data (floating-point) in real binary
format.

“ROMANw. Format” on
page 226

Writes numeric values as roman numerals.

“S370FFw.d Format” on
page 227

Writes native standard numeric data in IBM mainframe
format.

“S370FIBw.d Format” on
page 228

Writes integer binary (fixed-point) values, including
negative values, in IBM mainframe format.

“S370FIBUw.d Format” on
page 229

Writes unsigned integer binary (fixed-point) values in
IBM mainframe format.

“S370FPDw.d Format” on
page 231

Writes packed decimal data in IBM mainframe format.

“S370FPDUw.d Format”
on page 233

Writes unsigned packed decimal data in IBM mainframe
format.

“S370FPIBw.d Format” on
page 234

Writes positive integer binary (fixed-point) values in IBM
mainframe format.

“S370FRBw.d Format” on
page 235

Writes real binary (floating-point) data in IBM
mainframe format.

“S370FZDw.d Format” on
page 237

Writes zoned decimal data in IBM mainframe format.

“S370FZDLw.d Format” on
page 238

Writes zoned decimal leading–sign data in IBM
mainframe format.

“S370FZDSw.d Format” on
page 239

Writes zoned decimal separate leading-sign data in IBM
mainframe format.

“S370FZDTw.d Format” on
page 240

Writes zoned decimal separate trailing-sign data in IBM
mainframe format.

“S370FZDUw.d Format”
on page 241

Writes unsigned zoned decimal data in IBM mainframe
format.

108 Dictionary � Chapter 3

Category Formats Description

“SSNw. Format” on page
245

Writes Social Security numbers.

“VAXRBw.d Format” on
page 252

Writes real binary (floating-point) data in VMS format.

“VMSZNw.d Format” on
page 253

Generates VMS and MicroFocus COBOL zoned numeric
data.

“w.d Format” on page 254 Writes standard numeric data one digit per byte.

“WORDFw. Format” on
page 267

Writes numeric values as words with fractions that are
shown numerically.

“WORDSw. Format” on
page 268

Writes numeric values as words.

“Zw.d Format” on page 283 Writes standard numeric data with leading 0s.

“ZDw.d Format” on page
284

Writes numeric data in zoned decimal format .

Dictionary

$ASCIIw. Format

Converts native format character data to ASCII representation.

Category: Character
Alignment: left

Syntax
$ASCIIw.

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32767

Details
If ASCII is the native format, no conversion occurs.

Comparisons
� On EBCDIC systems, $ASCIIw. converts EBCDIC character data to ASCIIw.

Formats � $BASE64Xw. Format 109

� On all other systems, $ASCIIw. behaves like the $CHARw. format.

Examples
put x $ascii3.;

Value of x Results

abc 616263

ABC 414243

(); 28293B

* The results are hexadecimal representations of ASCII codes for characters. Each two
hexadecimal characters correspond to one byte of binary data, and each byte corresponds to
one character.

$BASE64Xw. Format

Converts character data into ASCII text by using Base 64 encoding.

Category: Character

Alignment: left

Syntax
$BAS64Xw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1-32767

Details
Base 64 is an industry encoding method whose encoded characters are determined by
using a positional scheme that uses only ASCII characters. Several Base 64 encoding
schemes have been defined by the industry for specific uses, such as e-mail or content
masking. SAS maps positions 0 - 61 to the characters A - Z, a - z, and 0 - 9. Position 62
maps to the character +, and position 63 maps to the character /.

The following are some uses of Base 64 encoding:

� embed binary data in an XML file

� encode passwords

� encode URLs

110 $BINARYw. Format � Chapter 3

The ’=’ character in the encoded results indicates that the results have been padded
with zero bits. In order for the encoded characters to be decoded, the ’=’ must be
included in the value to be decoded.

Examples

put x $base64x64.;

Value of x Results

"FCA01A7993BC" RkNBMDFBNzk5M0JD

"MyPassword" TXlQYXNzd29yZA==

"www.mydomain.com/myhiddenURL" d3d3Lm15ZG9tYWluLmNvbi9teWhpZGRlblVSTA==

See Also

Informat:
“$BASE64Xw. Informat” on page 1239

The XMLDOUBLE option of the LIBNAME Statement for the XML engine, in SAS
XML LIBNAME Engine: User’s Guide

$BINARYw. Format
Converts character data to binary representation.

Category: Character
Alignment: left

Syntax
$BINARYw.

Syntax Description

w
specifies the width of the output field.
Default: The default width is calculated based on the length of the variable to be

printed.
Range: 1–32767

Comparisons
The $BINARYw. format converts character values to binary representation. The
BINARYw. format converts numeric values to binary representation.

Formats � $CHARw. Format 111

Examples
put @1 name $binary16.;

Value of name Results

ASCII EBCDIC

----+----1----+----2 ----+----1----+----2

AB 0100000101000010 1100000111000010

$CHARw. Format
Writes standard character data.

Category: Character
Alignment: left

Syntax
$CHARw.

Syntax Description

w
specifies the width of the output field.
Default: 8 if the length of variable is undefined; otherwise, the length of the variable
Range: 1–32767

Comparisons
� The $CHARw. format is identical to the $w. format.
� The $CHARw. and $w. formats do not trim leading blanks. To trim leading blanks,

use the LEFT function to left align character data, or use the PUT statement with
the colon (:) format modifier and the format of your choice to produce list output.

� Use the following table to compare the SAS format $CHAR8. with notation in
other programming languages:

Language Notation

SAS $CHAR8.

C char [8]

COBOL PIC x(8)

Fortran A8

PL/I A(8)

112 $EBCDICw. Format � Chapter 3

Examples
put @7 name $char4.;

Value of name Results

----+----1

XYZ XYZ

$EBCDICw. Format

Converts native format character data to EBCDIC representation.

Category: Character
Alignment: left

Syntax
$EBCDICw.

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–32767

Details
If EBCDIC is the native format, no conversion occurs.

Comparisons
� On ASCII systems, $EBCDICw. converts ASCII character data to EBCDIC.
� On all other systems, $EBCDICw. behaves like the $CHARw. format.

Formats � $HEXw. Format 113

Examples

put name $ebcdic3.;

Value of name Results*

qrs 9899A2

QRS D8D9E2

+;> 4E5E6E

* The results are shown as hexadecimal representations of EBCDIC codes for characters. Each
two hexadecimal characters correspond to one byte of binary data, and each byte corresponds
to one character.

$HEXw. Format

Converts character data to hexadecimal representation.

Category: Character
Alignment: left
See: $HEXw. Format in the documentation for your operating environment.

Syntax
$HEXw.

Syntax Description

w
specifies the width of the output field.
Default: The default width is calculated based on the length of the variable to be

printed.
Range: 1–32767
Tip: To ensure that SAS writes the full hexadecimal equivalent of your data, make

w twice the length of the variable or field that you want to represent.
Tip: If w is greater than twice the length of the variable that you want to represent,

$HEXw. pads it with blanks.

114 $MSGCASEw. Format � Chapter 3

Details
The $HEXw. format converts each character into two hexadecimal characters. Each
blank counts as one character, including trailing blanks.

Comparisons
The HEXw. format converts real binary numbers to their hexadecimal equivalent.

Examples
put @5 name $hex4.;

Value of name Results

EBCDIC ASCII

----+----1 ----+----1

AB C1C2 4142

$MSGCASEw. Format

Writes character data in uppercase when the MSGCASE system option is in effect.

Category: Character
Alignment: left

Syntax
$MSGCASEw.

Syntax Description

w
specifies the width of the output field.
Default: 1 if the length of the variable is undefined. Otherwise, the default is the

length of the variable
Range: 1–32767

Formats � $N8601Bw.d Format 115

Details
When the MSGCASE= system option is in effect, all notes, warnings, and error
messages that SAS generates appear in uppercase. Otherwise, all notes, warnings, and
error messages appear in mixed case. You specify the MSGCASE= system option in the
configuration file or during the SAS invocation.

Operating Environment Information: For more information about the MSGCASE=
system option, see the SAS documentation for your operating environment. �

Examples

put name $msgcase.;

Value of name Results

sas SAS

$N8601Bw.d Format

Writes ISO 8601 duration, datetime, and interval forms using the basic notations
PnYnMnDTnHnMnS and yyyymmddThhmmss.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.4.4 Complete representation

Syntax
$N8601Bw.d

116 $N8601Bw.d Format � Chapter 3

Syntax Description

w
specifies the width of the output field.

Default: 50

Range: 1 - 200

Requirement: The minimum length for a duration value or a datetime value is 16.
The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.

Default: 0

Range: 0 - 3

Details

The $N8601B format writes ISO 8601 duration, datetime, and interval values as
character data for the following basic notations:

PnYnMnDTnHnMnS

yyyymmddThhmmss

PnYnMnDTnHnMnS/yyyymmddThhmmss

yyyymmddThhmmssT/PnYnMnDTnHnMnS

The lowest order component can contain fractions, as in these examples:

p2y3.5m

p00020304T05.335

Examples

put nb $n8601b.;

Value of nb Results

0002405050112FFC P2Y4M5DT5H1M12S

2008915155300FFD 20080915T155300

2008915000000FFD2010915000000FFD 20080915T000000/20100915T000000

0033104030255FFC2008915155300FFD P33Y1M4DT3H2M55S/20080915T155300

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

Formats � $N8601BAw.d Format 117

$N8601BAw.d Format

Writes ISO 8601 duration, datetime, and interval forms using the basic notations
PyyyymmddThhmmss and yyyymmddThhmmss.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: No

ISO 8601 Element: 5.5.4.2 Alternative format

Syntax
$N8601BAw.d

Syntax Description

w
specifies the width of the output field.

Default: 50

Range: 1 - 200

Requirement: The minimum length for a duration value or a datetime value is 16.
The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.

Default: 0

Range: 0 - 3

Details
The $N8601BA format writes ISO 8601 duration, datetime, and interval values as
character data for the following basic notations:

PyyyymmddThhmmss

yyyymmddThhmmss

PyyyymmddThhmmss/yyyymmddThhmmss

yyyymmddThhmmss/PyyyymmddThhmmss

The lowest order component can contain fractions, as in these examples:

p00023.5

00020304T05.335

Examples

put @1 nba $N8601ba.;

118 $N8601Ew.d Format � Chapter 3

Value of nba Results

00024050501127D0 P00020405T050112.5

2008915155300FFD 20080915T155300

00023040506075282008915155300FFD P00020304T050607.33/20080915T155300

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

$N8601Ew.d Format

Writes ISO 8601 duration, datetime, and interval forms using the extended notations
PnYnMnDTnHnMnS and yyyy-mm-ddThh:mm:ss.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.4.4 Complete representation

Syntax
$N8601Ew.d

Syntax Description

w
specifies the width of the output field.
Default: 50
Range: 1 - 200
Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.
Default: 0
Range: 0 - 3

Details
The $N8601B format writes ISO 8601 duration, datetime, and interval values as
character data for the following basic notations:

Formats � $N8601EAw.d Format 119

PnYnMnDTnHnMnS

yyyy-mm-ddThh:mm:ss

PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS

The lowest order component can contain fractions, as in these examples:

p2y3.5m

p0002--03--04T05.335

Examples

put @1 ne $n8601e.;

Value of ne Results

00024050501127D0 P2Y4M5DT5H1M12.5S

2008915155300FFD 2008-09-15T15:53:00

2008915000000FFD2010915000000FFD 2008-09-15T00:00:00/2010-09-15T00:00:00

0033104030255FFC2008915155300FFD P33Y1M4DT3H2M55S/2008-09-15T15:53:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

$N8601EAw.d Format

Writes ISO 8601 duration, datetime, and interval forms using the extended notations
Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: No

ISO 8601 Element: 5.4.4 Complete representation

Syntax

$N8601EAw.d

120 $N8601EAw.d Format � Chapter 3

Syntax Description

w
specifies the width of the output field.

Default: 50

Range: 1 - 200

Requirement: The minimum length for a duration value or a datetime value is 16.
The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.

Default: 0

Range: 0 - 3

Details

The $N8601EA format writes ISO 8601 duration, datetime, and interval values as
character data for the following basic notations:

Pyyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss

Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss

The lowest order component can contain fractions, as in these examples:

p00023.5

0002--03--04T05.335

Examples

put @1 nea $N8601ea.;

Value of nea Results

00024050501127D0 P0002-04-05T05:01:12.500

2008915155300FFD 2008-09-15T15:53:00

00023040506075282008915155300FFD P0002-03-04T05:06:07.330/2008-09-15T15:53:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

Formats � $N8601EHw.d Format 121

$N8601EHw.d Format

Writes ISO 8601 duration, datetime, and interval forms using the extended notations
Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using a hyphen (-)for omitted components.

Category: Date and Time

ISO 8601

Time Zone Format: No

ISO 8601 Element: 5.4.4 Complete representation

Syntax
$N8601EHw.d

Syntax Description

w
specifies the width of the output field.

Default: 50

Range: 1 - 200

Requirement: The minimum length for a duration value or a datetime value is 16.
The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.

Default: 0

Range: 0 - 3

Details
The $N8601H format writes ISO 8601 duration, datetime, and interval values as
character data, using a hyphen (-)to represent omitted components, for the following
extended notations:

Pyyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss

Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed, they are never truncated.

Examples

put a $n8601eh.;

122 $N8601EXw.d Format � Chapter 3

Value of a Results

00023FFFFFFFFFFC2008FFF15FFFFFFD P0002-03---T-:-:-/2008------T15:-:-

2008FFF15FFFFFFdFFFF3FF1553FFFFC 2008------T15:-:-/P---03---T15:53:-

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

$N8601EXw.d Format

Writes ISO 8601 duration, datetime, and interval forms using the extended notations
Pyyyy-mm-ddThh:mm:ss and yyyy-mm-ddThh:mm:ss, using an x for digit of an omitted component.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.5.3, 5.5.4.1, 5.5.4.2

Syntax
$N8601Xw.d

Syntax Description

w
specifies the width of the output field.
Default: 50
Range: 1 - 200
Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.
Default: 0
Range: 0 - 3

Details
The $N8601H format writes ISO 8601 duration, datetime, and interval values as
character data, using a hyphen (-) to represent omitted components, for the following
extended notations:

Formats � $N8601Hw.d Format 123

Pyyyy-mm-ddThh:mm:ss
yyyy-mm-ddThh:mm:ss

Pyyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ss/Pyyyy-mm-ddThh:mm:ss
yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed, they are never truncated.

Examples

put nex $n8601ex.;

Value of nex Results

00023FFFFFFFFFFC2008FFF15FFFFFFD P0002-03xxTxx:xx:xx/2008--xx-xxT15:xx:xx

2008FFF15FFFFFFdFFFF3FF1553FFFFC 2008-xx-xxT15:xx:xx/Pxxxx-03-xxT15:53:xx

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

$N8601Hw.d Format

Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and
yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using a hyphen (-
)for omitted components in datetime values.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.5.3, 5.5.4.1, 5.5.4.2

Syntax
$N8601Hw.d

Syntax Description

w
specifies the width of the output field.
Default: 50

124 $N8601Hw.d Format � Chapter 3

Range: 1 - 200
Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.
Default: 0
Range: 0 - 3

Details
The $N8601H format writes ISO 8601 durations, intervals, and datetimes in the
following forms, omitting components in the PnYnMnDTnHnMnS form and using a
hyphen (-)to represent omitted components in the datetime form:

PnYnMnDTnHnMnS
yyyy-mm-ddThh:mm:ss
PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss

yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS
yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed, they are never truncated.

Examples

put nh $n8601h.;

Value of nh Results

0002304FFFFFFFFC2008FFF15FFFFFFD P2Y3M4D/2008------T15:-:-

FFFF102FFFFFFFFD2008FFF15FFFFFFD ---01-02T-:-:-0/2008------T15:-:-

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

Formats � $N8601Xw.d Format 125

$N8601Xw.d Format

Writes ISO 8601 duration, datetime, and interval forms PnYnMnDTnHnMnS and
yyyy-mm-ddThh:mm:ss, dropping omitted components in duration values and using an x for each
digit of an omitted component in datetime values.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.5.3, 5.5.4.1, 5.5.4.2

Syntax
$N8601Xw.d

Syntax Description

w
specifies the width of the output field.
Default: 50
Range: 1 - 200
Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the lowest order component. This
argument is optional.
Default: 0
Range: 0 - 3

126 $OCTALw. Format � Chapter 3

Details
The $N8601X format writes ISO 8601 durations, intervals, and datetimes in the
following forms, omitting components in the PnYnMnDTnHnMnS form and using an x
to represent omitted components in the datetime form:

PnYnMnDTnHnMnS
yyyy-mm-ddThh:mm:ss

PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ss
yyyy-mm-ddThh:mm:ssT/PnYnMnDTnHnMnS
yyyy-mm-ddThh:mm:ss/yyyy-mm-ddThh:mm:ss

Omitted datetime components are always displayed, they are never truncated.

Examples

put nx $n8601x.;

Value of nx Results

0002304FFFFFFFFC2008FFF15FFFFFFD P2Y3M4D/2008-xx-xxT15:xx:xx

FFFF102FFFFFFFFD2008FFF15FFFFFFd xxxx-01-02Txx:xx:xx/2008-xx-xxT15:xx:xx

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

$OCTALw. Format

Converts character data to octal representation.

Category: Character
Alignment: left

Syntax
$OCTALw.

Formats � $OCTALw. Format 127

Syntax Description

w
specifies the width of the output field.
Default: The default width is calculated based on the length of the variable to be

printed.
Range: 1–32767
Tip: Because each character value generates three octal characters, increase the

value of w by three times the length of the character value.

Comparisons
The $OCTALw. format converts character values to the octal representation of their
character codes. The OCTALw. format converts numeric values to octal representation.

Example

The following example shows ASCII output when you use the $OCTALw. format.

data _null_;
infile datalines truncover;
input item $5.;
put item $octal15.;
datalines;

art
rice
bank
;
run;

SAS writes the following results to the log.

141162164040040
162151143145040
142141156153040

128 $QUOTEw. Format � Chapter 3

$QUOTEw. Format

Writes data values that are enclosed in double quotation marks.

Category: Character
Alignment: left

Syntax
$QUOTEw.

Syntax Description

w
specifies the width of the output field.
Default: 2 if the length of the variable is undefined. Otherwise, the default is the

length of the variable + 2
Range: 2–32767
Tip: Make w wide enough to include the left and right quotation marks.

Details
The following list describes the output that SAS produces when you use the $QUOTEw.
format. For examples of these items, see “Examples” on page 129.

� If your data value is not enclosed in quotation marks, SAS encloses the output in
double quotation marks.

� If your data value is not enclosed in quotation marks, but the value contains a
single quotation mark, SAS

� encloses the data value in double quotation marks
� does not change the single quotation mark.

� If your data value begins and ends with single quotation marks, and the value
contains double quotation marks, SAS

� encloses the data value in double quotation marks
� duplicates the double quotation marks that are found in the data value
� does not change the single quotation marks.

� If your data value begins and ends with single quotation marks, and the value
contains two single contiguous quotation marks, SAS

� encloses the value in double quotation marks
� does not change the single quotation marks.

� If your data value begins and ends with single quotation marks, and contains both
double quotation marks and single, contiguous quotation marks, SAS

� encloses the value in double quotation marks
� duplicates the double quotation marks that are found in the data value
� does not change the single quotation marks.

Formats � $REVERJw. Format 129

� If the length of the target field is not large enough to contain the string and its
quotation marks, SAS returns all blanks.

Examples
put name $quote20.;

Value of name Results

----+----1

SAS "SAS"

SAS’s "SAS’s"

’ad"verb"’ "’ad""verb""’"

’ad’’verb’ "’ad’’verb’"

’"ad"’’"verb"’ "’""ad""’’""verb""’"

deoxyribonucleotide

$REVERJw. Format

Writes character data in reverse order and preserves blanks.

Category: Character
Alignment: right

Syntax
$REVERJw.

130 $REVERSw. Format � Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 1 if w is not specified
Range: 1–32767

Comparisons
The $REVERJw. format is similar to the $REVERSw. format except that $REVERSw.
left aligns the result by trimming all leading blanks.

Examples
put @1 name $reverj7.;

Name Results

----+----1

ABCD### DCBA

###ABCD DCBA

* The character # represents a blank space.

$REVERSw. Format

Writes character data in reverse order and left aligns

Category: Character
Alignment: left

Syntax
$REVERSw.

Formats � $UPCASEw. Format 131

Syntax Description

w
specifies the width of the output field.

Default: 1 if w is not specified

Range: 1–32767

Comparisons
The $REVERSw. format is similar to the $REVERJw. format except that $REVERJw.
does not left align the result.

Examples
put @1 name $revers7.;

Name Results

----+----1

ABCD### DCBA

###ABCD DCBA

* The character # represents a blank space.

$UPCASEw. Format

Converts character data to uppercase.

Category: Character

Alignment: left

Syntax
$UPCASEw.

Syntax Description

w
specifies the width of the output field.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the
length of the variable

Range: 1–32767

132 $VARYINGw. Format � Chapter 3

Details
Special characters, such as hyphens and other symbols, are not altered.

Examples

put @1 name $upcase9.;

Value of name Results

----+----1

coxe-ryan COXE-RYAN

$VARYINGw. Format

Writes character data of varying length.

Valid: in DATA step

Category: Character

Alignment: left

Syntax
$VARYINGw. length-variable

Syntax Description

w
specifies the maximum width of the output field for any output line or output file
record.

Default: 8 if the length of the variable is undefined. Otherwise, the default is the
length of the variable

Range: 1–32767

length-variable
specifies a numeric variable that contains the length of the current value of the
character variable. SAS obtains the value of the length-variable by reading it directly
from a field that is described in an INPUT statement, reading the value of a variable
in an existing SAS data set, or calculating its value.

Requirement: You must specify length-variable immediately after $VARYINGw. in
a SAS statement.

Restriction: Length-variable cannot be an array reference.

Formats � $VARYINGw. Format 133

Tip: If the value of length-variable is 0, negative, or missing, SAS writes nothing to
the output field. If the value of length-variable is greater than 0 but less than w,
SAS writes the number of characters that are specified by length-variable. If
length-variable is greater than or equal to w, SAS writes w columns.

Details
Use $VARYINGw. when the length of a character value differs from record to record.
After writing a data value with $VARYINGw., the pointer’s position is the first column
after the value.

Examples

Example 1: Obtaining a Variable Length Directly An existing data set variable
contains the length of a variable. The data values and the results follow the
explanation of this SAS statement:

put @10 name $varying12. varlen;

NAME is a character variable of length 12 that contains values that vary from 1 to 12
characters in length. VARLEN is a numeric variable in the same data set that contains
the actual length of NAME for the current observation.

Value of name* Results

----+----1----+----2----+

New York 8 New York

Toronto 7 Toronto

Buenos Aires 12 Buenos Aires

Tokyo 5 Tokyo

* The value of NAME appears before the value of VARLEN.

Example 2: Obtaining a Variable Length Indirectly Use the LENGTH function to
determine the length of a variable. The data values and the results follow the
explanation of these SAS statements:

varlen=length(name);
put @10 name $varying12. varlen;

The assignment statement determines the length of the varying-length variable. The
variable VARLEN contains this length and becomes the length-variable argument to the
$VARYING12. format.

Values* Results

----+----1----+----2----+

New York New York

Toronto Toronto

Buenos Aires Buenos Aires

Tokyo Tokyo

* The value of NAME appears before the value of VARLEN.

134 $w. Format � Chapter 3

$w. Format
Writes standard character data.

Category: Character
Alignment: left
Alias: $Fw.

Syntax
$w.

Syntax Description

w
specifies the width of the output field. You can specify a number or a column range.
Default: 1 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

Comparisons
The $w. format and the $CHARw. format are identical, and they do not trim leading
blanks. To trim leading blanks, use the LEFT function to left align character data, or
use list output with the colon (:) format modifier and the format of your choice.

Examples

put @10 name $5.;
put name $ 10-15;

Value of name* Results

----+----1----+----2

#Cary Cary

Tokyo Tokyo

* The character # represents a blank space.

BESTw. Format
SAS chooses the best notation.

Formats � BESTw. Format 135

Category: Numeric
Alignment: right
See: BESTw. Format in the documentation for your operating environment.

Syntax
BESTw.

Syntax Description

w
specifies the width of the output field.
Default: 12
Tip: If you print numbers between 0 and .01 exclusively, then use a field width of at

least 7 to avoid excessive rounding. If you print numbers between 0 and -.01
exclusively, then use a field width of at least 8.

Range: 1–32

Details
When a format is not specified for writing a numeric value, SAS uses the BESTw.
format as the default format. The BESTw. format writes numbers as follows:

� Values are written with the maximum precision, as determined by the width.
� Integers are written without decimals.
� Numbers with decimals are written with as many digits to the left and right of the

decimal point as needed or as allowed by the width.
� Values that can be written within the given width are written without trailing

zeros.
� Values that cannot be written within the given width are written with the

maximum allowable number of decimal places as determined by the width.
� Extreme values might be written in scientific notation.

SAS stores the complete value regardless of the format that is used.

Comparisons
� The BESTw. format writes as many significant digits as possible in the output

field, but if the numbers vary in magnitude, the decimal points do not line up.
Integers print without a decimal.

� The Dw.p format writes numbers with the desired precision and more alignment
than the BESTw format.

� The BESTDw.p format is a combination of the BESTw. format and the Dw.p
format in that it formats all numeric data, and it does a better job of aligning
decimals than the BESTw. format.

� The w.d format aligns decimal points, if possible, but does not necessarily show
the same precision for all numbers.

Examples

The following statements produce these results.

136 BESTDw.p Format � Chapter 3

SAS Statements Results

----+----1----+----2

x=1257000;
put x best6.; 1.26E6

x=1257000;
put x best3.; 1E6

See Also
Format:
“BESTDw.p Format” on page 136

BESTDw.p Format

Prints numeric values, lining up decimal places for values of similar magnitude, and prints
integers without decimals.

Category: Numeric
Alignment: right

Syntax
BESTDw.p

Syntax Description

w
specifies the width of the output field.
Default: 12
Range: 1–32

p
specifies the precision. This argument is optional.
Default: 3
Range: 0 to w–1
Requirement: must be less than w
Tip: If p is omitted or is specified as 0, then p is set to 3.

Details
The BESTDw.p format writes numbers so that the decimal point aligns in groups of
values with similar magnitude. Integers are printed without a decimal point. Larger
values of p print the data values with more precision and potentially more shifts in the
decimal point alignment. Smaller values of p print the data values with less precision
and a greater chance of decimal point alignment.

Formats � BINARYw. Format 137

The format chooses the number of decimal places to print for ranges of values, even
when the underlying values can be represented with fewer decimal places.

Comparisons
� The BESTw. format writes as many significant digits as possible in the output

field, but if the numbers vary in magnitude, the decimal points do not line up.
Integers print without a decimal.

� The Dw.p format writes numbers with the desired precision and more alignment
than the BESTw format.

� The BESTDw.p format is a combination of the BESTw. format and the Dw.p
format in that it formats all numeric data, and it does a better job of aligning
decimals than the BESTw. format.

� The w.d format aligns decimal points, if possible, but it does not necessarily show
the same precision for all numbers.

Examples

put x bestd14.;

Data Line Results

—-+—-1—-+

12345
12345

123.45 123.4500000

1.2345 1.2345000

.12345
0.1234500

1.23456789 1.23456789

See Also
Formats:
“BESTw. Format” on page 134
“Dw.p Format” on page 149

BINARYw. Format

Converts numeric values to binary representation.

Category: Numeric
Alignment: left

Syntax
BINARYw.

138 B8601DAw. Format � Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–64

Comparisons
BINARYw. converts numeric values to binary representation. The $BINARYw. format
converts character values to binary representation.

Examples
put @1 x binary8.;

Value of x Results

----+----1

123.45 01111011

123 01111011

-123 10000101

B8601DAw. Format

Writes date values using the IOS 8601 base notation yyyymmdd.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
B8601DAw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Requirement: The width of the output field must be 10.

Formats � B8601DNw. Format 139

Details
The B8601DA format writes the ISO 8601 basic date notation yyyymmdd:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

Examples

put bda $b8601da.;

Value of bda Results

17790 20080915

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601DNw. Format

Writes the date from a datetime value using the ISO 8601 basic notation yyyymmdd.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: No

ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
B8601DNw.

Syntax Description

w
specifies the width of the output field.

Default: 10

Requirement: The width of the input field must be 10.

140 B8601DTw.d Format � Chapter 3

Details
The B8601DN format writes the date from a datetime value using the ISO 8601 basic
date notation yyyymmdd:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

Examples

put bdn b8601dn.;

Value of bdn Results

1537113180 20080915

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601DTw.d Format

Writes datetime values in the ISO 8601 basic notation yyyymmddThhmmssffffff.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: No

ISO 8601 Element: 5.4.1 Complete representation

Syntax
B8601DTw.d

Syntax Description

w
specifies the width of the output field.

Default: 19

Range: 19 - 26

Formats � B8601DZw. Format 141

d
specifies the number of digits to the right of the seconds value that represents a
fraction of a second. This argument is optional.
Default: 0
Range: 0 - 6

Details
The B8601DT format writes ISO 8601 basic datetime notation yyyymmddThhmmssffffff:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

hh is a two-digit hour (zero padded), between 00 - 23

mm is a two-digit minute (zero padded), between 00 - 59

ss is a two-digit second (zero padded), between 00 - 59

.ffffff are optional fractional seconds, with a precision of up to six digits,
where each digit is between 0 - .

Examples

put bdt b8601dt.;

Value of bdt Results

——+——1

1537113180 20080915T155300

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601DZw. Format

Writes datetime values in the Coordinated Universal Time (UTC) time scale using ISO 8601
datetime and time zone basic notation yyyymmddThhmmss+|-hhmm.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: Yes
ISO 8601 Element: 5.4.1 Complete representation

142 B8601DZw. Format � Chapter 3

Syntax
B8601DZw.

Syntax Description

w
specifies the width of the output field.
Default: 26
Range: 20 - 35

Details
UTC values specify a time and a time zone based on the zero meridian in Greenwich,
England. The B8602DZ format writes SAS datetime values for the zero meridian date
and time using one of the following ISO 8601 basic datetime notations:

yyyymmddThhmmss+|–hhmm
is the form used whenw is large enough to support this time zone notation.

yyyymmddThhmmssZ
is the form used when w is not large enough to support the +|-hhmm time zone
notation.

where

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

hh is a two-digit hour (zero padded), between 00 - 23

mm is a two-digit minute (zero padded), between 00 - 59

ss is a two-digit second (zero padded), between 00 - 59

Z indicates that the time is for zero meridian (Greenwich, England) or
UTC time

+|-hhmm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|-hhmm (that is, + or - and four characters).

Use + for time zones east of the zero meridian and use - for time
zones west of the zero meridian. For example, +0200 indicates a
two-hour time difference to the east of the zero meridian, and -0600
indicates a six-hour time differences to the west of the zero meridian.
Restriction: The shorter form +|-hh is not supported.

Examples

SAS Statement Value of bdz Results

put bdz b8601dz20.; 1537113180 20080915T155300Z

put bdz b8601dz26.; 1537113180 20080915T155300+0000

Formats � B8601LZw. Format 143

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601LZw. Format

Writes time values as local time by appending a time zone offset difference between the local
time and UTC, using the ISO 8601 basic time notation hhmmss+|-hhmm.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Format: Yes. The format appends the UTC offset to the value as determined by
the local SAS session.
ISO 8601 Element: 5.3.3, 5.3.4.2

Syntax
B8601LZw.

Syntax Description

w
specifies the width of the output field.
Default: 14
Range: 9 - 20

Details
The B8602LZ format writes time values without making any adjustments and appends
the UTC time zone offset for the local SAS session, using the following ISO 8601 basic
notation:

hhmmss+|–hhmm

where

hh is a two-digit hour (zero padded), between 00 - 23

mm is a two-digit minute (zero padded), between 00 - 59

ss is a two-digit second (zero padded), between 00 - 59

+|-hhmm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|-hhmm (that is, + or - and five characters).

Use + for time zones east of the zero meridian and use - for time
zones west of the zero meridian. For example, +0200 indicates a two
hour time difference to the east of the zero meridian, and -0600
indicates a six hour time differences to the west of the zero meridian.

144 B8601TMw.d Format � Chapter 3

Restriction: The shorter form +|-hh is not supported.

When SAS reads a UTC time by using the B8601TZ informat, and the adjusted time
is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time
is between 000000 and 235959. If the B8601LZ format attempts to format a time
outside of this time range, the time is formatted with stars to indicate that the value is
out of range.

Examples

The following PUT statement writes the time for the Eastern Standard time zone:
put blz b8601lz.;

Value of blz Results

46380 125300-0500

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601TMw.d Format

Writes time values using the ISO 8601 basic notation hhmmssffff.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: No

ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
B8601TMw.d

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 8 - 15

Formats � B8601TZw. Format 145

d
specifies the number of digits to the right of the seconds value that represent a
fraction of a second. This argument is optional.

Default: 0

Range: 0 - 6

Details
The B8601TM format writes SAS time values using the following ISO 8601 basic time
notation hhmmssffffff:

hh is a two-digit hour (zero padded), between 00 - 23.

mm is a two-digit minute (zero padded), between 00 - 59.

ss is a two-digit second (zero padded), between 00 - 59.

ffffff are optional fractional seconds, with a precision of up to six digits,
where each digit is between 0 - 9.

Examples

put btm b8601tm.;.

Value of btm Results

57180 155300

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

B8601TZw. Format

Adjusts time values to the Coordinated Universal Time (UTC) and writes them using the ISO 8601
basic time notation hhmmss+|-hhmm.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Format: Yes

ISO 8601 Element: 5.3.3, 5.3.4

Syntax
B8601TZw.

146 B8601TZw. Format � Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 14

Range: 9–20

Details
UTC time values specify a time and a time zone based on the zero meridian in
Greenwich, England. The B8602TZ format adjusts the time value to be the time at the
zero meridian and writes it in one of the following ISO 8601 basic time notations:

hhmmss+|–
hhmm

is the form used when w is large enough to support this time
notation.

hhmmssZ is the form used when w is not large enough to support the
+|-hhmm time zone notation.

where

hh is a two-digit hour (zero padded), between 00 and 23.

mm is a two-digit minute (zero padded), between 00 and 59.

ss is a two-digit second (zero padded), between 00 and 59.

Z indicates that the time is for zero meridian (Greenwich, England) or
UTC time.

+|–hh:mm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|–hhmm (that is, + or – and four
characters).

Use + for time zones east of the zero meridian and use – for time
zones west of the zero meridian. For example, +0200 indicates a two
hour time difference to the east of the zero meridian, and –0600
indicates a six hour time differences to the west of the zero meridian.
Restriction: The shorter form +|–hh is not supported.

When SAS reads a UTC time by using the B8601TZ informat, and the adjusted time
is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time
is between 000000 and 240000. If the B8601TZ format attempts to format a time
outside of this time range, the time is formatted with stars to indicate that the value is
out of range.

Comparisons
For time values between 000000 and 240000, the B8601TZ format adjusts the time
value to be the time at the zero meridian and writes it in the international standard
extended time notation. The B8601LZ format makes no adjustment to the time and
writes time values in the international standard extended time notation, using a UTC
time zone offset for the local SAS session.

Examples

put btz b8601tz.;

Formats � COMMAw.d Format 147

Values for btz Results

73441 202401+0000

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

COMMAw.d Format
Writes numeric values with a comma that separates every three digits and a period that separates
the decimal fraction.

Category: Numeric
Alignment: right

Syntax
COMMAw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 1–32
Tip: Make w wide enough to write the numeric values, the commas, and the

optional decimal point.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Range: 0–31
Requirement: must be less than w

Details
The COMMAw.d format writes numeric values with a comma that separates every
three digits and a period that separates the decimal fraction.

Comparisons
� The COMMAw.d format is similar to the COMMAXw.d format, but the

COMMAXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The COMMAw.d format is similar to the DOLLARw.d format except that the
COMMAw.d format does not print a leading dollar sign.

148 COMMAXw.d Format � Chapter 3

Examples
put @10 sales comma10.2;

Value of sales Results

----+----1----+----2

23451.23 23,451.23

123451.234 123,451.23

See Also

Formats:

“COMMAXw.d Format” on page 148

“DOLLARw.d Format” on page 160

COMMAXw.d Format

Writes numeric values with a period that separates every three digits and a comma that separates
the decimal fraction.

Category: Numeric

Alignment: right

Syntax
COMMAXw.d

Syntax Description

w
specifies the width of the output field. This argument is optional.

Default: 6

Range: 1–32

Tip: Make w wide enough to write the numeric values, the commas, and the
optional decimal point.

d
specifies the number of digits to the right of the decimal point in the numeric value.

Range: 0–31

Requirement: must be less than w

Formats � Dw.p Format 149

Details
The COMMAXw.d format writes numeric values with a period that separates every
three digits and with a comma that separates the decimal fraction.

Comparisons
The COMMAw.d format is similar to the COMMAXw.d format, but the COMMAXw.d
format reverses the roles of the decimal point and the comma. This convention is
common in European countries.

Examples
put @10 sales commax10.2;

Value of sales Results

----+----1----+----2

23451.23 23.451,23

123451.234 123.451,23

Dw.p Format

Prints numeric values, possibly with a great range of values, lining up decimal places for values
of similar magnitude.

Category: Numeric
Alignment: right

Syntax
Dw.p

Syntax Description

w
specifies the width of the output field. This argument is optional.
Default: 12
Range: 1–32

150 Dw.p Format � Chapter 3

p
specifies the precision. This argument is optional.
Default: 3
Range: 0–9
Requirement: p must be less than w
Tip: If p is omitted or is specified as 0, then p is set to 3.
Tip: If zero is the desired precision, use the w.d format in place of the Dw.p format.

Details
The Dw.p format writes numbers so that the decimal point aligns in groups of values
with similar magnitude. Larger values of p print the data values with more precision
and potentially more shifts in the decimal point alignment. Smaller values of p print
the data values with less precision and a greater chance of decimal point alignment.

Comparisons
� The BESTw. format writes as many significant digits as possible in the output

field, but if the numbers vary in magnitude, the decimal points do not line up.
� Dw.p writes numbers with the desired precision and more alignment than the

BESTw format.
� The BESTDw.p format is a combination of the BESTw. format and the Dw.p

format in that it formats all numeric data, and it does a better job of aligning
decimals than the BESTw. format.

� The w.d format aligns decimal points, if possible, but it does not necessarily show
the same precision for all numbers.

Examples
put @1 x d10.4;

Value of x Results

----+----1----+----2

12345 12345.0

1234.5 1234.5

123.45 123.45000

12.345 12.34500

1.2345 1.23450

.12345 0.12345

Formats � DATEw. Format 151

See Also
Format:
“BESTDw.p Format” on page 136

DATEw. Format

Writes date values in the form ddmmmyy, ddmmmyyyy, or dd-mmm-yyyy.

Category: Date and Time
Alignment: right

Syntax
DATEw.

Syntax Description

w
specifies the width of the output field.
Default: 7
Range: 5–11
Tip: Use a width of 9 to print a 4-digit year without a separator between the day,

month, and year. Use a width of 11 to print a 4-digit year using a hyphen as a
separator between the day, month, and year

152 DATEw. Format � Chapter 3

Details
The DATEw. format writes SAS date values in the form ddmmmyy, ddmmmyyyy, or
dd-mmm-yyyy, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

Examples

The example table uses the input value of 17607, which is the SAS date value that
corresponds to March 16, 2008.

SAS Statement Results

----+----1----+

put day date5.; 16MAR

put day date6.; 16MAR

put day date7.; 16MAR08

put day date8.; 16MAR08

put day date9.; 16MAR2008

put day date11.; 16-MAR-2008

See Also

Function:
“DATE Function” on page 627

Informat:
“DATEw. Informat” on page 1280

Formats � DATEAMPMw.d Format 153

DATEAMPMw.d Format

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss with AM or PM.

Category: Date and Time

Alignment: right

Syntax
DATEAMPMw.d

Syntax Description

w
specifies the width of the output field.

Default: 19

Range: 7–40

Tip: SAS requires a minimum w value of 13 to write AM or PM. For widths
between 10 and 12, SAS writes a 24-hour clock time.

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.

Requirement: must be less than w

Range: 0–39

Note: If w–d< 17, SAS truncates the decimal values. �

Details
The DATEAMPMw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy
is a two-digit integer that represents the year.

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

154 DATETIMEw.d Format � Chapter 3

Comparisons
The DATEAMPMw.d format is similar to the DATETIMEw.d format except that
DATEAMPMw.d prints AM or PM at the end of the time.

Examples

The example table uses the input value of 1347455694, which is the SAS datetime
value that corresponds to 11:01:34 a.m. on April 20, 2003.

SAS Statement Results

----+----1----+----2----+

put event dateampm.; 20APR03:11:01:34 AM

put event dateampm7.; 20APR03

put event dateampm10.; 20APR:11

put event dateampm13.; 20APR03:11 AM

put event dateampm22.2; 20APR03:11:01:34.00 AM

See Also

Format:
“DATETIMEw.d Format” on page 154

DATETIMEw.d Format

Writes datetime values in the form ddmmmyy:hh:mm:ss.ss.

Category: Date and Time
Alignment: right

Syntax
DATETIMEw.d

Syntax Description

w
specifies the width of the output field.
Default: 16
Range: 7–40
Tip: SAS requires a minimum w value of 16 to write a SAS datetime value with the

date, hour, and seconds. Add an additional two places to w and a value to d to
return values with optional decimal fractions of seconds.

Formats � DATETIMEw.d Format 155

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.

Requirement: must be less than w

Range: 0–39

Note: If w–d< 17, SAS truncates the decimal values. �

Details

The DATETIMEw.d format writes SAS datetime values in the form
ddmmmyy:hh:mm:ss.ss, where

dd
is an integer that represents the day of the month.

mmm
is the first three letters of the month name.

yy
is a two-digit integer that represents the year.

hh
is an integer that represents the hour in 24–hour clock time.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Examples

The example table uses the input value of 1447213759, which is the SAS datetime
value that corresponds to 3:49:19 a.m. on November 10, 2005.

SAS Statement Results

----+----1----+----2

put event datetime.; 10NOV05:03:49:19

put event datetime7.; 10NOV05

put event datetime12.; 10NOV05:03

put event datetime18.; 10NOV05:03:49:19

put event datetime18.1; 10NOV05:03:49:19.0

put event datetime19.; 10NOV2005:03:49:19

put event datetime20.1; 10NOV2005:03:49:19.0

put event datetime21.2; 10NOV2005:03:49:19.00

156 DAYw. Format � Chapter 3

See Also

Formats:

“DATEw. Format” on page 151

“TIMEw.d Format” on page 246

Function:

“DATETIME Function” on page 629

Informats:

“DATEw. Informat” on page 1280

“DATETIMEw. Informat” on page 1281

“TIMEw. Informat” on page 1349

DAYw. Format

Writes date values as the day of the month.

Category: Date and Time

Alignment: right

Syntax
DAYw.

Syntax Description

w
specifies the width of the output field.

Default: 2

Range: 2–32

Examples

The example table uses the input value of 16601, which is the SAS date value that
corresponds to June 14, 2005.

SAS Statement Results

----+----1

put date day2.; 14

Formats � DDMMYYw. Format 157

DDMMYYw. Format

Writes date values in the form ddmm<yy>yy or dd/mm/<yy>yy, where a forward slash is the
separator and the year appears as either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
DDMMYYw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–10
Interaction: When w has a value of from 2 to 5, the date appears with as much of

the day and the month as possible. When w is 7, the date appears as a two-digit
year without slashes.

Details
The DDMMYYw. format writes SAS date values in the form ddmm<yy>yy or dd/mm/
<yy>yy, where

dd
is an integer that represents the day of the month.

/
is the separator.

mm
is an integer that represents the month.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 16794, which is the SAS date value
that corresponds to December 24, 2005.

SAS Statement Results

----+----1----+

put date ddmmyy5.; 24/12

put date ddmmyy6.; 241205

158 DDMMYYxw. Format � Chapter 3

SAS Statement Results

put date ddmmyy7.; 241205

put date ddmmyy8.; 24/12/05

put date ddmmyy10.; 24/12/2005

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYxw. Format” on page 158
“MMDDYYw. Format” on page 195
“YYMMDDw. Format” on page 273

Function:
“MDY Function” on page 901

Informats:
“DATEw. Informat” on page 1280
“DDMMYYw. Informat” on page 1283
“MMDDYYw. Informat” on page 1305
“YYMMDDw. Informat” on page 1366

DDMMYYxw. Format

Writes date values in the form ddmm<yy>yy or dd-mm-yy<yy>, where the x in the format name is
a character that represents the special character that separates the day, month, and year, which
can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can
be either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
DDMMYYxw.

Syntax Description

x
identifies a separator or specifies that no separator appear between the day, the
month, and the year. Valid values for x are:

B
separates with a blank

Formats � DDMMYYxw. Format 159

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.
Default: 8
Range: 2–10
Interaction: When w has a value of from 2 to 5, the date appears with as much of

the day and the month as possible. When w is 7, the date appears as a two-digit
year without separators.

Interaction: When x has a value of N, the width range changes to 2–8.

Details
The DDMMYYxw. format writes SAS date values in the form ddmm<yy>yy or
ddxmmx<yy>yy, where

dd
is an integer that represents the day of the month.

x
is a specified separator.

mm
is an integer that represents the month.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

SAS Statement Results

----+----1----+

put date ddmmyyc5.; 14:05

put date ddmmyyd8.; 14-05-09

put date ddmmyyp10.; 14.05.2009

put date ddmmyyn8.; 14052009

160 DOLLARw.d Format � Chapter 3

See Also

Formats:
“DATEw. Format” on page 151

“DDMMYYw. Format” on page 157
“MMDDYYxw. Format” on page 197

“YYMMDDxw. Format” on page 274

Functions:
“DAY Function” on page 630

“MDY Function” on page 901
“MONTH Function” on page 913

“YEAR Function” on page 1192

Informat:
“DDMMYYw. Informat” on page 1283

DOLLARw.d Format

Writes numeric values with a leading dollar sign, a comma that separates every three digits, and
a period that separates the decimal fraction.

Category: Numeric
Alignment: right

Syntax
DOLLARw.d

Syntax Description

w
specifies the width of the output field.
Default: 6

Range: 2–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Range: 0–31

Requirement: must be less than w

Details
The DOLLARw.d format writes numeric values with a leading dollar sign, a comma
that separates every three digits, and a period that separates the decimal fraction.

Formats � DOLLARXw.d Format 161

The hexadecimal representation of the code for the dollar sign character ($) is 5B on
EBCDIC systems and 24 on ASCII systems. The monetary character that these codes
represent might be different in other countries, but DOLLARw.d always produces one
of these codes. If you need another monetary character, define your own format with
the FORMAT procedure. See “The FORMAT Procedure” in Base SAS Procedures Guide
for more details.

Comparisons
� The DOLLARw.d format is similar to the DOLLARXw.d format, but the

DOLLARXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The DOLLARw.d format is the same as the COMMAw.d format except that the
COMMAw.d format does not write a leading dollar sign.

Examples
put @3 netpay dollar10.2;

Value of netpay Results

----+----1----+

1254.71 $1,254.71

See Also

Formats:
“COMMAw.d Format” on page 147
“DOLLARXw.d Format” on page 161

DOLLARXw.d Format

Writes numeric values with a leading dollar sign, a period that separates every three digits, and a
comma that separates the decimal fraction.

Category: Numeric
Alignment: right

Syntax
DOLLARXw.d

Syntax Description

w

162 DOWNAMEw. Format � Chapter 3

specifies the width of the output field.
Default: 6
Range: 2–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: 0
Range: 0–31
Requirement: must be less than w

Details
The DOLLARXw.d format writes numeric values with a leading dollar sign, with a
period that separates every three digits, and with a comma that separates the decimal
fraction.

The hexadecimal representation of the code for the dollar sign character ($) is 5B on
EBCDIC systems and 24 on ASCII systems. The monetary character that these codes
represent might be different in other countries, but DOLLARXw.d always produces one
of these codes. If you need another monetary character, define your own format with
the FORMAT procedure. See “The FORMAT Procedure” in Base SAS Procedures Guide
for more details.

Comparisons
� The DOLLARXw.d format is similar to the DOLLARw.d format, but the

DOLLARXw.d format reverses the roles of the decimal point and the comma. This
convention is common in European countries.

� The DOLLARXw.d format is the same as the COMMAXw.d format except that the
COMMAw.d format does not write a leading dollar sign.

Examples
put @3 netpay dollarx10.2;

Value of netpay Results

----+----1----+

1254.71 $1.254,71

See Also

Formats:
“COMMAXw.d Format” on page 148
“DOLLARw.d Format” on page 160

DOWNAMEw. Format
Writes date values as the name of the day of the week.

Formats � DTDATEw. Format 163

Category: Date and Time

Alignment: right

Syntax
DOWNAMEw.

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

Tip: If you omit w, SAS prints the entire name of the day.

Details
If necessary, SAS truncates the name of the day to fit the format width. For example,
the DOWNAME2. prints the first two letters of the day name.

Examples

The example table uses the input value of 13589, which is the SAS date value that
corresponds to March 16, 1997.

SAS Statement Results

----+----1

put date downame.; Sunday

See Also

Format:

“WEEKDAYw. Format” on page 258

DTDATEw. Format

Expects a datetime value as input and writes date values in the form ddmmmyy or ddmmmyyyy.

Category: Date and Time

Alignment: right

164 DTDATEw. Format � Chapter 3

Syntax

DTDATEw.

Syntax Description

w
specifies the width of the output field.

Default: 7

Range: 5–9

Tip: Use a width of 9 to print a 4–digit year.

Details

The DTDATEw. format writes SAS date values in the form ddmmmyy or ddmmmyyyy,
where

dd
is an integer that represents the day of the month.

mmm
are the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

Comparisons
The DTDATEw. format produces the same type of output that the DATEw. format
produces. The difference is that the DTDATEw. format requires a datetime value.

Examples

The example table uses a datetime value of 16APR2000:10:00:00 as input, and prints
both a two-digit and a four-digit year for the DTDATEw. format.

SAS Statement Results

- - - - + - - - - +

put trip_date=dtdate.; 16APR00

put trip_date=dtdate9.; 16APR2000

See Also

Formats:

“DATEw. Format” on page 151

Formats � DTMONYYw. Format 165

DTMONYYw. Format

Writes the date part of a datetime value as the month and year in the form mmmyy or mmmyyyy.

Category: Date and Time
Alignment: right

Syntax
DTMONYYw.

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 5–7

Details
The DTMONYYw. format writes SAS datetime values in the form mmmyy or
mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two–digit or four-digit integer that represents the year.

Comparisons
The DTMONYYw. format and the MONYYw. format are similar in that they both
write date values. The difference is that DTMONYYw. expects a datetime value as
input, and MONYYw. expects a SAS date value.

Examples

The example table uses as input the value 1476598132, which is the SAS datetime
value that corresponds to October 16, 2006, at 06:08:52 a.m.

SAS Statement Results

----+----1

put date dtmonyy.; OCT06

put date dtmonyy5.; OCT06

put date dtmonyy6.; OCT06

put date dtmonyy7.; OCT2006

166 DTWKDATXw. Format � Chapter 3

See Also

Formats:

“DATETIMEw.d Format” on page 154

“MONYYw. Format” on page 205

DTWKDATXw. Format

Writes the date part of a datetime value as the day of the week and the date in the form
day-of-week, dd month-name yy (or yyyy).

Category: Date and Time

Alignment: right

Syntax
DTWKDATXw.

Syntax Description

w
specifies the width of the output field.

Default: 29

Range: 3–37

Details
The DTWKDATXw. format writes SAS date values in the form day-of-week, dd
month-name, yy or yyyy, where

day-of-week
is either the first three letters of the day name or the entire day name.

dd
is an integer that represents the day of the month.

month-name
is either the first three letters of the month name or the entire month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

Comparisons
The DTWKDATXw. format is similar to the WEEKDATXw. format in that they both
write date values. The difference is that DTWKDATXw. expects a datetime value as
input, and WEEKDATXw. expects a SAS date value.

Formats � DTYEARw. Format 167

Examples

The example table uses as input the value 1476598132, which is the SAS datetime
value that corresponds to October 16, 2002, at 06:08:52 a.m.

SAS Statement Results

----+----1----+----2----+----3

put date dtwkdatx.; Monday, 16 October 2006

put date dtwkdatx3.; Mon

put date dtwkdatx8.; Mon

put date dtwkdatx25.; Monday, 16 Oct 2006

See Also

Formats:

“DATETIMEw.d Format” on page 154

“WEEKDATXw. Format” on page 257

DTYEARw. Format

Writes the date part of a datetime value as the year in the form yy or yyyy.

Category: Date and Time

Alignment: right

Syntax
DTYEARw.

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 2–4

Comparisons
The DTYEARw. format is similar to the YEARw. format in that they both write date
values. The difference is that DTYEARw. expects a datetime value as input, and
YEARw. expects a SAS date value.

168 DTYYQCw. Format � Chapter 3

Examples

The example table uses as input the value 1476598132, which is the SAS datetime
value that corresponds to October 16, 2006, at 06:08:52 a.m.

SAS Statement Results

----+----1

put date dtyear.; 2006

put date dtyear2.; 06

put date dtyear3.; 06

put date year4.; 2006

See Also

Formats:

“DATETIMEw.d Format” on page 154

“YEARw. Format” on page 269

DTYYQCw. Format

Writes the date part of a datetime value as the year and the quarter and separates them with a
colon (:).

Category: Date and Time

Alignment: right

Syntax
DTYYQCw.

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 4–6

Details
The DTYYQCw. format writes SAS datetime values in the form yy or yyyy, followed by
a colon (:) and the numeric value for the quarter of the year.

Formats � Ew. Format 169

Examples

The example table uses as input the value 1476598132, which is the SAS datetime
value that corresponds to October 16, 2006, at 06:08:52 p.m..

SAS Statement Results

----+----1

put date dtyyqc.; 06:4

put date dtyyqc4.; 06:4

put date dtyyqc5.; 06:4

put date dtyyqc6.; 2006:4

See Also

Formats:

“DATETIMEw.d Format” on page 154

Ew. Format

Writes numeric values in scientific notation.

Category: Numeric

Alignment: right

See: Ew. Format in the documentation for your operating environment.

Syntax
Ew.

Syntax Description

w
specifies the width of the output field. The output field can dispaly up to fourteen
significant digits.

Default: 12

Range: 7–32

Details
When formatting values in scientific notation, the E format reserves the first column of
the result for a minus sign and formats up to fourteen significant digits.

170 E8601DAw. Format � Chapter 3

Examples
put @1 x e10.;

Value of x Results

----+----1----+

1257 1.257E+03

-1257 -1.257E+03

E8601DAw. Format

Writes date values using the ISO 8601 extended notation yyyy-mm-dd.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DA
Time Zone Format: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
E8601DAw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Requirement: The width of the output field must be 10.

Details
The E8601DA format writes a date in the ISO 8601 extended notation yyyy-mm-dd:

yyyy is a four-digit year, such as 2008.

mm is a two-digit month (zero padded) between 01 and 12.

dd is a two-digit day of the month (zero padded) between 01 and 31.

Examples

put eda e8601da.;

Formats � E8601DNw. Format 171

Value for eda Results

17790 2008-09-15

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

E8601DNw. Format

Writes the date from a SAS datetime value using the ISO 8601 extended notation yyyy-mm-dd.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DN
Time Zone Format: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
E8601DNw.

Syntax Description

w
specifies the width of the input field.
Default: 10
Requirement: The width of the input field must be 10.

Details
The E8601DN formats writes the date in the ISO 8601 extended date notation
yyyy-mm-dd:

yyyy is a four-digit year, such as 2008.

mm is a two-digit month (zero padded) between 01 and 12.

dd is a two-digit day of the month (zero padded) between 01 and 31.

Examples

put edn e8601dn.;

172 E8601DTw.d Format � Chapter 3

Value for edn Results

1537113180 2008-09-15

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

E8601DTw.d Format

Writes datetime values in the ISO 8601 extended notation yyyy-mm-ddThh:mm:ss.ffffff.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DT
Time Zone Format: No
ISO 8601 Element: 5.4.1 Complete representation

Syntax
E8601DTw.d

Syntax Description

w
specifies the width of the input field.
Default: 19
Range: 19 - 26

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0 - 6

Details
The E8602DT format writes datetime values using the ISO 8601 extended datetime
notation yyyy-mm-ddThh:mm:ss.ffffff:

yyyy is a four-digit year, such as 2008.

mm is a two-digit month (zero padded) between 01 and 12.

Formats � E8601DZw. Format 173

dd is a two-digit day of the month (zero padded) between 01 and 31.

hh is a two-digit hour (zero padded), between 00 - 23.

mm is a two-digit minute (zero padded), between 00 - 59.

ss is a two-digit second (zero padded), between 00 - 59.

.ffffff are optional fractional seconds, with a precision of up to six digits,
where each digit is between 0 - 9.

Examples

put edt e8601dt.;

Value of edt Results

1537113180 2008-09-15T15:53:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

E8601DZw. Format

Writes datetime values in the Coordinated Universal Time (UTC) time scale using ISO 8601
datetime and time zone extended notations yyyy-mm-ddThh:mm:ss+|-hh:mm.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DZ
Time Zone Format: Yes
ISO 8601 Element: 5.4.1 Complete representation

Syntax
E8601DZw.

Syntax Description

w
specifies the width of the output field.
Default: 26
Range: 20 - 35

174 E8601LZw. Format � Chapter 3

Details
UTC values specify a time and a time zone based on the zero meridian in Greenwich,
England. The E8602DZ format writes SAS datetime values using one of the following
ISO 8601 extended datetime notations:

yyyy-mm-
ddThh:mm:ss+|–
hh:mm

is the form used when w is large enough to support this time zone
notation.

yyyy-mm-
ddThh:mm:ssZ

is the form used when w is not large enough to support the +|-
hhmm time zone notation.

where

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

hh is a two-digit hour (zero padded), between 00 - 24

mm is a two-digit minute (zero padded), between 00 - 59

ss is a two-digit second (zero padded), between 00 - 59

Z indicates that the time is for zero meridian (Greenwich, England) or
UTC time.

+|-hh:mm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|-hh:mm (that is, + or - and five characters).

Use + for time zones east of the zero meridian and use - for time
zones west of the zero meridian. For example, +02:00 indicates a
two hour time difference to the east of the zero meridian, and -06:00
indicates a six hour time differences to the west of the zero meridian.
Restriction: The shorter form +|-hh is not supported.

Examples

put edz e8601dz.;

Value of edz Results

1537113180 2008-09-15T15:53:00+00:00

1537102380 2008-09-15T12:53:00+00:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

E8601LZw. Format
Writes time values as local time, appending the Coordinated Universal Time (UTC) offset for the
local SAS session, using the ISO 8601 extended time notation hh:mm:ss+|-hh:mm.

Formats � E8601LZw. Format 175

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601LZ
Time Zone Format: Yes. The format appends the UTC offset to the value as determined by
the local SAS session.
ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
E8601LZw.

Syntax Description

w
specifies the width of the output field.
Default: 14
Range: 9 - 20

Details
The E8602LZ format writes time values without making any adjustments and appends
the UTC time zone offset for the local SAS session, using one of the following ISO 8601
extended time notations:

hh:mm:ss+|–
hh:mm

is the form used when w is large enough to support this time
notation.

hh:mm:ssZ is the form used when w is not large enough to support the +|-
hh:mm time zone notation.

where

hh is a two-digit hour (zero padded), between 00 - 23.

mm is a two-digit minute (zero padded), between 00 - 59.

ss is a two-digit second (zero padded), between 00 - 59.

Z indicate zero meridian (Greenwich, England) or UTC time.

+|-hh:mm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|-hh:mm (that is, + or - and five characters).

Use + for time zones east of the zero meridian and use - for time
zones west of the zero meridian. For example, +02:00 indicates a
two hour time difference to the east of the zero meridian, and -06:00
indicates a six hour time differences to the west of the zero meridian.
Restriction: The shorter form +|-hh is not supported.

SAS writes the time value using the form hh:mm.ffffff and appends the time zone
indicator +|-hh:mm based on the time zone offset from the zero meridian for the local
SAS session, or Z. The Z time zone indicator is used for format lengths that are less
than 14.

If the same time is written using both zone indicators, they indicate two different
times based on the UTC. For example, if the local SAS session uses Eastern Standard

176 E8601TMw.d Format � Chapter 3

Time in the US, and the time value is 45824, SAS would write 12:43:44-04:00 or
12:43:44Z. The time 12:43:44–04:00 is the time 16:43:44+00:00 at the zero meridian.
The Z indicates that the time is the time at the zero meridian, or 12:43:44+00:00.

When SAS reads a UTC time by using the E8601TZ informat, and the adjusted time
is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time
is between 00:00:00 and 24:00:00. If the E8601TZ format attempts to format a time
outside of this time range, the time is formatted with stars to indicate that the value is
out of range.

Examples

The following PUT statement write the time for the Eastern Standard time zone.
put elz e8601lz.;

Value of elz Results

46380 12:53:00-5:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

E8601TMw.d Format

Writes time values using the ISO 8601 extended notation hh:mm:ss.ffffff.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601TM
Time Zone Format: No
ISO 8601 Element: 5.3.1.1 Complete representation and 5.3.1.3 Representation of decimal
fractions

Syntax
E8601TMw.d

Syntax Description

w
specifies the width of the output field.
Default: 8

Formats � E8601TMw.d Format 177

Range: 8 - 15

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0 - 6

Details
The E8601TM format writes SAS time values using the following ISO 8601 extended
time notation:

hh:mm:ss.ffffff

hh is a two-digit hour (zero padded), between 00 - 23.

mm is a two-digit minute (zero padded), between 00 - 59.

ss is a two-digit second (zero padded), between 00 - 59.

.ffffff are optional fractional seconds, with a precision of up to six digits,
where each digit is between 0 - 9.

Examples

put etm e8601tm.;

Value of etm Results

57180 15:53:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

178 E8601TZw.d Format � Chapter 3

E8601TZw.d Format

Adjusts time values to the Coordinated Universal Time (UTC) and writes them using the ISO 8601
extended notation hh:mm:ss+|-hh:mm.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601TZ
Time Zone Format: Yes
ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
E8601TZw.d

Syntax Description

w
specifies the width of the output field.
Default: 14
Range: 9 - 20

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0 - 6

Formats � E8601TZw.d Format 179

Details
UTC time values specify a time and a time zone based on the zero meridian in
Greenwich, England. The E8602TZ format writes time values in one of the following
ISO 8601 extended time notations:

hh:mm:ss+|–
hh:mm

is the form used when w is large enough to support this time zone
notation.

hh:mm:ssZ is the form used when w is not large enough to support the +|-
hh:mm time zone notation.

where

hh is a two-digit hour (zero padded), between 00 - 23

mm is a two-digit minute (zero padded), between 00 - 59

ss is a two-digit second (zero padded), between 00 - 59

Z indicate zero meridian (Greenwich, England) or UTC time

+|-hh:mm is an hour and minute signed offset from zero meridian time. Note
that the offset must be +|-hh:mm (that is, + or - and five
characters). The shorter form +|-hh is not supported.

Use + for time zones east of the zero meridian and use - for time
zones west of the zero meridian. For example, +02:00 indicates a
two hour time difference to the east of the zero meridian, and -06:00
indicates a six hour time differences to the west of the zero meridian.

When SAS reads a UTC time by using the B8601TZ informat, and the adjusted time
is greater than 24 hours or less than 00 hours, SAS adjusts the value so that the time
is between 00:00:00 and 24:00:00. If the E8601TZ format attempts to format a time
outside of this time range, the time is formatted with stars to indicate that the value is
out of range.

Comparisons
For time values between 00:00:00 and 24:00:00, the E8601TZ format adjusts the time
value to be the time at the zero meridian and writes it in the international standard
extended time notation. The E8601LZ format makes no adjustment to the time and
writes time values in the international standard extended time notation, using a UTC
time zone offset for the local SAS session.

180 FLOATw.d Format � Chapter 3

Examples

put etz e8601tz.;

Value of etz Results

73441 20:24:01+00:00

62641 17:24:01+00:00

See Also

“Working with Dates and Times Using the ISO 8601 Basic and Extended Notations”
on page 94

FLOATw.d Format

Generates a native single-precision, floating-point value by multiplying a number by 10 raised to
the dth power.

Category: Numeric
Alignment: left

Syntax
FLOATw.d

Syntax Description

w
specifies the width of the output field.
Requirement: width must be 4

d
specifies the power of 10 by which to multiply the value. This argument is optional.
Default: 0
Range: 0-31

Formats � FLOATw.d Format 181

Details
This format is useful in operating environments where a float value is not the same as
a truncated double. Values that are written by FLOAT4. typically are values that are
meant to be read by some other external program that runs in your operating
environment and that expects these single-precision values.

Note: If the value that is to be formatted is a missing value, or if it is out-of-range
for a native single-precision, floating-point value, a single-precision value of zero is
generated. �

On IBM mainframe systems, a four-byte floating-point number is the same as a
truncated eight-byte floating-point number. However, in operating environments using
the IEEE floating-point standard, such as IBM PC-based operating environments and
most UNIX operating environments, a four-byte floating-point number is not the same
as a truncated double. Hence, the RB4. format does not produce the same results as
the FLOAT4. format. Floating-point representations other than IEEE might have this
same characteristic.

Comparisons
The following table compares the names of float notation in several programming
languages:

Language Float Notation

SAS FLOAT4

Fortran REAL+4

C float

IBM 370 ASM E

PL/I FLOAT BIN(21)

Examples
put x float4.;

Value of x Results*

1 3F800000

* The result is a hexadecimal representation of a binary number that is stored in IEEE form.

182 FRACTw. Format � Chapter 3

FRACTw. Format

Converts numeric values to fractions.

Category: Numeric
Alignment: right

Syntax
FRACTw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 4–32

Details
Dividing the number 1 by 3 produces the value 0.33333333. To write this value as 1/3,
use the FRACTw. format. FRACTw. writes fractions in reduced form, that is, 1/2
instead of 50/100.

Examples

put x fract8.;

Value of x Results

----+----1

0.6666666667 2/3

0.2784 174/625

Formats � HEXw. Format 183

HEXw. Format

Converts real binary (floating-point) values to hexadecimal representation.

Category: Numeric
Alignment: left
See: HEXw. Format in the documentation for your operating environment.

Syntax
HEXw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–16
Tip: If w< 16, the HEXw. format converts real binary numbers to fixed-point

integers before writing them as hexadecimal characters. It also writes negative
numbers in two’s complement notation, and right aligns digits. If w is 16, HEXw.
displays floating-point values in their hexadecimal form.

Details
In any operating environment, the least significant byte written by HEXw. is the
rightmost byte. Some operating environments store integers with the least significant
digit as the first byte. The HEXw. format produces consistent results in any operating
environment regardless of the order of significance by byte.

Note: Different operating environments store floating-point values in different ways.
However, the HEX16. format writes hexadecimal representations of floating-point
values with consistent results in the same way that your operating environment stores
them. �

184 HHMMw.d Format � Chapter 3

Comparisons
The HEXw. numeric format and the $HEXw. character format both generate the
hexadecimal equivalent of values.

Examples
put @8 x hex8.;

Value of x Results

----+----1----+----2

35.4 00000023

88 00000058

2.33 00000002

-150 FFFFFF6A

HHMMw.d Format

Writes time values as hours and minutes in the form hh:mm.

Category: Date and Time
Alignment: right

Syntax
HHMMw.d

Formats � HHMMw.d Format 185

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 2–20

d
specifies the number of digits to the right of the decimal point in the minutes value.
The digits to the right of the decimal point specify a fraction of a minute. This
argument is optional.
Default: 0
Range: 0–19
Requirement: must be less than w

Details
The HHMMw.d format writes SAS time values in the form hh:mm, where

hh
Note: If hh is a single digit, HHMMw.d places a leading blank before the digit.

For example, the HHMMw.d. format writes 9:00 instead of 09:00. �
is an integer.

mm
is the number of minutes that range from 00 through 59.

SAS rounds hours and minutes that are based on the value of seconds in a SAS time
value.

The HHMM format uses asterisks to format values that are outside the time range
0–24 hours, such as datetime values.

Comparisons
The HHMMw.d format is similar to the TIMEw.d format except that the HHMMw.d
format does not print seconds.

The HHMMw.d format writes a leading blank for a single-hour digit. The TODw.d
format writes a leading zero for a single-hour digit.

186 HHMMw.d Format � Chapter 3

Examples

The example table uses the input value of 46796, which is the SAS time value that
corresponds to 12:59:56 p. m.

SAS Statement Results

----+----1

put time hhmm.; 13:00

put time hhmm8.2; 12:59.93

In the first example, SAS rounds up the time value four seconds based on the value of
seconds in the SAS time value. In the second example, by adding a decimal
specification of 2 to the format shows that fifty-six seconds is 93% of a minute.

See Also

Formats:
“HOURw.d Format” on page 187
“MMSSw.d Format” on page 199
“TIMEw.d Format” on page 246
“TODw.d Format” on page 250

Functions:
“HMS Function” on page 787
“HOUR Function” on page 791
“MINUTE Function” on page 905
“SECOND Function” on page 1087
“TIME Function” on page 1124

Informat:
“TIMEw. Informat” on page 1349

Formats � HOURw.d Format 187

HOURw.d Format

Writes time values as hours and decimal fractions of hours.

Category: Date and Time
Alignment: right

Syntax
HOURw.d

Syntax Description

w
specifies the width of the output field.
Default: 2
Range: 2–20

d
specifies the number of digits to the right of the decimal point in the hour value.
Therefore, SAS prints decimal fractions of the hour. This argument is optional.
Requirement: must be less than w
Range: 0-19

Details
SAS rounds hours based on the value of minutes in the SAS time value.

The HOUR format uses asterisks to format values that are outside the time range
0–24 hours, such as datetime values.

Examples

The example table uses the input value of 41400, which is the SAS time value that
corresponds to 11:30 a.m.

SAS Statement Results

----+----1

put time hour4.1; 11.5

See Also

Formats:
“HHMMw.d Format” on page 184

188 IBw.d Format � Chapter 3

“MMSSw.d Format” on page 199
“TIMEw.d Format” on page 246
“TODw.d Format” on page 250

Functions:
“HMS Function” on page 787
“HOUR Function” on page 791
“MINUTE Function” on page 905
“SECOND Function” on page 1087
“TIME Function” on page 1124

Informat:
“TIMEw. Informat” on page 1349

IBw.d Format

Writes native integer binary (fixed-point) values, including negative values.

Category: Numeric
Alignment: left
See: IBw.d Format in the documentation for your operating environment.

Syntax
IBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.
Default 0
Range: 0–10

Details
The IBw.d format writes integer binary (fixed-point) values, including negative values
that are represented in two’s complement notation. IBw.d writes integer binary values
with consistent results if the values are created in the same type of operating
environment that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

Formats � IBRw.d Format 189

Comparisons
The IBw.d and PIBw.d formats are used to write native format integers. (Native format
allows you to read and write values created in the same operating environment.) The
IBRw.d and PIBRw.d formats are used to write little endian integers in any operating
environment.

To view a table that shows the type of format to use with big endian and little endian
integers, see Table 3.1 on page 88.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 89.

Examples
y=put(x,ib4.);
put y $hex8.;

Value of x Results on Big Endian Platforms* Results on Little Endian Platforms*

----+----1 ----+----1

128 00000080 80000000

* The result is a hexadecimal representation of a four-byte integer binary number. Each byte
occupies one column of the output field.

See Also

Format:
“IBRw.d Format” on page 189

IBRw.d Format

Writes integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric
Alignment: left

Syntax
IBRw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

190 IBRw.d Format � Chapter 3

d
specifies to multiply the number by 10d. This argument is optional.

Default: 0

Range: 0–10

Details
The IBRw.d format writes integer binary (fixed-point) values, including negative values
that are represented in two’s complement notation. IBRw.d writes integer binary
values that are generated by and for Intel and DEC operating environments. Use
IBRw.d to write integer binary data from Intel or DEC environments on other operating
environments. The IBRw.d format in SAS code allows for a portable implementation for
writing the data in any operating environment.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

Comparisons
� The IBw.d and PIBw.d formats are used to write native format integers. (Native

format allows you to read and write values that are created in the same operating
environment.)

� The IBRw.d and PIBRw.d formats are used to write little endian integers,
regardless of the operating environment you are writing on.

� In Intel and DEC operating environments, the IBw.d and IBRw.d formats are
equivalent.

To view a table that shows the type of format to use with big endian and little endian
integers, see Table 3.1 on page 88.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 89.

Examples
y=put(x,ibr4.);
put y $hex8.;

Value of x Results

----+----1

128 80000000

* The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies
one column of the output field.

See Also

Format:

“IBw.d Format” on page 188

Formats � IEEEw.d Format 191

IEEEw.d Format

Generates an IEEE floating-point value by multiplying a number by 10 raised to the dth power.

Category: Numeric
Alignment: left
Caution: Large floating-point values and floating-point values that require precision
might not be identical to the original SAS value when they are written to an IBM
mainframe by using the IEEE format and read back into SAS using the IEE informat.

Syntax
IEEEw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 3–8
Tip: If w is 8, an IEEE double-precision, floating-point number is written. If w is 5,

6, or 7, an IEEE double-precision, floating-point number is written, which assumes
truncation of the appropriate number of bytes. If w is 4, an IEEE single-precision
floating-point number is written. If w is 3, an IEEE single-precision, floating-point
number is written, which assumes truncation of one byte.

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Details
This format is useful in operating environments where IEEEw.d is the floating-point
representation that is used. In addition, you can use the IEEEw.d format to create files
that are used by programs in operating environments that use the IEEE floating-point
representation.

Typically, programs generate IEEE values in single-precision (4 bytes) or
double-precision (8 bytes). Programs perform truncation solely to save space on output
files. Machine instructions require that the floating-point number be one of the two
lengths. The IEEEw.d format allows other lengths, which enables you to write data to
files that contain space-saving truncated data.

Examples
test1=put(x,ieee4.);
put test1 $hex8.;

test2=put(x,ieee5.);
put test2 $hex10.;

192 JULDAYw. Format � Chapter 3

Value of x Results

1 3F800000

3FF0000000

* The result contains hexadecimal representations of binary numbers stored in IEEE form.

JULDAYw. Format

Writes date values as the Julian day of the year.

Category: Date and Time

Alignment: right

Syntax
JULDAYw.

Syntax Description

w
specifies the width of the output field.

Default: 3

Range: 3–32

Details
The JULDAYw. format writes SAS date values in the form ddd, where

ddd
is the number of the day, 1–365 (or 1–366 for leap years).

Examples

The example table uses the input values of 13515, which is the SAS date value that
corresponds to January 1, 1997, and 13589, which is the SAS date value that
corresponds to March 16, 1997.

SAS Statement Results

----+----1

put date julday3.; 1

put date julday3.; 75

Formats � JULIANw. Format 193

JULIANw. Format

Writes date values as Julian dates in the form yyddd or yyyyddd.

Category: Date and Time
Alignment: left

Syntax
JULIANw.

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 5–7
Tip: If w is 5, the JULIANw. format writes the date with a two-digit year. If w is 7,

the JULIANw. format writes the date with a four-digit year.

Details
The JULIANw. format writes SAS date values in the form yyddd or yyyyddd, where

yy or yyyy
is a two-digit or four-digit integer that represents the year.

ddd
is the number of the day, 1–365 (or 1–366 for leap years), in that year.

Examples

The example table uses the input value of 16794, which is the SAS date value that
corresponds to December 24, 2005 (the 358th day of the year).

SAS Statement Results

----+----1

put date julian5.; 05358

put date julian7.; 2005358

See Also

Functions:
“DATEJUL Function” on page 628
“JULDATE Function” on page 848

194 MDYAMPMw.d Format � Chapter 3

Informat:
“JULIANw. Informat” on page 1301

MDYAMPMw.d Format

Writes datetime values in the form mm/dd/yy<yy> hh:mm AM|PM. The year can be either two or
four digits.

Category: Date and Time
Alignment: right
Default Time Period: AM

Syntax
MDYAMPMw.

Syntax Description

w
specifies the width of the output field.
Default: 19
Range: 8−40

Details
The MDYAMPMw.d format writes SAS datetime values in the following form:

mm/dd/yy<yy> hh:mm<AM | PM>

The following list explains the datetime variables:

mm
is an integer from 1 through 12 that represents the month.

dd
is an integer from 1 through 31 that represents the day of the month.

yy or yyyy
specifies a two-digit or four-digit integer that represents the year.

hh
is the number of hours that range from 0 through 23.

mm
is the number of minutes that range from 00 through 59.

AM | PM
specifies either the time period 00:01−12:00 noon (AM) or the time period
12:01−12:00 midnight (PM). The default is AM.

date and time separator characters
is one of several special characters, such as the slash (/), colon (:), or a blank
character that SAS uses to separate date and time components.

Formats � MMDDYYw. Format 195

Comparison
The MDYAMPMw. format writes datetime values with separators in the form mm/dd/
yy<yy> hh:mm AM | PM, and requires a space between the date and the time.

The DATETIMEw.d format writes datetime values with separators in the form
ddmmmyy<yy>: hh:mm:ss.ss.

Examples

This example uses the input value of 1537113180, which is the SAS datetime value
that corresponds to 3:53:00 PM on September 15, 2008.

SAS Statement Results

put dt mdyampm25. 9/15/2008 3:53 PM

See Also

Format:
“DATETIMEw.d Format” on page 154

Informat:
“MDYAMPMw.d Informat” on page 1303

MMDDYYw. Format

Writes date values in the form mmdd<yy>yy or mm/dd/<yy>yy, where a forward slash is the
separator and the year appears as either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
MMDDYYw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–10
Interaction: When w has a value of from 2 to 5, the date appears with as much of

the month and the day as possible. When w is 7, the date appears as a two-digit
year without slashes.

196 MMDDYYw. Format � Chapter 3

Details
The MMDDYYw. format writes SAS date values in the form mmdd<yy>yy or mm/dd/
<yy>yy, where

mm
is an integer that represents the month.

/
is the separator.

dd
is an integer that represents the day of the month.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 16734, which is the SAS date value
that corresponds to October 25, 2005.

SAS Statement Results

----+----1----+

put day mmddyy2.; 10

put day mmddyy3.; 10

put day mmddyy4.; 1025

put day mmddyy5.; 10/25

put day mmddyy6.; 102505

put day mmddyy7.; 102505

put day mmddyy8.; 10/25/05

put day mmddyy10.; 10/25/2005

See Also

Formats:

“DATEw. Format” on page 151

“DDMMYYw. Format” on page 157

“MMDDYYxw. Format” on page 197

“YYMMDDw. Format” on page 273

Functions:

“DAY Function” on page 630

“MDY Function” on page 901

“MONTH Function” on page 913

“YEAR Function” on page 1192

Formats � MMDDYYxw. Format 197

Informats:
“DATEw. Informat” on page 1280
“DDMMYYw. Informat” on page 1283
“YYMMDDw. Informat” on page 1366

MMDDYYxw. Format

Writes date values in the form mmdd<yy>yy or mm-dd-<yy>yy, where the x in the format name is
a character that represents the special character which separates the month, day, and year. The
special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no
separator; the year can be either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
MMDDYYxw.

Syntax Description

x
identifies a separator or specifies that no separator appear between the month, the
day, and the year. Valid values for x are:

B
separates with a blank

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.
Default: 8
Range: 2–10
Interaction: When w has a value of from 2 to 5, the date appears with as much of

the month and the day as possible. When w is 7, the date appears as a two-digit
year without separators.

Interaction: When x has a value of N, the width range changes to 2–8.

198 MMDDYYxw. Format � Chapter 3

Details
The MMDDYYxw. format writes SAS date values in the form mmdd<yy>yy or
mmxddx<yy>yy, where

mm
is an integer that represents the month.

x
is a specified separator.

dd
is an integer that represents the day of the month.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

SAS Statement Results

----+----1----+

put day mmddyyc5.; 05:14

put day mmddyyd8.; 05-14-09

put day mmddyyp10.; 05.14.2009

put day mmddyyn8.; 05142009

See Also

Formats:

“DATEw. Format” on page 151

“DDMMYYxw. Format” on page 158

“MMDDYYw. Format” on page 195

“YYMMDDxw. Format” on page 274

Functions:

“DAY Function” on page 630

“MDY Function” on page 901

“MONTH Function” on page 913

“YEAR Function” on page 1192

Informat:

“MMDDYYw. Informat” on page 1305

Formats � MMSSw.d Format 199

MMSSw.d Format

Writes time values as the number of minutes and seconds since midnight.

Category: Date and Time
Alignment: right

Syntax
MMSSw.d

Syntax Description

w
specifies the width of the output field.
Default: 5
Range: 2–20
Tip: Set w to a minimum of 5 to write a value that represents minutes and seconds.

d
specifies the number of digits to the right of the decimal point in the seconds value.
Therefore, the SAS time value includes fractional seconds. This argument is optional.
Range: 0–19
Restriction: must be less than w

Details
The MMSS format uses asterisks to format values that are outside the time range 0–24
hours, such as datetime values.

Examples

The example table uses the input value of 4530.

SAS Statement Results

----+----1

put time mmss.; 75:30

200 MMYYw. Format � Chapter 3

See Also

Formats:
“HHMMw.d Format” on page 184
“TIMEw.d Format” on page 246

Functions:
“HMS Function” on page 787
“MINUTE Function” on page 905
“SECOND Function” on page 1087

Informat:
“TIMEw. Informat” on page 1349

MMYYw. Format

Writes date values in the form mmM<yy>yy, where M is the separator and the year appears as
either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
MMYYw.

Syntax Description

w
specifies the width of the output field.
Default: 7
Range: 5–32
Interaction: When w has a value of 5 or 6, the date appears with only the last two

digits of the year. When w is 7 or more, the date appears with a four-digit year.

Formats � MMYYw. Format 201

Details
The MMYYw. format writes SAS date values in the form mmM<yy>yy, where

mm
is an integer that represents the month.

M
is the character separator.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 16734, which is the SAS date value
that corresponds to October 25, 2005.

SAS Statement Results

----+----1----+

put date mmyy5.; 10M05

put date mmyy6.; 10M05

put date mmyy.; 10M2005

put date mmyy7.; 10M2005

put date mmyy10.; 10M2005

See Also

Format:
“MMYYxw. Format” on page 202
“YYMMw. Format” on page 270

202 MMYYxw. Format � Chapter 3

MMYYxw. Format

Writes date values in the form mm<yy>yy or mm-<yy>yy, where the x in the format name is a
character that represents the special character that separates the month and the year, which can
be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be
either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
MMYYxw.

Syntax Description

x
identifies a separator or specifies that no separator appear between the month and
the year. Valid values for x are

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a forward slash.

w
specifies the width of the output field.
Default: 7
Range: 5–32
Interaction: When x is set to N, no separator is specified. The width range is then

4–32, and the default changes to 6.
Interaction: When x has a value of C, D, P, or S and w has a value of 5 or 6, the

date appears with only the last two digits of the year. When w is 7 or more, the
date appears with a four-digit year.

Interaction: When x has a value of N and w has a value of 4 or 5, the date appears
with only the last two digits of the year. When x has a value of N and w is 6 or
more, the date appears with a four-digit year.

Details
The MMYYxw. format writes SAS date values in the form mm<yy>yy or mmx<yy>yy,
where

Formats � MONNAMEw. Format 203

mm
is an integer that represents the month.

x
is a specified separator.

<yy>yy
is a two-digit or four-digit integer that represents the year.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

SAS Statement Results

----+----1----+

put date mmyyc5.; 05:09

put date mmyyd.; 05-2009

put date mmyyn4.; 0509

put date mmyyp8.; 05.2009

put date mmyys10.; 05/2009

See Also

Format:
“MMYYw. Format” on page 200
“YYMMxw. Format” on page 271

MONNAMEw. Format

Writes date values as the name of the month.

Category: Date and Time
Alignment: right

204 MONTHw. Format � Chapter 3

Syntax

MONNAMEw.

Syntax Description

w
specifies the width of the output field.

Default: 9

Range: 1–32

Tip: Use MONNAME3. to print the first three letters of the month name.

Details

If necessary, SAS truncates the name of the month to fit the format width.

Examples

The example table uses the input value of 16500, which is the SAS date value that
corresponds to March 5, 2005.

SAS Statement Results

----+----1

put date monname1.; M

put date monname3.; Mar

put date monname5.; March

See Also

Format:

“MONTHw. Format” on page 204

MONTHw. Format

Writes date values as the month of the year.

Category: Date and Time

Alignment: right

Formats � MONYYw. Format 205

Syntax
MONTHw.

Syntax Description

w
specifies the width of the output field.

Default: 2

Range: 1–32

Tip: Use MONTH1. to obtain a hexadecimal value.

Details
The MONTHw. format writes the month (1 through 12) of the year from a SAS date
value. If the month is a single digit, the MONTHw. format places a leading blank
before the digit. For example, the MONTHw. format writes 4 instead of 04.

Examples

The example table uses the input value of 18031, which is the SAS date value that
corresponds to May 14, 2009.

SAS Statement Results

----+----1

put date month.; 5

See Also

Format:

“MONNAMEw. Format” on page 203

MONYYw. Format

Writes date values as the month and the year in the form mmmyy or mmmyyyy.

Category: Date and Time

Alignment: right

Syntax
MONYYw.

206 MONYYw. Format � Chapter 3

Syntax Description

w
specifies the width of the output field.

Default: 5

Range: 5–7

Details
The MONYYw. format writes SAS date values in the form mmmyy or mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

Comparisons
The MONYYw. format and the DTMONYYw. format are similar in that they both
write date values. The difference is that MONYYw. expects a SAS date value as input,
and DTMONYYw. expects a datetime value.

Examples

The example table uses the input value of 16794, which is the SAS date value that
corresponds to December 24, 2005.

SAS Statement Results

----+----1

put date monyy5.; DEC05

put date monyy7.; DEC2005

See Also

Formats:

“DTMONYYw. Format” on page 165

“DDMMYYw. Format” on page 157

“MMDDYYw. Format” on page 195

“YYMMDDw. Format” on page 273

Functions:

“MONTH Function” on page 913

“YEAR Function” on page 1192

Informat:

“MONYYw. Informat” on page 1307

Formats � NEGPARENw.d Format 207

NEGPARENw.d Format

Writes negative numeric values in parentheses.

Category: Numeric

Alignment: right

Syntax
NEGPARENw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Default: 0

Range: 0–31

Details
The NEGPARENw.d format attempts to right-align output values. If the input value is
negative, NEGPARENw.d displays the output by enclosing the value in parentheses, if
the field that you specify is wide enough. Otherwise, it uses a minus sign to represent
the negative value. If the input value is non-negative, NEGPARENw.d displays the
value with a leading and trailing blank to ensure proper column alignment. It reserves
the last column for a close parenthesis even when the value is positive.

Comparisons
The NEGPARENw.d format is similar to the COMMAw.d format in that it separates
every three digits of the value with a comma.

Examples
put @1 sales negparen8.;

Value of sales Results

----+----1----+

100 100

1000 1,000

208 NUMXw.d Format � Chapter 3

Value of sales Results

-200 (200)

-2000 (2,000)

NUMXw.d Format

Writes numeric values with a comma in place of the decimal point.

Category: Numeric

Alignment: right

Syntax
NUMXw.d

Syntax Description

w
specifies the width of the output field.

Default: 12

Range: 1–32

d
specifies the number of digits to the right of the decimal point (comma) in the
numeric value. This argument is optional.

Default: 0

Range: 0–31

Details
The NUMXw.d format writes numeric values with a comma in place of the decimal
point.

Comparisons
The NUMXw.d format is similar to the w.d format except that NUMXw.d writes
numeric values with a comma in place of the decimal point.

Examples
put x numx10.2;

Formats � OCTALw. Format 209

Value of x Results

----+----1----+

896.48 896,48

64.89 64,89

3064.10 3064,10

See Also

Format:
“w.d Format” on page 254

Informat:
“NUMXw.d Informat” on page 1309

OCTALw. Format

Converts numeric values to octal representation.

Category: Numeric
Alignment: left

Syntax
OCTALw.

Syntax Description

w
specifies the width of the output field.
Default: 3
Range: 1–24

Details
If necessary, the OCTALw. format converts numeric values to integers before displaying
them in octal representation.

Comparisons
OCTALw. converts numeric values to octal representation. The $OCTALw. format
converts character values to octal representation.

Examples
put x octal6.;

210 PDw.d Format � Chapter 3

Value of x Results

----+----1

3592 007010

PDw.d Format

Writes data in packed decimal format.

Category: Numeric

Alignment: left

See: PDw.d Format in the documentation for your operating environment.

Syntax

PDw.d

Syntax Description

w
specifies the width of the output field. The w value specifies the number of bytes, not
the number of digits. (In packed decimal data, each byte contains two digits.)

Default: 1

Range: 1–16

d
specifies to multiply the number by 10d. This argument is optional.

Default: 0

Range: 0–31

Details

Different operating environments store packed decimal values in different ways.
However, the PDw.d format writes packed decimal values with consistent results if the
values are created in the same type of operating environment that you use to run SAS.

The PDw.d format writes missing numerical data as –0. When the PDw.d informat
reads a –0, it stores it as 0.

Comparisons

The following table compares packed decimal notation in several programming
languages:

Formats � PDJULGw. Format 211

Language Notation

SAS PD4.

COBOL COMP-3 PIC S9(7)

IBM 370 assembler PL4

PL/I FIXED DEC

Examples

y=put(x,pd4.);
put y $hex8.;

Value of x Results*

----+----1

128 00000128

* The result is a hexadecimal representation of a binary number written in packed decimal format.
Each byte occupies one column of the output field.

PDJULGw. Format

Writes packed Julian date values in the hexadecimal format yyyydddF for IBM.

Category: Date and Time

Syntax
PDJULGw.

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 3-16

Details
The PDJULGw. format writes SAS date values in the form yyyydddF, where

yyyy
is the two-byte representation of the four-digit Gregorian year.

212 PDJULIw. Format � Chapter 3

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples

SAS Statement Results

----+----1

date = ’17mar2005’d;
juldate = put(date,pdjulg4.);
put juldate $hex8.; 2005076F

See Also

Formats:

“PDJULIw. Format” on page 212

“JULIANw. Format” on page 193

“JULDAYw. Format” on page 192

Functions:

“JULDATE Function” on page 848

“DATEJUL Function” on page 628

Informats:

“PDJULIw. Informat” on page 1314

“PDJULGw. Informat” on page 1312

“JULIANw. Informat” on page 1301

System Option:

“YEARCUTOFF= System Option” on page 1996

PDJULIw. Format

Writes packed Julian date values in the hexadecimal format ccyydddF for IBM.

Category: Date and Time

Syntax
PDJULIw.

Formats � PDJULIw. Format 213

Syntax Description

w
specifies the width of the output field.
Default: 4

Range: 3-16

Details
The PDJULIw. format writes SAS date values in the form ccyydddF, where

cc
is the one-byte representation of a two-digit integer that represents the century.

yy
is the one-byte representation of a two-digit integer that represents the year. The
PDJULIw. format makes an adjustment for the century byte by subtracting 1900
from the 4–digit Gregorian year to produce the correct packed decimal ccyy
representation. A year value of 1998 is stored in ccyy as 0098, and a year value of
2011 is stored as 0111.

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples

SAS Statement Results

----+----1

date = ’17mar2005’d;
juldate = put(date,pdjuli4.);
put juldate $hex8.; 0105076F

date = ’31dec2003’d;
juldate = put(date,pdjuli4.);
put juldate $hex8.; 0103365F

See Also

Formats:
“PDJULGw. Format” on page 211

“JULIANw. Format” on page 193

“JULDAYw. Format” on page 192
Functions:

214 PERCENTw.d Format � Chapter 3

“DATEJUL Function” on page 628

“JULDATE Function” on page 848

Informats:

“PDJULGw. Informat” on page 1312

“PDJULIw. Informat” on page 1314

“JULIANw. Informat” on page 1301

System Option:

“YEARCUTOFF= System Option” on page 1996

PERCENTw.d Format

Writes numeric values as percentages.

Category: Numeric

Alignment: right

Syntax
PERCENTw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 4–32

Tip: The width of the output field must account for the percent sign (%)and
parentheses for negative numbers, whether the number is negative or positive.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Range: 0–31

Requirement: must be less than w

Details
The PERCENTw.d format multiplies values by 100, formats them the same as the
BESTw.d format, and adds a percent sign (%) to the end of the formatted value, while it
encloses negative values in parentheses.

Formats � PERCENTNw.d Format 215

Examples
put @10 gain percent10.;

Value of x Results

----+----1----+----2

0.1 10%

1.2 120%

-0.05 (5%)

See Also

Format:

“PERCENTNw.d Format” on page 215

PERCENTNw.d Format

Produces percentages, using a minus sign for negative values.

Category: Numeric

Alignment: right

Syntax
PERCENTNw.d

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 4–32

Tip: The width of the output field must account for the minus sign (–), the percent
sign (%), and a trailing blank, whether the number is negative or positive.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Range: 0–31

Requirement: must be less than w

216 PERCENTNw.d Format � Chapter 3

Details
The PERCENTNw.d format multiplies negative values by 100, formats them the same
as the BESTw.d format, adds a minus sign to the beginning of the value, and adds a
percent sign (%) to the end of the formatted value.

Comparisons
The PERCENTNw.d format produces percents by using a minus sign instead of
parentheses for negative values. The PERCENTw.d format produces percents by using
parentheses for negative values.

Examples
put x percentn10.;

Value of x Results

--0.1 -10%

.2 20%

.8 80%

--0.05 -5%

--6.3 --630%

See Also

Format:
“PERCENTw.d Format” on page 214

Formats � PIBw.d Format 217

PIBw.d Format

Writes positive integer binary (fixed-point) values.

Category: Numeric
Alignment: left
See: PIBw.d Format in the documentation for your operating environment.

Syntax
PIBw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–31

Details
All values are treated as positive. PIBw.d writes positive integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

218 PIBw.d Format � Chapter 3

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBw.d
format treats all values as positive and includes the sign bit as part of the value.

� The PIBw.d format with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. A value that corresponds to the binary
equivalent of the contents of a byte is useful if your data contain values between
hexadecimal 80 and hexadecimal FF, where the high-order bit can be
misinterpreted as a negative sign.

� The PIBw.d format is the same as the IBw.d format except that PIBw.d treats all
values as positive values.

� The IBw.d and PIBw.d formats are used to write native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d formats are used to write little endian
integers in any operating environment.

To view a table that shows the type of format to use with big endian and little
endian integers, see Table 3.1 on page 88.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 89.

Examples
y=put(x,pib1.);
put y $hex2.;

Value of x Results

----+----1

12 0C

* The result is a hexadecimal representation of a one-byte binary number written in positive
integer binary format, which occupies one column of the output field.

See Also

Format:
“PIBRw.d Format” on page 219

Formats � PIBRw.d Format 219

PIBRw.d Format

Writes positive integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric

Syntax
PIBRw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.

Default: 0

Range: 0–10

Details
All values are treated as positive. PIBRw.d writes positive integer binary values that
have been generated by and for Intel and DEC operating environments. Use PIBRw.d
to write positive integer binary data from Intel or DEC environments on other
operating environments. The PIBRw.d format in SAS code allows for a portable
implementation for writing the data in any operating environment.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about
byte ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little
Endian Platforms” on page 88. �

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBRw.d
format treats all values as positive and includes the sign bit as part of the value.

� The PIBRw.d format with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. A value that corresponds to the binary
equivalent of the contents of a byte is useful if your data contain values between
hexadecimal 80 and hexadecimal FF, where the high-order bit can be
misinterpreted as a negative sign.

� On Intel and DEC operating environments, the PIBw.d and PIBRw.d formats are
equivalent.

� The IBw.d and PIBw.d formats are used to write native format integers. (Native
format allows you to read and write values that are created in the same operating

220 PKw.d Format � Chapter 3

environment.) The IBRw.d and PIBRw.d formats are used to write little endian
integers in any operating environment.

To view a table that shows the type of format to use with big endian and little
endian integers, see Table 3.1 on page 88.

To view a table that compares integer binary notation in several programming
languages, see Table 3.2 on page 89.

Examples
y=put(x,pibr2.);
put y $hex4.;

Value of x Results

----+----1

128 8000

* The result is a hexadecimal representation of a two-byte binary number written in positive
integer binary format, which occupies one column of the output field.

See Also

Informat:
“PIBw.d Informat” on page 1318

PKw.d Format

Writes data in unsigned packed decimal format.

Category: Numeric
Alignment: left

Syntax
PKw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–16

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0

Formats � PVALUEw.d Format 221

Range: 0–10
Requirement: must be less than w

Details
Each byte of unsigned packed decimal data contains two digits.

Comparisons
The PKw.d format is similar to the PDw.d format except that PKw.d does not write the
sign in the low-order byte.

Examples
y=put(x,pk4.);
put y $hex8.;

Value of x Results*

----+----1

128 00000128

* The result is a hexadecimal representation of a four-byte number written in packed decimal
format. Each byte occupies one column of the output field.

PVALUEw.d Format

Writes p-values.

Category: Numeric
Alignment: right

Syntax
PVALUEw.d

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 3–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: the minimum of 4 and w–2

222 QTRw. Format � Chapter 3

Range: 1–30
Restriction: must be less than w

Comparisons
The PVALUEw.d format follows the rules for the w.d format, except that

� if the value x is such that 0 <= x < 10-d, x prints as “<.0...01” with d-1 zeros
� missing values print as “.” unless you specify a different character by using the

MISSING= system option

Examples
put x pvalue6.4;

Value of x Results

----+----1

.05 0.0500

0.000001 <.0001

0 <.0001

.0123456 0.0123

QTRw. Format

Writes date values as the quarter of the year.

Category: Date and Time
Alignment: right

Syntax
QTRw.

Syntax Description

w
specifies the width of the output field.

Formats � QTRRw. Format 223

Default: 1

Range: 1–32

Examples

The example table uses the input value of 16500, which is the SAS date value that
corresponds to March 5, 2005.

SAS Statement Results

----+----1

put date qtr.; 1

See Also

Format:

“QTRRw. Format” on page 223

QTRRw. Format

Writes date values as the quarter of the year in Roman numerals.

Category: Date and Time

Alignment: right

Syntax
QTRRw.

Syntax Description

w
specifies the width of the output field.

Default: 3

Range: 3–32

Examples

The example table uses the input value of 16694, which is the SAS date value that
corresponds to September 15, 2005.

224 RBw.d Format � Chapter 3

SAS Statement Results

----+----1

put date qtrr.; III

See Also

Format:
“QTRw. Format” on page 222

RBw.d Format

Writes real binary data (floating-point) in real binary format.

Category: Numeric
Alignment: left
See: RBw.d Format in the documentation for your operating environment.

Syntax
RBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 2–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Formats � RBw.d Format 225

Details
The RBw.d format writes numeric data in the same way that SAS stores them. Because
it requires no data conversion, RBw.d is the most efficient method for writing data with
SAS.

Note: Different operating environments store real binary values in different ways.
However, RBw.d writes real binary values with consistent results in the same type of
operating environment that you use to run SAS. �

CAUTION:
Using RB4. to write real binary data on equipment that conforms to the IEEE standard for
floating-point numbers results in a truncated eight-byte (double-precision) number rather
than a true four-byte (single-precision) floating-point number. �

Comparisons
The following table compares the names of real binary notation in several programming
languages:

Language 4 Bytes 8 Bytes

SAS RB4. RB8.

Fortran REAL*4 REAL*8

C float double

COBOL COMP-1 COMP-2

IBM 370 assembler E D

Examples
y=put(x,rb8.);
put y $hex16.;

Value of x Results

----+---1----+----2

128 4280000000000000

* The result is a hexadecimal representation of an eight-byte real binary number as it looks on
an IBM mainframe. Each byte occupies one column of the output field.

226 ROMANw. Format � Chapter 3

ROMANw. Format

Writes numeric values as roman numerals.

Category: Numeric
Alignment: left

Syntax
ROMANw.

Syntax Description

w
specifies the width of the output field.
Default: 6
Range: 2–32

Details
The ROMANw. format truncates a floating-point value to its integer component before
the value is written.

Examples
put @5 year roman10.;

Value of year Results

1998 MCMXCVIII

Formats � S370FFw.d Format 227

S370FFw.d Format

Writes native standard numeric data in IBM mainframe format.

Category: Numeric

Syntax
S370FFw.d

Syntax Description

w
specifies the width of the output field.

Default: 12

Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–31

Details
The S370FFw.d format writes numeric data in IBM mainframe format (EBCDIC). The
EBCDIC numeric values are represented with one byte per digit. If EBCDIC is the
native format, S370FFw.d performs no conversion.

If a value is negative, an EBCDIC minus sign precedes the value. A missing value is
represented as a single EBCDIC period.

Comparisons
On an EBCDIC system, S370FFw.d behaves like the w.d format.

On all other systems, S370FFw.d performs the same role for numeric data that the
$EBCDICw. format does for character data.

Examples
y=put(x,s370ff5.);
put y $hex10.;

Value of x Results*

----+----1

12345 F1F2F3F4F5

* The result is the hexadecimal representation for the integer.

228 S370FIBw.d Format � Chapter 3

See Also

Formats:
“$EBCDICw. Format” on page 112
“w.d Format” on page 254

S370FIBw.d Format

Writes integer binary (fixed-point) values, including negative values, in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FIBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Details
The S370FIBw.d format writes integer binary (fixed-point) values that are stored in IBM
mainframe format, including negative values that are represented in two’s complement
notation. S370FIBw.d writes integer binary values with consistent results if the values
are created in the same type of operating environment that you use to run SAS.

Use S370FIBw.d to write integer binary data in IBM mainframe format from data
that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

Formats � S370FIBUw.d Format 229

Comparisons
� If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian

integers in any operating environment.
To view a table that shows the type of format to use with big endian and little

endian integers, see Table 3.1 on page 88.
To view a table that compares integer binary notation in several programming

languages, see Table 3.2 on page 89.

Examples
y=put(x,s370fib4.);
put y $hex8.;

Value of x Results

----+----1

128 00000080

* The result is a hexadecimal representation of a 4-byte integer binary number. Each byte occupies
one column of the output field.

See Also

Formats:
“S370FIBUw.d Format” on page 229
“S370FPIBw.d Format” on page 234

S370FIBUw.d Format

Writes unsigned integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FIBUw.d

230 S370FIBUw.d Format � Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Details
The S370FIBUw.d format writes unsigned integer binary (fixed-point) values that are
stored in IBM mainframe format, including negative values that are represented in
two’s complement notation. Unsigned integer binary values are the same as integer
binary values, except that all values are treated as positive. S370FIBUw.d writes
integer binary values with consistent results if the values are created in the same type
of operating environment that you use to run SAS.

Use S370FIBUw.d to write unsigned integer binary data in IBM mainframe format
from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

Comparisons
� The S370FIBUw.d format is equivalent to the COBOL notation PIC 9(n) BINARY,

where n is the number of digits.
� The S370FIBUw.d format is the same as the S370FIBw.d format except that the

S370FIBUw.d format always uses the absolute value instead of the signed value.
� The S370FPIBw.d format writes all negative numbers as FFs, while the

S370FIBUw.d format writes the absolute value.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian

integers in any operating environment.
To view a table that shows the type of format to use with big endian and little

endian integers, see Table 3.1 on page 88.
To view a table that compares integer binary notation in several programming

languages, see Table 3.2 on page 89.

Formats � S370FPDw.d Format 231

Examples

y=put(x,s370fibu1.);
put y $hex2.;

Value of x Results*

245 F5

-245 F5

* The result is a hexadecimal representation of a one-byte integer binary number. Each byte
occupies one column of the output field.

See Also

Formats:

“S370FIBw.d Format” on page 228

“S370FPIBw.d Format” on page 234

S370FPDw.d Format

Writes packed decimal data in IBM mainframe format.

Category: Numeric

Alignment: left

Syntax

S370FPDw.d

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–16

d
specifies to multiply the number by 10d. This argument is optional.

Default: 0

Range: 0–31

232 S370FPDw.d Format � Chapter 3

Details
Use S370FPDw.d in other operating environments to write packed decimal data in the
same format as on an IBM mainframe computer.

Comparisons
The following table shows the notation for equivalent packed decimal formats in several
programming languages:

Language Packed Decimal Notation

SAS S370FPD4.

PL/I FIXED DEC(7,0)

COBOL COMP-3 PIC S9(7)

IBM 370 assembler PL4

Examples
y=put(x,s370fpd4.);
put y $hex8.;

Value of x Results

----+----1

128 0000128C

* The result is a hexadecimal representation of a binary number written in packed decimal format.
Each byte occupies one column of the output field.

Formats � S370FPDUw.d Format 233

S370FPDUw.d Format

Writes unsigned packed decimal data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FPDUw.d

Syntax Description

w
specifies the width of the output field.
Default: 1
Range: 1–16

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FPDUw.d in other operating environments to write unsigned packed decimal
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FPDUw.d format is similar to the S370FPDw.d format except that the

S370FPDw.d format always uses the absolute value instead of the signed value.
� The S370FPDUw.d format is equivalent to the COBOL notation PIC 9(n)

PACKED-DECIMAL, where the n value is the number of digits.

Examples

y=put(x,s370fpdu2.);
put y $hex4.;

Value of x Results

123 123F

-123 123F

* The result is a hexadecimal representation of a binary number written in packed decimal
format. Each two hexadecimal characters correspond to one byte of binary data, and each
byte corresponds to one column of the output field.

234 S370FPIBw.d Format � Chapter 3

S370FPIBw.d Format

Writes positive integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FPIBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 1–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Details
Positive integer binary values are the same as integer binary values, except that all
values are treated as positive. S370FPIBw.d writes integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Use S370FPIBw.d to write positive integer binary data in IBM mainframe format
from data that are created in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 88. �

Formats � S370FRBw.d Format 235

Comparisons
� If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
� The S370FPIBw.d format is the same as the S370FIBw.d format except that the

S370FPIBw.d format treats all values as positive values.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to write big endian

integers in any operating environment.
To view a table that shows the type of format to use with big endian and little

endian integers, see Table 3.1 on page 88.
To view a table that compares integer binary notation in several programming

languages, see Table 3.2 on page 89.

Examples
y=put(x,s370fpib1.);
put y $hex2.;

Value of x Results*

----+----1

12 0C

*The result is a hexadecimal representation of a one-byte binary number written in
positive integer binary format, which occupies one column of the output field.

See Also

Formats:
“S370FIBw.d Format” on page 228
“S370FIBUw.d Format” on page 229

S370FRBw.d Format

Writes real binary (floating-point) data in IBM mainframe format.

Category: Numeric
Alignment: left

236 S370FRBw.d Format � Chapter 3

Syntax
S370FRBw.d

Syntax Description

w
specifies the width of the output field.
Default: 4
Range: 2–8

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–10

Details
A floating-point value consists of two parts: a mantissa that gives the value and an
exponent that gives the value’s magnitude.

Use S370FRBw.d in other operating environments to write floating-point binary data
in the same format as on an IBM mainframe computer.

Comparisons
The following table shows the notation for equivalent floating-point formats in several
programming languages:

Language 4 Bytes 8 Bytes

SAS S370FRB4. S370FRB8.

PL/I FLOAT BIN(21) FLOAT BIN(53)

Fortran REAL*4 REAL*8

COBOL COMP-1 COMP-2

IBM 370 assembler E D

C float double

Examples
y=put(x,s370frb6.);
put y $hex8.;

Value of x Results*

128 42800000

-123 C2800000

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

Formats � S370FZDw.d Format 237

S370FZDw.d Format

Writes zoned decimal data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FZDw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FZDw.d in other operating environments to write zoned decimal data in the
same format as on an IBM mainframe computer.

Comparisons
The following table shows the notation for equivalent zoned decimal formats in several
programming languages:

Language Zoned Decimal Notation

SAS S370FZD3.

PL/I PICTURE ’99T’

COBOL PIC S9(3) DISPLAY

assembler ZL3

Examples
y=put(x,s370fzd3.);
put y $hex6.;

238 S370FZDLw.d Format � Chapter 3

Value of x Results*

123 F1F2C3

-123 F1F2D3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDLw.d Format

Writes zoned decimal leading–sign data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FZDLw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 1–32

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–31

Formats � S370FZDSw.d Format 239

Details
Use S370FZDLw.d in other operating environments to write zoned decimal leading-sign
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDLw.d format is similar to the S370FZDw.d format except that the

S370FZDLw.d format displays the sign of the number in the first byte of the
formatted output.

� The S370FZDLw.d format is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING, where the n value is the number of digits.

Examples
y=put(x,s370fzdl3.);
put y $hex6.;

Value of x Results*

123 C1F2F3

-123 D1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDSw.d Format

Writes zoned decimal separate leading-sign data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FZDSw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–32

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0

240 S370FZDTw.d Format � Chapter 3

Range: 0–31

Details
Use S370FZDSw.d in other operating environments to write zoned decimal separate
leading-sign data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDSw.d format is similar to the S370FZDLw.d format except that the

S370FZDSw.d format does not embed the sign of the number in the zoned output.
� The S370FZDSw.d format is equivalent to the COBOL notation PIC S9(n)

DISPLAY SIGN LEADING SEPARATE, where the n value is the number of digits.

Examples
y=put (x,s370fzds4.);
put y $hex8.;

Value of x Results*

123 4EF1F2F3

-123 60F1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDTw.d Format

Writes zoned decimal separate trailing-sign data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FZDTw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–32

d
specifies to multiply the number by 10d. This argument is optional.

Formats � S370FZDUw.d Format 241

Default: 0
Range: 0–31

Details
Use S370FZDTw.d in other operating environments to write zoned decimal separate
trailing-sign data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDTw.d format is similar to the S370FZDSw.d format except that the

S370FZDTw.d format displays the sign of the number at the end of the formatted
output.

� The S370FZDTw.d format is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

Examples
y=put (x,s370fzdt4.); ;
put y $hex8.;

Value of x Results*

123 F1F2F34E

-123 F1F2F360

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each two hexadecimal digits correspond to one byte of binary data,
and each byte corresponds to one column of the output field.

S370FZDUw.d Format

Writes unsigned zoned decimal data in IBM mainframe format.

Category: Numeric
Alignment: left

Syntax
S370FZDUw.d

Syntax Description

w
specifies the width of the output field.
Default: 8

242 SIZEKw.d Format � Chapter 3

Range: 1–32

d
specifies to multiply the number by 10d. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FZDUw.d in other operating environments to write unsigned zoned decimal
data in the same format as on an IBM mainframe computer.

Comparisons
� The S370FZDUw.d format is similar to the S370FZDw.d format except that the

S370FZDUw.d format always uses the absolute value of the number.
� The S370FZDUw.d format is equivalent to the COBOL notation PIC 9(n)

DISPLAY, where the n value is the number of digits.

Examples
y=put (x,s370fzdu3.);
put y $hex6.;

Value of x Results*

123 F1F2F3

-123 F1F2F3

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each pair of hexadecimal characters (such as F1) corresponds to one
byte of binary data, and each byte corresponds to one column of the output field.

SIZEKw.d Format

Writes a numeric value in the form nK for kilobytes.

Category: Numeric
Alignment: right

Syntax
SIZEKw.d

Syntax Description

w
specifies the width of the output field.

Formats � SIZEKBw.d Format 243

Default: 9
Range: 2 – 33

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: 0
Range: 0 – 31

Details
To write a numeric value in the form nK using the SIZEKw.d format, the value of n is
calculated by dividing the numeric value by 1024. The symbol K indicates that the
value is a multiple of 1024.

Example

put x sizek.;

Value of x Results

—-+—-1

1024 1K

200943 197K

See Also

Formats:
“SIZEKBw.d Format” on page 243
“SIZEKMGw.d Format” on page 244

Informat:
“SIZEKMGw.d Informat” on page 1345

SIZEKBw.d Format

Writes a numeric value in the form nKB for kilobytes.

Category: Numeric
Alignment: right

Syntax
SIZEKBw.d

Syntax Description

244 SIZEKMGw.d Format � Chapter 3

w
specifies the width of the output field.
Default: 9
Range: 2 – 33

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: 0
Range: 0 – 31

Details
To write a numeric value in the form nKB using the SIZEKBw.d format, the value of n
is calculated by dividing the numeric value by 1024. The symbol KB indicates that the
value is a multiple of 1024.

Examples

put x sizekb.;

Value of x Results

—-+—-1

1024 1KB

200943 197KB

See Also

Formats:
“SIZEKw.d Format” on page 242
“SIZEKMGw.d Format” on page 244

Informat:
“SIZEKMGw.d Informat” on page 1345

SIZEKMGw.d Format

Writes a numeric value in the form nKB for kilobytes, nMB for megabytes, or nGB or gigabytes.

Category: Numeric
Alignment: right

Syntax
SIZEKMGw.d

Formats � SSNw. Format 245

Syntax Description

w
specifies the width of the output field.
Default: 9
Range: 2 – 33

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: 0
Range: 0 – 31

Details
When you specify the SIZEKMGw.d format, SAS determines the best suffix, KB for
kilobytes, MB for megabytes, or GB for gigabytes, and divides the SAS numeric value
by one of the following values:

KB 1024

MB 1048576

GB 1073741824

Examples

put x sizekmg.;

Value of x Result

——+——1

3688 4KB

1048576 1MB

83409922345 8GB

See Also

Formats:
“SIZEKw.d Format” on page 242
“SIZEKBw.d Format” on page 243

Informat:
“SIZEKMGw.d Informat” on page 1345

SSNw. Format

Writes Social Security numbers.

246 TIMEw.d Format � Chapter 3

Category: Numeric
Alignment: none

Syntax
SSNw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Restriction: w must be 11

Details
If the value is missing, SAS writes nine single periods with dashes between the third
and fourth periods and between the fifth and sixth periods. If the value contains fewer
than nine digits, SAS right aligns the value and pads it with zeros on the left. If the
value has more than nine digits, SAS writes it as a missing value.

Examples
put id ssn11.;

Value of id Results

----+----1----+

263878439 263-87-8439

TIMEw.d Format

Writes time values as hours, minutes, and seconds in the form hh:mm:ss.ss.

Category: Date and Time
Alignment: right

Syntax
TIMEw.d

Syntax Description

Formats � TIMEw.d Format 247

w
specifies the width of the output field.
Default: 8
Range: 2–20
Tip: Make w large enough to produce the desired results. To obtain a complete time

value with three decimal places, you must allow at least 12 spaces: eight spaces to
the left of the decimal point, one space for the decimal point itself, and three
spaces for the decimal fraction of seconds.

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–19
Requirement: must be less than w

Details
The TIMEw.d format writes SAS time values in the form hh:mm:ss.ss, where

hh
is an integer.

Note: If hh is a single digit, TIMEw.d places a leading blank before the digit.
For example, the TIMEw.d. format writes 9:00 instead of 09:00. �

mm
is the number of minutes, ranging from 00 through 59.

ss.ss
is the number of seconds, ranging from 00 through 59, with the fraction of a
second following the decimal point.

Comparisons
The TIMEw.d format is similar to the HHMMw.d format except that TIMEw.d includes
seconds.

The TIMEw.d format writes a leading blank for a single-hour digit. The TODw.d
format writes a leading zero for a single-hour digit.

Examples

The example table uses the input value of 59083, which is the SAS time value that
corresponds to 4:24:43 p.m.

SAS Statement Results

----+----1

put begin time.; 16:24:43

See Also

248 TIMEAMPMw.d Format � Chapter 3

Formats:
“HHMMw.d Format” on page 184
“HOURw.d Format” on page 187
“MMSSw.d Format” on page 199
“TODw.d Format” on page 250

Functions:
“HOUR Function” on page 791
“MINUTE Function” on page 905
“SECOND Function” on page 1087
“TIME Function” on page 1124

Informat:
“TIMEw. Informat” on page 1349

TIMEAMPMw.d Format

Writes time and datetime values as hours, minutes, and seconds in the form hh:mm:ss.ss with
AM or PM.

Category: Date and Time
Alignment: right

Syntax
TIMEAMPMw.d

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 2–20

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–19
Requirement: must be less than w

Details
The TIMEAMPMw.d format writes SAS time values and SAS datetime values in the
form hh:mm:ss.ss with AM or PM, where

hh

Formats � TIMEAMPMw.d Format 249

is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Times greater than 23:59:59 PM appear as the next day.
Make w large enough to produce the desired results. To obtain a complete time value

with three decimal places and AM or PM, you must allow at least 11 spaces (hh:mm:ss
PM). If w is less than 5, SAS writes AM or PM only.

Comparisons
� The TIMEAMPMMw.d format is similar to the TIMEMw.d format except, that

TIMEAMPMMw.d prints AM or PM at the end of the time.
� TIMEw.d writes hours greater than 23:59:59 PM, and TIMEAMPMw.d does not.

Examples

The example table uses the input value of 59083, which is the SAS time value that
corresponds to 4:24:43 p.m.

SAS Statement Results

----+----1----+

put begin timeampm3.; PM

put begin timeampm5.; 4 PM

put begin timeampm7.; 4:24 PM

put begin timeampm11.; 4:24:43 PM

See Also

Format:
“TIMEw.d Format” on page 246

250 TODw.d Format � Chapter 3

TODw.d Format

Writes SAS time values and the time portion of SAS datetime values in the form hh:mm:ss.ss.

Category: Date and Time
Alignment: right

Syntax
TODw.d

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 2–20
Tip: SAS writes a zero for a zero hour if the specified width is sufficient. For

example, 02:30 or 00:30.

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–19
Requirement: must be less than w

Details
The TODw.d format writes SAS time and datetime values in the form hh:mm:ss.ss,
where

hh
is an integer that represents the hour.

mm
is an integer that represents the minutes.

ss.ss
is the number of seconds to two decimal places.

Formats � TODw.d Format 251

Comparisons
The TODw.d format writes a leading zero for a single-hour digit. The TIMEw.d format
and the HHMMw.d format write a leading blank for a single-hour digit.

Examples

In the following example, the SAS datetime value 1566742823 corresponds to August
24, 2009 at 2:20:23 p.m.

SAS Statement Results

----+----1

begin = ’1:30’t;

put begin tod5.; 01:30

begin = 1566742823;

put begin tod9.;

14:20:23

See Also

Formats:
“HHMMw.d Format” on page 184
“TIMEw.d Format” on page 246
“TIMEAMPMw.d Format” on page 248

Function:
“TIMEPART Function” on page 1125

Informat:
“TIMEw. Informat” on page 1349

252 VAXRBw.d Format � Chapter 3

VAXRBw.d Format

Writes real binary (floating-point) data in VMS format.

Category: Numeric

Alignment: right

Syntax

VAXRBw.d

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 2-8

d
specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0

Range: 0–31

Details

Use the VAXRBw.d format to write data in native VAX/VMS floating-point notation.

Comparisons

If you use SAS that is running under VAX/VMS, then the VAXRBw.d and the RBw.d
formats are identical.

Example

x=1;
y=put(x,vaxrb8.);
put y=$hex16.;

Value of x Results*

----+----1

1 8040000000000000

* The result is the hexadecimal representation for the integer.

Formats � VMSZNw.d Format 253

VMSZNw.d Format

Generates VMS and MicroFocus COBOL zoned numeric data.

Category: Numeric

Alignment: left

Syntax

VMSZNw.d

w
specifies the width of the output field

Default: 1

Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Details

The VMSZNw.d format is similar to the ZDw.d format. Both generate a string of ASCII
digits, and the last digit is a special character that denotes the magnitude of the last
digit and the sign of the entire number. The difference between these formats is in the
special character that is used for the last digit. The following table shows the special
characters that are used by the VMSZNw.d format.

Desired

Digit

Special

Character

Desired

Digit

Special

Character

0 0 –0 p

1 1 –1 q

2 2 –2 r

3 3 –3 s

4 4 –4 t

5 5 –5 u

6 6 –6 v

7 7 –7 w

8 8 –8 x

9 9 –9 y

254 w.d Format � Chapter 3

Data formatted using the VMSZNw.d format are ASCII strings.
If the value to be formatted is too large to fit in a field of the specified width, then

the VMSZNw.d format does the following:

� For positive values, it sets the output to the largest positive number that fits in
the given width.

� For negative values, it sets the output to the negative number of greatest
magnitude that fits in the given width.

Example

SAS Statements Results

------+------1

x=1234;
put x vmszn4.;

1234

x=1234;
put x vmszn5.1;

12340

x=1234;
put x vmszn6.2;

123400

-1234;
put x vmszn5.;

0123t

See Also

Format:

“ZDw.d Format” on page 284

Informat:

“VMSZNw.d Informat” on page 1355

w.d Format

Writes standard numeric data one digit per byte.

Category: Numeric

Alignment: right

Alias: Fw.d

See: w.d Format in the documentation for your operating environment.

Syntax

w.d

Formats � WEEKDATEw. Format 255

Syntax Description

w
specifies the width of the output field.

Range: 1–32

Tip: Allow enough space to write the value, the decimal point, and a minus sign, if
necessary.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Range: 0–31

Requirement: must be less than w

Tip: If d is 0 or you omit d, w.d writes the value without a decimal point.

Details

The w.d format rounds to the nearest number that fits in the output field. If w.d is too
small, SAS might shift the decimal to the BESTw. format. The w.d format writes
negative numbers with leading minus signs. In addition, w.d right aligns before writing
and pads the output with leading blanks.

Comparisons

The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned
output with 0s instead of blanks.

Examples

put @7 x 6.3;

Value of x Results

----+----1----+

23.45 23.450

WEEKDATEw. Format

Writes date values as the day of the week and the date in the form day-of-week, month-name dd,
yy (or yyyy).

Category: Date and Time

Alignment: right

256 WEEKDATEw. Format � Chapter 3

Syntax
WEEKDATEw.

Syntax Description

w
specifies the width of the output field.
Default: 29
Range: 3–37

Details
The WEEKDATEw. format writes SAS date values in the form day-of-week,
month-name dd, yy (or yyyy), where

dd
is an integer that represents the day of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, SAS abbreviates as
needed.

Comparisons
The WEEKDATEw. format is the same as the WEEKDATXw. format except that
WEEKDATXw. prints dd before the month’s name.

Examples

The example table uses the input value of 16601 which is the SAS date value that
corresponds to June 14, 2005.

SAS Statement Results

----+----1----+----2

put date weekdate3.; Tue

put date weekdate9.; Tuesday

put date weekdate15.; Tue, Jun 14, 05

put date weekdate17.; Tue, Jun 14, 2005

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYw. Format” on page 157
“MMDDYYw. Format” on page 195

Formats � WEEKDATXw. Format 257

“TODw.d Format” on page 250

“WEEKDATXw. Format” on page 257

“YYMMDDw. Format” on page 273

Functions:

“JULDATE Function” on page 848

“MDY Function” on page 901

“WEEKDAY Function” on page 1189

Informats:

“DATEw. Informat” on page 1280

“DDMMYYw. Informat” on page 1283

“MMDDYYw. Informat” on page 1305

“YYMMDDw. Informat” on page 1366

WEEKDATXw. Format

Writes date values as the day of the week and date in the form day-of-week, dd month-name yy
(or yyyy).

Category: Date and Time

Alignment: right

Syntax
WEEKDATXw.

Syntax Description

w
specifies the width of the output field.

Default: 29

Range: 3–37

Details
The WEEKDATXw. format writes SAS date values in the form day-of-week, dd
month-name, yy (or yyyy), where

dd
is an integer that represents the day of the month.

yy or yyyy
is a two-digit or a four-digit integer that represents the year.

If w is too small to write the complete day of the week and month, then SAS
abbreviates as needed.

258 WEEKDAYw. Format � Chapter 3

Comparisons
The WEEKDATEw. format is the same as the WEEKDATXw. format, except that
WEEKDATEw. prints dd after the month’s name.

The WEEKDATXw. format is the same as the DTWKDATXw. format, except that
DTWKDATXw. expects a datetime value as input.

Examples

The example table uses the input value of 16490, which is the SAS date value that
corresponds to February 23, 2005.

SAS Statement Results

----+----1----+----2----+----3

put date weekdatx.; Wednesday, 23 February 2005

See Also

Formats:
“DTWKDATXw. Format” on page 166
“DATEw. Format” on page 151
“DDMMYYw. Format” on page 157
“MMDDYYw. Format” on page 195
“TODw.d Format” on page 250
“WEEKDATEw. Format” on page 255
“YYMMDDw. Format” on page 273

Functions:
“JULDATE Function” on page 848
“MDY Function” on page 901
“WEEKDAY Function” on page 1189

Informats:
“DATEw. Informat” on page 1280
“DDMMYYw. Informat” on page 1283
“MMDDYYw. Informat” on page 1305
“YYMMDDw. Informat” on page 1366

WEEKDAYw. Format

Writes date values as the day of the week.

Category: Date and Time
Alignment: right

Formats � WEEKUw. Format 259

Syntax

WEEKDAYw.

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Details
The WEEKDAYw. format writes a SAS date value as the day of the week (where
1=Sunday, 2=Monday, and so on).

Examples

The example table uses the input value of 16469, which is the SAS date value that
corresponds to February 2, 2005.

SAS Statement Result

----+----1

put date weekday.; 4

See Also

Format:

“DOWNAMEw. Format” on page 162

WEEKUw. Format

Writes a week number in decimal format by using the U algorithm.

Category: Date and Time

Alignment: left

Syntax
WEEKUw.

260 WEEKUw. Format � Chapter 3

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 3–200

Details
The WEEKUw. format writes a week-number format. The WEEKUw. format writes
the various formats depending on the specified width. Algorithm U calculates the SAS
date value by using the number of the week within the year (Sunday is considered the
first day of the week). The number-of-the-week value is represented as a decimal
number in the range 0–53, with a leading zero and maximum value of 53. For example,
the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate = ’01JAN2003’d;

Formats � WEEKVw. Format 261

Statements Results

----+----1----+

v=put(sasdate,weeku3.);
w=put(sasdate,weeku5.);
x=put(sasdate,weeku7.);
y=put(sasdate,weeku9.);
z=put(sasdate,weeku11.);
put v;
put w;
put x;
put y;
put z;

W00
03W00
03W0004
2003W0004
2003-W00-04

See Also

Formats:

“WEEKVw. Format” on page 261

“WEEKWw. Format” on page 263

Functions:

“WEEK Function” on page 1186

Informats:

“WEEKUw. Informat” on page 1356

“WEEKVw. Informat” on page 1358

“WEEKWw. Informat” on page 1360

WEEKVw. Format

Writes a week number in decimal format by using the V algorithm.

Category: Date and Time

Alignment: left

Syntax
WEEKVw.

Syntax Description

w
specifies the width of the output field.

Default: 11

Range: 3–200

262 WEEKVw. Format � Chapter 3

Details
The WEEKVw. format writes the various formats depending on the specified width.
Algorithm V calculates the SAS date value, with the number-of-the-week value
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday
of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53, with weeks beginning on a Monday and week 1 of the year including both
January 4th and the first Thursday of the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year. The
WEEKWw. format writes the week number of the year as a decimal number in the
range 00–53, with Monday as the first day of week 1. The WEEKUw. format writes the
week number of the year (Sunday as the first day of the week) as a decimal number in
the range 0–53, with a leading zero.

Examples

sasdate=’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weekv3.);
w=put(sasdate,weekv5.);
x=put(sasdate,weekv7.);
y=put(sasdate,weekv9.);
z=put(sasdate,weekv11.);
put v;
put w;
put x;
put y;
put z;

W01
03W01
03W0103
2003W0103
2003-W01-03

Formats � WEEKWw. Format 263

See Also

Formats:
“WEEKUw. Format” on page 259
“WEEKWw. Format” on page 263

Functions:
“WEEK Function” on page 1186

Informats:
“WEEKUw. Informat” on page 1356
“WEEKVw. Informat” on page 1358
“WEEKWw. Informat” on page 1360

WEEKWw. Format

Writes a week number in decimal format by using the W algorithm.

Category: Date and Time
Alignment: left

Syntax
WEEKWw.

Syntax Description

w
specifies the width of the output field.
Default: 11
Range: 3–200

Details
The WEEKWw. format writes the various formats depending on the specified width.
Algorithm W calculates the SAS date value using the number of the week within the
year (Monday is considered the first day of the week). The number-of-the-week value is
represented as a decimal number in the range 0–53, with a leading zero and maximum
value of 53. For example, the fifth week of the year would be represented as 05.

Refer to the following table for widths, formats, and examples:

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

264 WEEKWw. Format � Chapter 3

Widths Formats Examples

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKVw. format writes the week number as a decimal number in the range
01–53. Weeks beginning on a Monday and on week 1 of the year include both January
4th and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or
4th, the preceding days are part of the last week of the preceding year. The WEEKWw.
format writes the week number of the year as a decimal number in the range 00–53,
with Monday as the first day of week 1. The WEEKUw. format writes the week
number of the year (Sunday as the first day of the week) as a decimal number in the
range 0–53, with a leading zero.

Examples

sasdate = ’01JAN2003’d;

Statements Results

----+----1----+

v=put(sasdate,weekw3.);
w=put(sasdate,weekw5.);
x=put(sasdate,weekw7.);
y=put(sasdate,weekw9.);
z=put(sasdate,weekw11.);
put v;
put w;
put x;
put y;
put z;

W03
03W03
03W0003
2003W0003
2003-W00-03

See Also

Formats:

“WEEKUw. Format” on page 259

“WEEKVw. Format” on page 261

Functions:

“WEEK Function” on page 1186

Informats:

“WEEKUw. Informat” on page 1356

“WEEKVw. Informat” on page 1358

“WEEKWw. Informat” on page 1360

Formats � WORDDATEw. Format 265

WORDDATEw. Format

Writes date values as the name of the month, the day, and the year in the form month-name dd,
yyyy.

Category: Date and Time
Alignment: right

Syntax
WORDDATEw.

Syntax Description

w
specifies the width of the output field.
Default: 18
Range: 3–32

Details
The WORDDATEw. format writes SAS date values in the form month-name dd, yyyy,
where

dd
is an integer that represents the day of the month.

yyyy
is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons
The WORDDATEw. format is the same as the WORDDATXw. format except that
WORDDATXw. prints dd before the month’s name.

Examples

The example table uses the input value of 16601, which is the SAS date value that
corresponds to June 14, 2005.

SAS Statement Result

----+----1----+----2

put term worddate3.; Jun

put term worddate9.; June

put term worddate12.; Jun 14, 2005

put term worddate20.; June 14, 2005

266 WORDDATXw. Format � Chapter 3

See Also

Format:

“WORDDATXw. Format” on page 266

WORDDATXw. Format

Writes date values as the day, the name of the month, and the year in the form dd month-name
yyyy.

Category: Date and Time

Alignment: right

Syntax
WORDDATXw.

Syntax Description

w
specifies the width of the output field.

Default: 18

Range: 3–32

Details
The WORDDATXw. format writes SAS date values in the form dd month-name, yyyy,
where

dd
is an integer that represents the day of the month.

yyyy
is a four-digit integer that represents the year.

If the width is too small to write the complete month, SAS abbreviates as necessary.

Comparisons
The WORDDATXw. format is the same as the WORDDATEw. format except that
WORDDATEw. prints dd after the month’s name.

Examples

The example table uses the input value of 16500, which is the SAS date value that
corresponds to March 5, 2005.

Formats � WORDFw. Format 267

SAS Statement Results

----+----1----+----2

put term worddatx.; 05 March 2005

See Also

Format:
“WORDDATEw. Format” on page 265

WORDFw. Format

Writes numeric values as words with fractions that are shown numerically.

Category: Numeric
Alignment: left

Syntax
WORDFw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 5–32767

Details
The WORDFw. format converts numeric values to their equivalent in English words,
with fractions that are represented numerically in hundredths. For example, 8.2 prints
as eight and 20/100.

Negative numbers are preceded by the word minus. When the value’s equivalent in
words does not fit into the specified field, it is truncated on the right and the last
character prints as an asterisk.

Comparisons
The WORDFw. format is similar to the WORDSw. format except that WORDFw.
prints fractions as numbers instead of words.

Examples
put price wordf15.;

268 WORDSw. Format � Chapter 3

Value of price Results

----+----1----+

2.5 two and 50/100

See Also

Format:
“WORDSw. Format” on page 268

WORDSw. Format

Writes numeric values as words.

Category: Numeric
Alignment: left

Syntax
WORDSw.

Syntax Description

w
specifies the width of the output field.
Default: 10
Range: 5–32767

Details
You can use the WORDSw. format to print checks with the amount written out below
the payee line.

Negative numbers are preceded by the word minus. If the number is not an integer,
the fractional portion is represented as hundredths. For example, 5.3 prints as five and
thirty hundredths. When the value’s equivalent in words does not fit into the specified
field, it is truncated on the right and the last character prints as an asterisk.

Comparisons
The WORDSw. format is similar to the WORDFw. format except that WORDSw. prints
fractions as words instead of numbers.

Examples
put price words23.;

Formats � YEARw. Format 269

Value of price Results

----+----1----+----2----+

2.1 two and ten hundredths

See Also

Format:

“WORDFw. Format” on page 267

YEARw. Format

Writes date values as the year.

Category: Date and Time

Alignment: right

Syntax
YEARw.

Syntax Description

w
specifies the width of the output field.

Default: 4

Range: 2–32

Tip: If w is less than 4, the last two digits of the year print. Otherwise, the year
value prints as four digits.

Comparisons
The YEARw. format is similar to the DTYEARw. format in that they both write date
values. The difference is that YEARw. expects a SAS date value as input, and
DTYEARw. expects a datetime value.

Examples

The example table uses the input value of 16601, which is the SAS date value that
corresponds to June 14, 2005.

270 YYMMw. Format � Chapter 3

SAS Statement Results

----+----1

put date year2.; 05

put date year4.; 2005

See Also

Format:
“DTYEARw. Format” on page 167

YYMMw. Format

Writes date values in the form <yy>yyMmm, where M is a character separator to indicate that the
month number follows the M and the year appears as either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
YYMMw.

Syntax Description

w
specifies the width of the output field.
Default: 7
Range: 5–32
Interaction: When w has a value of 5 or 6, the date appears with only the last two

digits of the year. When w is 7 or more, the date appears with a four-digit year.

Details
The YYMMw. format writes SAS date values in the form <yy>yyMmm, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

M
is the character separator to indicate that the number of the month follows..

mm
is an integer that represents the month.

Formats � YYMMxw. Format 271

Examples

The following examples use the input value of 16734, which is the SAS date value
that corresponds to October 25, 2005.

SAS Statement Result

----+----1----+

put date yymm5.; 05M10

put date yymm6.; 05M10

put date yymm.; 2005M10

put date yymm7.; 2005M10

put date yymm10.; 2005M10

See Also

Format:
“MMYYw. Format” on page 200
“YYMMxw. Format” on page 271

YYMMxw. Format

Writes date values in the form <yy>yymm or <yy>yy-mm, where the x in the format name is a
character that represents the special character that separates the year and the month, which can
be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can be
either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
YYMMxw.

Syntax Description

x
identifies a separator or specifies that no separator appear between the year and the
month. Valid values for x are:

C
separates with a colon

D

272 YYMMxw. Format � Chapter 3

separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a forward slash.

w
specifies the width of the output field.

Default: 7
Range: 5–32

Interaction: When x is set to N, no separator is specified. The width range is then
4–32, and the default changes to 6.

Interaction: When x has a value of C, D, P, or S and w has a value of 5 or 6, the
date appears with only the last two digits of the year. When w is 7 or more, the
date appears with a four-digit year.

Interaction: When x has a value of N and w has a value of 4 or 5, the date appears
with only the last two digits of the year. When x has a value of N and w is 6 or
more, the date appears with a four-digit year.

Details
The YYMMxw. format writes SAS date values in the form <yy>yymm or <yy>yyXmm,
where

<yy>yy
is a two-digit or four-digit integer that represents the year.

x
is a specified separator.

mm
is an integer that represents the month.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

SAS Statement Results

----+----1----+

put date yymmc5.; 09:05

put date yymmd.; 2009-05

put date yymmn4.; 0905

put date yymmp8.; 2009.05

put date yymms10.; 2009/05

Formats � YYMMDDw. Format 273

See Also

Format:

“MMYYxw. Format” on page 202

“YYMMw. Format” on page 270

YYMMDDw. Format

Writes date values in the form yymmdd or <yy>yy-mm-dd, where a dash is the separator and the
year appears as either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax
YYMMDDw.

Syntax Description

w
specifies the width of the output field.

Default: 8

Range: 2–10

Interaction: When w has a value of from 2 to 5, the date appears with as much of
the year and the month as possible. When w is 7, the date appears as a two-digit
year without dashes.

Details
The YYMMDDw. format writes SAS date values in the form yymmdd or
<yy>yy–mm–dd, where

<yy>yy is a two-digit or four-digit integer that represents the year.

– is the separator.

mm is an integer that represents the month.

dd is an integer that represents the day of the month.

To format a date that has a four-digit year and no separators, use the YYMMDDx.
format.

Examples

The following examples use the input value of 16529, which is the SAS date value
that corresponds to April 3, 2005.

274 YYMMDDxw. Format � Chapter 3

SAS Statement Results

----+----1----+

put day yymmdd2.; 05

put day yymmdd3.; 05

put day yymmdd4.; 0504

put day yymmdd5.; 05-04

put day yymmdd6.; 050403

put day yymmdd7.; 050403

put day yymmdd8.; 05-04-03

put day yymmdd10.; 2005-04-03

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYw. Format” on page 157
“MMDDYYw. Format” on page 195
“YYMMDDxw. Format” on page 274

Functions:
“DAY Function” on page 630
“MDY Function” on page 901
“MONTH Function” on page 913
“YEAR Function” on page 1192

Informats:
“DATEw. Informat” on page 1280
“DDMMYYw. Informat” on page 1283
“MMDDYYw. Informat” on page 1305

YYMMDDxw. Format

Writes date values in the form yymmdd or <yy>yy-mm-dd, where the x in the format name is a
character that represents the special character which separates the year, month, and day. The
special character can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no
separator; the year can be either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
YYMMDDxw.

Formats � YYMMDDxw. Format 275

Syntax Description

x
identifies a separator or specifies that no separator appear between the year, the
month, and the day. Valid values for x are:

B
separates with a blank

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a slash.

w
specifies the width of the output field.

Default: 8

Range: 2–10

Interaction: When w has a value of from 2 to 5, the date appears with as much of
the year and the month. When w is 7, the date appears as a two-digit year
without separators.

Interaction: When x has a value of N, the width range is 2–8.

Details
The YYMMDDxw. format writes SAS date values in the form yymmdd or
<yy>yyxmmxdd, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

x
is a specified separator.

mm
is an integer that represents the month.

dd
is an integer that represents the day of the month.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

276 YYMONw. Format � Chapter 3

SAS Statement Results

----+----1----+

put day yymmddc5.; 09:05

put day yymmddd8.; 09-05-14

put day yymmddp10.; 2009.05.14

put day yymmddn8.; 20090514

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYxw. Format” on page 158
“MMDDYYxw. Format” on page 197
“YYMMDDw. Format” on page 273

Functions:
“DAY Function” on page 630
“MDY Function” on page 901
“MONTH Function” on page 913
“YEAR Function” on page 1192

Informat:
“YYMMDDw. Informat” on page 1366

YYMONw. Format

Writes date values in the form yymmm or yyyymmm.

Category: Date and Time
Alignment: right

Syntax
YYMONw.

Syntax Description

w
specifies the width of the output field. If the format width is too small to print a
four-digit year, only the last two digits of the year are printed.
Default: 7
Range: 5–32

Formats � YYQw. Format 277

Details
The YYMONw. format abbreviates the month’s name to three characters.

Examples

The example table uses the input value of 16601, which is the SAS date value that
corresponds to June 14, 2005.

SAS Statement Results

----+----1

put date yymon6.; 05JUN

put date yymon7.; 2005JUN

See Also

Format:

“MMYYw. Format” on page 200

YYQw. Format

Writes date values in the form <yy>yyQq, where Q is the separator, the year appears as either 2 or
4 digits, and q is the quarter of the year.

Category: Date and Time

Alignment: right

Syntax
YYQw.

Syntax Description

w
specifies the width of the output field.

Default: 6

Range: 4–32

Interaction: When w has a value of 4 or 5, the date appears with only the last two
digits of the year. When w is 6 or more, the date appears with a four-digit year.

278 YYQxw. Format � Chapter 3

Details
The YYQw. format writes SAS date values in the form <yy>yyQq, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

Q
is the character separator.

q
is an integer (1,2,3, or 4) that represents the quarter of the year.

Examples

The following examples use the input value of 16601, which is the SAS date value
that corresponds to June 14, 2005.

SAS Statements Results

----+----1----+

put date yyq4.; 05Q2

put date yyq5.; 05Q2

put date yyq.; 2005Q2

put date yyq6.; 2005Q2

put date yyq10.; 2005Q2

See Also

Formats:

“YYQxw. Format” on page 278
“YYQRw. Format” on page 280

YYQxw. Format

Writes date values in the form <yy>yyq or <yy>yy-q, where the x in the format name is a character
that represents the special character that separates the year and the quarter or the year, which
can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the year can
be either 2 or 4 digits.

Category: Date and Time
Alignment: right

Syntax
YYQxw.

Formats � YYQxw. Format 279

Syntax Description

x
identifies a separator or specifies that no separator appear between the year and the
quarter. Valid values for x are:

C
separates with a colon

D
separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a forward slash.

w
specifies the width of the output field.
Default: 6
Range: 4–32
Interaction: When x is set to N, no separator is specified. The width range is then

3–32, and the default changes to 5.
Interaction: When w has a value of 4 or 5, the date appears with only the last two

digits of the year. When w is 6 or more, the date appears with a four-digit year.
Interaction: When x has a value of N and w has a value of 3 or 4, the date appears

with only the last two digits of the year. When x has a value of N and w is 5 or
more, the date appears with a four-digit year.

Details
The YYQxw. format writes SAS date values in the form <yy>yyq or <yy>yyxq, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

x
is a specified separator.

q
is an integer (1,2,3, or 4) that represents the quarter of the year.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to July 14, 2005.

SAS Statement Results

----+----1----+

put date yyqc4.; 09:2

put date yyqd.; 2009-2

280 YYQRw. Format � Chapter 3

SAS Statement Results

put date yyqn3.; 092

put date yyqp6.; 2009.2

put date yyqs8.; 2009/2

See Also

Formats:
“YYQw. Format” on page 277
“YYQRxw. Format” on page 281

YYQRw. Format

Writes date values in the form <yy>yyQqr, where Q is the separator, the year appears as either 2
or 4 digits, and qr is the quarter of the year expressed in roman numerals.

Category: Date and Time
Alignment: right

Syntax
YYQRw.

Syntax Description

w
specifies the width of the output field.
Default: 8
Range: 6–32
Interaction: When the value of w is too small to write a four-digit year, the date

appears with only the last two digits of the year.

Details
The YYQRw. format writes SAS date values in the form <yy>yyQqr, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

Q
is the character separator.

qr
is a roman numeral (I, II, III, or IV) that represents the quarter of the year.

Formats � YYQRxw. Format 281

Examples

The following examples use the input value of 16601, which is the SAS date value
that corresponds to June 14, 2005.

SAS Statement Result

----+----1----+

put date yyqr6.; 05QII

put date yyqr7.; 2005QII

put date yyqr.; 2005QII

put date yyqr8.; 2005QII

put date yyqr10.; 2005QII

See Also

Format:
“YYQw. Format” on page 277
“YYQRxw. Format” on page 281

YYQRxw. Format

Writes date values in the form <yy>yyqr or <yy>yy-qr, where the x in the format name is a
character that represents the special character that separates the year and the quarter or the year,
which can be a hyphen (-), period (.), blank character, slash (/), colon (:), or no separator; the
year can be either 2 or 4 digits and qr is the quarter of the year expressed in roman numerals.

Category: Date and Time
Alignment: right

Syntax
YYQRxw.

Syntax Description

x
identifies a separator or specifies that no separator appear between the year and the
quarter. Valid values for x are:

C
separates with a colon

D

282 YYQRxw. Format � Chapter 3

separates with a dash

N
indicates no separator

P
separates with a period

S
separates with a forward slash.

w
specifies the width of the output field.
Default: 8

Range: 6–32
Interaction: When x is set to N, no separator is specified. The width range is then

5–32, and the default changes to 7.
Interaction: When the value of w is too small to write a four-digit year, the date

appears with only the last two digits of the year.

Details
The YYQRxw. format writes SAS date values in the form <yy>yyqr or <yy>yyxqr, where

<yy>yy
is a two-digit or four-digit integer that represents the year.

x
is a specified separator.

qr
is a roman numeral (I, II, III, or IV) that represents the quarter of the year.

Examples

The following examples use the input value of 18031, which is the SAS date value
that corresponds to May 14, 2009.

SAS Statement Result

----+----1----+

put date yyqrc6.; 09:II

put date yyqrd.; 2009-II

put date yyqrn5.; 09II

put date yyqrp8.; 2009.II

put date yyqrs10.; 2009/II

See Also

Format:
“YYQxw. Format” on page 278

Formats � Zw.d Format 283

“YYQRw. Format” on page 280

Zw.d Format

Writes standard numeric data with leading 0s.

Category: Numeric

Alignment: right

Syntax
Zw.d

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

Tip: Allow enough space to write the value, the decimal point, and a minus sign, if
necessary.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Default: 0

Range: 0–31

Tip: If d is 0 or you omit d, Zw.d writes the value without a decimal point.

Details
The Zw.d format writes standard numeric values one digit per byte and fills in 0s to the
left of the data value.

The Zw.d format rounds to the nearest number that will fit in the output field. If w.d
is too large to fit, SAS might shift the decimal to the BESTw. format. The Zw.d format
writes negative numbers with leading minus signs. In addition, it right aligns before
writing and pads the output with leading zeros.

Comparisons
The Zw.d format is similar to the w.d format except that Zw.d pads right-aligned
output with 0s instead of blanks.

Examples
put @5 seqnum z8.;

284 ZDw.d Format � Chapter 3

Value of seqnum Results

----+----1

1350 00001350

ZDw.d Format

Writes numeric data in zoned decimal format .

Category: Numeric

Alignment: left

See: ZDw.d Format in the documentation for your operating environment.

Syntax
ZDw.d

Syntax Description

w
specifies the width of the output field.

Default: 1

Range: 1–32

d
specifies to multiply the number by 10d. This argument is optional.

Default: 0

Range: 0–31

Details

The zoned decimal format is similar to standard numeric format in that every digit
requires one byte. However, the value’s sign is in the last byte, along with the last digit.

Note: Different operating environments store zoned decimal values in different
ways. However, the ZDw.d format writes zoned decimal values with consistent results
if the values are created in the same type of operating environment that you use to run
SAS. �

Comparisons

The following table compares the zoned decimal format with notation in several
programming languages:

Formats � SAS National Language Support (NLS): Reference Guide 285

Language Zoned Decimal Notation

SAS ZD3.

PL/I PICTURE ’99T’

COBOL DISPLAY PIC S 999

IBM 370 assembler ZL3

Examples
y=put(x,zd4.);
put y $hex8.;

Value of x Results

120 F0F1F2C0

* The result is a hexadecimal representation of a binary number in zoned decimal format on an
IBM mainframe computer. Each byte occupies one column of the output field.

Formats Documented in Other SAS Publications

The main references for SAS formats are SAS Language Reference: Dictionary and
the SAS National Language Support (NLS): Reference Guide. See the documentation
for your operating environment for host-specific information about formats.

SAS National Language Support (NLS): Reference Guide

Table 3.5

Category Formats for NLS Description

BIDI text handling $BIDIw. Format Converts between a logically ordered string and a
visually ordered string, by reversing the order of Hebrew
and Arabic characters while preserving the order of
Latin words and numbers.

$LOGVSw.Format Processes a character string that is in left-to-right-logical
order, and then writes the character string in visual
order.

$LOGVSRw. Format Processes a character string that is in right-to-left-logical
order, and then writes the character string in visual
order.

$VSLOGw. Format Processes a character string that is in visual order, and
then writes the character string in left-to-right logical
order.

286 SAS National Language Support (NLS): Reference Guide � Chapter 3

$VSLOGRw. Format Processes a character string that is in visual order, and
then writes the character string in right-to-left logical
order.

Character $UCS2Bw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 16-bit, UCS2, Unicode encoding.

$UCS2BEw. Format Processes a character string that is in big-endian, 16-bit,
UCS2, Unicode encoding, and then writes the character
string in the encoding of the current SAS session.

$UCS2Lw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 16-bit, UCS2, Unicode encoding.

$UCS2LEw. Format Processes a character string that is in little-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

$UCS2Xw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 16-bit, UCS2, Unicode encoding.

$UCS2XEw. Format Processes a character string that is in native-endian,
16-bit, UCS2, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

$UCS4Bw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in big-endian, 32-bit, UCS4, Unicode encoding.

$UCS4BEw. Format Processes a character string that is in big-endian, 32-bit,
UCS4, Unicode encoding, and then writes the character
string in the encoding of the current SAS session.

$UCS4Lw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in little-endian, 32-bit, UCS4, Unicode encoding.

%UCS4LEw. Format Processes a character string that is in little-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

$UCS4Xw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character
string in native-endian, 32-bit, UCS4, Unicode encoding.

$UCS4XEw. Format Processes a character string that is in native-endian,
32-bit, UCS4, Unicode encoding, and then writes the
character string in the encoding of the current SAS
session.

$UESCw. Format Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode escape (UESC) representation.

Formats � SAS National Language Support (NLS): Reference Guide 287

$UESCEw. Format Processes a character string that is in Unicode escape
(UESC) representation, and then writes the character
string in the encoding of the current SAS session.

$UNCRw. Format Processes a character string that is encoded in the
current SAS session, and then writes the character
string in numeric character representation (NCR).

$UNCREw. Format Processes a character string that is in numeric character
representation (NCR), and then writes the character
string in the encoding of the current SAS session.

$UPARENw. Format Processes a character string that is encoded in the
current SAS session, and then writes the character
string in Unicode parenthesis (UPAREN) representation.

$UPARENEw. Format Processes a character string that is in Unicode
parenthesis (UPAREN), and then writes the character
string in the encoding of the current SAS session.

$UTF8Xw. Format Processes a character string that is in the encoding of the
current SAS session, and then writes the character string
in universal transformation format (UTF-8) encoding.

DBCS $KANJIw. Format Adds shift-code data to DBCS data.

$KANJIXw. Format Removes shift-code data from DBCS data.

Date and Time HDATEw. Format Writes date values in the form yyyy mmmmm dd where
dd is the day-of-the-month, mmmmm represents the
month’s name in Hebrew, and yyyy is the year.

HEBDATEw. Format Writes date values according to the Jewish calendar.

MINGUOw. Format Writes date values as Taiwanese dates in the form
yyyymmdd .

NENGOw. Format Writes date values as Japanese dates in the form
e.yymmdd .

NLDATEw. Format Converts a SAS date value to the date value of the
specified locale, and then writes the date value as a date.

NLDATEMDw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the value as the name of
the month and the day of the month.

NLDATEMNw. Format Converts a SAS date value to the date value of the
specified locale, and then writes the value as the name of
the month.

NLDATEWw. Format Converts a SAS date value to the date value of the
specified locale, and then writes the value as the date
and the day of the week.

NLDATEWNw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
day of the week.

NLDATEYMw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the name of the month.

288 SAS National Language Support (NLS): Reference Guide � Chapter 3

NLDATEYQw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the quarter.

NLDATEYRw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year.

NLDATEYWw. Format Converts the SAS date value to the date value of the
specified locale, and then writes the date value as the
year and the week.

NLDATMw. Format Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as a
datetime.

NLDATMAPw. Format Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as a
datetime with a.m. or p.m.

NLDATMDTw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month, day of the month and year.

NLDATMMDw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month and the day of the month.

NLDATMMNw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
name of the month.

NLDATMTMw. Format Converts the time portion of a SAS datetime value to the
time-of-day value of the specified locale, and then writes
the value as a time of day.

NLDATMWNw. Format Converts a SAS datetime value to the datetime value of
the specified locale, and then writes the value as the day
of the week.

NLDATMWw. Format Converts SAS datetime values to the locale sensitive
datetime string as the day of the week and the datetime.

NLDATMYMw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the name of the month.

NLDATMYQw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the quarter of the year.

NLDATMYRw. Format Converts the SAS datetime value to the datetime value of
the specified locale, and then writes the value as the year.

NLDATMYWw. Format Converts the SAS datetime value to the datetime value
of the specified locale, and then writes the value as the
year and the name of the week.

NLTIMEw. Format Converts a SAS time value to the time value of the
specified locale, and then writes the value as a time
value.

Formats � SAS National Language Support (NLS): Reference Guide 289

NLTIMAPw. Format Converts a SAS time value to the time value of a
specified locale, and then writes the value as a time
value with a.m. or p.m.

WEEKUw.
Format“WEEKUw.
Format” on page 259

Writes a week number in decimal format by using the U
algorithm.

WEEKVw.
Format“WEEKVw.
Format” on page 261

Writes a week number in decimal format by using the V
algorithm.

WEEKWw.Format“WEEKWw.
Format” on page 263

Writes a week number in decimal format by using the W
algorithm.

YYWEEKUw. Format Writes a week number in decimal format by using the U
algorithm, excluding day–of–the–week information.

YYWEEKVw. Format Writes a week number in decimal format by using the V
algorithm, excluding day-of-the-week information.

YYWEEKWw. Format Writes a week number in decimal format by using the W
algorithm, excluding the day-of-week information.

Hebrew text handling $CPTDWw. Format Processes a character string that is in Hebrew text,
encoded in IBM-PC (cp862), and then writes the
character string in Windows Hebrew encoding (cp 1255).

$CPTWDw. Format Processes a character string that is encoded in Windows
(cp1255), and then writes the character string in Hebrew
DOS (cp862) encoding.

Numeric EUROw.d Format Writes numeric values with a leading euro symbol (E), a
comma that separates every three digits, and a period
that separates the decimal fraction.

EUROXw.d Format Writes numeric values with a leading euro symbol (E), a
period that separates every three digits, and a comma
that separates the decimal fraction.

NLBESTw. Format Writes the best numerical notation based on the locale.

NLMNIAEDw.d Format Writes the monetary format of the international
expression for the United Arab Emirates.

NLMNIAUDw.d Format Writes the monetary format of the international
expression for Australia.

NLMNIBGNw.d Format Writes the monetary format of the international
expression for Bulgaria.

NLMNIBRLw.d Format Writes the monetary format of the international
expression for Brazil.

NLMNICADw.d Format Writes the monetary format of the international
expression for Canada.

NLMNICHFw.d Format Writes the monetary format of the international
expression for Liechtenstein and Switzerland.

NLMNICNYw.d Format Writes the monetary format of the international
expression for China.

NLMNICZKw.d Format Writes the monetary format of the international
expression for the Czech Republic.

290 SAS National Language Support (NLS): Reference Guide � Chapter 3

NLMNIDKKw.d Format Writes the monetary format of the local expression for
Denmark, Faroe Island, and Greenland.

NLMNIEEKw.d Format Writes the monetary format of the international
expression for Estonia.

NLMNIEGPw.d Format Writes the monetary format of the international
expression for Egypt.

NLMNIEURw.d Format Writes the monetary format of the international
expression for Belgium, Finland, France, Germany,
Greece, Ireland, Italy, Luxembourg, Malta, the
Netherlands, Portugal, Slovenia, and Spain.

NLMNIGBPw.d Format Writes the monetary format of the international
expression for the United Kingdom.

NLMNIHKDw.d Format Writes the monetary format of the international
expression for Hong Kong.

NLMNIHRKw.d Format Writes the monetary format of the international
expression for Croatia.

NLMNIHUFw.d Format Writes the monetary format of the international
expression for Hungary.

NLMNIIDRw.d Format Writes the monetary format of the international
expression for Indonesia.

NLMNIILSw.d Format Writes the monetary format of the international
expression for Israel.

NLMNIINRw.d Format Writes the monetary format of the international
expression for India.

NLMNIJPYw.d Format Writes the monetary format of the international
expression for Japan.

NLMNIKRWw.d Format Writes the monetary format of the international
expression for South Korea.

NLMNILTLw.d Format Writes the monetary format of the international
expression for Lithuania.

NLMNILVLw.d Format Writes the monetary format of the international
expression for Latvia.

NLMNIMOPw.d Format Writes the monetary format of the international
expression for Macau.

NLMNIMXNw.d Format Writes the monetary format of the international
expression for Mexico.

NLMNIMYRw.d Format Writes the monetary format of the international
expression for Malaysia.

NLMNINOKw.d Format Writes the monetary format of the international
expression for Norway.

NLMNINZDw.d Format Writes the monetary format of the international
expression for New Zealand.

NLMNIPLNw.d Format Writes the monetary format of the international
expression for Poland.

Formats � SAS National Language Support (NLS): Reference Guide 291

NLMNIRUBw.d Format Writes the monetary format of the international
expression for Russia.

NLMNISEKw.d Format Writes the monetary format of the international
expression for Sweden.

NLMNISGDw.d Format Writes the monetary format of the international
expression for Singapore.

NLMNITHBw.d Format Writes the monetary format of the international
expression for Thailand.

NLMNITRYw.d Format Writes the monetary format of the international
expression for Turkey.

NLMNITWDw.d Format Writes the monetary format of the international
expression for Taiwan.

NLMNIUSDw.d Format Writes the monetary format of the international
expression for Puerto Rico and the United States.

NLMNIZARw.d Format Writes the monetary format of the international
expression for South Africa.

NLMNLAEDw.d Format Writes the monetary format of the local expression for
the United Arab Emirates.

NLMNLAUDw.d Format Writes the monetary format of the local expression for
Australia.

NLMNLBGNw.d Format Writes the monetary format of the local expression for
Bulgaria.

NLMNLBRLw.d Format Writes the monetary format of the local expression for
Brazil.

NLMNLCADw.d Format Writes the monetary format of the local expression for
Canada.

NLMNLCHFw.d Format Writes the monetary format of the local expression for
Liechtenstein and Switzerland.

NLMNLCNYw.d Format Writes the monetary format of the local expression for
China.

NLMNLCZKw.d Format Writes the monetary format of the local expression for
the Czech Republic.

NLMNLDKKw.d Format Writes the monetary format of the local expression for
Denmark, Faroe Island, and Greenland.

NLMNLEEKw.d Format Writes the monetary format of the local expression for
Estonia.

NLMNLEGPw.d Format Writes the monetary format of the local expression for
Egypt.

NLMNLEURw.d Format Writes the monetary format of the local expression for
Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Malta, the Netherlands,
Portugal, Slovenia, and Spain.

NLMNLGBPw.d Format Writes the monetary format of the local expression for
the United Kingdom.

292 SAS National Language Support (NLS): Reference Guide � Chapter 3

NLMNLHKDw.d Format Writes the monetary format of the local expression for
Hong Kong.

NLMNLHRKw.d Format Writes the monetary format of the local expression for
Croatia.

NLMNLHUFw.d Format Writes the monetary format of the local expression for
Hungary.

NLMNLIDRw.d Format Writes the monetary format of the local expression for
Indonesia.

NLMNLILSw.d Format Writes the monetary format of the local expression for
Israel.

NLMNLINRw.d Format Writes the monetary format of the local expression for
India.

NLMNLJPYw.d Format Writes the monetary format of the local expression for
Japan.

NLMNLKRWw.d Format Writes the monetary format of the local expression for
South Korea.

NLMNLLTLw.d Format Writes the monetary format of the local expression for
Lithuania.

NLMNLLVLw.d Format Writes the monetary format of the local expression for
Latvia.

NLMNLMOPw.d Format Writes the monetary format of the local expression for
Macau.

NLMNLMXNw.d Format Writes the monetary format of the local expression for
Mexico.

NLMNLMYRw.d Format Writes the monetary format of the local expression for
Malaysia.

NLMNLNOKw.d Format Writes the monetary format of the local expression for
Norway.

NLMNLNZDw.d Format Writes the monetary format of the local expression for
New Zealand.

NLMNLPLNw.d Format Writes the monetary format of the local expression for
Poland.

NLMNLRUBw.d Format Writes the monetary format of the local expression for
Russia.

NLMNSEKw.d Format Writes the monetary format of the local expression for
Sweden.

NLMNLSGDw.d Format Writes the monetary format of the local expression for
Singapore.

NLMNLTHBw.d Format Writes the monetary format of the local expression for
Thailand.

NLMNLTRYw.d Format Writes the monetary format of the local expression for
Turkey.

NLMNLTWDw.d Format Writes the monetary format of the local expression for
Taiwan.

Formats � SAS National Language Support (NLS): Reference Guide 293

NLMNLUSDw.d Format Writes the monetary format of the local expression for
Puerto Rico, and the United States.

NLMNLZARw.d Format Writes the monetary format of the local expression for
South Africa.

NLMNYw.d Format Writes the monetary format of the local expression in the
specified locale using local currency.

NLMNYIw.d Format Writes the monetary format of the international
expression in the specified locale.

NLNUMw.d Format Writes the numeric format of the local expression in the
specified locale.

NLNUMIw.d Format Writes the numeric format of the international
expression in the specified locale.

NLPCTw.d Format Writes percentage data of the local expression in the
specified locale.

NLPCTIw.d Format Writes percentage data of the international expression in
the specified locale.

NLPCTNw.d Format Produces percentages, using a minus sign for negative
values.

NLPCTPw.d Format Writes locale-specific numeric values as percentages.

NLPVALUEw.d Format Writes p-values of the local expression in the specified
locale.

NLSTRMONw.d Format Writes a numeric value as a day-of-the-month in the
specified locale.

NLSTRQTRw.d Format Writes a numeric value as the quarter-of-the-year in the
specified locale.

NLSTRWKw.d Format Writes a numeric value as the day-of-the-week in the
specified locale.

YENw.d Writes numeric values with yen signs, commas, and
decimal points.

294

295

C H A P T E R

4
Functions and CALL Routines

Definitions of Functions and CALL Routines 305
Definition of Functions 305

Definition of CALL Routines 305

Syntax 305

Syntax of Functions 305

Syntax of CALL Routines 306
Using Functions and CALL Routines 307

Restrictions Affecting Function Arguments 307

Using the OF Operator with Temporary Arrays 307

Characteristics of Target Variables 308

Notes about Descriptive Statistic Functions 309

Notes about Financial Functions 309
Using Pricing Functions 310

Using DATA Step Functions within Macro Functions 310

Using CALL Routines and the %SYSCALL Macro Statement 311

Using Functions to Manipulate Files 311

Function Compatibility with SBCS, DBCS, and MBCS Character Sets 312
Overview 312

I18N Level 0 312

I18N Level 1 312

I18N Level 2 313

Using Random-Number Functions and CALL Routines 313
Types of Random-Number Functions 313

Seed Values 313

Understanding How Functions Generate a Random-Number Stream 313

Using the DATA Step to Generate a Single Stream of Random Numbers 313

Using the %SYSFUNC Macro to Generate a Single Stream of Random Numbers 316

Comparison of Seed Values in Random-Number Functions and CALL Routines 317
Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines 317

Overview of Random-Number CALL Routines and Streams 317

Example 1: Using Multiple Seeds to Generate Multiple Streams 318

Example 2: Using Different Seeds with the CALL RANUNI Routine 320

Generating Multiple Variables from One Seed in Random-Number Functions 322
Overview of Functions and Streams 322

Example: Generating Random Uniform Variables with Overlapping Streams 322

Using the RAND Function as an Alternative 324

Effectively Using the Random-Number CALL Routines 324

Starting, Stopping, and Restarting a Stream 324
Example: Starting, Stopping, and Restarting a Stream 324

Comparison of Changing the Seed in a CALL Routine and in a Function 325

Example: Changing Seeds in a CALL Routine and in a Function 325

296 Contents � Chapter 4

Date and Time Intervals 326
Definition of a Date and Time Interval 326

Interval Names and SAS Dates 326

Incrementing Dates and Times by Using Multipliers and by Shifting Intervals 327

Commonly Used Time Intervals 327

Retail Calendar Intervals: ISO 8601 Compliant 328
Best Practices for Custom Interval Names 329

Pattern Matching Using Perl Regular Expressions (PRX) 331

Definition of Pattern Matching 331

Definition of Perl Regular Expression (PRX) Functions and CALL Routines 331

Benefits of Using Perl Regular Expressions in the DATA Step 331

Using Perl Regular Expressions in the DATA Step 332
Syntax of Perl Regular Expressions 332

The Components of a Perl Regular Expression 332

Basic Syntax for Finding a Match in a String 332

Basic Syntax for Searching and Replacing Text: Example 1 332

Basic Syntax for Searching and Replacing Text: Example 2 333
Replacing Text: Example 3 333

Example 1: Validating Data 334

Example 2: Replacing Text 336

Example 3: Extracting a Substring from a String 337

Example 4: Another Example of Extracting a Substring from a String 339
Writing Perl Debug Output to the SAS Log 341

Perl Artistic License Compliance 342

Base SAS Functions for Web Applications 342

Functions and CALL Routines by Category 342

Dictionary 368

ABS Function 368
ADDR Function 368

ADDRLONG Function 370

AIRY Function 370

ALLCOMB Function 371

ALLPERM Function 373
ANYALNUM Function 376

ANYALPHA Function 378

ANYCNTRL Function 380

ANYDIGIT Function 381

ANYFIRST Function 383
ANYGRAPH Function 385

ANYLOWER Function 387

ANYNAME Function 389

ANYPRINT Function 391

ANYPUNCT Function 393

ANYSPACE Function 394
ANYUPPER Function 396

ANYXDIGIT Function 398

ARCOS Function 399

ARCOSH Function 400

ARSIN Function 401
ARSINH Function 402

ARTANH Function 403

ATAN Function 404

ATAN2 Function 405

ATTRC Function 406

Functions and CALL Routines � Contents 297

ATTRN Function 408
BAND Function 413

BETA Function 413

BETAINV Function 415

BLACKCLPRC Function 416

BLACKPTPRC Function 418
BLKSHCLPRC Function 419

BLKSHPTPRC Function 421

BLSHIFT Function 423

BNOT Function 424

BOR Function 425

BRSHIFT Function 426
BXOR Function 427

BYTE Function 428

CAT Function 540

CATQ Function 543

CATS Function 547
CATT Function 549

CATX Function 551

CDF Function 554

CEIL Function 568

CEILZ Function 569
CEXIST Function 571

CHAR Function 572

CHOOSEC Function 573

CHOOSEN Function 575

CINV Function 576

CLOSE Function 577
CMISS Function 578

CNONCT Function 579

COALESCE Function 581

COALESCEC Function 582

COLLATE Function 583
COMB Function 584

COMPARE Function 585

COMPBL Function 588

COMPGED Function 590

COMPLEV Function 595
COMPOUND Function 597

COMPRESS Function 598

CONSTANT Function 602

CONVX Function 605

CONVXP Function 606

COS Function 608
COSH Function 608

COUNT Function 609

COUNTC Function 611

COUNTW Function 614

CSS Function 617
CUROBS Function 618

CV Function 619

DACCDB Function 619

DACCDBSL Function 620

DACCSL Function 621

298 Contents � Chapter 4

DACCSYD Function 622
DACCTAB Function 623

DAIRY Function 624

DATDIF Function 625

DATE Function 627

DATEJUL Function 628
DATEPART Function 628

DATETIME Function 629

DAY Function 630

DCLOSE Function 630

DCREATE Function 632

DEPDB Function 633
DEPDBSL Function 634

DEPSL Function 635

DEPSYD Function 636

DEPTAB Function 637

DEQUOTE Function 638
DEVIANCE Function 640

DHMS Function 643

DIF Function 644

DIGAMMA Function 645

DIM Function 646
DINFO Function 648

DIVIDE Function 649

DNUM Function 651

DOPEN Function 652

DOPTNAME Function 653

DOPTNUM Function 655
DREAD Function 656

DROPNOTE Function 657

DSNAME Function 658

DUR Function 658

DURP Function 659
ENVLEN Function 661

ERF Function 662

ERFC Function 663

EUCLID Function 663

EXIST Function 665
EXP Function 667

FACT Function 668

FAPPEND Function 669

FCLOSE Function 670

FCOL Function 671

FDELETE Function 672
FETCH Function 674

FETCHOBS Function 675

FEXIST Function 676

FGET Function 677

FILEEXIST Function 679
FILENAME Function 680

FILEREF Function 682

FINANCE Function 683

FIND Function 721

FINDC Function 723

Functions and CALL Routines � Contents 299

FINDW Function 729
FINFO Function 734

FINV Function 736

FIPNAME Function 737

FIPNAMEL Function 738

FIPSTATE Function 739
FIRST Function 740

FLOOR Function 742

FLOORZ Function 743

FNONCT Function 744

FNOTE Function 745

FOPEN Function 747
FOPTNAME Function 749

FOPTNUM Function 751

FPOINT Function 752

FPOS Function 754

FPUT Function 756
FREAD Function 757

FREWIND Function 758

FRLEN Function 759

FSEP Function 760

FUZZ Function 762
FWRITE Function 763

GAMINV Function 764

GAMMA Function 765

GARKHCLPRC Function 766

GARKHPTPRC Function 768

GCD Function 770
GEODIST Function 771

GEOMEAN Function 773

GEOMEANZ Function 774

GETOPTION Function 776

GETVARC Function 778
GETVARN Function 779

GRAYCODE Function 781

HARMEAN Function 783

HARMEANZ Function 785

HBOUND Function 786
HMS Function 787

HOLIDAY Function 788

HOUR Function 791

HTMLDECODE Function 792

HTMLENCODE Function 793

IBESSEL Function 795
IFC Function 796

IFN Function 798

INDEX Function 801

INDEXC Function 802

INDEXW Function 804
INPUT Function 807

INPUTC Function 809

INPUTN Function 811

INT Function 812

INTCINDEX Function 813

300 Contents � Chapter 4

INTCK Function 816
INTCYCLE Function 819

INTFIT Function 821

INTFMT Function 824

INTGET Function 826

INTINDEX Function 828
INTNX Function 831

INTRR Function 836

INTSEAS Function 838

INTSHIFT Function 840

INTTEST Function 842

INTZ Function 843
IORCMSG Function 845

IQR Function 846

IRR Function 847

JBESSEL Function 848

JULDATE Function 848
JULDATE7 Function 850

KURTOSIS Function 850

LAG Function 851

LARGEST Function 858

LBOUND Function 859
LCM Function 860

LCOMB Function 861

LEFT Function 862

LENGTH Function 863

LENGTHC Function 864

LENGTHM Function 865
LENGTHN Function 867

LEXCOMB Function 868

LEXCOMBI Function 871

LEXPERK Function 873

LEXPERM Function 875
LFACT Function 878

LGAMMA Function 879

LIBNAME Function 879

LIBREF Function 882

LOG Function 882
LOG1PX Function 883

LOG10 Function 884

LOG2 Function 885

LOGBETA Function 885

LOGCDF Function 886

LOGPDF Function 888
LOGSDF Function 889

LOWCASE Function 891

LPERM Function 892

LPNORM Function 893

MAD Function 894
MARGRCLPRC Function 895

MARGRPTPRC Function 897

MAX Function 899

MD5 Function 900

MDY Function 901

Functions and CALL Routines � Contents 301

MEAN Function 902
MEDIAN Function 903

MIN Function 904

MINUTE Function 905

MISSING Function 906

MOD Function 907
MODEXIST Function 909

MODULEC Function 910

MODULEN Function 910

MODZ Function 911

MONTH Function 913

MOPEN Function 913
MORT Function 916

MSPLINT Function 917

N Function 920

NETPV Function 921

NLITERAL Function 922
NMISS Function 924

NORMAL Function 925

NOTALNUM Function 925

NOTALPHA Function 927

NOTCNTRL Function 929
NOTDIGIT Function 930

NOTE Function 932

NOTFIRST Function 934

NOTGRAPH Function 935

NOTLOWER Function 937

NOTNAME Function 939
NOTPRINT Function 941

NOTPUNCT Function 942

NOTSPACE Function 944

NOTUPPER Function 946

NOTXDIGIT Function 948
NPV Function 950

NVALID Function 950

NWKDOM Function 953

OPEN Function 955

ORDINAL Function 957
PATHNAME Function 958

PCTL Function 960

PDF Function 961

PEEK Function 974

PEEKC Function 975

PEEKCLONG Function 978
PEEKLONG Function 979

PERM Function 980

POINT Function 982

POISSON Function 983

PROBBETA Function 984
PROBBNML Function 985

PROBBNRM Function 986

PROBCHI Function 987

PROBF Function 988

PROBGAM Function 989

302 Contents � Chapter 4

PROBHYPR Function 990
PROBIT Function 991

PROBMC Function 992

PROBNEGB Function 1005

PROBNORM Function 1006

PROBT Function 1007
PROPCASE Function 1008

PRXCHANGE Function 1010

PRXMATCH Function 1015

PRXPAREN Function 1019

PRXPARSE Function 1021

PRXPOSN Function 1023
PTRLONGADD Function 1026

PUT Function 1026

PUTC Function 1028

PUTN Function 1030

PVP Function 1031
QTR Function 1032

QUANTILE Function 1033

QUOTE Function 1035

RANBIN Function 1036

RANCAU Function 1037
RAND Function 1038

RANEXP Function 1049

RANGAM Function 1050

RANGE Function 1051

RANK Function 1052

RANNOR Function 1053
RANPOI Function 1054

RANTBL Function 1055

RANTRI Function 1056

RANUNI Function 1057

RENAME Function 1058
REPEAT Function 1060

RESOLVE Function 1061

REVERSE Function 1061

REWIND Function 1062

RIGHT Function 1063
RMS Function 1064

ROUND Function 1065

ROUNDE Function 1072

ROUNDZ Function 1073

SAVING Function 1075

SCAN Function 1076
SDF Function 1085

SECOND Function 1087

SIGN Function 1088

SIN Function 1088

SINH Function 1089
SKEWNESS Function 1090

SLEEP Function 1091

SMALLEST Function 1092

SOUNDEX Function 1093

SPEDIS Function 1094

Functions and CALL Routines � Contents 303

SQRT Function 1097
STD Function 1097

STDERR Function 1098

STFIPS Function 1098

STNAME Function 1100

STNAMEL Function 1101
STRIP Function 1102

SUBPAD Function 1104

SUBSTR (left of =) Function 1105

SUBSTR (right of =) Function 1106

SUBSTRN Function 1107

SUM Function 1111
SUMABS Function 1112

SYMEXIST Function 1113

SYMGET Function 1114

SYMGLOBL Function 1114

SYMLOCAL Function 1115
SYSGET Function 1116

SYSMSG Function 1117

SYSPARM Function 1118

SYSPROCESSID Function 1118

SYSPROCESSNAME Function 1119
SYSPROD Function 1120

SYSRC Function 1121

SYSTEM Function 1122

TAN Function 1123

TANH Function 1124

TIME Function 1124
TIMEPART Function 1125

TINV Function 1125

TNONCT Function 1126

TODAY Function 1128

TRANSLATE Function 1128
TRANSTRN Function 1129

TRANWRD Function 1132

TRIGAMMA Function 1134

TRIM Function 1135

TRIMN Function 1137
TRUNC Function 1138

UNIFORM Function 1139

UPCASE Function 1139

URLDECODE Function 1140

URLENCODE Function 1141

USS Function 1142
UUIDGEN Function 1143

VAR Function 1144

VARFMT Function 1144

VARINFMT Function 1146

VARLABEL Function 1147
VARLEN Function 1148

VARNAME Function 1149

VARNUM Function 1150

VARRAY Function 1151

VARRAYX Function 1152

304 Contents � Chapter 4

VARTYPE Function 1153
VERIFY Function 1155

VFORMAT Function 1156

VFORMATD Function 1157

VFORMATDX Function 1158

VFORMATN Function 1159
VFORMATNX Function 1160

VFORMATW Function 1161

VFORMATWX Function 1162

VFORMATX Function 1163

VINARRAY Function 1164

VINARRAYX Function 1165
VINFORMAT Function 1166

VINFORMATD Function 1167

VINFORMATDX Function 1168

VINFORMATN Function 1169

VINFORMATNX Function 1171
VINFORMATW Function 1172

VINFORMATWX Function 1173

VINFORMATX Function 1174

VLABEL Function 1175

VLABELX Function 1176
VLENGTH Function 1177

VLENGTHX Function 1178

VNAME Function 1179

VNAMEX Function 1180

VTYPE Function 1181

VTYPEX Function 1182
VVALUE Function 1184

VVALUEX Function 1185

WEEK Function 1186

WEEKDAY Function 1189

WHICHC Function 1190
WHICHN Function 1191

YEAR Function 1192

YIELDP Function 1193

YRDIF Function 1195

YYQ Function 1196
ZIPCITY Function 1197

ZIPCITYDISTANCE Function 1199

ZIPFIPS Function 1200

ZIPNAME Function 1202

ZIPNAMEL Function 1203

ZIPSTATE Function 1205
Functions and CALL Routines Documented in Other SAS Publications 1207

SAS Companion for Windows 1207

SAS Companion for OpenVMS on HP Integrity SErvers 1208

SAS Companion for z/OS 1209

SAS Data Quality Server: Reference 1209
SAS Logging Facility: Configuration and Programming Reference 1210

SAS Macro Language: Reference 1211

SAS National Language Support (NLS): Reference Guide 1212

References 1213

Functions and CALL Routines � Syntax of Functions 305

Definitions of Functions and CALL Routines

Definition of Functions
A SAS function performs a computation or system manipulation on arguments, and

returns a value that can be used in an assignment statement or elsewhere in
expressions.

In Base SAS software, you can use SAS functions in DATA step programming
statements, in a WHERE expression, in macro language statements, in PROC
REPORT, and in Structured Query Language (SQL).

Some statistical procedures also use SAS functions. In addition, some other SAS
software products offer functions that you can use in the DATA step. Refer to the
documentation that pertains to the specific SAS software product for additional
information about these functions.

Definition of CALL Routines
A CALL routine alters variable values or performs other system functions. CALL

routines are similar to functions, but differ from functions in that you cannot use them
in assignment statements or expressions.

All SAS CALL routines are invoked with CALL statements. That is, the name of the
routine must appear after the keyword CALL in the CALL statement.

Syntax

Syntax of Functions
The syntax of a function has one of the following forms:

function-name (argument-1<, …argument-n>)

function-name (OF variable-list)

function-name (<argument | OF variable-list | OF array-name[*]><…, <argument |
OF variable-list | OF array-name[*]>>)

where

function-name
names the function.

argument
can be a variable name, constant, or any SAS expression, including another
function. The number and type of arguments that SAS allows are described with
individual functions. Multiple arguments are separated by a comma.
Tip: If the value of an argument is invalid (for example, missing or outside the

prescribed range), SAS writes a note to the log indicating that the argument is
invalid, sets _ERROR_ to 1, and sets the result to a missing value.

Examples:
� x=max(cash,credit);

306 Syntax of CALL Routines � Chapter 4

� x=sqrt(1500);

� NewCity=left(upcase(City));

� x=min(YearTemperature-July,YearTemperature-Dec);

� s=repeat(’----+’,16);

� x=min((enroll-drop),(enroll-fail));

� dollars=int(cash);

� if sum(cash,credit)>1000 then
put ’Goal reached’;

variable-list
can be any form of a SAS variable list, including individual variable names. If
more than one variable list appears, separate them with a space or with a comma
and another OF.

Examples:

� a=sum(of x y z);

� The following two examples are equivalent.

� a=sum(of x1-x10 y1-y10 z1-z10);
a=sum(of x1-x10, of y1-y10, of z1-z10);

� z=sum(of y1-y10);

� z=msplint(x0,5,of x1-x5,of y1-y5,-2,2);

array-name{*}
names a currently defined array. Specifying an array with an asterisk as a
subscript causes SAS to treat each element of the array as a separate argument.

The OF operator has been extended to accept temporary arrays. You can use
temporary arrays in OF lists for most SAS functions just as you can use regular
variable arrays, but there are some restrictions. For a list of these restrictions, see
“Using the OF Operator with Temporary Arrays” on page 307.

Syntax of CALL Routines
The syntax of a CALL routine has one of the following forms:

CALL routine-name (argument-1<, ...argument-n>);

CALL routine-name (OF variable-list);

CALL routine-name (argument-1 | OF variable-list-1 <, ...argument-n | OF
variable-list-n>);

where

routine-name
names a SAS CALL routine.

argument
can be a variable name, a constant, any SAS expression, an external module
name, an array reference, or a function. Multiple arguments are separated by a
comma. The number and type of arguments that are allowed are described with
individual CALL routines in the dictionary section.

Functions and CALL Routines � Using the OF Operator with Temporary Arrays 307

Examples:
� call prxsubstr(prx,string,position);

� call prxchange(’/old/new’,1+k,trim(string),result,length);

� call set(dsid);

� call ranbin(Seed_1,n,p,X1);

� call label(abc{j},lab);

� call cats(result,’abc’,123);

variable-list
can be any form of a SAS variable list, including variable names. If more than one
variable list appears, separate them with a space or with a comma and another OF.
Examples:

� call cats(inventory, of y1-y15, of z1-z15);

� call catt(of item17-item23 pack17-pack23);

Using Functions and CALL Routines

Restrictions Affecting Function Arguments
If the value of an argument is invalid, SAS writes a note or error message to the log

and sets the result to a missing value. Here are some common restrictions for function
arguments:

� Some functions require that their arguments be restricted within a certain range.
For example, the argument of the LOG function must be greater than 0.

� When a numeric argument has a missing value, many functions write a note to
the SAS log and return a missing value. Exceptions include some of the
descriptive statistics functions and financial functions.

� For some functions, the allowed range of the arguments is platform-dependent,
such as with the EXP function.

Using the OF Operator with Temporary Arrays
You can use the OF operator with temporary arrays. This capability enables the

passing of temporary arrays to most functions whose arguments contain a varying
number of parameters. You can use temporary arrays in OF lists in some functions, just
as you can use temporary arrays in OF lists in regular variable arrays.

There are some limitations in using temporary arrays. These limitations are listed
after the example.

The following example shows how you can use temporary arrays:

data _null_;
array y[10] _temporary_ (1,2,3,4,5,6,7,8,9,10);
x = sum(of y{*});
put x=;

run;

data _null_;
array y[10] $10 _temporary_ (’1’,’2’,’3’,’4’,’5’,

’6’,’7’,’8’,’9’,’10’);

308 Characteristics of Target Variables � Chapter 4

x = max(of y{*});
put x=;

run;

Output 4.1 Log Output for the Example of Using Temporary Arrays

x=55
x=10

The following limitations affect temporary array OF lists:

� cannot be used as array indices

� can be used in functions where the number of parameters matches the number of
elements in the OF list, as with regular variable arrays

� can be used in functions that take a varying number of parameters

� cannot be used with the DIF, LAG, SUBSTR, LENGTH, TRIM, or MISSING
functions, nor with any of the variable information functions such as VLENGTH

Characteristics of Target Variables
Some character functions produce resulting variables, or target variables, with a

default length of 200 bytes. Numeric target variables have a default length of 8 bytes.
Character functions to which the default target variable lengths do not apply are shown
in the following table. These functions obtain the length of the return argument based
on the length of the first argument.

Table 4.1 Functions Whose Return Argument Is Based on the Length of the First
Argument

Functions

COMPBL RIGHT

COMPRESS STRIP

DEQUOTE SUBSTR

INPUTC SUBSTRN

LEFT TRANSLATE

LOWCASE TRIM

PUTC TRIMN

REVERSE UPCASE

The following list of functions shows the length of the target variable if the target
variable has not been assigned a length:

BYTE target variable is assigned a default length of 1.

INPUT length of the target variable is determined by the width of the
informat.

PUT length of the target variable is determined by the width of the
format.

Functions and CALL Routines � Notes about Financial Functions 309

VTYPE target variable is assigned a default length of 1.

VTYPEX target variable is assigned a default length of 1.

Notes about Descriptive Statistic Functions
SAS provides functions that return descriptive statistics. Many of these functions

correspond to the statistics produced by the MEANS and UNIVARIATE procedures.
The computing method for each statistic is discussed in the elementary statistics
procedures section of the Base SAS Procedures Guide. SAS calculates descriptive
statistics for the nonmissing values of the arguments.

Notes about Financial Functions
SAS provides a group of functions that perform financial calculations. The functions

are grouped into the following types:

Table 4.2 Types of Financial Functions

Function Type Functions Description

Cashflow CONVX, CONVXP calculates convexity for cashflows

DUR, DURP calculates modified duration for cashflows

PVP, YIELDP calculates present value and
yield-to-maturity for a periodic cashflow

Parameter calculations COMPOUND calculates compound interest parameters

MORT calculates amortization parameters

Internal rate of return INTRR, IRR calculates the internal rate of return

Net present and future
value

NETPV, NPV calculates net present and future values

SAVING calculates the future value of periodic
saving

Depreciation DACCxx calculates the accumulated depreciation up
to the specified period

DEPxxx calculates depreciation for a single period

Pricing BLKSHCLPRC,
BLKSHPTPRC

calculates call prices and put prices for
European options on stocks, based on the
Black-Scholes model

BLACKCLPRC,
BLACKPTPRC

calculates call prices and put prices for
European options on futures, based on the
Black model

310 Using DATA Step Functions within Macro Functions � Chapter 4

Function Type Functions Description

GARKHCLPRC,
GARKHPTPRC

calculates call prices and put prices for
European options on stocks, based on the
Garman-Kohlhagen model

MARGRCLPRC,
MARGRPTPRC

calculates call prices and put prices for
European options on stocks, based on the
Margrabe model

Using Pricing Functions
A pricing model is used to calculate a theoretical market value (price) for a financial

instrument. This value is referred to as a mark-to-market (MTM) value. Typically, a
pricing function has the following form:

����� � ������	� ����
 ���
 ���
 ����

In the pricing function, rf1, rf2, and rf3 are risk factors such as interest rates or foreign
exchange rates. The specific values of the risk factors that are used to calculate the
MTM value are the base case values. The set of base case values is known as the base
case market state.

After determining the MTM value, you can perform the following tasks with the base
case values of the risk factors (rf1, rf2, and rf3):

� Set the base case values to specific values to perform scenario analyses.
� Set the base case values to a range of values to perform profit/loss curve analyses

and profit/loss surface analyses.
� Automatically set the base case values to different values to calculate

sensitivities—that is, to calculate the delta and gamma values of the risk factors.
� Perturb the base case values to create many possible market states so that many

possible future prices can be calculated, and simulation analyses can be
performed. For Monte Carlo simulation, the values of the risk factors are
generated using mathematical models and the copula methodology.

A list of pricing functions and their descriptions are included in Table 4.2 on page 309.

Using DATA Step Functions within Macro Functions
The macro functions %SYSFUNC and %QSYSFUNC can call most DATA step

functions to generate text in the macro facility. %SYSFUNC and %QSYSFUNC have
one difference: %QSYSFUNC masks special characters and mnemonics and
%SYSFUNC does not. For more information about these functions, see %QSYSFUNC
and %SYSFUNC in SAS Macro Language: Reference.

%SYSFUNC arguments are a single DATA step function and an optional format, as
shown in the following examples:

%sysfunc(date(),worddate.)
%sysfunc(attrn(&dsid,NOBS))

You cannot nest DATA step functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call DATA step functions. For example:

%sysfunc(compress(%sysfunc(getoption(sasautos)),
%str(%)%(%’)));

Functions and CALL Routines � Using Functions to Manipulate Files 311

All arguments in DATA step functions within %SYSFUNC must be separated by
commas. You cannot use argument lists that are preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in DATA step functions. For example, the arguments to
the OPEN function are enclosed in quotation marks when you use the function alone,
but the arguments do not require quotation marks when used within %SYSFUNC.

dsid=open("sasuser.houses","i");
dsid=open("&mydata","&mode");
%let dsid=%sysfunc(open(sasuser.houses,i));
%let dsid=%sysfunc(open(&mydata,&mode));

Using CALL Routines and the %SYSCALL Macro Statement
When the %SYSCALL macro statement invokes a CALL routine, the value of each

macro variable argument is retrieved and passed unresolved to the CALL routine. Upon
completion of the CALL routine, the value for each argument is written back to the
respective macro variable. If %SYSCALL encounters an error condition, the execution
of the CALL routine terminates without updating the macro variable values and an
error message is written to the log.

When %SYSCALL invokes a CALL routine, the argument value is passed unresolved
to the CALL routine. The unresolved argument value might have been quoted using
macro quoting functions and might contain delta characters. The argument value in its
quoted form can cause unpredictable results when character values are compared.
Some CALL routines unquote their arguments when they are called by %SYSCALL and
return the unquoted values. Other CALL routines do not need to unquote their
arguments. The following is a list of CALL routines that unquote their arguments
when called by %SYSCALL:

� “CALL COMPCOST Routine” on page 444
� “CALL LEXCOMB Routine” on page 455
� “CALL LEXPERK Routine” on page 462
� “CALL LEXPERM Routine” on page 466
� “CALL PRXCHANGE Routine” on page 476
� “CALL PRXNEXT Routine” on page 482
� “CALL PRXSUBSTR Routine” on page 487
� “CALL SCAN Routine” on page 513
� “CALL SORTC Routine” on page 525
� “CALL STDIZE Routine” on page 528
� “CALL SYSTEM Routine” on page 535

In comparison, %SYSCALL invokes a CALL routine and returns an unresolved
value, which contains delta characters. %SYSFUNC invokes a function and returns a
resolved value, which does not contain delta characters. For more information, see
“How Macro Quoting Works”, “%SYSCALL Macro Statement”, and “%SYSFUNC Macro
Function” in SAS Macro Language: Reference.

Using Functions to Manipulate Files
SAS manipulates files in different ways, depending on whether you use functions or

statements. If you use functions such as FOPEN, FGET, and FCLOSE, you have more
opportunity to examine and manipulate your data than when you use statements such
as INFILE, INPUT, and PUT.

312 Function Compatibility with SBCS, DBCS, and MBCS Character Sets � Chapter 4

When you use external files, the FOPEN function allocates a buffer called the File
Data Buffer (FDB) and opens the external file for reading or updating. The FREAD
function reads a record from the external file and copies the data into the FDB. The
FGET function then moves the data to the DATA step variables. The function returns a
value that you can check with statements or other functions in the DATA step to
determine how to further process your data. After the records are processed, the
FWRITE function writes the contents of the FDB to the external file, and the FCLOSE
function closes the file.

When you use SAS data sets, the OPEN function opens the data set. The FETCH
and FETCHOBS functions read observations from an open SAS data set into the Data
Set Data Vector (DDV). The GETVARC and GETVARN functions then move the data to
DATA step variables. The functions return a value that you can check with statements
or other functions in the DATA step to determine how you want to further process your
data. After the data is processed, the CLOSE function closes the data set.

For a complete listing of functions and CALL routines, see “Functions and CALL
Routines by Category” on page 342. For complete descriptions and examples, see the
dictionary section of this book.

Function Compatibility with SBCS, DBCS, and MBCS Character Sets

Overview

SAS string functions and CALL routines can be categorized by level numbers that are
used in internationalization. I18N is the abbreviation for internationalization, and
indicates string functions that can be adapted to different languages and locales
without program changes.

I18N recognizes the following three levels that identify the character sets that you
can use:

� “I18N Level 0” on page 312

� “I18N Level 1” on page 312

� “I18N Level 2” on page 313

For more information about function compatibility, see K Functions Compatibility in
the SAS National Language Support (NLS): Reference Guide.

I18N Level 0
I18N Level 0 functions are designed for use with Single Byte Character Sets (SBCS)

only.

I18N Level 1
I18N Level 1 functions should be avoided, if possible, if you are using a non-English

language. The I18N Level 1 functions might not work correctly with Double Byte
Character Set (DBCS) or Multi-Byte Character Set (MBCS) encodings under certain
circumstances.

Functions and CALL Routines � Understanding How Functions Generate a Random-Number Stream 313

I18N Level 2
I18N Level 2 functions are designed for use with SBCS, DBCS, and MBCS (UTF8).

Using Random-Number Functions and CALL Routines

Types of Random-Number Functions
Two types of random-number functions are available in SAS. The newest

random-number function is the RAND function. It uses the Mersenne-Twister
pseudo-random number generator (RNG) that was developed by Matsumoto and
Nishimura (1998). This RNG has a very long period of 219937 – 1, and has very good
statistical properties. (A period is the number of occurrences before the pseudo-random
number sequence repeats.)

The RAND function is started with a single seed. However, the state of the process
cannot be captured by a single seed, which means that you cannot stop and restart the
generator from its stopping point. Use the STREAMINIT function to produce a
sequence of values that begins at the beginning of a stream. For more information, see
the Details section of the “RAND Function” on page 1038.

The older random-number generators include the UNIFORM, NORMAL, RANUNI,
RANNOR, and other functions that begin with RAN. These functions have a period of
only 231 – 2 or less. The pseudo-random number stream is started with a single seed,
and the state of the process can be captured in a new seed. This means that you can
stop and restart the generator from its stopping point by providing the proper seed to
the corresponding CALL routines. You can use the random-number functions to
produce a sequence of values that begins in the middle of a stream.

Seed Values
Random-number functions and CALL routines generate streams of pseudo-random

numbers from an initial starting point, called a seed, that either the user or the
computer clock supplies. A seed must be a nonnegative integer with a value less than
231–1 (or 2,147,483,647). If you use a positive seed, you can always replicate the stream
of random numbers by using the same DATA step. If you use zero as the seed, the
computer clock initializes the stream, and the stream of random numbers cannot be
replicated.

Understanding How Functions Generate a Random-Number Stream

Using the DATA Step to Generate a Single Stream of Random Numbers
The DATA steps in this section illustrate several properties of the random-number

functions. Each of the DATA steps that call a function generates a single stream of
pseudo-random numbers based on a seed value of 7, because that is the first seed for
the first call for every step. Some of the DATA steps change the seed value in various

314 Understanding How Functions Generate a Random-Number Stream � Chapter 4

ways. Some of the steps have single function calls and others have multiple function
calls. None of these DATA steps change the seed. The only seed that is relevant to the
function calls is the seed that was used with the first execution of the first
random-number function. There is no way to create separate streams with functions
(CALL routines are used for this purpose), and the only way you can restart the
function random-number stream is to start a new DATA step.

The following example executes multiple DATA steps:

options nodate pageno=1 linesize=80 pagesize=60;

/* This DATA step produces a single stream of random numbers */
/* based on a seed value of 7. */

data a;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;
a = ranuni (7); output;

run;

/* This DATA step uses a DO statement to produce a single */
/* stream of random numbers based on a seed value of 7. */

data b (drop = i);
do i = 7 to 18;

b = ranuni (i);
output;

end;
run;

/* This DATA step uses a DO statement to produce a single */
/* stream of random numbers based on a seed value of 7. */

data c (drop = i);
do i = 1 to 12;

c = ranuni (7);
output;

end;
run;

/* This DATA step calls the RANUNI and the RANNOR functions */
/* and produces a single stream of random numbers based on */
/* a seed value of 7. */

data d;
d = ranuni (7); f = ’ ’; output;
d = ranuni (8); f = ’ ’; output;
d = rannor (9); f = ’n’; output;
d = .; f = ’ ’; output;
d = ranuni (0); f = ’ ’; output;
d = ranuni (1); f = ’ ’; output;

Functions and CALL Routines � Understanding How Functions Generate a Random-Number Stream 315

d = rannor (2); f = ’n’; output;
d = .; f = ’ ’; output;
d = ranuni (3); f = ’ ’; output;
d = ranuni (4); f = ’ ’; output;
d = rannor (5); f = ’n’; output;
d = .; f = ’ ’; output;

run;

/* This DATA step calls the RANNOR function and produces a */
/* single stream of random numbers based on a seed value of 7. */

data e (drop = i);
do i = 1 to 6;

e = rannor (7); output;
e = .; output;

end;
run;

/* This DATA step merges the output data sets that were */
/* created from the previous five DATA steps. */

data five;
merge a b c d e;

run;

/* This procedure writes the output from the merged data sets. */
proc print label data=five;

options missing = ’ ’;
label f = ’00’x;
title ’Single Random Number Streams’;

run;

The following output shows the program results.

Output 4.2 Results from Generating a Single Random-Number Stream

Single Random Number Streams 1

Obs a b c d e

1 0.29474 0.29474 0.29474 0.29474 0.39464
2 0.79062 0.79062 0.79062 0.79062
3 0.79877 0.79877 0.79877 0.26928 n 0.26928
4 0.81579 0.81579 0.81579
5 0.45122 0.45122 0.45122 0.45122 0.27475
6 0.78494 0.78494 0.78494 0.78494
7 0.80085 0.80085 0.80085 -0.11729 n -0.11729
8 0.72184 0.72184 0.72184
9 0.34856 0.34856 0.34856 0.34856 -1.41879

10 0.46597 0.46597 0.46597 0.46597
11 0.73523 0.73523 0.73523 -0.39033 n -0.39033
12 0.66709 0.66709 0.66709

The pseudo-random number streams in output data sets A, B, and C are identical.
The stream in output data set D mixes calls to the RANUNI and the RANNOR
functions. In observations 1, 2, 5, 6, 9, and 10, the values that are returned by
RANUNI exactly match the values in the previous streams. Observations 3, 7, and 11,
which are flagged by “n”, contain the values that are returned by the RANNOR
function. The mix of the function calls does not affect the generation of the

316 Understanding How Functions Generate a Random-Number Stream � Chapter 4

pseudo-random number stream. All of the results are based on a single stream of
uniformly distributed values, some of which are transformed and returned from other
functions such as RANNOR. The results of the RANNOR function are produced from
two internal calls to RANUNI. The DATA step that creates output data set D executes
the following steps three times to create 12 observations:

� call to RANUNI

� call to RANUNI

� call to RANNOR (which internally calls RANUNI twice)

� skipped line to compensate for the second internal call to RANUNI

In the DATA step that creates data set E, RANNOR is called six times, each time
skipping a line to compensate for the fact that two internal calls to RANUNI are made
for each call to RANNOR. Notice that the three values that are returned from RANNOR
in the DATA step that creates data set D match the corresponding values in data set E.

Using the %SYSFUNC Macro to Generate a Single Stream of Random
Numbers

When the RANUNI function is called through the macro language by using
%SYSFUNC, one pseudo-random number stream is created. You cannot change the
seed value unless you close SAS and start a new SAS session. The %SYSFUNC macro
produces the same pseudo-random number stream as the DATA steps that generated
the data sets A, B, and C for the first macro invocation only. Any subsequent macro
calls produce a continuation of the single stream.

%macro ran;
%do i = 1 %to 12;

%let x = %sysfunc (ranuni (7));
%put &x;

%end;
%mend;

%ran;

SAS writes the following output to the log:

Output 4.3 Results of Execution with the %SYSFUNC Macro

10 %macro ran;
11 %do i = 1 %to 12;
12 %let x = %sysfunc (ranuni (7));
13 %put &x;
14 %end;
15 %mend;
16 %ran;
0.29473798875451
0.79062100955779
0.79877014262544
0.81579051763554
0.45121804506109
0.78494144826426
0.80085421204606
0.72184205973606
0.34855818345609
0.46596586120592
0.73522999404707
0.66709365028287

Functions and CALL Routines � Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines 317

Comparison of Seed Values in Random-Number Functions and CALL
Routines

Each random-number function and CALL routine generates pseudo-random numbers
from a specific statistical distribution. Each random-number function requires a seed
value expressed as an integer constant or a variable that contains the integer constant.
Each CALL routine calls a variable that contains the seed value. Additionally, every
CALL routine requires a variable that contains the generated pseudo-random numbers.

The seed variable must be initialized before the first execution of the function or
CALL routine. After each execution of a function, the current seed is updated internally,
but the value of the seed argument remains unchanged. However, after each iteration
of the CALL routine the seed variable contains the current seed in the stream that
generates the next pseudo-random number. With a function, it is not possible to control
the seed values, and, therefore, the pseudo-random numbers after the initialization.

Except for the NORMAL and UNIFORM functions, which are equivalent to the
RANNOR and RANUNI functions, respectively, SAS provides a CALL routine that has
the same name as each random-number function. Using CALL routines gives you
greater control over the seed values.

Generating Multiple Streams from Multiple Seeds in Random-Number
CALL Routines

Overview of Random-Number CALL Routines and Streams
You can use the random-number CALL routines to generate multiple streams of

pseudo-random numbers within a single DATA step. If you supply a different seed
value to initialize each of the seed variables, the streams of the generated
pseudo-random numbers are computationally independent, but they might not be
statistically independent unless you select the seed values carefully.

Note: Although you can create multiple streams with multiple seeds, this practice is
not recommended. It is always safer to create a single stream. With multiple streams,
as the streams become longer, the chances of the stream overlapping increase. �

The following two examples deliberately select seeds to illustrate worst-case scenarios.
The examples show how to produce multiple streams by using multiple seeds. Although
this practice is not recommended, you can use the random-number CALL routines with
multiple seeds.

318 Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines � Chapter 4

Example 1: Using Multiple Seeds to Generate Multiple Streams
This example shows that you can use multiple seeds to generate multiple streams of

pseudo-randomly distributed values by using the random-number CALL routines. The
first DATA step creates a data set with three variables that are normally distributed.
The second DATA step creates variables that are uniformly distributed. The
SGSCATTER procedure (see the SAS/GRAPH: Statistical Graphics Procedures Guide)
is used to show the relationship between each pair of variables for each of the two
distributions.

options pageno = 1 nodate ls = 80 ps = 64;

data normal;
seed1 = 11111;
seed2 = 22222;
seed3 = 33333;
do i = 1 to 10000;

call rannor(seed1, x1);
call rannor(seed2, x2);
call rannor(seed3, x3);
output;

end;
run;

data uniform;
seed1 = 11111;
seed2 = 22222;
seed3 = 33333;
do i = 1 to 10000;

call ranuni(seed1, x1);
call ranuni(seed2, x2);
call ranuni(seed3, x3);
output;

end;
run;

proc sgscatter data = normal;
title ’Nonindependent Random Normal Variables’;
plot x1*x2 x1*x3 x3*x2 / markerattrs = (size = 1);

run;

proc sgscatter data = uniform;
title ’Nonindependent Random Uniform Variables’;
plot x1*x2 x1*x3 x3*x2 / markerattrs = (size = 1);

run;

Functions and CALL Routines � Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines 319

Display 4.1 Multiple Streams from Multiple Seeds: Nonindependent Random Normal Variables

Display 4.2 Multiple Streams from Multiple Seeds: Nonindependent Random Uniform Variables

The first plot (Display 4.1 on page 319) shows that normal variables appear to be
linearly uncorrelated, but they are obviously not independent. The second plot (Display
4.2 on page 319) shows that uniform variables are clearly related. With this class of
random-number generators, there is never any guarantee that the streams will be
independent.

320 Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines � Chapter 4

Example 2: Using Different Seeds with the CALL RANUNI Routine
The following example uses three different seeds and the CALL RANUNI routine to

produce multiple streams.

data uniform(drop=i);
seed1 = 255793849;
seed2 =1408147117;
seed3 = 961782675;
do i=1 to 10000;

call ranuni(seed1, x1);
call ranuni(seed2, x2);
call ranuni(seed3, x3);
i2 = lag(x2);
i3 = lag2(x3);
output;

end;
label i2=’Lag(x2)’ i3=’Lag2(x3)’;
run;

title ’Random Uniform Variables with Overlapping Streams’;
proc sgscatter data=uniform;

plot x1*x2 x1*x3 x3*x2 / markerattrs = (size = 1);
run;

proc sgscatter data=uniform;
plot i2*x1 i3*x1 / markerattrs = (size = 1);

run;

proc print noobs data=uniform(obs=10);
run;

Display 4.3 Using Different Seeds with CALL RANUNI: Random Uniform Variables with Overlapping Streams,
Plot 1

Functions and CALL Routines � Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines 321

Display 4.4 Using Different Seeds with CALL RANUNI: Random Uniform Variables with Overlapping Streams,
Plot 2

Output 4.4 Random Uniform Variables with Overlapping Streams

Random Uniform Variables with Overlapping Streams 2

seed1 seed2 seed3 x1 x2 x3 i2 i3

1408147117 961782675 383001085 0.65572 0.44786 0.17835 . .
961782675 383001085 1989090982 0.44786 0.17835 0.92624 0.44786 .
383001085 1989090982 1375749095 0.17835 0.92624 0.64063 0.17835 0.17835

1989090982 1375749095 89319994 0.92624 0.64063 0.04159 0.92624 0.92624
1375749095 89319994 1345897251 0.64063 0.04159 0.62673 0.64063 0.64063

89319994 1345897251 561406336 0.04159 0.62673 0.26143 0.04159 0.04159
1345897251 561406336 1333490358 0.62673 0.26143 0.62095 0.62673 0.62673
561406336 1333490358 963442111 0.26143 0.62095 0.44864 0.26143 0.26143

1333490358 963442111 1557707418 0.62095 0.44864 0.72536 0.62095 0.62095
963442111 1557707418 137842443 0.44864 0.72536 0.06419 0.44864 0.44864

The first plot (Display 4.3 on page 320) shows expected results: the variables appear
to be statistically independent. However, the second plot (Display 4.4 on page 321) and
the listing of the first 10 observations show that there is almost complete overlap
between the two streams. The last 9999 values in x1 match the first 9999 values in x2,
and the last 9998 values in x1 match the first 9998 values in x3. In other words, there
is perfect agreement between the non-missing parts of x1 and lag(x2) and also x1 and
lag2(x3). Even if the streams appear to be independent at first glance as in the first
plot, there might be overlap, which might be undesirable depending on how the streams
are used.

In practice, if you make multiple small streams with separate and randomly selected
seeds, you probably will not encounter the problems that are shown in the first two

322 Generating Multiple Variables from One Seed in Random-Number Functions � Chapter 4

examples. “Example 2: Using Different Seeds with the CALL RANUNI Routine” on
page 320 deliberately selects seeds to illustrate worst-case scenarios.

It is always safer to create a single stream. With multiple streams, as the streams
get longer, the chances of the streams overlapping increase.

Generating Multiple Variables from One Seed in Random-Number
Functions

Overview of Functions and Streams
If you use functions in your program, you cannot generate more than one stream of

pseudo-random numbers by supplying multiple seeds within a DATA step.
The following example uses the RANUNI function to show the safest way to create

multiple variables from the same stream with a single seed.

Example: Generating Random Uniform Variables with Overlapping Streams
In the following example, the RANUNI function is used to create random uniform

variables with overlapping streams. The example shows the safest way to create
multiple variables by using the RANUNI function. All variables are created from the
same stream with a single seed.

options pageno=1 nodate ls=80 ps=64;

data uniform(drop=i);
do i = 1 to 10000;

x1 = ranuni(11111);
x2 = ranuni(11111);
x3 = ranuni(11111);
i2 = lag(x2);
i3 = lag2(x3);
output;

end;
label i2 = ’Lag(x2)’ i3 = ’Lag2(x3)’;
run;

title ’Random Uniform Variables with Overlapping Streams’;
proc sgscatter data = uniform;

plot x1*x2 x1*x3 x3*x2 / markerattrs = (size = 1);
run;

proc sgscatter data = uniform;
plot i2*x1 i3*x1 / markerattrs = (size = 1);

run;

Functions and CALL Routines � Generating Multiple Variables from One Seed in Random-Number Functions 323

Display 4.5 Random Uniform Variables with Overlapping Streams: Plot 1

Display 4.6 Random Uniform Variables with Overlapping Streams: Plot 2

In “Example: Generating Random Uniform Variables with Overlapping Streams” on
page 322, it appears that the variables are independent. However, even this
programming approach might not work well in general. The random-number functions
and CALL routines have a period of only 231 - 2 or less (approximately 2.1 billion).
When this limit is reached, the stream repeats. Modern computers performing
complicated simulations can easily exhaust the entire stream in minutes.

324 Using the RAND Function as an Alternative � Chapter 4

Using the RAND Function as an Alternative
A better approach to generating random uniform variables is to use the RAND

function, where multiple streams are not permitted. The RAND function has a period of
219937 - 1. This limit will never be reached, at least with computers of the early 21st
century. The number 219937 - 1 is approximately 106000 (1 followed by 6000 zeros). In
comparison, the largest value that can be represented in eight bytes on most computers
that run SAS is approximately 10307.

The RAND function, which is the latest random-number function that was designed,
does not allow multiple streams. The RAND function uses a different algorithm from
the random-number CALL routines, which allow you to create multiple streams with
multiple seeds. Because the state of the RAND process cannot be captured by a single
seed, you cannot stop and restart the generator from its stopping point. Therefore, the
RAND function allows only a single stream of numbers, but it can be used to make
multiple streams, just as the RANUNI function can.

Effectively Using the Random-Number CALL Routines

Starting, Stopping, and Restarting a Stream
A reasonable use of the random-number CALL routines is starting and stopping a

single stream, provided the stream never exhausts the RANUNI stream. For example,
you might want SAS to perform iterations, stop, evaluate the results, and then restart
the stream at the point it stopped. The following example illustrates this principle.

Example: Starting, Stopping, and Restarting a Stream
This example generates a stream of five numbers, stops, restarts, generates five more

numbers from the same stream, combines the results, and generates the full stream for
comparison. In the first DATA step, the state of the random-number seed is stored in a
macro variable seed for use as the starting seed in the next step. The separate streams
in the example output match the full stream.

options pageno=1 nodate ls=80 ps=64;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call ranuni(seed, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call ranuni(seed, x);
output;

end;
run;

Functions and CALL Routines � Comparison of Changing the Seed in a CALL Routine and in a Function 325

data all;
set u1 u2;
z = ranuni(104);

run;

proc print label;
title ’Random Uniform Variables with Overlapping Streams’;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.5 Starting, Stopping, and Restarting a Stream

Random Uniform Variables with Overlapping Streams 1

Separate Single
Obs Streams Stream

1 0.23611 0.23611
2 0.88923 0.88923
3 0.58173 0.58173
4 0.97746 0.97746
5 0.84667 0.84667
6 0.80484 0.80484
7 0.46983 0.46983
8 0.29594 0.29594
9 0.17858 0.17858

10 0.92292 0.92292

Comparison of Changing the Seed in a CALL Routine and in a Function

Example: Changing Seeds in a CALL Routine and in a Function
If you use a CALL routine to change the seed, the results are different from using a

function to change the seed. The following example shows the difference.

data seeds;
retain Seed1 Seed2 Seed3 104;
do i = 1 to 10;

call ranuni(Seed1,X1);
call ranuni(Seed2,X2);
X3 = ranuni(Seed3);
if i = 5 then do;

Seed2 = 17;
Seed3 = 17;

end;
output;

end;
run;

proc print data = seeds;
title ’Random Uniform Variables with Overlapping Streams’;
id i;

run;

326 Date and Time Intervals � Chapter 4

Output 4.6 Changing Seeds in a CALL Routine and in a Function

Random Uniform Variables with Overlapping Streams 3

i Seed1 Seed2 Seed3 X1 X2 X3

1 507036483 507036483 104 0.23611 0.23611 0.23611
2 1909599212 1909599212 104 0.88923 0.88923 0.88923
3 1249251009 1249251009 104 0.58173 0.58173 0.58173
4 2099077474 2099077474 104 0.97746 0.97746 0.97746
5 1818205895 17 17 0.84667 0.84667 0.84667
6 1728390132 310018657 17 0.80484 0.14436 0.80484
7 1008960848 1055505749 17 0.46983 0.49151 0.46983
8 635524535 1711572821 17 0.29594 0.79701 0.29594
9 383494893 879989345 17 0.17858 0.40978 0.17858
10 1981958542 1432895200 17 0.92292 0.66724 0.92292

Changing Seed2 in the CALL RANUNI statement when i=5, forces the stream for X2
to deviate from the stream for X1. However, changing Seed3 in the RANUNI function
has no effect. The X3 stream continues on as if nothing has changed, and the X1 and
X3 streams are the same.

Date and Time Intervals

Definition of a Date and Time Interval
An interval is a unit of measurement that SAS counts within an elapsed period of

time, such as days, months or hours. SAS determines date and time intervals based on
fixed points on the calendar or clock. The starting point of an interval calculation
defaults to the beginning of the period in which the beginning value falls, which might
not be the actual beginning value that is specified. For example, if you are using the
INTCK function to count the months between two dates, regardless of the actual day of
the month that is specified by the date in the beginning value, SAS treats the beginning
value as the first day of that month.

Interval Names and SAS Dates
Specific interval names are used with SAS date values, while other interval names

are used with SAS time and datetime values. The interval names that are used with
SAS date values are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY,
WEEK, WEEKDAY, and DAY. The interval names that are used with SAS time and
datetime values are HOUR, MINUTE, and SECOND.

Interval names that are used with SAS date values can be prefixed with ’DT’ to
construct interval names for use with SAS datetime values. The interval names
DTYEAR, DTSEMIYEAR, DTQTR, DTMONTH, DTSEMIMONTH, DTTENDAY,
DTWEEK, DTWEEKDAY, and DTDAY are used with SAS time or datetime values.

Functions and CALL Routines � Commonly Used Time Intervals 327

Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals

SAS provides date, time, and datetime intervals for counting different periods of
elapsed time. By using multipliers and shift indexes, you can create multiples of
intervals and shift their starting point to construct more complex interval specifications.

The general form of an interval name is

name<multiplier><.shift-index>

Both the multiplier and the shift–index arguments are optional and default to 1. For
example, YEAR, YEAR1, YEAR.1, and YEAR1.1 are all equivalent ways of specifying
ordinary calendar years that begin in January. If you specify other values for multiplier
and for shift-index, you can create multiple intervals that begin in different parts of the
year. For example, the interval WEEK6.11 specifies six-week intervals starting on
second Wednesdays.

For more information, see “Single-unit Intervals”, “Multi-unit Intervals”, and
“Shifted Intervals” in SAS Language Reference: Concepts.

Commonly Used Time Intervals
Time intervals that do not nest within years or days are aligned relative to the SAS

date or datetime value 0. SAS uses the arbitrary reference time of midnight on January
1, 1960, as the origin for non-shifted intervals. Shifted intervals are defined relative to
January 1, 1960.

For example, MONTH13 defines the intervals January 1, 1960, February 1, 1961,
March 1, 1962, and so on, and the intervals December 1, 1958, November 1, 1957, and
so on, before the base date January 1, 1960.

As another example, the interval specification WEEK6.13 defines six-week periods
starting on second Fridays. The convention of alignment relative to the period that
contains January 1, 1960, determines where to start counting to determine which dates
correspond to the second Fridays of six-week intervals.

The following table lists time intervals that are commonly used.

Table 4.3 Commonly Used Intervals with Optional Multiplier and Shift Indexes

Interval Description

DAY3 Three-day intervals

WEEK Weekly intervals starting on Sundays

WEEK.7 Weekly intervals starting on Saturdays

WEEK6.13 Six-week intervals starting on second Fridays

WEEK2 Biweekly intervals starting on first Sundays

WEEK1.1 Same as WEEK

WEEK.2 Weekly intervals starting on Mondays

WEEK6.3 Six-week intervals starting on first Tuesdays

WEEK6.11 Six-week intervals starting on second Wednesdays

WEEK4 Four-week intervals starting on first Sundays

WEEKDAY Five-day work week with a Saturday-Sunday weekend

328 Retail Calendar Intervals: ISO 8601 Compliant � Chapter 4

Interval Description

WEEKDAY1W Six-day week with Sunday as a weekend day

WEEKDAY35W Five-day week with Tuesday and Thursday as weekend days
(W indicates that day 3 and day 5 are weekend days)

WEEKDAY17W Same as WEEKDAY

WEEKDAY67W Five-day week with Friday and Saturday as weekend days

WEEKDAY3.2 Three-weekday intervals with Saturday and Sunday as
weekend days (The intervals are aligned with respect to Jan. 1,
1960. For intervals that nest within a year, it is not necessary
to go back to Jan. 1, 1960 to determine the alignment.)

TENDAY4.2 Four ten-day periods starting at the second TENDAY period

SEMIMONTH2.2 Intervals from the sixteenth of one month through the fifteenth
of the next month

MONTH2.2 February–March, April–May, June–July, August–September,
October–November, and December–January of the following
year

MONTH2 January–February, March–April, May–June, July–August,
September–October, November–December

QTR3.2 Nine-month intervals starting on February 1, 1960, November
1, 1960, August 1, 1961, May 1, 1962, and so on.

SEMIYEAR.3 Six-month intervals, March–August and September–February

YEAR.10 Fiscal years starting in October

YEAR2.7 Biennial intervals starting in July of even years

YEAR2.19 Biennial intervals starting in July of odd years

YEAR4.11 Four-year intervals starting in November of leap years (frequency
of U.S. presidential elections)

YEAR4.35 Four-year intervals starting in November of even years between
leap years (frequency of U.S. midterm elections)

DTMONTH13 Thirteen-month intervals starting at midnight of January 1,
1960, such as November 1, 1957, December 1, 1958, January 1,
1960, February 1, 1961, and March 1, 1962

HOUR8.7 Eight-hour intervals starting at 6 a.m., 2 p.m., and 10 p.m.
(might be used for work shifts)

For a complete list of the valid values for interval, see the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.

Retail Calendar Intervals: ISO 8601 Compliant

The retail industry often accounts for its data by dividing the yearly calendar into four
13-week periods, based on one of the following formats: 4-4-5, 4-5-4, or 5-4-4. The first,
second, and third numbers specify the number of weeks in the first, second, and third
months of each period, respectively.

Functions and CALL Routines � Best Practices for Custom Interval Names 329

The intervals that are created from the formats can be used in any of the following
functions: INTCINDEX, INTCK, INTCYCLE, INTFIT, INTFMT, INTGET, INTINDEX,
INTNX, INTSEAS, INTSHIFT, and INTTEST.

For more information, see “Retail Calendar Intervals: ISO 8601 Compliant” in SAS
Language Reference: Concepts.

Best Practices for Custom Interval Names

The following items list best practices to use when you are creating custom interval
names:

� Custom interval names should not conflict with existing SAS interval names. For
example, if BASE is a SAS interval name, do not use the following formats for the
name of a custom interval:

BASE
BASEm

BASEm.n
DTBASE
DTBASEm
DTBASEm.n
where

m
specifies an optional multiplier that sets the interval equal to a multiple of
the period of the basic interval type. For example, the interval YEAR2
consists of two-year, or biennial, periods.

n
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods that
are shifted to start on the first day of March of each calendar year and end in
February of the following year.

If you define a custom interval such as CUSTBASE, then you can use
CUSTBASEm.n.

Because of these rules, do not begin a custom interval name with DT, and do
not end the custom interval name with a number.

� To ensure that custom intervals work reliably, always include one of the following
formats:

date-format with beginning and ending values
specifies intervals that are used with SAS date values.

datetime-format with beginning and ending values
specifies intervals that are used with SAS datetime values.

number-format with beginning and ending values
specifies intervals that are used with SAS observation numbers.

� Beginning and ending values should be of the same type. Both values should be
date values, datetime values, or observation numbers.

� Calculations for custom intervals cannot be performed before the first begin value
or after the last end value. If you use the begin variable only, then the last end
value you can calculate is the last begin value –1. If you forecast or backcast the
time series, be sure to include time definitions for the forecast and backcast values.

330 Best Practices for Custom Interval Names � Chapter 4

�

CUSTBASEm.2 is never able to calculate a beginning period for the first date
value in a data set because, by definition, the beginning of the first interval starts
before the data set begins (at the – (m– 2) th observation). For example, you might
have an interval called CUSTBASE4.2 with the first interval beginning before the
first observation:

OBS
-2 Start of partial CUSTBASE4.2 interval observation: -(4-2) = -2.
-1
0
1 End of partial CUSTBASE4.2 interval observation: This is the first

observation in the data set.
2 Start of first complete CUSTBASE4.2 interval.
3
4
5 End of first complete CUSTBASE4.2 interval.
6 Start of 2nd CUSTBASE4.2 interval.

If you execute the INTNX function, the result must return the date that is
associated with OBS –2, which does not exist:

INTNX(’CUSTBASE4.2’, date-at-obs1, 0, ’B’);

� Include a variable named season in the custom interval data set to define the
seasonal index. This result is similar to the result of INTINDEX (’interval’,
date);

In the following example, the data set is associated with the custom interval
CUSTWEEK:

Obs begin season
1 27DEC59 52
2 03JAN60 1
3 10JAN60 2
4 17JAN60 3
5 24JAN60 4
6 31JAN60 5

The following examples show the results of using custom interval functions:

INTINDEX (’CUSTWEEK’, ’03JAN60’D);
returns a value of 1.

INTSEAS (’CUSTWEEK’);
returns a value of 52, which is the largest value of the season.

INTCYCLE (’CUSTWEEK’);
returns CUSTWEEK52, which is CUSTBASEmax(season).

INTCINDEX (’CUSTWEEK’, ’27DEC59’D);
returns a value of 1.

INTCINDEX(’CUSTWEEK’, ’03JAN60’D)
returns a value of 2.

A new cycle begins when the season is less than the previous value of season.
� Seasonality occurs when seasons are identified, such as season1, season2, season3,

and so forth. If all seasons are identified as season1, then there is no seasonality.
No seasonality is also called trivial seasonality.

Only trivial seasonality is available for intervals of the form CUSTBASEm. If
season is not included in the data set, then trivial seasonality is valid.

Functions and CALL Routines � Benefits of Using Perl Regular Expressions in the DATA Step 331

� If a format for the begin variable is included in a data set, then a message
generated by INTFMT (’CUSTBASE’, ’l’) or INTFMT (’CUSTBASE’, ’s’) appears.
The message recommends a format based on the format that is specified in the
data set.

� Executing INTSHIFT (’CUSTBASE’); or INTSHIFT (’CUSTBASEm.s’); returns
the value of CUSTBASE.

� With INTNX, INTCK, and INTTEST, the intervals CUSTBASE, CUSTBASEm,
and CUSTBASEm.s work as expected.

Pattern Matching Using Perl Regular Expressions (PRX)

Definition of Pattern Matching
Pattern matching enables you to search for and extract multiple matching patterns

from a character string in one step. Pattern matching also enables you to make several
substitutions in a string in one step. You do this by using the PRX functions and CALL
routines in the DATA step.

For example, you can search for multiple occurrences of a string and replace those
strings with another string. You can search for a string in your source file and return
the position of the match. You can find words in your file that are doubled.

Definition of Perl Regular Expression (PRX) Functions and CALL
Routines

Perl regular expression (PRX) functions and CALL routines refers to a group of
functions and CALL routines that use a modified version of Perl as a pattern-matching
language to parse character strings. You can do the following:

� search for a pattern of characters within a string
� extract a substring from a string
� search and replace text with other text
� parse large amounts of text, such as Web logs or other text data

Perl regular expressions comprise the character string matching category for
functions and CALL routines. For a short description of these functions and CALL
routines, see the “Functions and CALL Routines by Category” on page 342.

Benefits of Using Perl Regular Expressions in the DATA Step
Using Perl regular expressions in the DATA step enhances search-and-replace

options in text. You can use Perl regular expressions to perform the following tasks:
� validate data
� replace text
� extract a substring from a string

You can write SAS programs that do not use regular expressions to produce the same
results as you do when you use Perl regular expressions. However, the code without the

332 Using Perl Regular Expressions in the DATA Step � Chapter 4

regular expressions requires more function calls to handle character positions in a
string and to manipulate parts of the string.

Perl regular expressions combine most, if not all, of these steps into one expression.
The resulting code is less prone to error, easier to maintain, and clearer to read.

Using Perl Regular Expressions in the DATA Step

Syntax of Perl Regular Expressions

The Components of a Perl Regular Expression
Perl regular expressions consist of characters and special characters that are called

metacharacters. When performing a match, SAS searches a source string for a
substring that matches the Perl regular expression that you specify. Using
metacharacters enables SAS to perform special actions. These actions include forcing
the match to begin in a particular location, and matching a particular set of characters.
Paired forward slashes are the default delimiters. The following two examples show
metacharacters and the values they match:

� If you use the metacharacter \d, SAS matches a digit between 0–9.
� If you use /\dt/, SAS finds the digits in the string “Raleigh, NC 27506”.

You can see lists of PRX metacharacters in “Tables of Perl Regular Expression (PRX)
Metacharacters” on page 2141.

Basic Syntax for Finding a Match in a String
You use the PRXMATCH function to find the position of a matched value in a source

string. PRXMATCH has the following general form:

/search-string/source-string/

The following example uses the PRXMATCH function to find the position of
search-string in source-string:

prxmatch(’world’, ’Hello world!’);

The result of PRXMATCH is the value 7, because world occurs in the seventh
position of the string Hello world!.

Basic Syntax for Searching and Replacing Text: Example 1

The basic syntax for searching and replacing text has the following form:

s/regular-expression/replacement-string/

The following example uses the PRXCHANGE function to show how substitution is
performed:

prxchange(’s/world/planet/’, 1, ’Hello world!’);

where

s specifies the metacharacter for substitution.

Functions and CALL Routines � Syntax of Perl Regular Expressions 333

world specifies the regular expression.

planet specifies the replacement value for world.

1 specifies that the search ends when one match is found.

Hello world! specifies the source string to be searched.

The result of the substitution is Hello planet.

Basic Syntax for Searching and Replacing Text: Example 2
Another example of using the PRXCHANGE function changes the value Jones, Fred

to Fred Jones:

prxchange(’s/(\w+), (\w+)/$2 $1’,-1, ’Jones, Fred’);

In this example, the Perl regular expression is s/(\w+), (\w+)/$2 $1. The number
of times to search for a match is –1. The source string is ’Jones, Fred’. The value –1
specifies that matching patterns continue to be replaced until the end of the source is
reached.

The Perl regular expression can be divided into its elements:

s specifies a substitution regular expression.

(\w+) matches one or more word characters (alphanumeric and
underscore). The parentheses indicate that the value is stored in
capture buffer 1.

,<space> matches a comma and a space.

(\w+) matches one or more word characters (alphanumeric and
underscore). The parentheses indicate that the value is stored in
capture buffer 2.

/ separator between the regular expression and the replacement
string.

$2 part of the replacement string that substitutes the value in capture
buffer 2, which in this case is the word after the comma, puts the
substitution in the results.

<space> puts a space in the result.

$1 puts capture buffer 1 into the result. In this case, it is the word
before the comma.

Replacing Text: Example 3

The following example uses the \u and \L metacharacters to replace the second
character in MCLAUREN with a lower case letter:

data _null_;
x = ’MCLAUREN’;
x = prxchange("s/ (MC) /\u\L$1/i", -1, x);
put x=;

run;

SAS writes the following output to the log:

x=McLAUREN

334 Example 1: Validating Data � Chapter 4

Example 1: Validating Data
You can test for a pattern of characters within a string. For example, you can

examine a string to determine whether it contains a correctly formatted telephone
number. This type of test is called data validation.

The following example validates a list of phone numbers. To be valid, a phone
number must have one of the following forms: (XXX) XXX-XXXX or XXX-XXX-XXXX.

data _null_; u

if _N_ = 1 then
do;

paren = "\([2-9]\d\d\) ?[2-9]\d\d-\d\d\d\d"; v

dash = "[2-9]\d\d-[2-9]\d\d-\d\d\d\d"; w

expression = "/(" || paren || ")|(" || dash || ")/"; x

retain re;
re = prxparse(expression); y

if missing(re) then U

do;
putlog "ERROR: Invalid expression " expression; V

stop;
end;

end;

length first last home business $ 16;
input first last home business;

if ^prxmatch(re, home) then W

putlog "NOTE: Invalid home phone number for " first last home;

if ^prxmatch(re, business) then X

putlog "NOTE: Invalid business phone number for " first last business;

datalines;
Jerome Johnson (919)319-1677 (919)846-2198
Romeo Montague 800-899-2164 360-973-6201
Imani Rashid (508)852-2146 (508)366-9821
Palinor Kent . 919-782-3199
Ruby Archuleta . .
Takei Ito 7042982145 .
Tom Joad 209/963/2764 2099-66-8474
;
run;

The following items correspond to the lines that are numbered in the DATA step that
is shown above.

u Create a DATA step.
v Build a Perl regular expression to identify a phone number that matches

(XXX)XXX-XXXX, and assign the variable PAREN to hold the result. Use the
following syntax elements to build the Perl regular expression:

\(matches the open parenthesis in the area code.

[2–9] matches the digits 2–9, which is the first number in the area
code.

Functions and CALL Routines � Example 1: Validating Data 335

\d matches a digit, which is the second number in the area code.

\d matches a digit, which is the third number in the area code.

\) matches the closed parenthesis in the area code.

<space>? matches the space (which is the preceding subexpression) zero
or one time. Spaces are significant in Perl regular expressions.
They match a space in the text that you are searching. If a
space precedes the question mark metacharacter (as it does in
this case), the pattern matches either zero spaces or one space
in this position in the phone number.

w Build a Perl regular expression to identify a phone number that matches
XXX-XXX-XXXX, and assign the variable DASH to hold the result.

x Build a Perl regular expression that concatenates the regular expressions for
(XXX)XXX-XXXX and XXX—XXX—XXXX. The concatenation enables you to
search for both phone number formats from one regular expression.

The PAREN and DASH regular expressions are placed within parentheses. The
bar metacharacter (|) that is located between PAREN and DASH instructs the
compiler to match either pattern. The slashes around the entire pattern tell the
compiler where the start and end of the regular expression is located.

y Pass the Perl regular expression to PRXPARSE and compile the expression.
PRXPARSE returns a value to the compiled pattern. Using the value with other
Perl regular expression functions and CALL routines enables SAS to perform
operations with the compiled Perl regular expression.

U Use the MISSING function to check whether the regular expression was
successfully compiled.

V Use the PUTLOG statement to write an error message to the SAS log if the
regular expression did not compile.

W Search for a valid home phone number. PRXMATCH uses the value from
PRXPARSE along with the search text and returns the position where the regular
expression was found in the search text. If there is no match for the home phone
number, the PUTLOG statement writes a note to the SAS log.

X Search for a valid business phone number. PRXMATCH uses the value from
PRXPARSE along with the search text and returns the position where the regular
expression was found in the search text. If there is no match for the business
phone number, the PUTLOG statement writes a note to the SAS log.

Output 4.7 Output from Validating Data

NOTE: Invalid home phone number for Palinor Kent
NOTE: Invalid home phone number for Ruby Archuleta
NOTE: Invalid business phone number for Ruby Archuleta
NOTE: Invalid home phone number for Takei Ito 7042982145
NOTE: Invalid business phone number for Takei Ito
NOTE: Invalid home phone number for Tom Joad 209/963/2764
NOTE: Invalid business phone number for Tom Joad 2099-66-8474

336 Example 2: Replacing Text � Chapter 4

Example 2: Replacing Text

This example uses a Perl regular expression to find a match and replace the matching
characters with other characters. PRXPARSE compiles the regular expression and uses
PRXCHANGE to find the match and perform the replacement. The example replaces
all occurrences of a less than sign with <, a common substitution when converting
text to HTML.

data _null_; u

input; v

infile = prxchange(’s/</</’, -1, _infile_); w

put _infile_; x

datalines; y

x + y < 15
x < 10 < y
y < 11
;
run;

The following items correspond to the numbered lines in the DATA step that is
shown above.

u Create a DATA step.

v Bring an input data record into the input buffer without creating any SAS
variables.

w Call the PRXCHANGE routine to perform the pattern exchange. The format for
the regular expression is s/regular-expression/replacement-text/. The s
before the regular expression signifies that this is a substitution regular
expression. The –1 is a special value that is passed to PRXCHANGE and indicates
that all possible replacements should be made.

x Write the current output line to the log by using the _INFILE_ option with the
PUT statement.

y Identify the input file.

Output 4.8 Output from Replacing Text

x + y < 15
x < 10 < y
y < 11

The ability to pass a regular expression to PRXCHANGE and return a result enables
calling PRXCHANGE from a PROC SQL query. The following query produces a column
with the same character substitution as in the preceding example. From the input table
the query reads text_lines, changes the text for the column line, and places the
results in a column named html_line:

proc sql;
select prxchange(’s/</</’, -1, line)
as html_line
from text_lines;

quit;

Functions and CALL Routines � Example 3: Extracting a Substring from a String 337

Example 3: Extracting a Substring from a String

You can use Perl regular expressions to find and easily extract text from a string. In
this example, the DATA step creates a subset of North Carolina business phone
numbers. The program extracts the area code and checks it against a list of area codes
for North Carolina.

data _null_; u

if _N_ = 1 then
do;

paren = "\(([2-9]\d\d)\) ?[2-9]\d\d-\d\d\d\d"; v

dash = "([2-9]\d\d)-[2-9]\d\d-\d\d\d\d"; w

regexp = "/(" || paren || ")|(" || dash || ")/"; x

retain re;
re = prxparse(regexp); y

if missing(re) then U

do;
putlog "ERROR: Invalid regexp " regexp; V

stop;
end;

retain areacode_re;
areacode_re = prxparse("/828|336|704|910|919|252/"); W

if missing(areacode_re) then
do;

putlog "ERROR: Invalid area code regexp";
stop;

end;
end;

length first last home business $ 16;
length areacode $ 3;
input first last home business;

if ^prxmatch(re, home) then
putlog "NOTE: Invalid home phone number for " first last home;

if prxmatch(re, business) then X

do;
which_format = prxparen(re); at

call prxposn(re, which_format, pos, len); ak

areacode = substr(business, pos, len);
if prxmatch(areacode_re, areacode) then al

put "In North Carolina: " first last business;
end;
else

putlog "NOTE: Invalid business phone number for " first last business;
datalines;

Jerome Johnson (919)319-1677 (919)846-2198
Romeo Montague 800-899-2164 360-973-6201
Imani Rashid (508)852-2146 (508)366-9821
Palinor Kent 704-782-4673 704-782-3199
Ruby Archuleta 905-384-2839 905-328-3892

338 Example 3: Extracting a Substring from a String � Chapter 4

Takei Ito 704-298-2145 704-298-4738
Tom Joad 515-372-4829 515-389-2838
;

The following items correspond to the numbered lines in the DATA step that is
shown above.

u Create a DATA step.
v Build a Perl regular expression to identify a phone number that matches

(XXX)XXX-XXXX, and assign the variable PAREN to hold the result. Use the
following syntax elements to build the Perl regular expression:

\(matches the open parenthesis in the area code. The open
parenthesis marks the start of the submatch.

[2–9] matches the digits 2–9.

\d matches a digit, which is the second number in the area code.

\d matches a digit, which is the third number in the area code.

\) matches the closed parenthesis in the area code. The closed
parenthesis marks the end of the submatch.

? matches the space (which is the preceding subexpression) zero
or one time. Spaces are significant in Perl regular expressions.
They match a space in the text that you are searching. If a
space precedes the question mark metacharacter (as it does in
this case), the pattern matches either zero spaces or one space
in this position in the phone number.

w Build a Perl regular expression to identify a phone number that matches
XXX-XXX-XXXX, and assign the variable DASH to hold the result.

x Build a Perl regular expression that concatenates the regular expressions for
(XXX)XXX-XXXX and XXX—XXX—XXXX. The concatenation enables you to
search for both phone number formats from one regular expression.

The PAREN and DASH regular expressions are placed within parentheses. The
bar metacharacter (|) that is located between PAREN and DASH instructs the
compiler to match either pattern. The slashes around the entire pattern tell the
compiler where the start and end of the regular expression is located.

y Pass the Perl regular expression to PRXPARSE and compile the expression.
PRXPARSE returns a value to the compiled pattern. Using the value with other
Perl regular expression functions and CALL routines enables SAS to perform
operations with the compiled Perl regular expression.

U Use the MISSING function to check whether the Perl regular expression compiled
without error.

V Use the PUTLOG statement to write an error message to the SAS log if the
regular expression did not compile.

W Compile a Perl regular expression that searches a string for a valid North
Carolina area code.

X Search for a valid business phone number.
at Use the PRXPAREN function to determine which submatch to use. PRXPAREN

returns the last submatch that was matched. If an area code matches the form
(XXX), PRXPAREN returns the value 2. If an area code matches the form XXX,
PRXPAREN returns the value 4.

ak Call the PRXPOSN routine to retrieve the position and length of the submatch.

Functions and CALL Routines � Example 4: Another Example of Extracting a Substring from a String 339

al Use the PRXMATCH function to determine whether the area code is a valid North
Carolina area code, and write the observation to the log.

Output 4.9 Output from Extracting a Substring from a String

In North Carolina: Jerome Johnson (919)846-2198
In North Carolina: Palinor Kent 704-782-3199
In North Carolina: Takei Ito 704-298-4738

Example 4: Another Example of Extracting a Substring from a String
In this example, the PRXPOSN function is passed to the original search text instead

of to the position and length variables. PRXPOSN returns the text that is matched.

data _null_; u

length first last phone $ 16;
retain re;
if _N_ = 1 then do; v

re=prxparse("/\(([2-9]\d\d)\) ?[2-9]\d\d-\d\d\d\d/"); w

end;

input first last phone & 16.;
if prxmatch(re, phone) then do; x

area_code = prxposn(re, 1, phone); y

if area_code ^in ("828"
"336"
"704"
"910"
"919"
"252") then

putlog "NOTE: Not in North Carolina: "
first last phone; U

end;
datalines; V

Thomas Archer (919)319-1677
Lucy Mallory (800)899-2164
Tom Joad (508)852-2146
Laurie Jorgensen (252)352-7583
;
run;

The following items correspond to the numbered lines in the DATA step that is
shown above.

u Create a DATA step.
v If this is the first record, find the value of re.
w Build a Perl regular expression for pattern matching. Use the following syntax

elements to build the Perl regular expression:

/ is the beginning delimiter for a regular expression.

\(marks the next character entry as a character or a literal.

(marks the start of the submatch.

340 Example 4: Another Example of Extracting a Substring from a String � Chapter 4

[2–9] matches the digits 2–9 and identifies the first number in the
area code.

\d matches a digit, which is the second number in the area code.

\d matches a digit, which is the third number in the area code.

\) matches the close parenthesis in the area code. The close
parenthesis marks the end of the submatch.

? matches the space (which is the preceding subexpression) zero
or one time. Spaces are significant in Perl regular expressions.
The spaces match a space in the text that you are searching. If
a space precedes the question mark metacharacter (as it does
in this case), the pattern matches either zero spaces or one
space in this position in the phone number.

|| is the concatenation operator.

[2–9] matches the digits 2–9 and identifies the first number in the
seven-digit phone number.

\d matches a digit, which is the second number in the seven-digit
phone number.

\d matches a digit, which is the third number in the seven-digit
phone number.

– is the hyphen between the first three and last four digits of the
phone number after the area code.

\d matches a digit, which is the fourth number in the seven-digit
phone number.

\d matches a digit, which is the fifth number in the seven-digit
phone number.

\d matches a digit, which is the sixth number in the seven-digit
phone number.

\d matches a digit, which is the seventh number in the seven-digit
phone number.

/ is the ending delimiter for a regular expression.

x Return the position at which the string begins.

y Identify the position at which the area code begins.

U Search for an area code from the list. If the area code is not valid for North
Carolina, use the PUTLOG statement to write a note to the SAS log.

V Identify the input file.

Output 4.10 Output from Extracting a Substring from a String

NOTE: Not in North Carolina: Lucy Mallory (800)899-2164
NOTE: Not in North Carolina: Tom Joad (508)852-2146

Functions and CALL Routines � Writing Perl Debug Output to the SAS Log 341

Writing Perl Debug Output to the SAS Log
The DATA step provides debugging support with the CALL PRXDEBUG routine.

CALL PRXDEBUG enables you to turn on and off Perl debug output messages that are
sent to the SAS log.

The following example writes Perl debug output to the SAS log.

data _null_;

/* CALL PRXDEBUG(1) turns on Perl debug output. */
call prxdebug(1);
putlog ’PRXPARSE: ’;
re = prxparse(’/[bc]d(ef*g)+h[ij]k$/’);
putlog ’PRXMATCH: ’;
pos = prxmatch(re, ’abcdefg_gh_’);

/* CALL PRXDEBUG(0) turns off Perl debug output. */
call prxdebug(0);

run;

SAS writes the following output to the log.

Output 4.11 SAS Debugging Output

PRXPARSE:
Compiling REx ’[bc]d(ef*g)+h[ij]k$’
size 41 first at 1
rarest char g at 0
rarest char d at 0

1: ANYOF[bc](10)
10: EXACT <d>(12)
12: CURLYX[0] {1,32767}(26)
14: OPEN1(16)
16: EXACT <e>(18)
18: STAR(21)
19: EXACT <f>(0)
21: EXACT <g>(23)
23: CLOSE1(25)
25: WHILEM[1/1](0)
26: NOTHING(27)
27: EXACT <h>(29)
29: ANYOF[ij](38)
38: EXACT <k>(40)
40: EOL(41)
41: END(0)

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating) stclass
’ANYOF[bc]’ minlen 7

PRXMATCH:
Guessing start of match, REx ’[bc]d(ef*g)+h[ij]k$’ against ’abcdefg_gh_’...
Did not find floating substr ’gh’...
Match rejected by optimizer

For a detailed explanation of Perl debug output, see “CALL PRXDEBUG Routine” on
page 479.

342 Perl Artistic License Compliance � Chapter 4

Perl Artistic License Compliance
Perl regular expressions are supported beginning with SAS®9.
The PRX functions use a modified version of Perl 5.6.1 to perform regular expression

compilation and matching. Perl is compiled into a library for use with SAS. This library
is shipped with SAS®9. The modified and original Perl 5.6.1 files are freely available in
a ZIP file from http://support.sas.com/rnd/base. The ZIP file is provided to comply
with the Perl Artistic License and is not required in order to use the PRX functions.
Each of the modified files has a comment block at the top of the file describing how and
when the file was changed. The executables were given nonstandard Perl names. The
standard version of Perl can be obtained from http://www.perl.com.

Only Perl regular expressions are accessible from the PRX functions. Other parts of
the Perl language are not accessible. The modified version of Perl regular expressions
does not support the following items:

� Perl variables (except the capture buffer variables $1 - $n, which are supported).
� The regular expression options /c and /g, and the /e option with substitutions.
� The regular expression option /o in SAS 9.0. (It is supported in SAS 9.1 and later.)
� Named characters, which use the \N{name} syntax.
� The metacharacters \pP, \PP, and \X.
� Executing Perl code within a regular expression, which includes the syntax

(?{code}), (??{code}), and (?p{code}).
� Unicode pattern matching.
� Using ?PATTERN?. ? is treated like an ordinary regular expression start and end

delimiter.
� The metacharacter \G.
� Perl comments between a pattern and replacement text. For example: s{regexp} #

perl comment {replacement} is not supported.
� Matching backslashes with m/\\\\/. Instead use m/\\/ to match a backslash.

Base SAS Functions for Web Applications
Four functions that manipulate Web-related content are available in Base SAS

software. HTMLENCODE and URLENCODE return encoded strings. HTMLDECODE
and URLDECODE return decoded strings. For information about Web-based SAS tools,
follow the Communities link on the SAS support page, at support.sas.com.

Functions and CALL Routines by Category

Functions and CALL Routines � Functions and CALL Routines by Category 343

Table 4.4 Categories and Descriptions of Functions and CALL Routines

Category Functions and CALL
Routines

Description

“ANYXDIGIT Function” on
page 398

Searches a character string for a hexadecimal character
that represents a digit, and returns the first position at
which that character is found.

Arithmetic “DIVIDE Function” on
page 649

Returns the result of a division that handles special
missing values for ODS output.

Array “DIM Function” on page
646

Returns the number of elements in an array.

“HBOUND Function” on
page 786

Returns the upper bound of an array.

“LBOUND Function” on
page 859

Returns the lower bound of an array.

Bitwise Logical Operations “BAND Function” on page
413

Returns the bitwise logical AND of two arguments.

“BLSHIFT Function” on
page 423

Returns the bitwise logical left shift of two arguments.

“BNOT Function” on page
424

Returns the bitwise logical NOT of an argument.

“BOR Function” on page
425

Returns the bitwise logical OR of two arguments.

“BRSHIFT Function” on
page 426

Returns the bitwise logical right shift of two arguments.

“BXOR Function” on page
427

Returns the bitwise logical EXCLUSIVE OR of two
arguments.

Character String Matching “CALL PRXCHANGE
Routine” on page 476

Performs a pattern-matching replacement.

“CALL PRXDEBUG
Routine” on page 479

Enables Perl regular expressions in a DATA step to send
debugging output to the SAS log.

“CALL PRXFREE
Routine” on page 481

Frees memory that was allocated for a Perl regular
expression.

“CALL PRXNEXT
Routine” on page 482

Returns the position and length of a substring that
matches a pattern, and iterates over multiple matches
within one string.

“CALL PRXPOSN
Routine” on page 484

Returns the start position and length for a capture buffer.

“CALL PRXSUBSTR
Routine” on page 487

Returns the position and length of a substring that
matches a pattern.

“PRXCHANGE Function”
on page 1010

Performs a pattern-matching replacement.

“PRXMATCH Function” on
page 1015

Searches for a pattern match and returns the position at
which the pattern is found.

“PRXPAREN Function” on
page 1019

Returns the last bracket match for which there is a
match in a pattern.

344 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“PRXPARSE Function” on
page 1021

Compiles a Perl regular expression (PRX) that can be
used for pattern matching of a character value.

“PRXPOSN Function” on
page 1023

Returns a character string that contains the value for a
capture buffer.

Character “ANYALNUM Function”
on page 376

Searches a character string for an alphanumeric
character, and returns the first position at which the
character is found.

“ANYALPHA Function” on
page 378

Searches a character string for an alphabetic character,
and returns the first position at which the character is
found.

“ANYCNTRL Function” on
page 380

Searches a character string for a control character, and
returns the first position at which that character is found.

“ANYDIGIT Function” on
page 381

Searches a character string for a digit, and returns the
first position at which the digit is found.

“ANYFIRST Function” on
page 383

Searches a character string for a character that is valid
as the first character in a SAS variable name under
VALIDVARNAME=V7, and returns the first position at
which that character is found.

“ANYGRAPH Function” on
page 385

Searches a character string for a graphical character, and
returns the first position at which that character is found.

“ANYLOWER Function”
on page 387

Searches a character string for a lowercase letter, and
returns the first position at which the letter is found.

“ANYNAME Function” on
page 389

Searches a character string for a character that is valid
in a SAS variable name under VALIDVARNAME=V7,
and returns the first position at which that character is
found.

“ANYPRINT Function” on
page 391

Searches a character string for a printable character, and
returns the first position at which that character is found.

“ANYPUNCT Function” on
page 393

Searches a character string for a punctuation character,
and returns the first position at which that character is
found.

“ANYSPACE Function” on
page 394

Searches a character string for a white-space character
(blank, horizontal and vertical tab, carriage return, line
feed, and form feed), and returns the first position at
which that character is found.

“ANYUPPER Function” on
page 396

Searches a character string for an uppercase letter, and
returns the first position at which the letter is found.

“ANYXDIGIT Function” on
page 398

Searches a character string for a hexadecimal character
that represents a digit, and returns the first position at
which that character is found.

“BYTE Function” on page
428

Returns one character in the ASCII or the EBCDIC
collating sequence.

“CALL CATS Routine” on
page 438

Removes leading and trailing blanks, and returns a
concatenated character string.

Functions and CALL Routines � Functions and CALL Routines by Category 345

Category Functions and CALL
Routines

Description

“CALL CATT Routine” on
page 440

Removes trailing blanks, and returns a concatenated
character string.

“CALL CATX Routine” on
page 442

Removes leading and trailing blanks, inserts delimiters,
and returns a concatenated character string.

“CALL COMPCOST
Routine” on page 444

Sets the costs of operations for later use by the
COMPGED function

“CALL MISSING Routine”
on page 470

Assigns missing values to the specified character or
numeric variables.

“CALL SCAN Routine” on
page 513

Returns the position and length of the nth word from a
character string.

“CAT Function” on page
540

Does not remove leading or trailing blanks, and returns
a concatenated character string.

“CATQ Function” on page
543

Concatenates character or numeric values by using a
delimiter to separate items and by adding quotation
marks to strings that contain the delimiter.

“CATS Function” on page
547

Removes leading and trailing blanks, and returns a
concatenated character string.

“CATT Function” on page
549

Removes trailing blanks, and returns a concatenated
character string.

“CATX Function” on page
551

Removes leading and trailing blanks, inserts delimiters,
and returns a concatenated character string.

“CHAR Function” on page
572

Returns a single character from a specified position in a
character string.

“CHOOSEC Function” on
page 573

Returns a character value that represents the results of
choosing from a list of arguments.

“CHOOSEN Function” on
page 575

Returns a numeric value that represents the results of
choosing from a list of arguments.

“COALESCEC Function”
on page 582

Returns the first non-missing value from a list of
character arguments.

“COLLATE Function” on
page 583

Returns a character string in ASCII or EBCDIC collating
sequence.

“COMPARE Function” on
page 585

Returns the position of the leftmost character by which
two strings differ, or returns 0 if there is no difference.

“COMPBL Function” on
page 588

Removes multiple blanks from a character string.

“COMPGED Function” on
page 590

Returns the generalized edit distance between two
strings.

“COMPLEV Function” on
page 595

Returns the Levenshtein edit distance between two
strings.

“COMPRESS Function” on
page 598

Returns a character string with specified characters
removed from the original string.

“COUNT Function” on
page 609

Counts the number of times that a specified substring
appears within a character string.

346 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“COUNTC Function” on
page 611

Counts the number of characters in a string that appear
or do not appear in a list of characters.

“COUNTW Function” on
page 614

Counts the number of words in a character string.

“DEQUOTE Function” on
page 638

Removes matching quotation marks from a character
string that begins with a quotation mark, and deletes all
characters to the right of the closing quotation mark.

“FIND Function” on page
721

Searches for a specific substring of characters within a
character string.

“FINDC Function” on page
723

Searches a string for any character in a list of characters.

“FINDW Function” on
page 729

Returns the character position of a word in a string, or
returns the number of the word in a string.

“FIRST Function” on page
740

Returns the first character in a character string.

“IFC Function” on page
796

Returns a character value based on whether an
expression is true, false, or missing.

“INDEX Function” on page
801

Searches a character expression for a string of
characters, and returns the position of the string’s first
character for the first occurrence of the string.

“INDEXC Function” on
page 802

Searches a character expression for any of the specified
characters, and returns the position of that character.

“INDEXW Function” on
page 804

Searches a character expression for a string that is
specified as a word, and returns the position of the first
character in the word.

“LEFT Function” on page
862

Left-aligns a character string.

“LENGTH Function” on
page 863

Returns the length of a non-blank character string,
excluding trailing blanks, and returns 1 for a blank
character string.

“LENGTHC Function” on
page 864

Returns the length of a character string, including
trailing blanks.

“LENGTHM Function” on
page 865

Returns the amount of memory (in bytes) that is
allocated for a character string.

“LENGTHN Function” on
page 867

Returns the length of a character string, excluding
trailing blanks.

“LOWCASE Function” on
page 891

Converts all letters in an argument to lowercase.

“MD5 Function” on page
900

Returns the result of the message digest of a specified
string.

“MISSING Function” on
page 906

Returns a numeric result that indicates whether the
argument contains a missing value.

Functions and CALL Routines � Functions and CALL Routines by Category 347

Category Functions and CALL
Routines

Description

“NLITERAL Function” on
page 922

Converts a character string that you specify to a SAS
name literal.

“NOTALNUM Function”
on page 925

Searches a character string for a non-alphanumeric
character, and returns the first position at which the
character is found.

“NOTALPHA Function” on
page 927

Searches a character string for a nonalphabetic
character, and returns the first position at which the
character is found.

“NOTCNTRL Function” on
page 929

Searches a character string for a character that is not a
control character, and returns the first position at which
that character is found.

“NOTDIGIT Function” on
page 930

Searches a character string for any character that is not
a digit, and returns the first position at which that
character is found.

“NOTFIRST Function” on
page 934

Searches a character string for an invalid first character
in a SAS variable name under VALIDVARNAME=V7,
and returns the first position at which that character is
found.

“NOTGRAPH Function” on
page 935

Searches a character string for a non-graphical
character, and returns the first position at which that
character is found.

“NOTLOWER Function”
on page 937

Searches a character string for a character that is not a
lowercase letter, and returns the first position at which
that character is found.

“NOTNAME Function” on
page 939

Searches a character string for an invalid character in a
SAS variable name under VALIDVARNAME=V7, and
returns the first position at which that character is found.

“NOTPRINT Function” on
page 941

Searches a character string for a nonprintable character,
and returns the first position at which that character is
found.

“NOTPUNCT Function” on
page 942

Searches a character string for a character that is not a
punctuation character, and returns the first position at
which that character is found.

“NOTSPACE Function” on
page 944

Searches a character string for a character that is not a
white-space character (blank, horizontal and vertical tab,
carriage return, line feed, and form feed), and returns
the first position at which that character is found.

“NOTUPPER Function” on
page 946

Searches a character string for a character that is not an
uppercase letter, and returns the first position at which
that character is found.

“NOTXDIGIT Function” on
page 948

Searches a character string for a character that is not a
hexadecimal character, and returns the first position at
which that character is found.

“NVALID Function” on
page 950

Checks the validity of a character string for use as a SAS
variable name.

348 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“PROPCASE Function” on
page 1008

Converts all words in an argument to proper case.

“QUOTE Function” on
page 1035

Adds double quotation marks to a character value.

“RANK Function” on page
1052

Returns the position of a character in the ASCII or
EBCDIC collating sequence.

“REPEAT Function” on
page 1060

Returns a character value that consists of the first
argument repeated n+1 times.

“REVERSE Function” on
page 1061

Reverses a character string.

“RIGHT Function” on page
1063

Right aligns a character expression.

“SCAN Function” on page
1076

Returns the nth word from a character string.

“SOUNDEX Function” on
page 1093

Encodes a string to facilitate searching.

“SPEDIS Function” on
page 1094

Determines the likelihood of two words matching,
expressed as the asymmetric spelling distance between
the two words.

“STRIP Function” on page
1102

Returns a character string with all leading and trailing
blanks removed.

“SUBPAD Function” on
page 1104

Returns a substring that has a length you specify, using
blank padding if necessary.

“SUBSTR (left of =)
Function” on page 1105

Replaces character value contents.

“SUBSTR (right of =)
Function” on page 1106

Extracts a substring from an argument.

“SUBSTRN Function” on
page 1107

Returns a substring, allowing a result with a length of
zero.

“TRANSLATE Function”
on page 1128

Replaces specific characters in a character string.

“TRANSTRN Function” on
page 1129

Replaces or removes all occurrences of a substring in a
character string.

“TRANWRD Function” on
page 1132

Replaces all occurrences of a substring in a character
string.

“TRIM Function” on page
1135

Removes trailing blanks from a character string, and
returns one blank if the string is missing.

“TRIMN Function” on page
1137

Removes trailing blanks from character expressions, and
returns a string with a length of zero if the expression is
missing.

“UPCASE Function” on
page 1139

Converts all letters in an argument to uppercase.

Functions and CALL Routines � Functions and CALL Routines by Category 349

Category Functions and CALL
Routines

Description

“VERIFY Function” on
page 1155

Returns the position of the first character in a string that
is not in any of several other strings.

Combinatorial “ALLCOMB Function” on
page 371

Generates all combinations of the values of n variables
taken k at a time in a minimal change order.

“ALLPERM Function” on
page 373

Generates all permutations of the values of several
variables in a minimal change order.

“CALL ALLCOMB
Routine” on page 429

Generates all combinations of the values of n variables
taken k at a time in a minimal change order.

“CALL ALLCOMBI
Routine” on page 431

Generates all combinations of the indices of n objects
taken k at a time in a minimal change order.

“CALL ALLPERM
Routine” on page 434

Generates all permutations of the values of several
variables in a minimal change order.

“CALL GRAYCODE
Routine” on page 447

Generates all subsets of n items in a minimal change
order.

“CALL LEXCOMB
Routine” on page 455

Generates all distinct combinations of the non-missing
values of n variables taken k at a time in lexicographic
order.

“CALL LEXCOMBI
Routine” on page 459

Generates all combinations of the indices of n objects
taken k at a time in lexicographic order.

“CALL LEXPERK
Routine” on page 462

Generates all distinct permutations of the non-missing
values of n variables taken k at a time in lexicographic
order.

“CALL LEXPERM
Routine” on page 466

Generates all distinct permutations of the non-missing
values of several variables in lexicographic order.

“CALL RANPERK
Routine” on page 500

Randomly permutes the values of the arguments, and
returns a permutation of k out of n values.

“CALL RANPERM
Routine” on page 502

Randomly permutes the values of the arguments.

“COMB Function” on page
584

Computes the number of combinations of n elements
taken r at a time.

“GRAYCODE Function” on
page 781

Generates all subsets of n items in a minimal change
order.

“LCOMB Function” on
page 861

Computes the logarithm of the COMB function which is
the logarithm of the number of combinations of n objects
taken r at a time.

“LEXCOMB Function” on
page 868

Generates all distinct combinations of the non-missing
values of n variables taken k at a time in lexicographic
order.

“LEXCOMBI Function” on
page 871

Generates all combinations of the indices of n objects
taken k at a time in lexicographic order.

“LEXPERK Function” on
page 873

Generates all distinct permutations of the non-missing
values of n variables taken k at a time in lexicographic
order.

350 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“LEXPERM Function” on
page 875

Generates all distinct permutations of the non-missing
values of several variables in lexicographic order.

“LFACT Function” on page
878

Computes the logarithm of the FACT (factorial) function.

“LPERM Function” on
page 892

Computes the logarithm of the PERM function which is
the logarithm of the number of permutations of n objects,
with the option of including r number of elements.

“PERM Function” on page
980

Computes the number of permutations of n items that
are taken r at a time.

Date and Time “CALL IS8601_CONVERT
Routine” on page 451

Converts an ISO 8601 interval to datetime and duration
values, or converts datetime and duration values to an
ISO 8601 interval.

“DATDIF Function” on
page 625

Returns the number of days between two dates after
computing the difference between the dates according to
specified day count conventions.

“DATE Function” on page
627

Returns the current date as a SAS date value.

“DATEJUL Function” on
page 628

Converts a Julian date to a SAS date value.

“DATEPART Function” on
page 628

Extracts the date from a SAS datetime value.

“DATETIME Function” on
page 629

Returns the current date and time of day as a SAS
datetime value.

“DAY Function” on page
630

Returns the day of the month from a SAS date value.

“DHMS Function” on page
643

Returns a SAS datetime value from date, hour, minute,
and second values.

“HMS Function” on page
787

Returns a SAS time value from hour, minute, and second
values.

“HOLIDAY Function” on
page 788

Returns a SAS date value of a specified holiday for a
specified year.

“HOUR Function” on page
791

Returns the hour from a SAS time or datetime value.

“INTCINDEX Function” on
page 813

Returns the cycle index when a date, time, or datetime
interval and value are specified.

“INTCK Function” on page
816

Returns the count of the number of interval boundaries
between two dates, two times, or two datetime values.

“INTCYCLE Function” on
page 819

Returns the date, time, or datetime interval at the next
higher seasonal cycle when a date, time, or datetime
interval is specified.

“INTFIT Function” on
page 821

Returns a time interval that is aligned between two
dates.

Functions and CALL Routines � Functions and CALL Routines by Category 351

Category Functions and CALL
Routines

Description

“INTFMT Function” on
page 824

Returns a recommended SAS format when a date, time,
or datetime interval is specified.

“INTGET Function” on
page 826

Returns a time interval based on three date or datetime
values.

“INTINDEX Function” on
page 828

Returns the seasonal index when a date, time, or
datetime interval and value are specified.

“INTNX Function” on page
831

Increments a date, time, or datetime value by a given
time interval, and returns a date, time, or datetime value.

“INTSEAS Function” on
page 838

Returns the length of the seasonal cycle when a date,
time, or datetime interval is specified.

“INTSHIFT Function” on
page 840

Returns the shift interval that corresponds to the base
interval.

“INTTEST Function” on
page 842

Returns 1 if a time interval is valid, and returns 0 if a
time interval is invalid.

“JULDATE Function” on
page 848

Returns the Julian date from a SAS date value.

“JULDATE7 Function” on
page 850

Returns a seven-digit Julian date from a SAS date value.

“MDY Function” on page
901

Returns a SAS date value from month, day, and year
values.

“MINUTE Function” on
page 905

Returns the minute from a SAS time or datetime value.

“MONTH Function” on
page 913

Returns the month from a SAS date value.

“NWKDOM Function” on
page 953

Returns the date for the nth occurrence of a weekday for
the specified month and year.

“QTR Function” on page
1032

Returns the quarter of the year from a SAS date value.

“SECOND Function” on
page 1087

Returns the second from a SAS time or datetime value.

“TIME Function” on page
1124

Returns the current time of day as a numeric SAS time
value.

“TIMEPART Function” on
page 1125

Extracts a time value from a SAS datetime value.

“TODAY Function” on page
1128

Returns the current date as a numeric SAS date value.

“WEEK Function” on page
1186

Returns the week-number value.

“WEEKDAY Function” on
page 1189

From a SAS date value, returns an integer that
corresponds to the day of the week.

“YEAR Function” on page
1192

Returns the year from a SAS date value.

352 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“YRDIF Function” on page
1195

Returns the difference in years between two dates.

“YYQ Function” on page
1196

Returns a SAS date value from year and quarter year
values.

Descriptive Statistics “CMISS Function” on page
578

Counts the number of missing arguments.

“CSS Function” on page
617

Returns the corrected sum of squares.

“CV Function” on page 619 Returns the coefficient of variation.

“EUCLID Function” on
page 663

Returns the Euclidean norm of the non-missing
arguments.

“GEOMEAN Function” on
page 773

Returns the geometric mean.

“GEOMEANZ Function”
on page 774

Returns the geometric mean, using zero fuzzing.

“HARMEAN Function” on
page 783

Returns the harmonic mean.

“HARMEANZ Function”
on page 785

Returns the harmonic mean, using zero fuzzing.

“IQR Function” on page
846

Returns the interquartile range.

“KURTOSIS Function” on
page 850

Returns the kurtosis.

“LARGEST Function” on
page 858

Returns the kth largest non-missing value.

“LPNORM Function” on
page 893

Returns the Lp norm of the second argument and
subsequent non-missing arguments.

“MAD Function” on page
894

Returns the median absolute deviation from the median.

“MAX Function” on page
899

Returns the largest value.

“MEAN Function” on page
902

Returns the arithmetic mean (average).

“MEDIAN Function” on
page 903

Returns the median value.

“MIN Function” on page
904

Returns the smallest value.

“MISSING Function” on
page 906

Returns a numeric result that indicates whether the
argument contains a missing value.

“N Function” on page 920 Returns the number of non-missing numeric values.

“NMISS Function” on page
924

Returns the number of missing numeric values.

Functions and CALL Routines � Functions and CALL Routines by Category 353

Category Functions and CALL
Routines

Description

“ORDINAL Function” on
page 957

Returns the kth smallest of the missing and nonmissing
values.

“PCTL Function” on page
960

Returns the percentile that corresponds to the
percentage.

“RANGE Function” on
page 1051

Returns the range of the nonmissing values.

“RMS Function” on page
1064

Returns the root mean square of the nonmissing
arguments.

“SKEWNESS Function” on
page 1090

Returns the skewness of the nonmissing arguments.

“SMALLEST Function” on
page 1092

Returns the kth smallest nonmissing value.

“STD Function” on page
1097

Returns the standard deviation of the nonmissing
arguments.

“STDERR Function” on
page 1098

Returns the standard error of the mean of the
nonmissing arguments.

“SUM Function” on page
1111

Returns the sum of the nonmissing arguments.

“SUMABS Function” on
page 1112

Returns the sum of the absolute values of the
non-missing arguments.

“USS Function” on page
1142

Returns the uncorrected sum of squares of the
nonmissing arguments.

“VAR Function” on page
1144

Returns the variance of the nonmissing arguments.

Distance “GEODIST Function” on
page 771

Returns the geodetic distance between two latitude and
longitude coordinates.

“ZIPCITYDISTANCE
Function” on page 1199

Returns the geodetic distance between two ZIP code
locations.

External Files “DCLOSE Function” on
page 630

Closes a directory that was opened by the DOPEN
function.

“DCREATE Function” on
page 632

Returns the complete pathname of a new, external
directory.

“DINFO Function” on page
648

Returns information about a directory.

“DNUM Function” on page
651

Returns the number of members in a directory.

“DOPEN Function” on
page 652

Opens a directory, and returns a directory identifier
value.

“DOPTNAME Function”
on page 653

Returns directory attribute information.

“DOPTNUM Function” on
page 655

Returns the number of information items that are
available for a directory.

354 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“DREAD Function” on
page 656

Returns the name of a directory member.

“DROPNOTE Function” on
page 657

Deletes a note marker from a SAS data set or an
external file.

“FAPPEND Function” on
page 669

Appends the current record to the end of an external file.

“FCLOSE Function” on
page 670

Closes an external file, directory, or directory member.

“FCOL Function” on page
671

Returns the current column position in the File Data
Buffer (FDB).

“FDELETE Function” on
page 672

Deletes an external file or an empty directory.

“FEXIST Function” on
page 676

Verifies the existence of an external file that is associated
with a fileref.

“FGET Function” on page
677

Copies data from the File Data Buffer (FDB) into a
variable.

“FILEEXIST Function” on
page 679

Verifies the existence of an external file by its physical
name.

“FILENAME Function” on
page 680

Assigns or deassigns a fileref to an external file,
directory, or output device.

“FILEREF Function” on
page 682

Verifies whether a fileref has been assigned for the
current SAS session.

“FINFO Function” on page
734

Returns the value of a file information item.

“FNOTE Function” on
page 745

Identifies the last record that was read, and returns a
value that the FPOINT function can use.

“FOPEN Function” on
page 747

Opens an external file and returns a file identifier value.

“FOPTNAME Function” on
page 749

Returns the name of an item of information about a file.

“FOPTNUM Function” on
page 751

Returns the number of information items that are
available for an external file.

“FPOINT Function” on
page 752

Positions the read pointer on the next record to be read.

“FPOS Function” on page
754

Sets the position of the column pointer in the File Data
Buffer (FDB).

“FPUT Function” on page
756

Moves data to the File Data Buffer (FDB) of an external
file, starting at the FDB’s current column position.

“FREAD Function” on
page 757

Reads a record from an external file into the File Data
Buffer (FDB).

“FREWIND Function” on
page 758

Positions the file pointer to the start of the file.

Functions and CALL Routines � Functions and CALL Routines by Category 355

Category Functions and CALL
Routines

Description

“FRLEN Function” on
page 759

Returns the size of the last record that was read, or, if the
file is opened for output, returns the current record size.

“FSEP Function” on page
760

Sets the token delimiters for the FGET function.

“FWRITE Function” on
page 763

Writes a record to an external file.

“MOPEN Function” on
page 913

Opens a file by directory ID and member name, and
returns either the file identifier or a 0.

“PATHNAME Function” on
page 958

Returns the physical name of an external file or a SAS
library, or returns a blank.

“RENAME Function” on
page 1058

Renames a member of a SAS library, an entry in a SAS
catalog, an external file, or a directory.

“SYSMSG Function” on
page 1117

Returns error or warning message text from processing
the last data set or external file function.

“SYSRC Function” on page
1121

Returns a system error number.

External Routines “CALL MODULE Routine”
on page 472

Calls an external routine without any return code.

“MODULEC Function” on
page 910

Calls an external routine and returns a character value.

“MODULEN Function” on
page 910

Calls an external routine and returns a numeric value.

Financial “BLACKCLPRC Function”
on page 416

Calculates call prices for European options on futures,
based on the Black model.

“BLACKPTPRC Function”
on page 418

Calculates put prices for European options on futures,
based on the Black model.

“BLKSHCLPRC Function”
on page 419

Calculates call prices for European options on stocks,
based on the Black-Scholes model.

“BLKSHPTPRC Function”
on page 421

Calculates put prices for European options on stocks,
based on the Black-Scholes model.

“COMPOUND Function”
on page 597

Returns compound interest parameters.

“CONVX Function” on
page 605

Returns the convexity for an enumerated cash flow.

“CONVXP Function” on
page 606

Returns the convexity for a periodic cash flow stream,
such as a bond.

“DACCDB Function” on
page 619

Returns the accumulated declining balance depreciation.

“DACCDBSL Function” on
page 620

Returns the accumulated declining balance with
conversion to a straight-line depreciation.

“DACCSL Function” on
page 621

Returns the accumulated straight-line depreciation.

356 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“DACCSYD Function” on
page 622

Returns the accumulated sum-of-years-digits
depreciation.

“DACCTAB Function” on
page 623

Returns the accumulated depreciation from specified
tables.

“DEPDB Function” on
page 633

Returns the declining balance depreciation.

“DEPDBSL Function” on
page 634

Returns the declining balance with conversion to a
straight-line depreciation.

“DEPSL Function” on page
635

Returns the straight-line depreciation.

“DEPSYD Function” on
page 636

Returns the sum-of-years-digits depreciation.

“DEPTAB Function” on
page 637

Returns the depreciation from specified tables.

“DUR Function” on page
658

Returns the modified duration for an enumerated cash
flow.

“DURP Function” on page
659

Returns the modified duration for a periodic cash flow
stream, such as a bond.

“FINANCE Function” on
page 683

Computes financial calculations such as depreciation,
maturation, accrued interest, net present value, periodic
savings, and internal rates of return.

“GARKHCLPRC Function”
on page 766

Calculates call prices for European options on stocks,
based on the Garman-Kohlhagen model.

“GARKHPTPRC Function”
on page 768

Calculates put prices for European options on stocks,
based on the Garman-Kohlhagen model.

“INTRR Function” on page
836

Returns the internal rate of return as a fraction.

“IRR Function” on page
847

Returns the internal rate of return as a percentage.

“MARGRCLPRC Function”
on page 895

Calculates call prices for European options on stocks,
based on the Margrabe model.

“MARGRPTPRC Function”
on page 897

Calculates put prices for European options on stocks,
based on the Margrabe model.

“MORT Function” on page
916

Returns amortization parameters.

“NETPV Function” on
page 921

Returns the net present value as a fraction.

“NPV Function” on page
950

Returns the net present value with the rate expressed as
a percentage.

“PVP Function” on page
1031

Returns the present value for a periodic cash flow stream
(such as a bond), with repayment of principal at maturity.

“SAVING Function” on
page 1075

Returns the future value of a periodic saving.

Functions and CALL Routines � Functions and CALL Routines by Category 357

Category Functions and CALL
Routines

Description

“YIELDP Function” on
page 1193

Returns the yield-to-maturity for a periodic cash flow
stream, such as a bond.

Hyperbolic “ARCOSH Function” on
page 400

Returns the inverse hyperbolic cosine.

“ARSINH Function” on
page 402

Returns the inverse hyperbolic sine.

“ARTANH Function” on
page 403

Returns the inverse hyperbolic tangent.

“COSH Function” on page
608

Returns the hyperbolic cosine.

“SINH Function” on page
1089

Returns the hyperbolic sine.

“TANH Function” on page
1124

Returns the hyperbolic tangent.

Macro “CALL EXECUTE
Routine” on page 446

Resolves the argument, and issues the resolved value for
execution at the next step boundary.

“CALL SYMPUT Routine”
on page 533

Assigns DATA step information to a macro variable.

“CALL SYMPUTX
Routine” on page 534

Assigns a value to a macro variable, and removes both
leading and trailing blanks.

“RESOLVE Function” on
page 1061

Returns the resolved value of the argument after it has
been processed by the macro facility.

“SYMEXIST Function” on
page 1113

Returns an indication of the existence of a macro
variable.

“SYMGET Function” on
page 1114

Returns the value of a macro variable during DATA step
execution.

“SYMGLOBL Function” on
page 1114

Returns an indication of whether a macro variable is in
global scope to the DATA step during DATA step
execution.

“SYMLOCAL Function” on
page 1115

Returns an indication of whether a macro variable is in
local scope to the DATA step during DATA step execution.

Mathematical “ABS Function” on page
368

Returns the absolute value.

“AIRY Function” on page
370

Returns the value of the Airy function.

“BETA Function” on page
413

Returns the value of the beta function.

“CALL LOGISTIC
Routine” on page 469

Applies the logistic function to each argument.

“CALL SOFTMAX
Routine” on page 524

Returns the softmax value.

“CALL STDIZE Routine”
on page 528

Standardizes the values of one or more variables.

358 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“CALL TANH Routine” on
page 536

Returns the hyperbolic tangent.

“CNONCT Function” on
page 579

Returns the noncentrality parameter from a chi-square
distribution.

“COALESCE Function” on
page 581

Returns the first non-missing value from a list of
numeric arguments.

“CONSTANT Function” on
page 602

Computes machine and mathematical constants.

“DAIRY Function” on page
624

Returns the derivative of the AIRY function.

“DEVIANCE Function” on
page 640

Returns the deviance based on a probability distribution.

“DIGAMMA Function” on
page 645

Returns the value of the digamma function.

“ERF Function” on page
662

Returns the value of the (normal) error function.

“ERFC Function” on page
663

Returns the value of the complementary (normal) error
function.

“EXP Function” on page
667

Returns the value of the exponential function.

“FACT Function” on page
668

Computes a factorial.

“FNONCT Function” on
page 744

Returns the value of the noncentrality parameter of an F
distribution.

“GAMMA Function” on
page 765

Returns the value of the gamma function.

“GCD Function” on page
770

Returns the greatest common divisor for one or more
integers.

“IBESSEL Function” on
page 795

Returns the value of the modified Bessel function.

“JBESSEL Function” on
page 848

Returns the value of the Bessel function.

“LCM Function” on page
860

Returns the least common multiple.

“LGAMMA Function” on
page 879

Returns the natural logarithm of the Gamma function.

“LOG Function” on page
882

Returns the natural (base e) logarithm.

“LOG1PX Function” on
page 883

Returns the log of 1 plus the argument.

“LOG10 Function” on page
884

Returns the logarithm to the base 10.

Functions and CALL Routines � Functions and CALL Routines by Category 359

Category Functions and CALL
Routines

Description

“LOG2 Function” on page
885

Returns the logarithm to the base 2.

“LOGBETA Function” on
page 885

Returns the logarithm of the beta function.

“MOD Function” on page
907

Returns the remainder from the division of the first
argument by the second argument, fuzzed to avoid most
unexpected floating-point results.

“MODZ Function” on page
911

Returns the remainder from the division of the first
argument by the second argument, using zero fuzzing.

“MSPLINT Function” on
page 917

Returns the ordinate of a monotonicity-preserving
interpolating spline.

“SIGN Function” on page
1088

Returns the sign of a value.

“SQRT Function” on page
1097

Returns the square root of a value.

“TNONCT Function” on
page 1126

Returns the value of the noncentrality parameter from
the Student’s t distribution.

“TRIGAMMA Function” on
page 1134

Returns the value of the trigamma function.

Numeric “IFN Function” on page
798

Returns a numeric value based on whether an expression
is true, false, or missing.

Probability “CDF Function” on page
554

Returns a value from a cumulative probability
distribution.

“LOGCDF Function” on
page 886

Returns the logarithm of a left cumulative distribution
function.

“LOGPDF Function” on
page 888

Returns the logarithm of a probability density (mass)
function.

“LOGSDF Function” on
page 889

Returns the logarithm of a survival function.

“PDF Function” on page
961

Returns a value from a probability density (mass)
distribution.

“POISSON Function” on
page 983

Returns the probability from a Poisson distribution.

“PROBBETA Function” on
page 984

Returns the probability from a beta distribution.

“PROBBNML Function” on
page 985

Returns the probability from a binomial distribution.

“PROBBNRM Function”
on page 986

Returns a probability from a bivariate normal
distribution.

“PROBCHI Function” on
page 987

Returns the probability from a chi-square distribution.

“PROBF Function” on page
988

Returns the probability from an F distribution.

360 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“PROBGAM Function” on
page 989

Returns the probability from a gamma distribution.

“PROBHYPR Function” on
page 990

Returns the probability from a hypergeometric
distribution.

“PROBMC Function” on
page 992

Returns a probability or a quantile from various
distributions for multiple comparisons of means.

“PROBNEGB Function” on
page 1005

Returns the probability from a negative binomial
distribution.

“PROBNORM Function”
on page 1006

Returns the probability from the standard normal
distribution.

“PROBT Function” on page
1007

Returns the probability from a t distribution.

“SDF Function” on page
1085

Returns a survival function.

Quantile “BETAINV Function” on
page 415

Returns a quantile from the beta distribution.

“CINV Function” on page
576

Returns a quantile from the chi-square distribution.

“FINV Function” on page
736

Returns a quantile from the F distribution.

“GAMINV Function” on
page 764

Returns a quantile from the gamma distribution.

“PROBIT Function” on
page 991

Returns a quantile from the standard normal
distribution.

“QUANTILE Function” on
page 1033

Returns the quantile from a distribution that you specify.

“TINV Function” on page
1125

Returns a quantile from the t distribution.

Random Number “CALL RANBIN Routine”
on page 489

Returns a random variate from a binomial distribution.

“CALL RANCAU Routine”
on page 491

Returns a random variate from a Cauchy distribution.

“CALL RANEXP Routine”
on page 494

Returns a random variate from an exponential
distribution.

“CALL RANGAM Routine”
on page 496

Returns a random variate from a gamma distribution.

“CALL RANNOR Routine”
on page 498

Returns a random variate from a normal distribution.

“CALL RANPOI Routine”
on page 505

Returns a random variate from a Poisson distribution.

“CALL RANTBL Routine”
on page 507

Returns a random variate from a tabled probability
distribution.

Functions and CALL Routines � Functions and CALL Routines by Category 361

Category Functions and CALL
Routines

Description

“CALL RANTRI Routine”
on page 510

Returns a random variate from a triangular distribution.

“CALL RANUNI Routine”
on page 512

Returns a random variate from a uniform distribution.

“CALL STREAMINIT
Routine” on page 532

Specifies a seed value to use for subsequent random
number generation by the RAND function.

“NORMAL Function” on
page 925

Returns a random variate from a normal, or Gaussian,
distribution.

“RANBIN Function” on
page 1036

Returns a random variate from a binomial distribution.

“RANCAU Function” on
page 1037

Returns a random variate from a Cauchy distribution.

“RAND Function” on page
1038

Generates random numbers from a distribution that you
specify.

“RANEXP Function” on
page 1049

Returns a random variate from an exponential
distribution.

“RANGAM Function” on
page 1050

Returns a random variate from a gamma distribution.

“RANNOR Function” on
page 1053

Returns a random variate from a normal distribution.

“RANPOI Function” on
page 1054

Returns a random variate from a Poisson distribution.

“RANTBL Function” on
page 1055

Returns a random variate from a tabled probability
distribution.

“RANTRI Function” on
page 1056

Returns a random variate from a triangular distribution.

“RANUNI Function” on
page 1057

Returns a random variate from a uniform distribution.

“UNIFORM Function” on
page 1139

Returns a random variate from a uniform distribution.

SAS File I/O “ATTRC Function” on page
406

Returns the value of a character attribute for a SAS data
set.

“ATTRN Function” on page
408

Returns the value of a numeric attribute for a SAS data
set.

“CEXIST Function” on
page 571

Verifies the existence of a SAS catalog or SAS catalog
entry.

“CLOSE Function” on page
577

Closes a SAS data set.

“CUROBS Function” on
page 618

Returns the observation number of the current
observation.

“DROPNOTE Function” on
page 657

Deletes a note marker from a SAS data set or an
external file.

362 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“DSNAME Function” on
page 658

Returns the SAS data set name that is associated with a
data set identifier.

“ENVLEN Function” on
page 661

Returns the length of an environment variable.

“EXIST Function” on page
665

Verifies the existence of a SAS library member.

“FETCH Function” on
page 674

Reads the next non-deleted observation from a SAS data
set into the Data Set Data Vector (DDV).

“FETCHOBS Function” on
page 675

Reads a specified observation from a SAS data set into
the Data Set Data Vector (DDV).

“GETVARC Function” on
page 778

Returns the value of a SAS data set character variable.

“GETVARN Function” on
page 779

Returns the value of a SAS data set numeric variable.

“IORCMSG Function” on
page 845

Returns a formatted error message for _IORC_.

“LIBNAME Function” on
page 879

Assigns or deassigns a libref for a SAS library.

“LIBREF Function” on
page 882

Verifies that a libref has been assigned.

“NOTE Function” on page
932

Returns an observation ID for the current observation of
a SAS data set.

“OPEN Function” on page
955

Opens a SAS data set.

“PATHNAME Function” on
page 958

Returns the physical name of an external file or a SAS
library, or returns a blank.

“POINT Function” on page
982

Locates an observation that is identified by the NOTE
function.

“RENAME Function” on
page 1058

Renames a member of a SAS library, an entry in a SAS
catalog, an external file, or a directory.

“REWIND Function” on
page 1062

Positions the data set pointer at the beginning of a SAS
data set.

“SYSMSG Function” on
page 1117

Returns error or warning message text from processing
the last data set or external file function.

“SYSRC Function” on page
1121

Returns a system error number.

“VARFMT Function” on
page 1144

Returns the format that is assigned to a SAS data set
variable.

“VARINFMT Function” on
page 1146

Returns the informat that is assigned to a SAS data set
variable.

“VARLABEL Function” on
page 1147

Returns the label that is assigned to a SAS data set
variable.

Functions and CALL Routines � Functions and CALL Routines by Category 363

Category Functions and CALL
Routines

Description

“VARLEN Function” on
page 1148

Returns the length of a SAS data set variable.

“VARNAME Function” on
page 1149

Returns the name of a SAS data set variable.

“VARNUM Function” on
page 1150

Returns the number of a variable’s position in a SAS
data set.

“VARTYPE Function” on
page 1153

Returns the data type of a SAS data set variable.

Search “WHICHC Function” on
page 1190

Searches for a character value that is equal to the first
argument, and returns the index of the first matching
value.

“WHICHN Function” on
page 1191

Searches for a numeric value that is equal to the first
argument, and returns the index of the first matching
value.

Sort “CALL SORTC Routine”
on page 525

Sorts the values of character arguments.

“CALL SORTN Routine”
on page 527

Sorts the values of numeric arguments.

Special “ADDR Function” on page
368

Returns the memory address of a variable on a 32–bit
platform.

“ADDRLONG Function” on
page 370

Returns the memory address of a variable on 32-bit and
64-bit platforms.

“CALL POKE Routine” on
page 474

Writes a value directly into memory on a 32-bit platform.

“CALL POKELONG
Routine” on page 475

Writes a value directly into memory on 32-bit and 64-bit
platforms.

“CALL SLEEP Routine” on
page 523

For a specified period of time, suspends the execution of
a program that invokes this CALL routine.

“CALL SYSTEM Routine”
on page 535

Submits an operating environment command for
execution.

“DIF Function” on page
644

Returns differences between an argument and its nth lag.

“GETOPTION Function”
on page 776

Returns the value of a SAS system or graphics option.

“INPUT Function” on page
807

Returns the value that is produced when SAS converts
an expression using the specified informat.

“INPUTC Function” on
page 809

Enables you to specify a character informat at run time.

“INPUTN Function” on
page 811

Enables you to specify a numeric informat at run time.

“LAG Function” on page
851

Returns values from a queue.

364 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“PEEK Function” on page
974

Stores the contents of a memory address in a numeric
variable on a 32–bit platform.

“PEEKC Function” on
page 975

Stores the contents of a memory address in a character
variable on a 32–bit platform.

“PEEKCLONG Function”
on page 978

Stores the contents of a memory address in a character
variable on 32-bit and 64-bit platforms.

“PEEKLONG Function” on
page 979

Stores the contents of a memory address in a numeric
variable on 32-bit and 64-bit platforms.

“PTRLONGADD Function”
on page 1026

Returns the pointer address as a character variable on
32-bit and 64-bit platforms.

“PUT Function” on page
1026

Returns a value using a specified format.

“PUTC Function” on page
1028

Enables you to specify a character format at run time.

“PUTN Function” on page
1030

Enables you to specify a numeric format at run time.

“SLEEP Function” on page
1091

For a specified period of time, suspends the execution of
a program that invokes this function.

“SYSGET Function” on
page 1116

Returns the value of the specified operating environment
variable.

“SYSPARM Function” on
page 1118

Returns the system parameter string.

“SYSPROCESSID
Function” on page 1118

Returns the process ID of the current process.

“SYSPROCESSNAME
Function” on page 1119

Returns the process name that is associated with a given
process ID, or returns the name of the current process.

“SYSPROD Function” on
page 1120

Determines whether a product is licensed.

“SYSTEM Function” on
page 1122

Issues an operating environment command during a SAS
session, and returns the system return code.

“UUIDGEN Function” on
page 1143

Returns the short or binary form of a Universal Unique
Identifier (UUID).

State and ZIP Code “FIPNAME Function” on
page 737

Converts two-digit FIPS codes to uppercase state names.

“FIPNAMEL Function” on
page 738

Converts two-digit FIPS codes to mixed case state names.

“FIPSTATE Function” on
page 739

Converts two-digit FIPS codes to two-character state
postal codes.

“STFIPS Function” on
page 1098

Converts state postal codes to FIPS state codes.

“STNAME Function” on
page 1100

Converts state postal codes to uppercase state names.

Functions and CALL Routines � Functions and CALL Routines by Category 365

Category Functions and CALL
Routines

Description

“STNAMEL Function” on
page 1101

Converts state postal codes to mixed case state names.

“ZIPCITY Function” on
page 1197

Returns a city name and the two-character postal code
that corresponds to a ZIP code.

“ZIPCITYDISTANCE
Function” on page 1199

Returns the geodetic distance between two ZIP code
locations.

“ZIPFIPS Function” on
page 1200

Converts ZIP codes to two-digit FIPS codes.

“ZIPNAME Function” on
page 1202

Converts ZIP codes to uppercase state names.

“ZIPNAMEL Function” on
page 1203

Converts ZIP codes to mixed case state names.

“ZIPSTATE Function” on
page 1205

Converts ZIP codes to two-character state postal codes.

Trigonometric “ARCOS Function” on
page 399

Returns the arccosine.

“ARSIN Function” on page
401

Returns the arcsine.

“ATAN Function” on page
404

Returns the arc tangent.

“ATAN2 Function” on page
405

Returns the arc tangent of the ratio of two numeric
variables.

“COS Function” on page
608

Returns the cosine.

“SIN Function” on page
1088

Returns the sine.

“TAN Function” on page
1123

Returns the tangent.

Truncation “CEIL Function” on page
568

Returns the smallest integer that is greater than or
equal to the argument, fuzzed to avoid unexpected
floating-point results.

“CEILZ Function” on page
569

Returns the smallest integer that is greater than or
equal to the argument, using zero fuzzing.

“FLOOR Function” on
page 742

Returns the largest integer that is less than or equal to
the argument, fuzzed to avoid unexpected floating-point
results.

“FLOORZ Function” on
page 743

Returns the largest integer that is less than or equal to
the argument, using zero fuzzing.

“FUZZ Function” on page
762

Returns the nearest integer if the argument is within
1E−12 of that integer.

“INT Function” on page
812

Returns the integer value, fuzzed to avoid unexpected
floating-point results.

366 Functions and CALL Routines by Category � Chapter 4

Category Functions and CALL
Routines

Description

“INTZ Function” on page
843

Returns the integer portion of the argument, using zero
fuzzing.

“ROUND Function” on
page 1065

Rounds the first argument to the nearest multiple of the
second argument, or to the nearest integer when the
second argument is omitted.

“ROUNDE Function” on
page 1072

Rounds the first argument to the nearest multiple of the
second argument, and returns an even multiple when the
first argument is halfway between the two nearest
multiples.

“ROUNDZ Function” on
page 1073

Rounds the first argument to the nearest multiple of the
second argument, using zero fuzzing.

“TRUNC Function” on
page 1138

Truncates a numeric value to a specified number of bytes.

Variable Control “CALL LABEL Routine”
on page 454

Assigns a variable label to a specified character variable.

“CALL SET Routine” on
page 522

Links SAS data set variables to DATA step or macro
variables that have the same name and data type.

“CALL VNAME Routine”
on page 537

Assigns a variable name as the value of a specified
variable.

Variable Information “CALL VNEXT Routine”
on page 538

Returns the name, type, and length of a variable that is
used in a DATA step.

“VARRAY Function” on
page 1151

Returns a value that indicates whether the specified
name is an array.

“VARRAYX Function” on
page 1152

Returns a value that indicates whether the value of the
specified argument is an array.

“VFORMAT Function” on
page 1156

Returns the format that is associated with the specified
variable.

“VFORMATD Function” on
page 1157

Returns the decimal value of the format that is
associated with the specified variable.

“VFORMATDX Function”
on page 1158

Returns the decimal value of the format that is
associated with the value of the specified argument.

“VFORMATN Function” on
page 1159

Returns the format name that is associated with the
specified variable.

“VFORMATNX Function”
on page 1160

Returns the format name that is associated with the
value of the specified argument.

“VFORMATW Function”
on page 1161

Returns the format width that is associated with the
specified variable.

“VFORMATWX Function”
on page 1162

Returns the format width that is associated with the
value of the specified argument.

“VFORMATX Function” on
page 1163

Returns the format that is associated with the value of
the specified argument.

“VINARRAY Function” on
page 1164

Returns a value that indicates whether the specified
variable is a member of an array.

Functions and CALL Routines � Functions and CALL Routines by Category 367

Category Functions and CALL
Routines

Description

“VINARRAYX Function”
on page 1165

Returns a value that indicates whether the value of the
specified argument is a member of an array.

“VINFORMAT Function”
on page 1166

Returns the informat that is associated with the specified
variable.

“VINFORMATD Function”
on page 1167

Returns the decimal value of the informat that is
associated with the specified variable.

“VINFORMATDX
Function” on page 1168

Returns the decimal value of the informat that is
associated with the value of the specified variable.

“VINFORMATN Function”
on page 1169

Returns the informat name that is associated with the
specified variable.

“VINFORMATNX
Function” on page 1171

Returns the informat name that is associated with the
value of the specified argument.

“VINFORMATW Function”
on page 1172

Returns the informat width that is associated with the
specified variable.

“VINFORMATWX
Function” on page 1173

Returns the informat width that is associated with the
value of the specified argument.

“VINFORMATX Function”
on page 1174

Returns the informat that is associated with the value of
the specified argument.

“VLABEL Function” on
page 1175

Returns the label that is associated with the specified
variable.

“VLABELX Function” on
page 1176

Returns the label that is associated with the value of the
specified argument.

“VLENGTH Function” on
page 1177

Returns the compile-time (allocated) size of the specified
variable.

“VLENGTHX Function” on
page 1178

Returns the compile-time (allocated) size for the variable
that has a name that is the same as the value of the
argument.

“VNAME Function” on
page 1179

Returns the name of the specified variable.

“VNAMEX Function” on
page 1180

Validates the value of the specified argument as a
variable name.

“VTYPE Function” on page
1181

Returns the type (character or numeric) of the specified
variable.

“VTYPEX Function” on
page 1182

Returns the type (character or numeric) for the value of
the specified argument.

“VVALUE Function” on
page 1184

Returns the formatted value that is associated with the
variable that you specify.

“VVALUEX Function” on
page 1185

Returns the formatted value that is associated with the
argument that you specify.

Web Tools “HTMLDECODE
Function” on page 792

Decodes a string that contains HTML numeric character
references or HTML character entity references, and
returns the decoded string.

368 Dictionary � Chapter 4

Category Functions and CALL
Routines

Description

“HTMLENCODE
Function” on page 793

Encodes characters using HTML character entity
references, and returns the encoded string.

“URLDECODE Function”
on page 1140

Returns a string that was decoded using the URL escape
syntax.

“URLENCODE Function”
on page 1141

Returns a string that was encoded using the URL escape
syntax.

Dictionary

ABS Function
Returns the absolute value.

Category: Mathematical

Syntax
ABS (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The ABS function returns a nonnegative number that is equal in magnitude to the
magnitude of the argument.

Examples

SAS Statements Results

x=abs(2.4); 2.4

x=abs(-3); 3

ADDR Function
Returns the memory address of a variable on a 32–bit platform.

Functions and CALL Routines � ADDR Function 369

Category: Special

Restriction: Use on 32–bit platforms only.

Syntax
ADDR(variable)

Arguments

variable
specifies a variable name.

Details
The value that is returned is numeric. Because the storage location of a variable can
vary from one execution to the next, the value that is returned by ADDR can vary. The
ADDR function is used mostly in combination with the PEEK and PEEKC functions
and the CALL POKE routine.

You cannot use the ADDR function on 64-bit platforms. If you attempt to use it, SAS
writes a message to the log stating that this restriction applies. If you have legacy
applications that use ADDR, change the applications and use ADDRLONG instead. You
can use ADDRLONG on both 32–bit and 64–bit platforms.

Comparisons
The ADDR function returns the memory address of a variable on a 32–bit platform.
ADDRLONG returns the memory address of a variable on 32–bit and 64–bit platforms.

Note: SAS recommends that you use ADDRLONG instead of ADDR because
ADDRLONG can be used on both 32–bit and 64–bit platforms. �

Examples

The following example returns the address at which the variable FIRST is stored:

data numlist;
first=3;
x=addr(first);

run;

See Also

CALL Routine:

“CALL POKE Routine” on page 474

Functions:

“PEEK Function” on page 974

“PEEKC Function” on page 975

“ADDRLONG Function” on page 370

370 ADDRLONG Function � Chapter 4

ADDRLONG Function

Returns the memory address of a variable on 32-bit and 64-bit platforms.

Category: Special

Syntax
ADDRLONG(variable)

Arguments

variable
specifies a variable.

Details
The return value is a character string that contains the binary representation of the
address. To display this value, use the $HEXw. format to convert the binary value to
its hexadecimal equivalent. If you store the result in a variable, that variable should be
a character variable with a length of at least eight characters for portability. If you
assign the result to a variable that does not yet have a length defined, that variable is
given a length of 20 characters.

Examples

The following example returns the pointer address for the variable ITEM, and
formats the value.

data characterlist;
item=6345;
x=addrlong(item);
put x $hex16.;

run;

The following line is written to the SAS log:

480063B020202020

AIRY Function

Returns the value of the Airy function.

Category: Mathematical

Syntax
AIRY(x)

Functions and CALL Routines � ALLCOMB Function 371

Arguments

x
specifies a numeric constant, variable, or expression.

Details
The AIRY function returns the value of the Airy function (Abramowitz and Stegun
1964; Amos, Daniel and Weston 1977) (See “References” on page 1213). It is the
solution of the differential equation

�
���
� �� � �

with the conditions

� ��� �
�

�
�

��
�
�
�

�

and

�
� ��� � �

�

�
�

��
�
�
�

�

Examples

SAS Statements Results

x=airy(2.0); 0.0349241304

x=airy(-2.0); 0.2274074282

ALLCOMB Function

Generates all combinations of the values of n variables taken k at a time in a minimal change
order.

Category: Combinatorial
Restriction: The ALLCOMB function cannot be executed when you use the %SYSFUNC
macro.

Syntax
ALLCOMB(count, k, variable-1, … , variable-n)

372 ALLCOMB Function � Chapter 4

Arguments

count
specifies an integer variable that is assigned values from 1 to the number of
combinations in a loop.

k
specifies an integer constant, variable, or expression between 1 and n, inclusive, that
specifies the number of items in each combination.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before executing the ALLCOMB function.
Restriction: Specify no more than 33 items. If you need to find combinations of

more than 33 items, use the CALL ALLCOMBI routine.
Tip: After executing ALLCOMB, the first k variables contain the values in one

combination.

Details
Use the ALLCOMB function in a loop where the first argument to ALLCOMB accepts
each integral value from 1 to the number of combinations, and where k is constant. The
number of combinations can be computed by using the COMB function. On the first
execution, the argument types and lengths are checked for consistency. On each
subsequent execution, the values of two variables are interchanged.

For the ALLCOMB function, the following actions occur:
� On the first execution, ALLCOMB returns 0.
� If the values of variable-i and variable-j were interchanged, wherei<j, then

ALLCOMB returns i.
� If no values were interchanged because all combinations were already generated,

then ALLCOMB returns –1.

If you execute the ALLCOMB function with the first argument out of sequence, the
results are not useful. In particular, if you initialize the variables and then immediately
execute the ALLCOMB function with a first argument of j, then you will not get the jth

combination (except when j is 1). To get the jth combination, you must execute
ALLCOMB j times, with the first argument taking values from 1 through j in that exact
order.

Comparisons
SAS provides four functions or CALL routines for generating combinations:

� ALLCOMB generates all possible combinations of the values, missing or
nonmissing, of N variables. The values can be any numeric or character values.
Each combination is formed from the previous combination by removing one value
and inserting another value.

� LEXCOMB generates all distinct combinations of the nonmissing values of several
variables. The values can be any numeric or character values. The combinations
are generated in lexicographic order.

� ALLCOMBI generates all combinations of the indices of N items, where indices
are integers from 1 to N. Each combination is formed from the previous
combination by removing one index and inserting another index.

Functions and CALL Routines � ALLPERM Function 373

� LEXCOMBI generates all combinations of the indices of N items, where indices
are integers from 1 to N. The combinations are generated in lexicographic order.

ALLCOMBI is the fastest of these functions and CALL routines. LEXCOMB is the
slowest.

Examples

The following is an example of the ALLCOMB function.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
n=dim(x);
k=3;
ncomb=comb(n,k);
do j=1 to ncomb+1;

rc=allcomb(j, k, of x[*]);
put j 5. +3 x1-x3 +3 rc=;

end;
run;

SAS writes the following output to the log:

1 ant bee cat rc=0
2 ant bee ewe rc=3
3 ant bee dog rc=3
4 ant cat dog rc=2
5 ant cat ewe rc=3
6 ant dog ewe rc=2
7 bee dog ewe rc=1
8 bee dog cat rc=3
9 bee ewe cat rc=2
10 dog ewe cat rc=1
11 dog ewe cat rc=-1

See Also

Functions and CALL Routines:

“CALL ALLCOMB Routine” on page 429

ALLPERM Function

Generates all permutations of the values of several variables in a minimal change order.

Category: Combinatorial

Syntax
ALLPERM(count, variable-1 <,variable-2 …>)

374 ALLPERM Function � Chapter 4

Arguments

count
specifies a variable with an integer value that ranges from 1 to the number of
permutations.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you execute the ALLPERM function.
Restriction: Specify no more than 18 variables.

Details

The Basics Use the ALLPERM function in a loop where the first argument to
ALLPERM accepts each integral value from 1 to the number of permutations. On the
first execution, the argument types and lengths are checked for consistency. On each
subsequent execution, the values of two consecutive variables are interchanged.

Note: You can compute the number of permutations by using the PERM function.
See “PERM Function” on page 980 for more information.

For the ALLPERM function, the following values are returned:
� 0 if count=1
� J if the values of variable-J and variable-K are interchanged, where K=J+1
� –1 if count>N!

�

If you use the ALLPERM function and the first argument is out of sequence, the
results are not useful. For example, if you initialize the variables and then immediately
execute the ALLPERM function with a first argument of K, your result will not be the
Kth permutation (except when K is 1). To get the Kth permutation, you must execute
the ALLPERM function K times, with the first argument taking values from 1 through
K in that exact order.

ALLPERM always produces N! permutations even if some of the variables have
equal values or missing values. If you want to generate only the distinct permutations
when there are equal values, or if you want to omit missing values from the
permutations, use the LEXPERM function instead.

Note: The ALLPERM function cannot be executed when you use the %SYSFUNC
macro. �

Comparisons
SAS provides three functions or CALL routines for generating all permutations:

� ALLPERM generates all possible permutations of the values, missing or
non-missing, of several variables. Each permutation is formed from the previous
permutation by interchanging two consecutive values.

� LEXPERM generates all distinct permutations of the non-missing values of
several variables. The permutations are generated in lexicographic order.

� LEXPERK generates all distinct permutations of K of the non-missing values of N
variables. The permutations are generated in lexicographic order.

ALLPERM is the fastest of these functions and CALL routines. LEXPERK is the
slowest.

Functions and CALL Routines � ALLPERM Function 375

Examples

The following example generates permutations of given values by using the
ALLPERM function.

data _null_;
array x [4] $3 (’ant’ ’bee’ ’cat’ ’dog’);
n=dim(x);
nfact=fact(n);
do i=1 to nfact+1;

change=allperm(i, of x[*]);
put i 5. +2 change +2 x[*];

end;
run;

SAS writes the following output to the log:

1 0 ant bee cat dog
2 3 ant bee dog cat
3 2 ant dog bee cat
4 1 dog ant bee cat
5 3 dog ant cat bee
6 1 ant dog cat bee
7 2 ant cat dog bee
8 3 ant cat bee dog
9 1 cat ant bee dog
10 3 cat ant dog bee
11 2 cat dog ant bee
12 1 dog cat ant bee
13 3 dog cat bee ant
14 1 cat dog bee ant
15 2 cat bee dog ant
16 3 cat bee ant dog
17 1 bee cat ant dog
18 3 bee cat dog ant
19 2 bee dog cat ant
20 1 dog bee cat ant
21 3 dog bee ant cat
22 1 bee dog ant cat
23 2 bee ant dog cat
24 3 bee ant cat dog
25 -1 bee ant cat dog

See Also

Functions and CALL Routines:
“CALL ALLPERM Routine” on page 434
“LEXPERM Function” on page 875
“CALL RANPERK Routine” on page 500
“CALL RANPERM Routine” on page 502

376 ANYALNUM Function � Chapter 4

ANYALNUM Function

Searches a character string for an alphanumeric character, and returns the first position at which
the character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
ANYALNUM(string <,start>)

Arguments

string
specifies a character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYALNUM function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYALNUM function searches a string for the first occurrence of any character
that is a digit or an uppercase or lowercase letter. If such a character is found,
ANYALNUM returns the position in the string of that character. If no such character is
found, ANYALNUM returns a value of 0.

If you use only one argument, ANYALNUM begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYALNUM returns a value of zero when one of the following is true:

� The character that you are searching for is not found.

� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The ANYALNUM function searches a character string for an alphanumeric character.
The NOTALNUM function searches a character string for a non-alphanumeric character.

Functions and CALL Routines � ANYALNUM Function 377

Examples

Example 1: Scanning a String from Left to Right The following example uses the
ANYALNUM function to search a string from left to right for alphanumeric characters.

data _null_;
string=’Next = Last + 1;’;
j=0;
do until(j=0);

j=anyalnum(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=8 c=L
j=9 c=a
j=10 c=s
j=11 c=t
j=15 c=1
That’s all

Example 2: Scanning a String from Right to Left The following example uses the
ANYALNUM function to search a string from right to left for alphanumeric characters.

data _null_;
string=’Next = Last + 1;’;
j=999999;
do until(j=0);

j=anyalnum(string,1-j);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=15 c=1
j=11 c=t
j=10 c=s
j=9 c=a
j=8 c=L
j=4 c=t
j=3 c=x
j=2 c=e
j=1 c=N

378 ANYALPHA Function � Chapter 4

That’s all

See Also

Function:
“NOTALNUM Function” on page 925

ANYALPHA Function

Searches a character string for an alphabetic character, and returns the first position at which the
character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYALPHA(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYALPHA function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option”and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYALPHA function searches a string for the first occurrence of any character
that is an uppercase or lowercase letter. If such a character is found, ANYALPHA
returns the position in the string of that character. If no such character is found,
ANYALPHA returns a value of 0.

If you use only one argument, ANYALPHA begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

ANYALPHA returns a value of zero when one of the following is true:

Functions and CALL Routines � ANYALPHA Function 379

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYALPHA function searches a character string for an alphabetic character. The
NOTALPHA function searches a character string for a non-alphabetic character.

Examples

Example 1: Searching a String for Alphabetic Characters The following example uses
the ANYALPHA function to search a string from left to right for alphabetic characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyalpha(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=9 c=n
j=16 c=E
That’s all

Example 2: Identifying Control Characters by Using the ANYALPHA Function You can
execute the following program to show the control characters that are identified by the
ANYALPHA function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
anyalpha=anyalpha(byte);
output;

end;

proc print data=test;
run;

380 ANYCNTRL Function � Chapter 4

See Also

Function:

“NOTALPHA Function” on page 927

ANYCNTRL Function

Searches a character string for a control character, and returns the first position at which that
character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
ANYCNTRL(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYCNTRL function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in the SAS National Language Support
(NLS): Reference Guide.

The ANYCNTRL function searches a string for the first occurrence of a control
character. If such a character is found, ANYCNTRL returns the position in the string of
that character. If no such character is found, ANYCNTRL returns a value of 0.

If you use only one argument, ANYCNTRL begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYCNTRL returns a value of zero when one of the following is true:

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

Functions and CALL Routines � ANYDIGIT Function 381

� The value of start = 0.

Comparisons
The ANYCNTRL function searches a character string for a control character. The
NOTCNTRL function searches a character string for a character that is not a control
character.

Examples
You can execute the following program to show the control characters that are identified
by the ANYCNTRL function.

data test;
do dec=0 to 255;

drop byte;
byte=byte(dec);
hex=put(dec,hex2.);
anycntrl=anycntrl(byte);
if anycntrl then output;

end;

proc print data=test;
run;

See Also

Function:
“NOTCNTRL Function” on page 929

ANYDIGIT Function

Searches a character string for a digit, and returns the first position at which the digit is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYDIGIT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

382 ANYDIGIT Function � Chapter 4

Details
The ANYDIGIT function does not depend on the TRANTAB, ENCODING, or LOCALE
options.

The ANYDIGIT function searches a string for the first occurrence of any character
that is a digit. If such a character is found, ANYDIGIT returns the position in the
string of that character. If no such character is found, ANYDIGIT returns a value of 0.

If you use only one argument, ANYDIGIT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

ANYDIGIT returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYDIGIT function searches a character string for a digit. The NOTDIGIT
function searches a character string for any character that is not a digit.

Examples

The following example uses the ANYDIGIT function to search for a character that is
a digit.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anydigit(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=14 c=1
j=15 c=2
j=17 c=3
That’s all

Functions and CALL Routines � ANYFIRST Function 383

See Also

Function:

“NOTDIGIT Function” on page 930

ANYFIRST Function

Searches a character string for a character that is valid as the first character in a SAS variable
name under VALIDVARNAME=V7, and returns the first position at which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax

ANYFIRST(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details

The ANYFIRST function does not depend on the TRANTAB, ENCODING, or LOCALE
options.

The ANYFIRST function searches a string for the first occurrence of any character
that is valid as the first character in a SAS variable name under VALIDVARNAME=V7.
These characters are the underscore (_) and uppercase or lowercase English letters. If
such a character is found, ANYFIRST returns the position in the string of that
character. If no such character is found, ANYFIRST returns a value of 0.

If you use only one argument, ANYFIRST begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

384 ANYFIRST Function � Chapter 4

ANYFIRST returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYFIRST function searches a string for the first occurrence of any character that
is valid as the first character in a SAS variable name under VALIDVARNAME=V7. The
NOTFIRST function searches a string for the first occurrence of any character that is
not valid as the first character in a SAS variable name under VALIDVARNAME=V7.

Examples

The following example uses the ANYFIRST function to search a string for any
character that is valid as the first character in a SAS variable name under
VALIDVARNAME=V7.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyfirst(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=8 c=_
j=9 c=n
j=10 c=_
j=16 c=E
That’s all

See Also

Function:
“NOTFIRST Function” on page 934

Functions and CALL Routines � ANYGRAPH Function 385

ANYGRAPH Function

Searches a character string for a graphical character, and returns the first position at which that
character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYGRAPH(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYGRAPH function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYGRAPH function searches a string for the first occurrence of a graphical
character. A graphical character is defined as any printable character other than white
space. If such a character is found, ANYGRAPH returns the position in the string of
that character. If no such character is found, ANYGRAPH returns a value of 0.

If you use only one argument, ANYGRAPH begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

386 ANYGRAPH Function � Chapter 4

ANYGRAPH returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYGRAPH function searches a character string for a graphical character. The
NOTGRAPH function searches a character string for a non-graphical character.

Examples

Example 1: Searching a String for Graphical Characters The following example uses
the ANYGRAPH function to search a string for graphical characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anygraph(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=6 c==
j=8 c=_
j=9 c=n
j=10 c=_
j=12 c=+
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
j=18 c=;
That’s all

Functions and CALL Routines � ANYLOWER Function 387

Example 2: Identifying Control Characters by Using the ANYGRAPH Function You can
execute the following program to show the control characters that are identified by the
ANYGRAPH function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
anygraph=anygraph(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“NOTGRAPH Function” on page 935

ANYLOWER Function

Searches a character string for a lowercase letter, and returns the first position at which the letter
is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYLOWER(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

388 ANYLOWER Function � Chapter 4

Details
The results of the ANYLOWER function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYLOWER function searches a string for the first occurrence of a lowercase
letter. If such a character is found, ANYLOWER returns the position in the string of
that character. If no such character is found, ANYLOWER returns a value of 0.

If you use only one argument, ANYLOWER begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYLOWER returns a value of zero when one of the following is true:

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The ANYLOWER function searches a character string for a lowercase letter. The
NOTLOWER function searches a character string for a character that is not a
lowercase letter.

Examples

The following example uses the ANYLOWER function to search a string for any
character that is a lowercase letter.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anylower(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=2 c=e
j=3 c=x
j=4 c=t
j=9 c=n
That’s all

Functions and CALL Routines � ANYNAME Function 389

See Also

Function:

“NOTLOWER Function” on page 937

ANYNAME Function

Searches a character string for a character that is valid in a SAS variable name under
VALIDVARNAME=V7, and returns the first position at which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax

ANYNAME(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details

The ANYNAME function does not depend on the TRANTAB, ENCODING, or LOCALE
system options.

The ANYNAME function searches a string for the first occurrence of any character
that is valid in a SAS variable name under VALIDVARNAME=V7. These characters are
the underscore (_), digits, and uppercase or lowercase English letters. If such a
character is found, ANYNAME returns the position in the string of that character. If no
such character is found, ANYNAME returns a value of 0.

If you use only one argument, ANYNAME begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

390 ANYNAME Function � Chapter 4

ANYNAME returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYNAME function searches a string for the first occurrence of any character that
is valid in a SAS variable name under VALIDVARNAME=V7. The NOTNAME function
searches a string for the first occurrence of any character that is not valid in a SAS
variable name under VALIDVARNAME=V7.

Examples

The following example uses the ANYNAME function to search a string for any
character that is valid in a SAS variable name under VALIDVARNAME=V7.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyname(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=8 c=_
j=9 c=n
j=10 c=_
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
That’s all

See Also

Function:
“NOTNAME Function” on page 939

Functions and CALL Routines � ANYPRINT Function 391

ANYPRINT Function
Searches a character string for a printable character, and returns the first position at which that
character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYPRINT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYPRINT function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYPRINT function searches a string for the first occurrence of a printable
character. If such a character is found, ANYPRINT returns the position in the string of
that character. If no such character is found, ANYPRINT returns a value of 0.

If you use only one argument, ANYPRINT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

ANYPRINT returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYPRINT function searches a character string for a printable character. The
NOTPRINT function searches a character string for a non-printable character.

Examples

Example 1: Searching a String for a Printable Character The following example uses
the ANYPRINT function to search a string for printable characters.

392 ANYPRINT Function � Chapter 4

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyprint(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=5 c=
j=6 c==
j=7 c=
j=8 c=_
j=9 c=n
j=10 c=_
j=11 c=
j=12 c=+
j=13 c=
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
j=18 c=;
That’s all

Example 2: Identifying Control Characters by Using the ANYPRINT Function You can
execute the following program to show the control characters that are identified by the
ANYPRINT function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
anyprint=anyprint(byte);
output;

end;

proc print data=test;
run;

See Also

Function:

“NOTPRINT Function” on page 941

Functions and CALL Routines � ANYPUNCT Function 393

ANYPUNCT Function

Searches a character string for a punctuation character, and returns the first position at which that
character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
ANYPUNCT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYPUNCT function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYPUNCT function searches a string for the first occurrence of a punctuation
character. If such a character is found, ANYPUNCT returns the position in the string of
that character. If no such character is found, ANYPUNCT returns a value of 0.

If you use only one argument, ANYPUNCT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYPUNCT returns a value of zero when one of the following is true:

� The character that you are searching for is not found.

� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The ANYPUNCT function searches a character string for a punctuation character. The
NOTPUNCT function searches a character string for a character that is not a
punctuation character.

394 ANYSPACE Function � Chapter 4

Examples

Example 1: Searching a String for Punctuation Characters The following example uses
the ANYPUNCT function to search a string for punctuation characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anypunct(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=6 c==
j=8 c=_
j=10 c=_
j=12 c=+
j=18 c=;
That’s all

Example 2: Identifying Control Characters by Using the ANYPUNCT Function You can
execute the following program to show the control characters that are identified by the
ANYPUNCT function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
anypunct=anypunct(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“NOTPUNCT Function” on page 942

ANYSPACE Function

Searches a character string for a white-space character (blank, horizontal and vertical tab, carriage
return, line feed, and form feed), and returns the first position at which that character is found.

Category: Character

Functions and CALL Routines � ANYSPACE Function 395

Restriction: “I18N Level 2” on page 313

Syntax
ANYSPACE(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYSPACE function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYSPACE function searches a string for the first occurrence of any character
that is a blank, horizontal tab, vertical tab, carriage return, line feed, or form feed. If
such a character is found, ANYSPACE returns the position in the string of that
character. If no such character is found, ANYSPACE returns a value of 0.

If you use only one argument, ANYSPACE begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

ANYSPACE returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYSPACE function searches a character string for the first occurrence of a
character that is a blank, horizontal tab, vertical tab, carriage return, line feed, or form
feed. The NOTSPACE function searches a character string for the first occurrence of a
character that is not a blank, horizontal tab, vertical tab, carriage return, line feed, or
form feed.

Examples

Example 1: Searching a String for a White-Space Character The following example
uses the ANYSPACE function to search a string for a character that is a white-space
character.

396 ANYUPPER Function � Chapter 4

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyspace(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=5 c=
j=7 c=
j=11 c=
j=13 c=
That’s all

Example 2: Identifying Control Characters by Using the ANYSPACE Function You can
execute the following program to show the control characters that are identified by the
ANYSPACE function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
anyspace=anyspace(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“NOTSPACE Function” on page 944

ANYUPPER Function
Searches a character string for an uppercase letter, and returns the first position at which the
letter is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYUPPER(string <,start>)

Functions and CALL Routines � ANYUPPER Function 397

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The results of the ANYUPPER function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The ANYUPPER function searches a string for the first occurrence of an uppercase
letter. If such a character is found, ANYUPPER returns the position in the string of
that character. If no such character is found, ANYUPPER returns a value of 0.

If you use only one argument, ANYUPPER begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

ANYUPPER returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYUPPER function searches a character string for an uppercase letter. The
NOTUPPER function searches a character string for a character that is not an
uppercase letter.

Examples

The following example uses the ANYUPPER function to search a string for an
uppercase letter.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyupper(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;

end;

398 ANYXDIGIT Function � Chapter 4

run;

The following lines are written to the SAS log:

j=1 c=N
j=16 c=E
That’s all

See Also

Function:
“NOTUPPER Function” on page 946

ANYXDIGIT Function

Searches a character string for a hexadecimal character that represents a digit, and returns the
first position at which that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
ANYXDIGIT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional integer that specifies the position at which the search should start and
the direction in which to search.

Details
The ANYXDIGIT function does not depend on the TRANTAB, ENCODING, or LOCALE
options.

The ANYXDIGIT function searches a string for the first occurrence of any character
that is a digit or an uppercase or lowercase A, B, C, D, E, or F. If such a character is
found, ANYXDIGIT returns the position in the string of that character. If no such
character is found, ANYXDIGIT returns a value of 0.

If you use only one argument, ANYXDIGIT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.

Functions and CALL Routines � ARCOS Function 399

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

ANYXDIGIT returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The ANYXDIGIT function searches a character string for a character that is a
hexadecimal character. The NOTXDIGIT function searches a character string for a
character that is not a hexadecimal character.

Examples

The following example uses the ANYXDIGIT function to search a string for a
hexadecimal character that represents a digit.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=anyxdigit(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=2 c=e
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
That’s all

See Also

Function:
“NOTXDIGIT Function” on page 948

ARCOS Function

Returns the arccosine.

Category: Trigonometric

400 ARCOSH Function � Chapter 4

Syntax
ARCOS (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Range: between −1 and 1

Details
The ARCOS function returns the arccosine (inverse cosine) of the argument. The value
that is returned is specified in radians.

Examples

SAS Statements Results

x=arcos(1); 0

x=arcos(0); 1.5707963268

x=arcos(-0.5); 2.0943951024

ARCOSH Function

Returns the inverse hyperbolic cosine.

Category: Hyperbolic

Syntax
ARCOSH(x)

Arguments

x
specifies a numeric constant, variable, or expression.

Range: x >= 1

Details
The ARCOSH function computes the inverse hyperbolic cosine. The ARCOSH function
is mathematically defined by the following equation, where x >= 1:

Functions and CALL Routines � ARSIN Function 401

������ ��� � ��	
�
��

�
�� � �

�

Examples

The following example computes the inverse hyperbolic cosine.

data _null_;
x=arcosh(5);
x1=arcosh(13);
put x=;
put x1=;

run;

SAS writes the following output to the log:

x=2.2924316696
x1=3.2566139548

See Also

Functions:
“COSH Function” on page 608
“SINH Function” on page 1089
“TANH Function” on page 1124
“ARSINH Function” on page 402
“ARTANH Function” on page 403

ARSIN Function

Returns the arcsine.

Category: Trigonometric

Syntax
ARSIN (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.
Range: between −1 and 1

Details
The ARSIN function returns the arcsine (inverse sine) of the argument. The value that
is returned is specified in radians.

402 ARSINH Function � Chapter 4

Examples

SAS Statements Results

x=arsin(0); 0

x=arsin(1); 1.5707963268

x=arsin(-0.5); -0.523598776

ARSINH Function

Returns the inverse hyperbolic sine.

Category: Hyperbolic

Syntax
ARSINH(x)

Arguments

x
specifies a numeric constant, variable, or expression.
Range: �� � � ��

Details
The ARSINH function computes the inverse hyperbolic sine. The ARSINH function is
mathematically defined by the following equation, where �� � � ��:

������ ��� � �	

�
��

�
�
� � �

�

Replace the infinity symbol with the largest double precision number that is
available on your machine.

Examples

The following example computes the inverse hyperbolic sine.

data _null_;
x=arsinh(5);
x1=arsinh(-5);
put x=;
put x1=;

run;

Functions and CALL Routines � ARTANH Function 403

SAS writes the following output to the log:

x=2.3124383413
x1=-2.312438341

See Also

Functions:
“COSH Function” on page 608
“SINH Function” on page 1089
“TANH Function” on page 1124
“ARCOSH Function” on page 400
“ARTANH Function” on page 403

ARTANH Function

Returns the inverse hyperbolic tangent.

Category: Hyperbolic

Syntax
ARTANH(x)

Arguments

x
specifies a numeric constant, variable, or expression.
Range: –1 < x < 1

Details
The ARTANH function computes the inverse hyperbolic tangent. The ARTANH
function is mathematically defined by the following equation, where –1 < x< 1:

������ ��� �
�

�
���

�
� � �

� � �

�

Examples

The following example computes the inverse hyperbolic tangent.

data _null_;
x=artanh(0.5);
put x=;

run;

404 ATAN Function � Chapter 4

SAS writes the following output to the log:

x=0.5493061443

See Also

Functions:
“COSH Function” on page 608
“SINH Function” on page 1089
“TANH Function” on page 1124
“ARCOSH Function” on page 400
“ARSINH Function” on page 402

ATAN Function

Returns the arc tangent.

Category: Trigonometric

Syntax
ATAN (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The ATAN function returns the 2-quadrant arc tangent (inverse tangent) of the
argument. The value that is returned is the angle (in radians) whose tangent is x and
whose value ranges from -��� to ���. If the argument is missing, then ATAN returns a
missing value.

Comparisons
The ATAN function is similar to the ATAN2 function except that ATAN2 calculates the
arc tangent of the angle from the ratio of two arguments rather than from one
argument.

Functions and CALL Routines � ATAN2 Function 405

Examples

SAS Statements Results

x=atan(0); 0

x=atan(1); 0.7853981634

x=atan(-9.0); -1.460139106

See Also

“ATAN2 Function” on page 405

ATAN2 Function

Returns the arc tangent of the ratio of two numeric variables.

Category: Trigonometric

Syntax
ATAN2(argument-1, argument-2)

Arguments

argument-1
specifies a numeric constant, variable, or expression.

argument-2
specifies a numeric constant, variable, or expression.

Details
The ATAN2 function returns the arc tangent (inverse tangent) of two numeric variables.
The result of this function is similar to the result of calculating the arc tangent of
argument-1 / argument-2, except that the signs of both arguments are used to
determine the quadrant of the result. ATAN2 returns the result in radians, which is a
value between -� and �. If either of the arguments in ATAN2 is missing, then ATAN2
returns a missing value.

Comparisons
The ATAN2 function is similar to the ATAN function except that ATAN calculates the
arc tangent of the angle from the value of one argument rather than from two
arguments.

406 ATTRC Function � Chapter 4

Examples

SAS statements Results

a=atan2(-1, 0.5); -1.107148718

b=atan2(6,8); 0.6435011088

c=atan2(5,-3); 2.1112158271

See Also

Functions:
“ATAN Function” on page 404

ATTRC Function

Returns the value of a character attribute for a SAS data set.

Category: SAS File I/O

Syntax
ATTRC(data-set-id,attr-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

attr-name
is an attribute name. If attr-name is invalid, a missing value is returned.

Valid values for use with attr-name are:

CHARSET
returns a value for the character set of the computer that created the data set.

empty string Data set not sorted

ASCII ASCII character set

EBCDIC EBCDIC character set

ANSI OS/2 ANSI standard ASCII character set

OEM OS/2 OEM code format

ENCRYPT
returns ’YES’ or ’NO’ depending on whether the SAS data set is encrypted.

ENGINE

Functions and CALL Routines � ATTRC Function 407

returns the name of the engine that is used to access the data set.

LABEL
returns the label assigned to the data set.

LIB
returns the libref of the SAS library in which the data set resides.

MEM
returns the SAS data set name.

MODE
returns the mode in which the SAS data set was opened, such as:

I INPUT mode allows random access if the engine supports it.
Otherwise, it defaults to IN mode.

IN INPUT mode reads sequentially and allows revisiting
observations.

IS INPUT mode reads sequentially but does not allow revisiting
observations.

N NEW mode creates a new data set.

U UPDATE mode allows random access if the engine supports it.
Otherwise, it defaults to UN mode.

UN UPDATE mode reads sequentially and allows revisiting
observations.

US UPDATE mode reads sequentially but does not allow revisiting
observations.

V UTILITY mode allows modification of variable attributes and
indexes associated with the data set.

MTYPE
returns the SAS library member type.

SORTEDBY
returns an empty string if the data set is not sorted. Otherwise, it returns the names
of the BY variables in the standard BY statement format.

SORTLVL
returns a value that indicates how a data set was sorted:

Empty string Data set is not sorted.

WEAK Sort order of the data set was established by the user (for
example, through the SORTEDBY data set option). The system
cannot validate its correctness, so the order of observations
cannot be depended on.

STRONG Sort order of the data set was established by the software (for
example, through PROC SORT or the OUT= option in the
CONTENTS procedure).

SORTSEQ
returns an empty string if the data set is sorted on the native computer or if the sort
collating sequence is the default for the operating environment. Otherwise, it returns
the name of the alternate collating sequence used to sort the file.

TYPE
returns the SAS data set type.

408 ATTRN Function � Chapter 4

Examples
� This example generates a message if the SAS data set has not been opened in

INPUT SEQUENTIAL mode. The message is written to the SAS log as follows:

%let mode=%sysfunc(attrc(&dsid,MODE));
%if &mode ne IS %then

%put Data set has not been opened in INPUT SEQUENTIAL mode.;

� This example tests whether a data set has been sorted and writes the result to the
SAS log.

data _null_;
dsid=open("sasdata.sortcars","i");
charset=attrc(dsid,"CHARSET");
if charset = "" then

put "Data set has not been sorted.";
else put "Data set sorted with " charset

"character set.";
rc=close(dsid);

run;

See Also

Functions:
“ATTRN Function” on page 408
“OPEN Function” on page 955

ATTRN Function

Returns the value of a numeric attribute for a SAS data set.

Category: SAS File I/O

Syntax
ATTRN(data-set-id,attr-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

attr-name
is the name of the SAS data set attribute whose numeric value is returned. If the
value of attr-name is invalid, a missing value is returned. The following is a list of
SAS data set attribute names and their values:

ALTERPW
specifies whether a password is required to alter the data set.

1 the data set is alter protected.

Functions and CALL Routines � ATTRN Function 409

0 the data set is not alter protected.

ANOBS
specifies whether the engine knows the number of observations.

1 the engine knows the number of observations.

0 the engine does not know the number of observations.

ANY
specifies whether the data set has observations or variables.

−1 the data set has no observations or variables.

0 the data set has no observations.

1 the data set has observations and variables.

Alias: VAROBS

ARAND
specifies whether the engine supports random access.

1 the engine supports random access.

0 the engine does not support random access.

Alias: RANDOM

ARWU
specifies whether the engine can manipulate files.

1 the engine is not read-only. It can create or update SAS files.

0 the engine is read-only.

AUDIT
specifies whether logging to an audit file is enabled.

1 logging is enabled.

0 logging is suspended.

AUDIT_DATA
specifies whether after-update record images are stored.

1 after-update record images are stored.

0 after-update record images are not stored.

AUDIT_BEFORE
specifies whether before-update record images are stored.

1 before-update record images are stored.

0 before-update record images are not stored.

AUDIT_ERROR
specifies whether unsuccessful after-update record images are stored.

1 unsuccessful after-update record images are stored.

0 unsuccessful after-update record images are not stored.

410 ATTRN Function � Chapter 4

CRDTE
specifies the date that the data set was created. The value that is returned is the
internal SAS datetime value for the creation date.
Tip: Use the DATETIME. format to display this value.

ICONST
returns information about the existence of integrity constraints for a SAS data set.

0 no integrity constraints.

1 one or more general integrity constraints.

2 one or more referential integrity constraints.

3 both one or more general integrity constraints and one or more
referential integrity constraints.

INDEX
specifies whether the data set supports indexing.

1 indexing is supported.

0 indexing is not supported.

ISINDEX
specifies whether the data set is indexed.

1 at least one index exists for the data set.

0 the data set is not indexed.

ISSUBSET
specifies whether the data set is a subset.

1 at least one WHERE clause is active.

0 no WHERE clause is active.

LRECL
specifies the logical record length.

LRID
specifies the length of the record ID.

MAXGEN
specifies the maximum number of generations.

MAXRC
specifies whether an application checks return codes.

1 an application checks return codes.

0 an application does not check return codes.

MODTE
specifies the last date and time that the data set was modified. The value returned
is the internal SAS datetime value.
Tip: Use the DATETIME. format to display this value.

Functions and CALL Routines � ATTRN Function 411

NDEL
specifies the number of observations in the data set that are marked for deletion.

NEXTGEN
specifies the next generation number to generate.

NLOBS
specifies the number of logical observations (the observations that are not marked
for deletion). An active WHERE clause does not affect this number.

−1 the number of observations is not available.

NLOBSF
specifies the number of logical observations (the observations that are not marked
for deletion) by forcing each observation to be read and by taking the FIRSTOBS
system option, the OBS system option, and the WHERE clauses into account.
Tip: Passing NLOBSF to ATTRN requires the engine to read every observation

from the data set that matches the WHERE clause. Based on the file type and
file size, reading these observations can be a time-consuming process.

NOBS
specifies the number of physical observations (including the observations that are
marked for deletion). An active WHERE clause does not affect this number.

−1 the number of observations is not available.

NVARS
specifies the number of variables in the data set.

PW
specifies whether a password is required to access the data set.

1 the data set is protected.

0 the data set is not protected.

RADIX
specifies whether access by observation number (radix addressability) is allowed.

1 access by observation number is allowed.

0 access by observation number is not allowed.
Note: A data set that is accessed by a tape engine is index addressable although it
cannot be accessed by an observation number.

READPW
specifies whether a password is required to read the data set.

1 the data set is read protected.

0 the data set is not read protected.

TAPE
specifies the status of the data set tape.

1 the data set is a sequential file.

0 the data set is not a sequential file.

412 ATTRN Function � Chapter 4

WHSTMT
specifies the active WHERE clauses.

0 no WHERE clause is active.

1 a permanent WHERE clause is active.

2 a temporary WHERE clause is active.

3 both permanent and temporary WHERE clauses are active.

WRITEPW
specifies whether a password is required to write to the data set.

1 the data set is write protected.

0 the data set is not write protected.

Examples
� This example checks whether a WHERE clause is currently active for a data set.

%let iswhere=%sysfunc(attrn(&dsid,whstmt));
%if &iswhere %then

%put A WHERE clause is currently active.;

� This example checks whether a data set is indexed.

data _null_;
dsid=open("mydata");
isindex=attrn(dsid,"isindex");
if isindex then put "data set is indexed";
else put "data set is not indexed";

run;

� This example checks whether a data set is protected with a password.

data _null_;
dsid=open("mydata");
pw=attrn(dsid,"pw");
if pw then put "data set is protected";

run;

See Also

Functions:
“ATTRC Function” on page 406
“OPEN Function” on page 955

Functions and CALL Routines � BETA Function 413

BAND Function

Returns the bitwise logical AND of two arguments.

Category: Bitwise Logical Operations

Syntax
band(argument-1,argument-2)

Arguments

argument-1, argument-2
specifies a numeric constant, variable, or expression.
Range: between 0 and (232)-1 inclusive

Details
If either argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Examples

SAS Statements Results

x=band(0Fx,05x);
put x=hex.; x=00000005

BETA Function

Returns the value of the beta function.

Category: Mathematical

Syntax
BETA(a,b)

414 BETA Function � Chapter 4

Arguments

a
is the first shape parameter, where a>0.

b
is the second shape parameter, where b>0.

Details
The BETA function is mathematically given by the equation

� ��� �� �

�
�

�

�
�� �

�� � ��
�� �

��

with a>0, b>0. It should be noted that

� ��� �� �
� ��� � ���

� ��� ��

where � ��� is the gamma function.
If the expression cannot be computed, BETA returns a missing value.

Examples

SAS Statements Results

x=beta(5,3); 0.9523809524e-2

See Also

Function:
“LOGBETA Function” on page 885

Functions and CALL Routines � BETAINV Function 415

BETAINV Function

Returns a quantile from the beta distribution.

Category: Quantile

Syntax

BETAINV (p,a,b)

Arguments

p
is a numeric probability.

Range: 0 ≤ p ≤ 1

a
is a numeric shape parameter.

Range: a > 0

b
is a numeric shape parameter.

Range: b > 0

Details

The BETAINV function returns the pth quantile from the beta distribution with shape
parameters a and b. The probability that an observation from a beta distribution is less
than or equal to the returned quantile is p.

Note: BETAINV is the inverse of the PROBBETA function. �

Examples

SAS Statements Results

x=betainv(0.001,2,4); 0.0101017879

See Also

Functions:

“QUANTILE Function” on page 1033

416 BLACKCLPRC Function � Chapter 4

BLACKCLPRC Function

Calculates call prices for European options on futures, based on the Black model.

Category: Financial

Syntax
BLACKCLPRC(E, t, F, r, sigma)

Arguments

E
is a non-missing, positive value that specifies exercise price.

Requirement: Specify E and F in the same units.

t
is a non-missing value that specifies time to maturity.

F
is a non-missing, positive value that specifies future price.

Requirement: Specify F and E in the same units.

r
is a non-missing, positive fraction that specifies the risk-free interest rate between
the present time and t.

Requirement: Specify a value for r for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility (the square root of the
variance of r).

Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The BLACKCLPRC function calculates call prices for European options on futures,
based on the Black model. The function is based on the following relationship:

���� � �
��� ��� ����� �� �����

where

F specifies future price.

N specifies the cumulative normal density function.

E specifies the exercise price of the option.

r specifies the risk-free interest rate for period t.

t specifies the time to expiration.

Functions and CALL Routines � BLACKCLPRC Function 417

�� �

�
��
�
�

�

�
�
�
�
�

�

�
�
�

�
�
�

�� � �� � �
�
�

where

� specifies the volatility of the underlying asset.

�� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

���� � ��� ��� � �� � 	�

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons

The BLACKCLPRC function calculates call prices for European options on futures,
based on the Black model. The BLACKPTPRC function calculates put prices for
European options on futures, based on the Black model. These functions return a scalar
value.

Examples

SAS Statements Results

----+----1----+-----2--

a=blackclprc(1000, .5, 950, 4, 2);
put a; 65.335687119

b=blackclprc(850, 2.5, 125, 3, 1);
put b; 0.012649067

c=blackclprc(7500, .9, 950, 3, 2);
put c; 17.880939441

d=blackclprc(5000, -.5, 237, 3, 2);
put d; 0

See Also

Function:

“BLACKPTPRC Function” on page 418

418 BLACKPTPRC Function � Chapter 4

BLACKPTPRC Function

Calculates put prices for European options on futures, based on the Black model.

Category: Financial

Syntax
BLACKPTPRC(E, t, F, r, sigma)

Arguments

E
is a non-missing, positive value that specifies exercise price.

Requirement: Specify E and F in the same units.

t
is a non-missing value that specifies time to maturity.

F
is a non-missing, positive value that specifies future price.

Requirement: Specify F and E in the same units.

r
is a non-missing, positive fraction that specifies the risk-free interest rate between
the present time and t.

Requirement: Specify a value for r for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility (the square root of the
variance of r).

Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The BLACKPTPRC function calculates put prices for European options on futures,
based on the Black model. The function is based on the following relationship:

��� � ����� �
��� �� � � �

where

E specifies the exercise price of the option.

r specifies the risk-free interest rate for period t.

t specifies the time to expiration.

F specifies future price.

Functions and CALL Routines � BLKSHCLPRC Function 419

�� �

�
��
�
�

�

�
�
�
�
�

�

�
�
�

�
�
�

�� � �� � �
�
�

where

� specifies the volatility of the underlying asset.

�� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

��� � ��� ��� � � � � 	�

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The BLACKPTPRC function calculates put prices for European options on futures,
based on the Black model. The BLACKCLPRC function calculates call prices for
European options on futures, based on the Black model. These functions return a scalar
value.

Examples

SAS Statements Results

----+----1----+-----2--

a=blackptprc(1000, .5, 950, 4, 2);
put a; 72.102451281

b=blackptprc(850, 2.5, 125, 3, 1);
put b; 0.4136352354

c=blackptprc(7500, .9, 950, 3, 2);
put c; 458.07704789

d=blackptprc(5000, -.5, 237, 3, 2);
put d; 0

See Also

Function:
“BLACKCLPRC Function” on page 416

BLKSHCLPRC Function
Calculates call prices for European options on stocks, based on the Black-Scholes model.

420 BLKSHCLPRC Function � Chapter 4

Category: Financial

Syntax
BLKSHCLPRC(E, t, S, r, sigma)

Arguments

E
is a non-missing, positive value that specifies the exercise price.
Requirement: Specify E and S in the same units.

t
is a non-missing value that specifies the time to maturity.

S
is a non-missing, positive value that specifies the share price.
Requirement: Specify S and E in the same units.

r
is a non-missing, positive fraction that specifies the risk-free interest rate for period t.
Requirement: Specify a value for r for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility of the underlying asset.

Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The BLKSHCLPRC function calculates the call prices for European options on stocks,
based on the Black-Scholes model. The function is based on the following relationship:

���� � �� ����� �� ���� �
���

where

S is a non-missing, positive value that specifies the share price.

N specifies the cumulative normal density function.

E is a non-missing, positive value that specifies the exercise price of
the option.

�� �

�
��
�
�

�

�
�

�
� � �

�

�

�
�

�

�
�
�

�� � �� � �
�
�

where

t specifies the time to expiration.

Functions and CALL Routines � BLKSHPTPRC Function 421

r specifies the risk-free interest rate for period t.

� specifies the volatility (the square root of the variance).

�� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

���� � ��� ��� � �� � ��

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The BLKSHCLPRC function calculates the call prices for European options on stocks,
based on the Black-Scholes model. The BLKSHPTPRC function calculates the put
prices for European options on stocks, based on the Black-Scholes model. These
functions return a scalar value.

Examples

SAS Statements Results

----+----1----+-----2--

a=blkshclprc(1000, .5, 950, 4, 2);
put a; 831.05008469

b=blkshclprc(850, 2.5, 125, 3, 1);
put b; 124.53035232

c=blkshclprc(7500, .9, 950, 3, 2);
put c; 719.40891129

d=blkshclprc(5000, -.5, 237, 3, 2);
put d; 0

See Also

Function:

“BLKSHPTPRC Function” on page 421

BLKSHPTPRC Function

Calculates put prices for European options on stocks, based on the Black-Scholes model.

Category: Financial

422 BLKSHPTPRC Function � Chapter 4

Syntax
BLKSHPTPRC(E, t, S, r, sigma)

Arguments

E
is a non-missing, positive value that specifies the exercise price.
Requirement: Specify E and S in the same units.

t
is a non-missing value that specifies the time to maturity.

S
is a non-missing, positive value that specifies the share price.
Requirement: Specify S and E in the same units.

r
is a non-missing, positive fraction that specifies the risk-free interest rate for period t.
Requirement: Specify a value for r for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility of the underlying asset.
Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The BLKSHPTPRC function calculates the put prices for European options on stocks,
based on the Black-Scholes model. The function is based on the following relationship:

��� � ����� � � ��
���

where

S is a non-missing, positive value that specifies the share price.

E is a non-missing, positive value that specifies the exercise price of
the option.

�� �

�
��

�
�

�

�
�

�
� �

�
�

�

�
�

�

�
�
�

�� � �� � �
�
�

where

t specifies the time to expiration.

r specifies the risk-free interest rate for period t.

� specifies the volatility (the square root of the variance).

�
� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

Functions and CALL Routines � BLSHIFT Function 423

��� � ��� ��� � �� � ��

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The BLKSHPTPRC function calculates the put prices for European options on stocks,
based on the Black-Scholes model. The BLKSHCLPRC function calculates the call
prices for European options on stocks, based on the Black-Scholes model. These
functions return a scalar value.

Examples

SAS Statements Results

----+----1----+-----2--

a=blkshptprc(1000, .5, 950, 4, 2);
put a; 16.385367922

b=blkshptprc(850, 1.2, 125, 3, 1);
put b; 1.426971358

c=blkshptprc(7500, .9, 950, 3, 2);
put c; 273.45025684

d=blkshptprc(5000, -.5, 237, 3, 2);
put d; 0

See Also

Function:

“BLKSHCLPRC Function” on page 419

BLSHIFT Function

Returns the bitwise logical left shift of two arguments.

Category: Bitwise Logical Operations

Syntax
BLSHIFT(argument-1,argument-2)

424 BNOT Function � Chapter 4

Arguments

argument-1
specifies a numeric constant, variable, or expression.

Range: between 0 and (232)-1 inclusive

argument-2
specifies a numeric constant, variable, or expression.

Range: 0 to 31, inclusive

Details
If either argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Examples

SAS Statements Results

x=blshift(07x,2);
put x=hex.; x=0000001C

BNOT Function

Returns the bitwise logical NOT of an argument.

Category: Bitwise Logical Operations

Syntax
BNOT(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Range: between 0 and (232)-1 inclusive

Details
If the argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Functions and CALL Routines � BOR Function 425

Examples

SAS Statements Results

x=bnot(0F000000Fx);
put x=hex.; x=0FFFFFF0

BOR Function

Returns the bitwise logical OR of two arguments.

Category: Bitwise Logical Operations

Syntax
BOR(argument-1,argument-2)

Arguments

argument-1, argument-2
specifies a numeric constant, variable, or expression.
Range: between 0 and (232)-1 inclusive

Details
If either argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Examples

SAS Statements Results

x=bor(01x,0F4x);
put x=hex.; x=000000F5

426 BRSHIFT Function � Chapter 4

BRSHIFT Function

Returns the bitwise logical right shift of two arguments.

Category: Bitwise Logical Operations

Syntax
BRSHIFT(argument-1, argument-2)

Arguments

argument-1
specifies a numeric constant, variable, or expression.
Range: between 0 and (232)-1 inclusive

argument-2
specifies a numeric constant, variable, or expression.
Range: 0 to 31, inclusive

Details
If either argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Examples

SAS Statements Results

x=brshift(01Cx,2);
put x=hex.; x=00000007

Functions and CALL Routines � BXOR Function 427

BXOR Function

Returns the bitwise logical EXCLUSIVE OR of two arguments.

Category: Bitwise Logical Operations

Syntax
BXOR(argument-1, argument-2)

Arguments

argument-1, argument-2
specifies a numeric constant, variable, or expression.
Range: between 0 and (232)-1 inclusive

Details
If either argument contains a missing value, then the function returns a missing value
and sets _ERROR_ equal to 1.

Examples

SAS Statements Results

x=bxor(03x,01x);
put x=hex.; x=00000002

428 BYTE Function � Chapter 4

BYTE Function

Returns one character in the ASCII or the EBCDIC collating sequence.

Category: Character
Restriction: “I18N Level 0” on page 312
See: BYTE Function in the documentation for your operating environment.

Syntax
BYTE (n)

Arguments

n
specifies an integer that represents a specific ASCII or EBCDIC character.
Range: 0–255

Details

Length of Returned Variable In a DATA step, if the BYTE function returns a value to
a variable that has not previously been assigned a length, then that variable is
assigned a length of 1.

ASCII and EBCDIC Collating Sequences For EBCDIC collating sequences, n is between
0 and 255. For ASCII collating sequences, the characters that correspond to values
between 0 and 127 represent the standard character set. Other ASCII characters that
correspond to values between 128 and 255 are available on certain ASCII operating
environments, but the information those characters represent varies with the operating
environment.

Examples

SAS Statements Results

ASCII EBCDIC

----+----1----+----2 ----+----1----+----2

x=byte(80);
put x; P &

See Also

Functions:
“COLLATE Function” on page 583
“RANK Function” on page 1052

Functions and CALL Routines � CALL ALLCOMB Routine 429

CALL ALLCOMB Routine

Generates all combinations of the values of n variables taken k at a time in a minimal change
order.

Category: Combinatorial

Syntax
CALL ALLCOMB(count, k, variable-1, …, variable-n);

Arguments

count
specifies an integer variable that is assigned from 1 to the number of combinations in
a loop.

k
specifies an integer constant, variable, or expression between 1 and n, inclusive, that
specifies the number of items in each combination.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before calling the ALLCOMB routine.
Restriction: Specify no more than 33 items. If you need to find combinations of

more than 33 items, use the CALL ALLCOMBI routine.
Tip: After calling the ALLCOMB routine, the first k variables contain the values in

one combination.

Details

CALL ALLCOMB Processing Use the CALL ALLCOMB routine in a loop where the
first argument to CALL ALLCOMB accepts each integral value from 1 to the number of
combinations, and where k is constant. The number of combinations can be computed by
using the COMB function. On the first call, the argument types and lengths are checked
for consistency. On each subsequent call, the values of two variables are interchanged.

If you call the ALLCOMB routine with the first argument out of sequence, the
results are not useful. In particular, if you initialize the variables and then immediately
call ALLCOMB with a first argument of j, then you will not get the jth combination
(except when j is 1). To get the jth combination, you must call ALLCOMB j times, with
the first argument taking values from 1 through j in that exact order.

Using the CALL ALLCOMB Routine with Macros You can call the ALLCOMB routine
when you use the %SYSCALL macro. In this case, the variable arguments are not
required to be the same type or length. If %SYSCALL identifies an argument as
numeric, then %SYSCALL reformats the returned value.

If an error occurs during the execution of the CALL ALLCOMB routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.

430 CALL ALLCOMB Routine � Chapter 4

� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 0 if count=1
� j if the values of variable-j and variable-k were interchanged, where j<k
� –1 if no values were interchanged because all distinct combinations were already

generated

Comparisons
SAS provides four functions or CALL routines for generating combinations:

� ALLCOMB generates all possible combinations of the values, missing or
non-missing, of n variables. The values can be any numeric or character values.
Each combination is formed from the previous combination by removing one value
and inserting another value.

� LEXCOMB generates all distinct combinations of the non-missing values of several
variables. The values can be any numeric or character values. The combinations
are generated in lexicographic order.

� ALLCOMBI generates all combinations of the indices of n items, where indices are
integers from 1 to n. Each combination is formed from the previous combination
by removing one index and inserting another index.

� LEXCOMBI generates all combinations of the indices of n items, where indices are
integers from 1 to n. The combinations are generated in lexicographic order.

ALLCOMBI is the fastest of these functions and CALL routines. LEXCOMB is the
slowest.

Examples

Example 1: Using CALL ALLCOMB in a DATA Step The following is an example of the
CALL ALLCOMB routine that is used with the DATA step.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
n=dim(x);
k=3;
ncomb=comb(n,k);
do j=1 to ncomb+1;

call allcomb(j, k, of x[*]);
put j 5. +3 x1-x3;

end;
run;

SAS writes the following output to the log:

1 ant bee cat
2 ant bee ewe
3 ant bee dog
4 ant cat dog
5 ant cat ewe
6 ant dog ewe
7 bee dog ewe
8 bee dog cat
9 bee ewe cat
10 dog ewe cat

Functions and CALL Routines � CALL ALLCOMBI Routine 431

11 dog ewe cat

Example 2: Using CALL ALLCOMB with Macros and Displaying the Return Code The
following is an example of the CALL ALLCOMB routine that is used with macros. The
output includes values for the %SYSINFO macro.

%macro test;
%let x1=ant;
%let x2=-.1234;
%let x3=1e10;
%let x4=hippopotamus;
%let x5=zebra;
%let k=2;
%let ncomb=%sysfunc(comb(5,&k));
%do j=1 %to &ncomb+1;

%syscall allcomb(j, k, x1, x2, x3, x4, x5);
%let jfmt=%qsysfunc(putn(&j,5.));
%let pad=%qsysfunc(repeat(%str(),30-%length(&x1 &x2)));
%put &jfmt: &x1 &x2 &pad sysinfo=&sysinfo;

%end;
%mend;

%test

SAS writes the following output to the log:

1: ant -0.1234 sysinfo=0
2: ant zebra sysinfo=2
3: ant hippopotamus sysinfo=2
4: ant 10000000000 sysinfo=2
5: -0.1234 10000000000 sysinfo=1
6: -0.1234 zebra sysinfo=2
7: -0.1234 hippopotamus sysinfo=2
8: 10000000000 hippopotamus sysinfo=1
9: 10000000000 zebra sysinfo=2
10: hippopotamus zebra sysinfo=1
11: hippopotamus zebra sysinfo=-1

See Also

Functions and CALL Routines:

“ALLCOMB Function” on page 371

CALL ALLCOMBI Routine

Generates all combinations of the indices of n objects taken k at a time in a minimal change order.

Category: Combinatorial

432 CALL ALLCOMBI Routine � Chapter 4

Syntax
CALL ALLCOMBI(N, K, index-1, …, index-K, <, index-added, index-removed>);

Arguments

N
is a numeric constant, variable, or expression that specifies the total number of
objects.

K
is a numeric constant, variable, or expression that specifies the number of objects in
each combination.

index
is a numeric variable that contains indices of the objects in the returned
combination. Indices are integers between 1 and N inclusive.

Tip: If index-1 is missing or zero, then ALLCOMBI initializes the indices to
index-1=1 through index-K=K. Otherwise, ALLCOMBI creates a new combination
by removing one index from the combination and adding another index.

index-added
is a numeric variable in which ALLCOMBI returns the value of the index that was
added.

index-removed
is a numeric variable in which ALLCOMBI returns the value of the index that was
removed.

Details

CALL ALLCOMBI Processing Before you make the first call to ALLCOMBI, complete
one of the following tasks:

� Set index-1 equal to zero or to a missing value.

� Initialize index-1 through index-K to distinct integers between 1 and N inclusive.

The number of combinations of N objects taken K at a time can be computed as
COMB(N, K). To generate all combinations of N objects taken K at a time, call
ALLCOMBI in a loop that executes COMB(N, K) times.

Using the CALL ALLCOMBI Routine with Macros If you call ALLCOMBI from the
macro processor with %SYSCALL, then you must initialize all arguments to numeric
values. &SYSCALL reformats the values that are returned.

If an error occurs during the execution of the CALL ALLCOMBI routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.

� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR and &SYSINFO are set to zero.

Comparisons
The CALL ALLCOMBI routine generates all combinations of the indices of N objects
taken K at a time in a minimal change order. The CALL ALLCOMB routine generates

Functions and CALL Routines � CALL ALLCOMBI Routine 433

all combinations of the values of N variables taken K at a time in a minimal change
order.

Examples

Example 1: Using CALL ALLCOMBI in a DATA Step The following is an example of the
CALL ALLCOMBI routine that is used in a DATA step.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
array c[3] $3;
array i[3];
n=dim(x);
k=dim(i);
i[1]=0;
ncomb=comb(n,k); /* The one extra call goes back */
do j=1 to ncomb+1; /* to the first combination. */

call allcombi(n, k, of i[*], add, remove);
do h=1 to k;

c[h]=x[i[h]];
end;
put @4 j= @10 ’i= ’ i[*] +3 ’c= ’ c[*] +3 add= remove=;

end;
run;

SAS writes the following output to the log:

j=1 i= 1 2 3 c= ant bee cat add=0 remove=0
j=2 i= 1 3 4 c= ant cat dog add=4 remove=2
j=3 i= 2 3 4 c= bee cat dog add=2 remove=1
j=4 i= 1 2 4 c= ant bee dog add=1 remove=3
j=5 i= 1 4 5 c= ant dog ewe add=5 remove=2
j=6 i= 2 4 5 c= bee dog ewe add=2 remove=1
j=7 i= 3 4 5 c= cat dog ewe add=3 remove=2
j=8 i= 1 3 5 c= ant cat ewe add=1 remove=4
j=9 i= 2 3 5 c= bee cat ewe add=2 remove=1
j=10 i= 1 2 5 c= ant bee ewe add=1 remove=3
j=11 i= 1 2 3 c= ant bee cat add=3 remove=5

Example 2: Using CALL ALLCOMBI with Macros The following is an example of the
CALL ALLCOMBI routine that is used with macros.

%macro test;
%let x1=0;
%let x2=0;
%let x3=0;
%let add=0;
%let remove=0;
%let n=5;
%let k=3;
%let ncomb=%sysfunc(comb(&n,&k));
%do j=1 %to &ncomb;

%syscall allcombi(n,k,x1,x2,x3,add,remove);
%let jfmt=%qsysfunc(putn(&j,5.));
%put &jfmt: &x1 &x2 &x3 add=&add remove=&remove;

%end;

434 CALL ALLPERM Routine � Chapter 4

%mend;

%test

SAS writes the following output to the log:

1: 1 2 3 add=0 remove=0
2: 1 3 4 add=4 remove=2
3: 2 3 4 add=2 remove=1
4: 1 2 4 add=1 remove=3
5: 1 4 5 add=5 remove=2
6: 2 4 5 add=2 remove=1
7: 3 4 5 add=3 remove=2
8: 1 3 5 add=1 remove=4
9: 2 3 5 add=2 remove=1
10: 1 2 5 add=1 remove=3

Examples

See Also

Functions and CALL Routines:
“CALL ALLCOMB Routine” on page 429

CALL ALLPERM Routine

Generates all permutations of the values of several variables in a minimal change order.

Category: Combinatorial

Syntax
CALL ALLPERM(count, variable–1<, variable–2 ...>);

Arguments

count
specifies an integer variable that ranges from 1 to the number of permutations.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you call the ALLPERM routine.
Restriction: Specify no more than 18 variables.

Details

CALL ALLPERM Processing Use the CALL ALLPERM routine in a loop where the first
argument to CALL ALLPERM takes each integral value from 1 to the number of

Functions and CALL Routines � CALL ALLPERM Routine 435

permutations. On the first call, the argument types and lengths are checked for
consistency. On each subsequent call, the values of two consecutive variables are
interchanged.

Note: You can compute the number of permutations by using the PERM function.
See “PERM Function” on page 980 for more information. �

If you call the ALLPERM routine and the first argument is out of sequence, the
results are not useful. In particular, if you initialize the variables and then immediately
call the ALLPERM routine with a first argument of K, your result will not be the Kth
permutation (except when K is 1). To get the Kth permutation, you must call the
ALLPERM routine K times, with the first argument taking values from 1 through K in
that exact order.

ALLPERM always produces N! permutations even if some of the variables have
equal values or missing values. If you want to generate only the distinct permutations
when there are equal values, or if you want to omit missing values from the
permutations, use the LEXPERM function instead.

Using the CALL ALLPERM Routine with Macros You can call the ALLPERM routine
when you use the %SYSCALL macro. In this case, the variable arguments are not
required to be the same type or length. If %SYSCALL identifies an argument as
numeric, then %SYSCALL reformats the returned value.

If an error occurs during the execution of the CALL ALLPERM routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than -100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 0 if count=1
� J if 1<count<=N! and the values of variable-J and variable-K were interchanged,

where J+1=K
� -1 if count>N!

Comparisons
SAS provides three functions or CALL routines for generating all permutations:

� ALLPERM generates all possible permutations of the values, missing or
nonmissing, of several variables. Each permutation is formed from the previous
permutation by interchanging two consecutive values.

� LEXPERM generates all distinct permutations of the nonmissing values of several
variables. The permutations are generated in lexicographic order.

� LEXPERK generates all distinct permutations of K of the nonmissing values of N
variables. The permutations are generated in lexicographic order.

ALLPERM is the fastest of these functions and CALL routines. LEXPERK is the
slowest.

Examples

Example 1: Using CALL ALLPERM in a DATA Step The following example generates
permutations of given values by using the CALL ALLPERM routine.

data _null_;
array x [4] $3 (’ant’ ’bee’ ’cat’ ’dog’);
n=dim(x);

436 CALL ALLPERM Routine � Chapter 4

nfact=fact(n);
do i=1 to nfact;

call allperm(i, of x[*]);
put i 5. +2 x[*];

end;
run;

SAS writes the following output to the log:

1 ant bee cat dog
2 ant bee dog cat
3 ant dog bee cat
4 dog ant bee cat
5 dog ant cat bee
6 ant dog cat bee
7 ant cat dog bee
8 ant cat bee dog
9 cat ant bee dog
10 cat ant dog bee
11 cat dog ant bee
12 dog cat ant bee
13 dog cat bee ant
14 cat dog bee ant
15 cat bee dog ant
16 cat bee ant dog
17 bee cat ant dog
18 bee cat dog ant
19 bee dog cat ant
20 dog bee cat ant
21 dog bee ant cat
22 bee dog ant cat
23 bee ant dog cat
24 bee ant cat dog

Example 2: Using CALL ALLPERM with Macros The following is an example of the
CALL ALLPERM routine that is used with macros. The output includes values for the
%SYSINFO macro.

%macro test;
%let x1=ant;
%let x2=-.1234;
%let x3=1e10;
%let x4=hippopotamus;
%let nperm=%sysfunc(perm(4));
%do j=1 %to &nperm+1;

%syscall allperm(j, x1, x2, x3, x4);
%let jfmt=%qsysfunc(putn(&j,5.));
%put &jfmt: &x1 &x2 &x3 &x4 sysinfo=&sysinfo;

%end;
%mend;

%test;

SAS writes the following output to the log:

1: ant -0.1234 10000000000 hippopotamus sysinfo=0
2: ant -0.1234 hippopotamus 10000000000 sysinfo=3

Functions and CALL Routines � CALL ALLPERM Routine 437

3: ant hippopotamus -0.1234 10000000000 sysinfo=2
4: hippopotamus ant -0.1234 10000000000 sysinfo=1
5: hippopotamus ant 10000000000 -0.1234 sysinfo=3
6: ant hippopotamus 10000000000 -0.1234 sysinfo=1
7: ant 10000000000 hippopotamus -0.1234 sysinfo=2
8: ant 10000000000 -0.1234 hippopotamus sysinfo=3
9: 10000000000 ant -0.1234 hippopotamus sysinfo=1
10: 10000000000 ant hippopotamus -0.1234 sysinfo=3
11: 10000000000 hippopotamus ant -0.1234 sysinfo=2
12: hippopotamus 10000000000 ant -0.1234 sysinfo=1
13: hippopotamus 10000000000 -0.1234 ant sysinfo=3
14: 10000000000 hippopotamus -0.1234 ant sysinfo=1
15: 10000000000 -0.1234 hippopotamus ant sysinfo=2
16: 10000000000 -0.1234 ant hippopotamus sysinfo=3
17: -0.1234 10000000000 ant hippopotamus sysinfo=1
18: -0.1234 10000000000 hippopotamus ant sysinfo=3
19: -0.1234 hippopotamus 10000000000 ant sysinfo=2
20: hippopotamus -0.1234 10000000000 ant sysinfo=1
21: hippopotamus -0.1234 ant 10000000000 sysinfo=3
22: -0.1234 hippopotamus ant 10000000000 sysinfo=1
23: -0.1234 ant hippopotamus 10000000000 sysinfo=2
24: -0.1234 ant 10000000000 hippopotamus sysinfo=3
25: -0.1234 ant 10000000000 hippopotamus sysinfo=-1

See Also

Functions and CALL Routines:
“LEXPERM Function” on page 875

“ALLPERM Function” on page 373
“CALL RANPERK Routine” on page 500

“CALL RANPERM Routine” on page 502

438 CALL CATS Routine � Chapter 4

CALL CATS Routine

Removes leading and trailing blanks, and returns a concatenated character string.

Category: Character

Syntax
CALL CATS(result <, item-1, …, item-n>);

Arguments

result
specifies a character variable.
Restriction: The CALL CATS routine accepts only a character variable as a valid

argument for result. Do not use a constant or a SAS expression because CALL
CATS is unable to update these arguments.

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string using the BESTw. format.
In this case, SAS does not write a note to the log.

Details
The CALL CATS routine returns the result in the first argument, result. The routine
appends the values of the arguments that follow to result. If the length of result is not
large enough to contain the entire result, SAS does the following:

� writes a warning message to the log stating that the result was truncated
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation, except in SQL or in a WHERE clause
� sets _ERROR_ to 1 in the DATA step, except in a WHERE clause

The CALL CATS routine removes leading and trailing blanks from numeric
arguments after it formats the numeric value with the BESTw. format.

Comparisons
The results of the CALL CATS, CALL CATT, and CALL CATX routines are usually
equivalent to statements that use the concatenation operator (||) and the TRIM and
LEFT functions. However, using the CALL CATS, CALL CATT, and CALL CATX
routines is faster than using TRIM and LEFT.

Functions and CALL Routines � CALL CATS Routine 439

The following table shows statements that are equivalent to CALL CATS, CALL
CATT, and CALL CATX. The variables X1 through X4 specify character variables, and
SP specifies a separator, such as a blank or comma.

CALL Routine Equivalent Statement

CALL CATS(OF X1-X4); X1=TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4));

CALL CATT(OF X1-X4); X1=TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4);

CALL CATX(SP, OF X1-X4); * X1=TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4));

* If any of the arguments is blank, the results that are produced by CALL CATX differ slightly from
the results that are produced by the concatenated code. In this case, CALL CATX omits the
corresponding separator. For example, CALL CATX("+","X"," ", "Z"," "); produces
X+Z.

Examples

The following example shows how the CALL CATS routine concatenates strings.

data _null_;
length answer $ 36;
x=’Athens is t ’;
y=’ he Olym ’;
z=’ pic site for 2004. ’;
call cats(answer,x,y,z);
put answer;

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7
Athens is the Olympic site for 2004.

See Also

Functions and CALL Routines:
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATQ Function” on page 543
“CATS Function” on page 547
“CATT Function” on page 549
“CATX Function” on page 551

440 CALL CATT Routine � Chapter 4

CALL CATT Routine

Removes trailing blanks, and returns a concatenated character string.

Category: Character

Syntax
CALL CATT(result <, item-1, … item-n>);

Arguments

result
specifies a character variable.
Restriction: The CALL CATT routine accepts only a character variable as a valid

argument for result. Do not use a constant or a SAS expression because CALL
CATT is unable to update these arguments.

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string using the BESTw. format.
In this case, leading blanks are removed and SAS does not write a note to the log.

Details
The CALL CATT routine returns the result in the first argument, result. The routine
appends the values of the arguments that follow to result. If the length of result is not
large enough to contain the entire result, SAS does the following:

� writes a warning message to the log stating that the result was truncated
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation, except in SQL or in a WHERE clause
� sets _ERROR_ to 1 in the DATA step, except in a WHERE clause

The CALL CATT routine removes leading and trailing blanks from numeric
arguments after it formats the numeric value with the BESTw. format.

Comparisons
The results of the CALL CATS, CALL CATT, and CALL CATX routines are usually
equivalent to statements that use the concatenation operator (||) and the TRIM and
LEFT functions. However, using the CALL CATS, CALL CATT, and CALL CATX
routines is faster than using TRIM and LEFT.

Functions and CALL Routines � CALL CATT Routine 441

The following table shows statements that are equivalent to CALL CATS, CALL
CATT, and CALL CATX. The variables X1 through X4 specify character variables, and
SP specifies a separator, such as a blank or comma.

CALL Routine Equivalent Statement

CALL CATS(OF X1-X4); X1=TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4));

CALL CATT(OF X1-X4); X1=TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4);

CALL CATX(SP, OF X1-X4); * X1=TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4));

* If any of the arguments is blank, the results that are produced by CALL CATX differ slightly from
the results that are produced by the concatenated code. In this case, CALL CATX omits the
corresponding separator. For example, CALL CATX("+","X"," ", "Z"," "); produces
X+Z.

Examples

The following example shows how the CALL CATT routine concatenates strings.

data _null_;
length answer $ 36;
x=’Athens is t ’;
y=’he Olym ’;
z=’pic site for 2004. ’;
call catt(answer,x,y,z);
put answer;

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4
Athens is the Olympic site for 2004.

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATQ Function” on page 543
“CATS Function” on page 547
“CATT Function” on page 549
“CATX Function” on page 551

442 CALL CATX Routine � Chapter 4

CALL CATX Routine

Removes leading and trailing blanks, inserts delimiters, and returns a concatenated character
string.

Category: Character

Syntax
CALL CATX(delimiter, result<, item-1 , … item-n>);

Arguments

delimiter
specifies a character string that is used as a delimiter between concatenated strings.

result
specifies a character variable.

Restriction: The CALL CATX routine accepts only a character variable as a valid
argument for result. Do not use a constant or a SAS expression because CALL
CATX is unable to update these arguments.

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string using the BESTw. format.
In this case, SAS does not write a note to the log.

Details
The CALL CATX routine returns the result in the second argument, result. The routine
appends the values of the arguments that follow to result. If the length of result is not
large enough to contain the entire result, SAS does the following:

� writes a warning message to the log stating that the result was truncated

� writes a note to the log that shows the location of the function call and lists the
argument that caused the truncation, except in SQL or in a WHERE clause

� sets _ERROR_ to 1 in the DATA step, except in a WHERE clause

The CALL CATX routine removes leading and trailing blanks from numeric
arguments after formatting the numeric value with the BESTw. format.

Comparisons
The results of the CALL CATS, CALL CATT, and CALL CATX routines are usually
equivalent to statements that use the concatenation operator (||) and the TRIM and
LEFT functions. However, using the CALL CATS, CALL CATT, and CALL CATX
routines is faster than using TRIM and LEFT.

The following table shows statements that are equivalent to CALL CATS, CALL
CATT, and CALL CATX. The variables X1 through X4 specify character variables, and
SP specifies a delimiter, such as a blank or comma.

Functions and CALL Routines � CALL CATX Routine 443

CALL Routine Equivalent Statement

CALL CATS(OF X1-X4); X1=TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4));

CALL CATT(OF X1-X4); X1=TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4);

CALL CATX(SP, OF X1-X4); * X1=TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4));

* If any of the arguments are blank, the results that are produced by CALL CATX differ slightly
from the results that are produced by the concatenated code. In this case, CALL CATX omits the
corresponding delimiter. For example, CALL CATX("+",newvar,"X"," ", "Z"," ");
produces X+Z.

Examples

The following example shows how the CALL CATX routine concatenates strings.

data _null_;
length answer $ 50;
separator=’%%$%%’;
x=’Athens is t ’;
y=’he Olym ’;
z=’ pic site for 2004. ’;
call catx(separator,answer,x,y,z);
put answer;

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4----+----5
Athens is t%%$%%he Olym%%$%%pic site for 2004.

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CAT Function” on page 540
“CATQ Function” on page 543
“CATS Function” on page 547
“CATT Function” on page 549
“CATX Function” on page 551

444 CALL COMPCOST Routine � Chapter 4

CALL COMPCOST Routine

Sets the costs of operations for later use by the COMPGED function

Category: Character
Restriction: Use with the COMPGED function

Interaction: When invoked by the %SYSCALL macro statement, CALL COMPCOST
removes quotation marks from its arguments. For more information, see “Using CALL
Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL COMPCOST(operation-1, value-1 <,operation-2, value-2 …>);

Arguments

operation
is a character constant, variable, or expression that specifies an operation that is
performed by the COMPGED function.

value
is a numeric constant, variable, or expression that specifies the cost of the operation
that is indicated by the preceding argument.

Restriction: Must be an integer that ranges from -32767 to 32767, or a missing
value

Details

Computing the Cost of Operations Each argument that specifies an operation must
have a value that is a character string. The character string corresponds to one of the
terms that is used to denote an operation that the COMPGED function performs. See
“Computing the Generalized Edit Distance” on page 591 to view a table of operations
that the COMPGED function uses.

The character strings that specify operations can be in uppercase, lowercase, or
mixed case. Blanks are ignored. Each character string must end with an equal sign (=).
Valid values for operations, and the default cost of the operations are listed in the
following table.

Operation Default Cost

APPEND= very large

BLANK= very large

DELETE= 100

DOUBLE= very large

FDELETE= equal to DELETE

FINSERT= equal to INSERT

FREPLACE= equal to REPLACE

Functions and CALL Routines � CALL COMPCOST Routine 445

Operation Default Cost

INSERT= 100

MATCH= 0

PUNCTUATION= very large

REPLACE= 100

SINGLE= very large

SWAP= very large

TRUNCATE= very large

If an operation does not appear in the call to the COMPCOST routine, or if the
operation appears and is followed by a missing value, then that operation is assigned a
default cost. A “very large” cost indicates a cost that is sufficiently large that the
COMPGED function will not use the corresponding operation.

After your program calls the COMPCOST routine, the costs that are specified remain
in effect until your program calls the COMPCOST routine again, or until the step that
contains the call to COMPCOST terminates.

Abbreviating Character Strings You can abbreviate character strings. That is, you can
use the first one or more letters of a specific operation rather than use the entire term.
You must, however, use as many letters as necessary to uniquely identify the term. For
example, you can specify the INSERT= operation as “in=”, and the REPLACE=
operation as “r=”. To specify the DELETE= or the DOUBLE= operation, you must use
the first two letters because both DELETE= and DOUBLE= begin with “d”. The
character string must always end with an equal sign.

Examples

The following example calls the COMPCOST routine to compute the generalized edit
distance for the operations that are specified.

options pageno=1 nodate linesize=80 pagesize=60;

data test;
length String $8 Operation $40;
if _n_ = 1 then call compcost(’insert=’,10,’DEL=’,11,’r=’, 12);
input String Operation;
GED=compged(string, ’baboon’);
datalines;

baboon match
xbaboon insert
babon delete
baXoon replace
;

proc print data=test label;
label GED=’Generalized Edit Distance’;
var String Operation GED;

run;

446 CALL EXECUTE Routine � Chapter 4

The following output shows the results.

Output 4.12 Generalized Edit Distance Based on Operation

The SAS System 1

Generalized
Edit

Obs String Operation Distance

1 baboon match 0
2 xbaboon insert 10
3 babon delete 11
4 baXoon replace 12

See Also

Functions:
“COMPGED Function” on page 590

“COMPARE Function” on page 585
“COMPLEV Function” on page 595

CALL EXECUTE Routine

Resolves the argument, and issues the resolved value for execution at the next step boundary.

Category: Macro

Syntax
CALL EXECUTE(argument);

Arguments

argument
specifies a character expression or a constant that yields a macro invocation or a SAS
statement. Argument can be:

� a character string, enclosed in quotation marks.
� the name of a DATA step character variable. Do not enclose the name of the

DATA step variable in quotation marks.
� a character expression that the DATA step resolves to a macro text expression

or a SAS statement.

Details
If argument resolves to a macro invocation, the macro executes immediately and DATA
step execution pauses while the macro executes. If argument resolves to a SAS

Functions and CALL Routines � CALL GRAYCODE Routine 447

statement or if execution of the macro generates SAS statements, the statement(s)
execute after the end of the DATA step that contains the CALL EXECUTE routine.
CALL EXECUTE is fully documented in SAS Macro Language: Reference.

CALL GRAYCODE Routine
Generates all subsets of n items in a minimal change order.

Category: Combinatorial

Syntax
CALL GRAYCODE(k, numeric-variable-1, ..., numeric-variable-n);

CALL GRAYCODE(k, character-variable <, n <, in-out>>);

Arguments

k
specifies a numeric variable. Initialize k to either of the following values before
executing the CALL GRAYCODE routine:

� a negative number to cause CALL GRAYCODE to initialize the subset to be
empty

� the number of items in the initial set indicated by numeric-variable-1 through
numeric-variable-n, or character-variable, which must be an integer value
between 0 and N inclusive

The value of k is updated when CALL GRAYCODE is executed. The value that is
returned is the number of items in the subset.

numeric-variable
specifies numeric variables that have values of 0 or 1 which are updated when CALL
GRAYCODE is executed. A value of 1 for numeric-variable-j indicates that the jth

item is in the subset. A value of 0 for numeric-variable-j indicates that the jth item is
not in the subset.

If you assign a negative value to k before you execute CALL GRAYCODE, then
you do not need to initialize numeric-variable-1 through numeric-variable-n before
executing CALL GRAYCODE unless you want to suppress the note about
uninitialized variables.

If you assign a value between 0 and n inclusive to k before you execute CALL
GRAYCODE, then you must initialize numeric-variable-1 through numeric-variable-n
to k values of 1 and n-k values of 0.

character-variable
specifies a character variable that has a length of at least n characters. The first n
characters indicate which items are in the subset. By default, an "I" in the jth position
indicates that thejth item is in the subset, and an "O" in the jth position indicates that
the jth item is out of the subset. You can change the two characters by specifying the
in-out argument.

If you assign a negative value to k before you execute CALL GRAYCODE, then
you do not need to initialize character-variable before executing CALL GRAYCODE
unless you want to suppress the note about an uninitialized variable.

448 CALL GRAYCODE Routine � Chapter 4

If you assign a value between 0 and n inclusive to k before you execute CALL
GRAYCODE, then you must initialize character-variable to k characters that indicate
an item is in the subset, and k-k characters that indicate an item is out of the subset.

n
specifies a numeric constant, variable, or expression. By default, n is the length of
character-variable.

in-out
specifies a character constant, variable, or expression. The default value is "IO." The
first character is used to indicate that an item is in the subset. The second character
is used to indicate that an item is out of the subset.

Details

Using CALL GRAYCODE in a DATA Step When you execute the CALL GRAYCODE
routine with a negative value of k, the subset is initialized to be empty.

When you execute the CALL GRAYCODE routine with an integer value of k between
0 and n inclusive, one item is either added to the subset or removed from the subset,
and the value of k is updated to equal the number of items in the subset.

To generate all subsets of n items, you can initialize k to a negative value and
execute CALL GRAYCODE in a loop that iterates 2**n times. If you want to start with
a non-empty subset, then initialize k to be the number of items in the subset, initialize
the other arguments to specify the desired initial subset, and execute CALL
GRAYCODE in a loop that iterates 2**n-1 times. The sequence of subsets that are
generated by CALL GRAYCODE is cyclical, so you can begin with any subset you want.

Using the CALL GRAYCODE Routine with Macros You can call the GRAYCODE routine
when you use the %SYSCALL macro. Differences exist when you use CALL
GRAYCODE in a DATA step and when you use the routine with macros. The following
list describes usage with macros:

� All arguments must be initialized to nonblank values.
� If you use the character-variable argument, then it must be initialized to a

nonblank, nonnumeric character string that contains at least n characters.
� If you use the in-out argument, then it must be initialized to a string that contains

two characters that are not blanks, digits, decimal points, or plus and minus signs.

If %SYSCALL identifies an argument as being the wrong type, or if %SYSCALL is
unable to identify the type of argument, then &SYSERR and &SYSINFO are not set.

Otherwise, if an error occurs during the execution of the CALL GRAYCODE routine,
then both of the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 0 if the value of k on input is negative
� the index of the item that was added or removed from the subset if the value of k

on input is a valid nonnegative integer.

Functions and CALL Routines � CALL GRAYCODE Routine 449

Examples

Example 1: Using a Character Variable and Positive Initial k with CALL GRAYCODE The
following example uses the CALL GRAYCODE routine to generate subsets in a minimal
change order.

data _null_;
x=’++++’;
n=length(x);
k=countc(x, ’+’);
put ’ 1’ +3 k= +2 x=;
nsubs=2**n;
do i=2 to nsubs;

call graycode(k, x, n, ’+-’);
put i 5. +3 k= +2 x=;

end;
run;

SAS writes the following output to the log:

1 k=4 x=++++
2 k=3 x=-+++
3 k=2 x=-+-+
4 k=3 x=++-+
5 k=2 x=+--+
6 k=1 x=---+
7 k=0 x=----
8 k=1 x=+---
9 k=2 x=++--
10 k=1 x=-+--
11 k=2 x=-++-
12 k=3 x=+++-
13 k=2 x=+-+-
14 k=1 x=--+-
15 k=2 x=--++
16 k=3 x=+-++

Example 2: Using %SYSCALL with Numeric Variables and Negative k The following
example uses the %SYSCALL macro with numeric variables to generate subsets in a
minimal change order.

%macro test;
%let n=3;
%let x1=.;
%let x2=.;
%let x3=.;
%let k=-1;
%let nsubs=%eval(2**&n + 1);
%put nsubs=&nsubs k=&k x: &x1 &x2 &x3;
%do j=1 %to &nsubs;

%syscall graycode(k, x1, x2, x3);
%put &j: k=&k x: &x1 &x2 &x3 sysinfo=&sysinfo;

%end;
%mend;

%test;

450 CALL GRAYCODE Routine � Chapter 4

SAS writes the following output to the log:

nsubs=9 k=-1 x: . . .
1: k=0 x: 0 0 0 sysinfo=0
2: k=1 x: 1 0 0 sysinfo=1
3: k=2 x: 1 1 0 sysinfo=2
4: k=1 x: 0 1 0 sysinfo=1
5: k=2 x: 0 1 1 sysinfo=3
6: k=3 x: 1 1 1 sysinfo=1
7: k=2 x: 1 0 1 sysinfo=2
8: k=1 x: 0 0 1 sysinfo=1
9: k=0 x: 0 0 0 sysinfo=3

Example 3: Using %SYSCALL with a Character Variable and Negative k The following
example uses the %SYSCALL macro with a character variable to generate subsets in a
minimal change order.

%macro test(n);
%*** Initialize the character variable to a

sufficiently long nonblank, nonnumeric value. ;
%let x=%sysfunc(repeat(_, &n-1));
%let k=-1;
%let nsubs=%eval(2**&n + 1);
%put nsubs=&nsubs k=&k x="&x";
%do j=1 %to &nsubs;

%syscall graycode(k, x, n);
%put &j: k=&k x="&x" sysinfo=&sysinfo;

%end;
%mend;

%test(3);

SAS writes the following output to the log:

nsubs=9 k=-1 x="___"
1: k=0 x="OOO" sysinfo=0
2: k=1 x="IOO" sysinfo=1
3: k=2 x="IIO" sysinfo=2
4: k=1 x="OIO" sysinfo=1
5: k=2 x="OII" sysinfo=3
6: k=3 x="III" sysinfo=1
7: k=2 x="IOI" sysinfo=2
8: k=1 x="OOI" sysinfo=1
9: k=0 x="OOO" sysinfo=3

See Also

Functions:
“GRAYCODE Function” on page 781

Functions and CALL Routines � CALL IS8601_CONVERT Routine 451

CALL IS8601_CONVERT Routine

Converts an ISO 8601 interval to datetime and duration values, or converts datetime and duration
values to an ISO 8601 interval.

Category: Date and Time

Syntax
CALL IS8601_CONVERT(convert-from, convert-to, < from-variables>, <to-variables>,

<date_time_replacements>

Arguments

convert-from
specifies a keyword in single quotation marks that indicates whether the source for
the conversion is an interval, a datetime and duration value, or a duration value.
convert-from can have one of the following values:

’intvl’ specifies that the source value for the conversion is an interval
value.

’dt/du’ specifies that the source value for the conversion is a
datetime/duration value.

’du/dt’ specifies that the source value for the conversion is a
duration/datetime value.

’dt/dt’ specifies that the source value for the conversion is a
datetime/datetime value.

’du’ specifies that the source value for the conversion is a duration
value.

convert-to
specifies a keyword in single quotation marks that indicates the results of the
conversion. convert-to can have one of the following values:

’intvl’ specifies to create an interval value.

’dt’/du’ specifies to create a datetime/duration interval.

’du/dt’ specifies to create a duration/datetime interval.

’dt/dt’ specifies to create a datetime/datetime interval.

’du’ specifies to create a duration.

’start’ specifies to create a value that is the beginning datetime or
duration of an interval value.

’end’ specifies to create a value that is the ending datetime or duration
of an interval value.

from-variable
specifies one or two variables that contain the source value. Specify one variable for
an interval value and two variables, one each, for datetime and duration values. The
datetime and duration values are interval components where the first value is the

452 CALL IS8601_CONVERT Routine � Chapter 4

beginning value of the interval and the second value is the ending value of the
interval.
Requirement: An integer variable must be at least a 16-byte character variable

whose value is determined by reading the value using either the $N8601B
informat or the $N8601E informat, or the integer variable is an integer value
returned from invoking the CALL ISO8601_CONVERT routine.

Requirement: A datetime value must be either a SAS datetime value or an 8-byte
character value that is read by the $N8601B informat or the $N8601E informat, or
by invoking the CALL ISO8601_CONVERT routine.

Requirement: A duration value must be a numeric value that represents the
number of seconds in the duration or an 8–byte character value whose value is
determined by reading the value using either the $N8601B informat or the
$N8601E informat, or by invoking the CALL ISO8601_CONVERT routine.

to-variable
specifies one or two variables that contain converted values. Specify one variable for
in interval value and two variables, one each, for datetime and duration values.
Requirement: The interval variable must be at least a 16-byte character variable.
Tip: The datetime and duration variables can be either numeric or character. To

avoid losing precision of a numeric value, the length of a numeric variable needs to
be at least eight characters. Datetime and duration character variables must be at
least 16 bytes; they are padded with blank characters for values that are less than
the length of the variable.

date_time_replacements
specifies date or time component values to use when a month, day, or time component
is omitted from an interval, datetime, or duration value. date_time_replacements is
specified as a series of numbers separated by a comma to represent, in this order, the
year, month, day, hour, minute, or second. Components of date_time_replacements
can be omitted only in the reverse order, seconds, minutes, hours, day, and month. If
no substitute values are specified, the conversion is done using default values.
Defaults: The following are default values for omitted date and time components:

month 1

day 1

hour 0

minute 0

second 0
Requirements: A year component must be part of the datetime or duration value,

and therefore is not valid in date_time_replacements. A comma is required as a
placeholder for the year in date_time_replacements. For example, in the
replacement value string, ,9,4,,2,’, the first comma is a placeholder for a year
value.

Examples

This DATA step uses the ISO8601_CONVERT function to do the following:
� create an interval by using datetime and duration values
� create datetime and duration values from an interval that was created using the

CALL IS8601_CONVERT routine
� create an interval from datetime and duration values, using replacement values

for omitted date and time components in the datetime value

Functions and CALL Routines � CALL IS8601_CONVERT Routine 453

For easier reading, numeric variables end with an N and character variables end with a
C.

data _null_;

/** declare variable length and type **/
/** Character datetime and duration values must be at least **/
/** 16 characters. In order not to lose precision, the **/
/** numeric datetime value has a length of 8. **/

length dtN duN 8 dtC duC $16 intervalC $32;

/** assign a numeric datetime value and a **/
/** character duration value. **/

dtN=’15Sep2008:09:00:00’dt;
duC=input(’P2y3m4dT5h6m7s’, $n8601b.);
put dtN=;
put duC=;

/** Create an interval from a datetime and duration value **/
/** and format it using the ISO 8601 extended notation for **/
/** character values. **/

call is8601_convert(’dt/du’, ’intvl’, dtN, duC, intervalC);

put ’** Character interval created from datetime and duration values **/’;
put intervalC $n8601e.;
put ’ ’;

/** Create numeric datetime and duration values from an interval **/
/** and format it using the ISO 8601 extended notation for **/
/** numeric values. **/

call is8601_convert(’intvl’, ’dt/du’, intervalC, dtN, duN);

put ’** Character datetime and duration created from an interval **/’;
put dtN=;
put duN=;
put ’ ’;

/** assign a new datetime value with omitted components **/

dtC=input(’2009---15T10:-:-’, $n8601b.);

put ’** This datetime is a character value. **’;
put dtC $n8601h.;
put ’ ’;

/** Create an interval by reading in a datetime value **/
/** with omitted date and time components. Use replacement **/
/** values for the month, minutes, and seconds. **/

call is8601_convert(’du/dt’, ’intvl’, duC, dtC, intervalC,,7,,,35,45);

454 CALL LABEL Routine � Chapter 4

put ’** Interval created using a datetime with omitted values, **’;
put ’** inserting replacement values for month (7), minute (35) **’;
put ’** seconds (45). **’;
put intervalC $n8601e.;
put ’ ’;

run;

The following output appears in the SAS log:

dtN=1537088400
duC=0002304050607FFC
** Character interval created from datetime and duration values **/
2008-09-15T09:00:00.000/P2Y3M4DT5H6M7S

** Character datetime and duration created from an interval **/
dtN=1537088400
duN=71211967

** This datetime is a character value. **
2009---15T10:-:-

** Interval created using a datetime with omitted values, **
** inserting replacement values for month (7), minute (35) **
** seconds (45). **

P2Y3M4DT5H6M7S/2009-07-15T10:35:45
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.03 seconds

CALL LABEL Routine
Assigns a variable label to a specified character variable.

Category: Variable Control

Syntax
CALL LABEL(variable-1,variable-2);

Arguments

variable-1
specifies any SAS variable. If variable-1 does not have a label, the variable name is
assigned as the value of variable-2.

variable-2
specifies any SAS character variable. Variable labels can be up to 256 characters
long. Therefore, the length of variable-2 should be at least 256 characters to avoid
truncating variable labels.

Note: To conserve space, you should set the length of variable-2 to the length of
the label for variable-1, if it is known. �

Functions and CALL Routines � CALL LEXCOMB Routine 455

Details
The CALL LABEL routine assigns the label of the variable-1 variable to the character
variable variable-2.

Examples

This example uses the CALL LABEL routine with array references to assign the
labels of all variables in the data set OLD as values of the variable LAB in data set
NEW:

data new;
set old;

/* lab is not in either array */
length lab $256;

/* all character variables in old */
array abc{*} _character_;

/* all numeric variables in old */
array def{*} _numeric_;
do i=1 to dim(abc);

/* get label of character variable */
call label(abc{i},lab);

/* write label to an observation */
output;

end;
do j=1 to dim(def);

/* get label of numeric variable */
call label(def{j},lab);

/* write label to an observation */
output;

end;
stop;
keep lab;

run;

See Also

Function:

“VLABEL Function” on page 1175

CALL LEXCOMB Routine

Generates all distinct combinations of the non-missing values of n variables taken k at a time in
lexicographic order.

Category: Combinatorial

Interaction: When invoked by the %SYSCALL macro statement, CALL LEXCOMB
removes the quotation marks from its arguments. For more information, see “Using
CALL Routines and the %SYSCALL Macro Statement” on page 311.

456 CALL LEXCOMB Routine � Chapter 4

Syntax
CALL LEXCOMB(count, k, variable-1, …, variable-n);

Arguments

count
specifies an integer value that is assigned values from 1 to the number of
combinations in a loop.

k
specifies an integer constant, variable, or expression between 1 and n, inclusive, that
specifies the number of items in each combination.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you call the LEXCOMB routine.
Tip: After calling LEXCOMB, the first k variables contain the values in one

combination.

Details

The Basics Use the CALL LEXCOMB routine in a loop where the first argument to
CALL LEXCOMB takes each integral value from 1 to the number of distinct
combinations of the non-missing values of the variables. In each call to LEXCOMB
within this loop, k should have the same value.

Number of Combinations When all of the variables have non-missing, unequal values,
then the number of combinations is COMB(n,k). If the number of variables that have
missing values is m, and all the non-missing values are unequal, then LEXCOMB
produces COMB(n-m,k) combinations because the missing values are omitted from the
combinations.

When some of the variables have equal values, the exact number of combinations is
difficult to compute. If you cannot compute the exact number of combinations, use the
LEXCOMB function instead of the CALL LEXCOMB routine.

CALL LEXCOMB Processing On the first call to the LEXCOMB routine, the following
actions occur:

� The argument types and lengths are checked for consistency.
� The m missing values are assigned to the last m arguments.
� The n-m non-missing values are assigned in ascending order to the first n-m

arguments following count.

On subsequent calls, up to and including the last combination, the next distinct
combination of the non-missing values is generated in lexicographic order.

If you call the LEXCOMB routine with the first argument out of sequence, then the
results are not useful. In particular, if you initialize the variables and then immediately
call the LEXCOMB routine with a first argument of j, you will not get the jth combination
(except when j is 1). To get the jth combination, you must call the LEXCOMB routine j
times, with the first argument taking values from 1 through j in that exact order.

Using the CALL LEXCOMB Routine with Macros You can call the LEXCOMB routine
when you use the %SYSCALL macro. In this case, the variable arguments are not

Functions and CALL Routines � CALL LEXCOMB Routine 457

required to be the same length, but they are required to be the same type. If
%SYSCALL identifies an argument as numeric, then %SYSCALL reformats the
returned value.

If an error occurs during the execution of the CALL LEXCOMB routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.

� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 1 if count=1 and at lease one variable has a non-missing value

� 1 if the value of variable-1 changed

� j if variable-1 through variable-i did not change, but variable-j did change, where
j=i+1

� –1 if all distinct combinations have already been generated

Comparisons
The CALL LEXCOMB routine generates all distinct combinations of the non-missing
values of n variables taken k at a time in lexicographic order. The CALL ALLCOMB
routine generates all combinations of the values of n variables taken k at a time in a
minimal change order.

Examples

Example 1: Using CALL LEXCOMB in a DATA Step The following example calls the
LEXCOMB routine to generate distinct combinations in lexicographic order.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
n=dim(x);
k=3;
ncomb=comb(n,k);
do j=1 to ncomb;

call lexcomb(j, k, of x[*]);
put j 5. +3 x1-x3;

end;
run;

SAS writes the following output to the log:

1 ant bee cat
2 ant bee dog
3 ant bee ewe
4 ant cat dog
5 ant cat ewe
6 ant dog ewe
7 bee cat dog
8 bee cat ewe
9 bee dog ewe
10 cat dog ewe

Example 2: Using CALL LEXCOMB with Macros The following is an example of the
CALL LEXCOMB routine that is used with macros. The output includes values for the
%SYSINFO macro.

458 CALL LEXCOMB Routine � Chapter 4

%macro test;
%let x1=ant;
%let x2=baboon;
%let x3=baboon;
%let x4=hippopotamus;
%let x5=zebra;
%let k=2;
%let ncomb=%sysfunc(comb(5,&k));

%do j=1 %to &ncomb;
%syscall lexcomb(j, k, x1, x2, x3, x4, x5);
%let jfmt=%qsysfunc(putn(&j, 5.));
%let pad=%qsysfunc(repeat(%str(), 20-%length(&x1 &x2)));
%put &jfmt: &x1 &x2 &pad sysinfo=&sysinfo;
%if &sysinfo < 0 %then %let j=%eval(&ncomb+1);

%end;
%mend;

%test

SAS writes the following output to the log:

1: ant baboon sysinfo=1
2: ant hippopotamus sysinfo=2
3: ant zebra sysinfo=2
4: baboon baboon sysinfo=1
5: baboon hippopotamus sysinfo=2
6: baboon zebra sysinfo=2
7: hippopotamus zebra sysinfo=1
8: hippopotamus zebra sysinfo=-1

See Also

Functions and CALL Routines:

“LEXCOMB Function” on page 868

“CALL ALLCOMB Routine” on page 429

Functions and CALL Routines � CALL LEXCOMBI Routine 459

CALL LEXCOMBI Routine

Generates all combinations of the indices of n objects taken k at a time in lexicographic order.

Category: Combinatorial

Syntax
CALL LEXCOMBI(n, k, index-1, …, index-k);

Arguments

n
is a numeric constant, variable, or expression that specifies the total number of
objects.

k
is a numeric constant, variable, or expression that specifies the number of objects in
each combination.

index
is a numeric variable that contains indices of the objects in the combination that is
returned. Indices are integers between 1 and n, inclusive.
Tip: If index-1 is missing or zero, then the CALL LEXCOMBI routine initializes the

indices to index-1=1 through index-k=k. Otherwise, CALL LEXCOMBI creates a
new combination by removing one index from the combination and adding another
index.

Details

CALL LEXCOMBI Processing Before the first call to the LEXCOMBI routine, complete
one of the following tasks:

� Set index-1 equal to zero or to a missing value.
� Initialize index-1 through index-k to distinct integers between 1 and n inclusive.

The number of combinations of n objects taken k at a time can be computed as
COMB(n,k). To generate all combinations of n objects taken k at a time, call
LEXCOMBI in a loop that executes COMB(n,k) times.

460 CALL LEXCOMBI Routine � Chapter 4

Using the CALL LEXCOMBI Routine with Macros If you call the LEXCOMBI routine
from the macro processor with %SYSCALL, then you must initialize all arguments to
numeric values. %SYSCALL reformats the values that are returned.

If an error occurs during the execution of the CALL LEXCOMBI routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 1 if the value of variable-1 changed
� j if variable-1 through variable-i did not change, but variable-j did change, where

j=i+1
� –1 if all distinct combinations have already been generated

Comparisons
The CALL LEXCOMBI routine generates all combinations of the indices of n objects
taken k at a time in lexicographic order. The CALL ALLCOMBI routine generates all
combinations of the indices of n objects taken k at a time in a minimum change order.

Examples

Example 1: Using the CALL LEXCOMBI Routine with the DATA Step The following
example uses the CALL LEXCOMBI routine to generate combinations of indices in
lexicographic order.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
array c[3] $3;
array i[3];
n=dim(x);
k=dim(i);
i[1]=0;
ncomb=comb(n,k);
do j=1 to ncomb;

call lexcombi(n, k, of i[*]);
do h=1 to k;

c[h]=x[i[h]];
end;
put @4 j= @10 ’i= ’ i[*] +3 ’c= ’ c[*];

end;
run;

Functions and CALL Routines � CALL LEXCOMBI Routine 461

SAS writes the following output to the log:

j=1 i= 1 2 3 c= ant bee cat
j=2 i= 1 2 4 c= ant bee dog
j=3 i= 1 2 5 c= ant bee ewe
j=4 i= 1 3 4 c= ant cat dog
j=5 i= 1 3 5 c= ant cat ewe
j=6 i= 1 4 5 c= ant dog ewe
j=7 i= 2 3 4 c= bee cat dog
j=8 i= 2 3 5 c= bee cat ewe
j=9 i= 2 4 5 c= bee dog ewe
j=10 i= 3 4 5 c= cat dog ewe

Example 2: Using the CALL LEXCOMBI Routine with Macros and Displaying the Return
Code The following example uses the CALL LEXCOMBI routine with macros. The
output includes values for the %SYSINFO macro.

%macro test;
%let x1=0;
%let x2=0;
%let x3=0;
%let n=5;
%let k=3;
%let ncomb=%sysfunc(comb(&n,&k));
%do j=1 %to &ncomb+1;

%syscall lexcombi(n,k,x1,x2,x3);
%let jfmt=%qsysfunc(putn(&j,5.));
%let pad=%qsysfunc(repeat(%str(),6-%length(&x1 &x2 &x3)));
%put &jfmt: &x1 &x2 &x3 &pad sysinfo=&sysinfo;

%end;
%mend;

%test

SAS writes the following output to the log:

1: 1 2 3 sysinfo=1
2: 1 2 4 sysinfo=3
3: 1 2 5 sysinfo=3
4: 1 3 4 sysinfo=2
5: 1 3 5 sysinfo=3
6: 1 4 5 sysinfo=2
7: 2 3 4 sysinfo=1
8: 2 3 5 sysinfo=3
9: 2 4 5 sysinfo=2
10: 3 4 5 sysinfo=1
11: 3 4 5 sysinfo=-1

See Also

Functions and CALL Routines:

“CALL LEXCOMB Routine” on page 455

“CALL ALLCOMBI Routine” on page 431

462 CALL LEXPERK Routine � Chapter 4

CALL LEXPERK Routine

Generates all distinct permutations of the non-missing values of n variables taken k at a time in
lexicographic order.

Category: Combinatorial
Interaction: When invoked by THE %SYSCALL macro statement, CALL LEXPERK
removes the quotation marks from its arguments. For more information, see “Using
CALL Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL LEXPERK(count, k, variable-1, …, variable-n);

Arguments

count
specifies an integer variable that is assigned a value from 1 to the number of
permutations in a loop.

k
specifies an integer constant, variable, or expression between 1 and n, inclusive, that
specifies the number of items in each permutation.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you call the LEXPERK routine.
Tip: After calling LEXPERK, the first k variables contain the values in one

permutation.

Details

The Basics Use the CALL LEXPERK routine in a loop where the first argument to
CALL LEXPERK accepts each integral value from 1 to the number of distinct
permutations of k non-missing values of the variables. In each call to LEXPERK within
this loop, k should have the same value.

Functions and CALL Routines � CALL LEXPERK Routine 463

Number of Permutations When all of the variables have non-missing, unequal values,
the number of permutations is PERM(,k). If the number of variables that have missing
values is m, and all the non-missing values are unequal, CALL LEXPERK produces
PERM(n-m,k) permutations because the missing values are omitted from the
permutations. When some of the variables have equal values, the exact number of
permutations is difficult to compute. If you cannot compute the exact number of
permutations, use the LEXPERK function instead of the CALL LEXPERK routine.

CALL LEXPERK Processing On the first call to the LEXPERK routine, the following
actions occur:

� The argument types and lengths are checked for consistency.
� The m missing values are assigned to the last m arguments.
� The n-m non-missing values are assigned in ascending order to the first n-m

arguments following count.

On subsequent calls, up to and including the last permutation, the next distinct
permutation of k non-missing values is generated in lexicographic order.

If you call the LEXPERK routine with the first argument out of sequence, then the
results are not useful. In particular, if you initialize the variables and then immediately
call the LEXPERK routine with a first argument of j, you will not get thejth permutation
(except when j is 1). To get the jth permutation, you must call LEXPERK j times, with
the first argument taking values from 1 through j in that exact order.

Using the CALL LEXPERK Routine with Macros You can call the LEXPERK routine
when you use the %SYSCALL macro. In this case, the variable arguments are not
required to be the same length, but they are required to be the same type. If
%SYSCALL identifies an argument as numeric, then %SYSCALL reformats the
returned value.

If an error occurs during the execution of the CALL LEXPERK routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 1 if count=1 and at least one variable has a non-missing value
� 1 if count>1 and the value of variable-1 changed
� j if count>1 and variable-1 through variable-i did not change, but variable-j did

change, where j=i+1
� –1 if all distinct permutations were already generated

Comparisons
The CALL LEXPERK routine generates all distinct permutations of the non-missing
values of n variables taken k at a time in lexicographic order. The CALL ALLPERM
routine generates all permutations of the values of several variables in a minimal
change order.

Examples

Example 1: Using CALL LEXPERK in a DATA Step The following is an example of the
CALL LEXPERK routine.

data _null_;
array x[5] $3 (’V’ ’W’ ’X’ ’Y’ ’Z’);

464 CALL LEXPERK Routine � Chapter 4

n=dim(x);
k=3;
nperm=perm(n,k);
do j=1 to nperm;

call lexperk(j, k, of x[*]);
put j 5. +3 x1-x3;

end;
run;

SAS writes the following output to the log:

1 V W X
2 V W Y
3 V W Z
4 V X W
5 V X Y
6 V X Z
7 V Y W
8 V Y X
9 V Y Z
10 V Z W
11 V Z X
12 V Z Y
13 W V X
14 W V Y
15 W V Z
16 W X V
17 W X Y
18 W X Z
19 W Y V
20 W Y X
21 W Y Z
22 W Z V
23 W Z X
24 W Z Y
25 X V W
26 X V Y
27 X V Z
28 X W V
29 X W Y
30 X W Z
31 X Y V
32 X Y W
33 X Y Z
34 X Z V
35 X Z W
36 X Z Y
37 Y V W
38 Y V X
39 Y V Z
40 Y W V
41 Y W X
42 Y W Z
43 Y X V
44 Y X W

Functions and CALL Routines � CALL LEXPERK Routine 465

45 Y X Z
46 Y Z V
47 Y Z W
48 Y Z X
49 Z V W
50 Z V X
51 Z V Y
52 Z W V
53 Z W X
54 Z W Y
55 Z X V
56 Z X W
57 Z X Y
58 Z Y V
59 Z Y W
60 Z Y X

Example 2: Using CALL LEXPERK with Macros The following is an example of the
CALL LEXPERK routine that is used with macros. The output includes values for the
%SYSINFO macro.

%macro test;
%let x1=ant;
%let x2=baboon;
%let x3=baboon;
%let x4=hippopotamus;
%let x5=zebra;
%let k=2;
%let nperk=%sysfunc(perm(5,&k));
%do j=1 %to &nperk;

%syscall lexperk(j, k, x1, x2, x3, x4, x5);
%let jfmt=%qsysfunc(putn(&j,5.));
%let pad=%qsysfunc(repeat(%str(),20-%length(&x1 &x2)));
%put &jfmt: &x1 &x2 &pad sysinfo=&sysinfo;
%if &sysinfo<0 %then %let j=%eval(&nperk+1);

%end;
%mend;

%test

SAS writes the following output to the log:

1: ant baboon sysinfo=1
2: ant hippopotamus sysinfo=2
3: ant zebra sysinfo=2
4: baboon ant sysinfo=1
5: baboon baboon sysinfo=2
6: baboon hippopotamus sysinfo=2
7: baboon zebra sysinfo=2
8: hippopotamus ant sysinfo=1
9: hippopotamus baboon sysinfo=2
10: hippopotamus zebra sysinfo=2
11: zebra ant sysinfo=1
12: zebra baboon sysinfo=2
13: zebra hippopotamus sysinfo=2
14: zebra hippopotamus sysinfo=-1

466 CALL LEXPERM Routine � Chapter 4

See Also

Functions and CALL Routines:
“CALL ALLPERM Routine” on page 434
“LEXPERM Function” on page 875
“CALL RANPERK Routine” on page 500
“CALL RANPERM Routine” on page 502

CALL LEXPERM Routine

Generates all distinct permutations of the non-missing values of several variables in lexicographic
order.

Category: Combinatorial
Interaction: When invoked by the %SYSCALL macro statement, CALL LEXPERM
removes the quotation marks from its arguments. For more information, see “Using
CALL Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL LEXPERM(count, variable-1 <, …, variable-N>);

Arguments

count
specifies a numeric variable that has an integer value that ranges from 1 to the
number of permutations.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted by LEXPERM.
Requirement: Initialize these variables before you call the LEXPERM routine.

Details

Determine the Number of Distinct Permutations These variables are defined for use in
the equation that follows:

N specifies the number of variables that are being permuted—that is,
the number of arguments minus one.

M specifies the number of missing values among the variables that are
being permuted.

d specifies the number of distinct non-missing values among the
arguments.

Ni for i=1 through i=d, Ni specifies the number of instances of the ith
distinct value.

Functions and CALL Routines � CALL LEXPERM Routine 467

The number of distinct permutations of non-missing values of the arguments is
expressed as follows:

� �
��� ��� � ��������

������������
�� � �

CALL LEXPERM Processing Use the CALL LEXPERM routine in a loop where the
argument count accepts each integral value from 1 to P. You do not need to compute P
provided you exit the loop when CALL LEXPERM returns a value that is less than zero.

For 1=count<P, the following actions occur:
� The argument types and lengths are checked for consistency.
� The M missing values are assigned to the last M arguments.
� The N-M non-missing values are assigned in ascending order to the first N-M

arguments following count.
� CALL LEXPERM returns 1.

For 1<count<=P, the following actions occur:
� The next distinct permutation of the non-missing values is generated in

lexicographic order.
� If variable-1 through variable-I did not change, but variable-J did change, where

J=I+1, then CALL LEXPERM returns J.

For count>P, CALL LEXPERM returns –1.
If the CALL LEXPERM routine is executed with the first argument out of sequence,

the results might not be useful. In particular, if you initialize the variables and then
immediately execute CALL LEXPERM with a first argument of K, you will not get the
Kth permutation (except when K is 1). To get the Kth permutation, you must execute
CALL LEXPERM K times, with the first argument accepting values from 1 through K
in that exact order.

Using the CALL LEXPERM Routine with Macros You can call the LEXPERM routine
when you use the %SYSCALL macro. In this case, the variable arguments are not
required to be the same length, but they must be the same type. If %SYSCALL
identifies an argument as numeric, then %SYSCALL reformats the returned value.

If an error occurs during the execution of the CALL LEXPERM routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than –100.

If there are no errors, then &SYSERR is set to zero, and &SYSINFO is set to one of
the following values:

� 1 if 1=count<P
� 1 if 1<count<=P and the value of variable-1 changed
� J if 1<count<=P and variable-1 through variable-I did not change, but variable-J

did change, where J=I+1
� –1 if count>P

Comparisons
SAS provides three functions or CALL routines for generating all permutations:

� ALLPERM generates all possible permutations of the values, missing or
non-missing, of several variables. Each permutation is formed from the previous
permutation by interchanging two consecutive values.

468 CALL LEXPERM Routine � Chapter 4

� LEXPERM generates all distinct permutations of the non-missing values of
several variables. The permutations are generated in lexicographic order.

� LEXPERK generates all distinct permutations of K of the non-missing values of N
variables. The permutations are generated in lexicographic order.

ALLPERM is the fastest of these functions and CALL routines. LEXPERK is the
slowest.

Examples

Example 1: Using CALL LEXPERM in a DATA Step The following example uses the
DATA step to generate all distinct permutations of the non-missing values of several
variables in lexicographic order.

data _null_;
array x[4] $3 (’ant’ ’bee’ ’cat’ ’dog’);
n=dim(x);
nfact=fact(n);
do i=1 to nfact;

call lexperm(i, of x[*]);
put i 5. +2 x[*];

end;
run;

SAS writes the following output to the log:

1 ant bee cat dog
2 ant bee dog cat
3 ant cat bee dog
4 ant cat dog bee
5 ant dog bee cat
6 ant dog cat bee
7 bee ant cat dog
8 bee ant dog cat
9 bee cat ant dog
10 bee cat dog ant
11 bee dog ant cat
12 bee dog cat ant
13 cat ant bee dog
14 cat ant dog bee
15 cat bee ant dog
16 cat bee dog ant
17 cat dog ant bee
18 cat dog bee ant
19 dog ant bee cat
20 dog ant cat bee
21 dog bee ant cat
22 dog bee cat ant
23 dog cat ant bee
24 dog cat bee ant

Functions and CALL Routines � CALL LOGISTIC Routine 469

Example 2: Using CALL LEXPERM with Macros The following is an example of the
CALL LEXPERM routine that is used with macros. The output includes values for the
%SYSINFO macro.

%macro test;
%let x1=ant;
%let x2=baboon;
%let x3=baboon;
%let x4=hippopotamus;
%let n=4;
%let nperm=%sysfunc(perm(4));
%do j=1 %to &nperm;

%syscall lexperm(j,x1,x2,x3,x4);
%let jfmt=%qsysfunc(putn(&j,5.));
%put &jfmt: &x1 &x2 &x3 &x4 sysinfo=&sysinfo;
%if &sysinfo<0 %then %let j=%eval(&nperm+1);

%end;
%mend;

%test;

SAS writes the following output to the log:

1: ant baboon baboon hippopotamus sysinfo=1
2: ant baboon hippopotamus baboon sysinfo=3
3: ant hippopotamus baboon baboon sysinfo=2
4: baboon ant baboon hippopotamus sysinfo=1
5: baboon ant hippopotamus baboon sysinfo=3
6: baboon baboon ant hippopotamus sysinfo=2
7: baboon baboon hippopotamus ant sysinfo=3
8: baboon hippopotamus ant baboon sysinfo=2
9: baboon hippopotamus baboon ant sysinfo=3
10: hippopotamus ant baboon baboon sysinfo=1
11: hippopotamus baboon ant baboon sysinfo=2
12: hippopotamus baboon baboon ant sysinfo=3
13: hippopotamus baboon baboon ant sysinfo=-1

See Also

Functions and CALL Routines:

“LEXPERM Function” on page 875

“CALL ALLPERM Routine” on page 434

“LEXPERK Function” on page 873

“CALL RANPERK Routine” on page 500

“CALL RANPERM Routine” on page 502

CALL LOGISTIC Routine

Applies the logistic function to each argument.

470 CALL MISSING Routine � Chapter 4

Category: Mathematical

Syntax
CALL LOGISTIC(argument<, argument, ...>)

Arguments

argument
is a numeric variable.
Restriction The CALL LOGISTIC routine only accepts variables as valid

arguments. Do not use a constant or a SAS expression because the CALL routine
is unable to update these arguments.

Details
The CALL LOGISTIC routine replaces each argument by the logistic value of that
argument. For example �� is replaced by

�
��

� � �
��

If any argument contains a missing value, then CALL LOGISTIC returns missing
values for all the arguments.

Examples

The following SAS statements produce these results.

SAS Statements Results

x=0.5;
y=-0.5;
call logistic(x,y);
put x= y=;

x=0.6224593312 y=0.3775406688

CALL MISSING Routine

Assigns missing values to the specified character or numeric variables.

Category: Character

Syntax
CALL MISSING(varname1<, varname2, ...>);

Functions and CALL Routines � CALL MISSING Routine 471

Arguments

varname
specifies the name of SAS character or numeric variables.

Details

The CALL MISSING routine assigns an ordinary numeric missing value (.) to each
numeric variable in the argument list.

The CALL MISSING routine assigns a character missing value (a blank) to each
character variable in the argument list. If the current length of the character variable
equals the maximum length, the current length is not changed. Otherwise, the current
length is set to 1.

You can mix character and numeric variables in the argument list.

Comparison

The MISSING function checks whether the argument has a missing value but does not
change the value of the argument.

Examples

SAS Statements Results

prod=’shoes’;
invty=7498;
sales=23759;
call missing(sales);
put prod= invty= sales=; prod=shoes invty=7498 sales=.

prod=’shoes’;
invty=7498;
sales=23759;
call missing(prod,invty);
put prod= invty= sales=; prod= invty=. sales=23759

prod=’shoes’;
invty=7498;
sales=23759;
call missing(of _all_);
put prod= invty= sales=; prod= invty=. sales=.

See Also

Function:

“MISSING Function” on page 906

“How to Set Variable Values to Missing in a Data Step” in SAS Language Reference:
Concepts

472 CALL MODULE Routine � Chapter 4

CALL MODULE Routine

Calls an external routine without any return code.

Category: External Routines

Syntax
CALL MODULE(<cntl-string,>module-name<,argument-1, ..., argument-n>);

Arguments

cntl-string
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
CALL MODULE routine. You can use this option to help diagnose
problems caused by incorrect arguments or attribute tables. If
you specify the I option, the E option is implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
CALL MODULE routine generates is “Invalid argument to
function,” which is usually not enough information to determine
the cause of the error. The E option is useful for a production
environment, while the I option is preferable for a development or
debugging environment.

H provides brief help information about the syntax of the CALL
MODULE routine, the attribute file format, and suggested SAS
formats and informats.

module-name
is the name of the external module to use.

argument
is one or more arguments to pass to the requested routine.

CAUTION:
Be sure to use the correct arguments and attributes. If you use incorrect arguments or
attributes, you can cause the SAS System, and possibly your operating system, to
fail. �

Details
The CALL MODULE routine executes a routine module-name that resides in an
external library with the specified arguments.

CALL MODULE builds a parameter list using the information in the arguments and
a routine description and argument attribute table that you define in a separate file.
The attribute table is a sequential text file that contains descriptions of the routines
that you can invoke with the CALL MODULE routine. The purpose of the table is to
define how CALL MODULE should interpret its supplied arguments when it builds a
parameter list to pass to the external routine. The attribute table should contain a

Functions and CALL Routines � CALL MODULE Routine 473

description for each external routine that you intend to call, and descriptions of each
argument associated with that routine.

Before you invoke CALL MODULE, you must define the fileref of SASCBTBL to
point to the external file that contains the attribute table. You can name the file
whatever you want when you create it. This way, you can use SAS variables and
formats as arguments to CALL MODULE and ensure that these arguments are
properly converted before being passed to the external routine. If you do not define this
fileref, CALL MODULE calls the requested routine without altering the arguments.

CAUTION:
Using the CALL MODULE routine without a defined attribute table can cause the SAS
System to fail or force you to reset your computer. You need to use an attribute table for
all external functions that you want to invoke. �

Comparisons
The two CALL routines and four functions share identical syntax:

� The MODULEN and MODULEC functions return a number and a character,
respectively, while the routine CALL MODULE does not return a value.

� The CALL MODULEI routine and the functions MODULEIC and MODULEIN
permit vector and matrix arguments. Their return values are scalar. You can
invoke CALL MODULEI, MODULEIC, and MODULEIN only from the IML
procedure.

Examples

Example 1: Using the CALL MODULE Routine This example calls the xyz routine. Use
the following attribute table:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

The following is the sample SAS code that calls the xyz function:

data _null_;
call module(’xyz’,1,x);

run;

Example 2: Using the MODULEIN Function in the IML Procedure This example invokes
the changi routine from the TRYMOD.DLL module on a Windows platform. Use the
following attribute table:

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following PROC IML code calls the changi function:

proc iml;
x1=J(4,5,0);
do i=1 to 4;

do j=1 to 5;
x1[i,j]=i*10+j+3;

end;
end;

474 CALL POKE Routine � Chapter 4

y1=x1;
x2=x1;
y2=y1;
rc=modulein(’*i’,’changi’,6,x2);

Example 3: Using the MODULEN Function This example calls the Beep routine, which
is part of the Win32 API in the KERNEL32 Dynamic Link Library on a Windows
platform. Use the following attribute table:

routine Beep
minarg=2
maxarg=2
stackpop=called
callseq=byvalue
module=kernel32;

arg 1 num format=pib4.;
arg 2 num format=pib4.;

Assume that you name the attribute table file ’myatttbl.dat’. The following is the
sample SAS code that calls the Beep function:

filename sascbtbl ’myatttbl.dat’;
data _null_;

rc=modulen("*e","Beep",1380,1000);
run;

The previous code causes the computer speaker to beep.

See Also

Functions and CALL Routines:
“MODULEC Function” on page 910
“MODULEN Function” on page 910

CALL POKE Routine

Writes a value directly into memory on a 32-bit platform.

Category: Special
Restriction: Use on 32-bit platforms only.

Syntax
CALL POKE(source,pointer,<length>,<floating-point>);

Arguments

source
specifies a constant, variable, or expression that contains a value to write into
memory.

Functions and CALL Routines � CALL POKELONG Routine 475

pointer
specifies a numeric expression that contains the virtual address of the data that the
CALL POKE routine alters.

length
specifies a numeric constant, variable, or expression that contains the number of
bytes to write from the source to the address that is indicated by pointer. If you omit
length, the action that the CALL POKE routine takes depends on whether source is a
character value or a numeric value:

� If source is a character value, the CALL POKE routine copies the entire value of
source to the specified memory location.

� If source is a numeric value, the CALL POKE routine converts source into a long
integer and writes into memory the number of bytes that constitute a pointer.

Operating Environment Information: Under z/OS, pointers are 3 or 4 bytes
long, depending on the situation. �

floating-point
specifies that the value of source is stored as a floating-point number. The value of
floating-point can be any number.
Tip: If you do not use the floating-point argument, then source is stored as an

integer value.

Details
CAUTION:

The CALL POKE routine is intended only for experienced programmers in specific cases. If
you plan to use this routine, use extreme care both in your programming and in your
typing. Writing directly into memory can cause devastating problems. This routine
bypasses the normal safeguards that prevent you from destroying a vital element in
your SAS session or in another piece of software that is active at the time. �

If you do not have access to the memory location that you specify, the CALL POKE
routine returns an "Invalid argument" error.

You cannot use the CALL POKE routine on 64-bit platforms. If you attempt to use it,
SAS writes a message to the log stating that this restriction applies. If you have legacy
applications that use CALL POKE, change the applications and use CALL POKELONG
instead. You can use CALL POKELONG on both 32–bit and 64–bit platforms.

If you use the fourth argument, then a floating-point number is assumed to be the
value that is stored. If you do not use the fourth argument, then an integer value is
assumed to be stored.

See Also

Functions and CALL Routines:
“ADDR Function” on page 368
“CALL POKELONG Routine” on page 475
“PEEK Function” on page 974
“PEEKC Function” on page 975

CALL POKELONG Routine
Writes a value directly into memory on 32-bit and 64-bit platforms.

476 CALL PRXCHANGE Routine � Chapter 4

Category: Special

Syntax
CALL POKELONG(source,pointer<,length>,<floating-point>)

Arguments

source
specifies a character constant, variable, or expression that contains a value to write
into memory.

pointer
specifies a character string that contains the virtual address of the data that the
CALL POKELONG routine alters.

length
specifies a numeric SAS expression that contains the number of bytes to write from
the source to the address that is indicated by the pointer. If you omit length, the
CALL POKELONG routine copies the entire value of source to the specified memory
location.

floating-point
specifies that the value of source is stored as a floating-point number. The value of
floating-point can be any number.
Tip: If you do not use the floating-point argument, then source is stored as an

integer value.

Details
CAUTION:

The CALL POKELONG routine is intended only for experienced programmers in specific
cases. If you plan to use this routine, use extreme care both in your programming
and in your typing. Writing directly into memory can cause devastating problems. It
bypasses the normal safeguards that prevent you from destroying a vital element in
your SAS session or in another piece of software that is active at the time. �

If you do not have access to the memory location that you specify, the CALL
POKELONG routine returns an "Invalid argument" error.

If you use the fourth argument, then a floating-point number is assumed to be the
value that is stored. If you do not use the fourth argument, then an integer value is
assumed to be stored.

See Also
Functions and CALL Routines:
“CALL POKE Routine” on page 474

CALL PRXCHANGE Routine

Performs a pattern-matching replacement.

Functions and CALL Routines � CALL PRXCHANGE Routine 477

Category: Character String Matching
Restriction: Use with the PRXPARSE function.
Interaction: When invoked by the %SYSCALL macro statement, CALL PRXCHANGE
removes the quotation marks from its arguments. For more information, see “Using
CALL Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL PRXCHANGE (regular-expression-id, times, old-string <, new-string <,

result-length <, truncation-value <, number-of-changes>>>>);

Arguments

regular-expression-id
specifies a numeric variable with a value that is a pattern identifier that is returned
from the PRXPARSE function.

times
is a numeric constant, variable, or expression that specifies the number of times to
search for a match and replace a matching pattern.
Tip: If the value of times is -1, then all matching patterns are replaced.

old-string
specifies the character expression on which to perform a search and replace.
Tip: All changes are made to old-string if you do not use the new-string argument.

new-string
specifies a character variable in which to place the results of the change to old-string.
Tip: If you use the new-string argument in the call to the PRXCHANGE routine,

then old-string is not modified.

result-length
is a numeric variable with a return value that is the number of characters that are
copied into the result.
Tip: Trailing blanks in the value of old-string are not copied to new-string, and are

therefore not included as part of the length in result-length.

truncation-value
is a numeric variable with a returned value that is either 0 or 1, depending on the
result of the change operation:

0 if the entire replacement result is not longer than the length of
new-string.

1 if the entire replacement result is longer than the length of
new-string.

number-of-changes
is a numeric variable with a returned value that is the total number of replacements
that were made. If the result is truncated when it is placed into new-string, the
value of number-of-changes is not changed.

Details
The CALL PRXCHANGE routine matches and replaces a pattern. If the value of times
is -1, the replacement is performed as many times as possible.

478 CALL PRXCHANGE Routine � Chapter 4

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The CALL PRXCHANGE routine is similar to the PRXCHANGE function except that
the CALL routine returns the value of the pattern matching replacement as one of its
parameters instead of as a return argument.

The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

The following example replaces all occurrences of cat, rat, or bat with the value
TREE.

data _null_;
/* Use a pattern to replace all occurrences of cat, */
/* rat, or bat with the value TREE. */

length text $ 46;
RegularExpressionId = prxparse(’s/[crb]at/tree/’);
text = ’The woods have a bat, cat, bat, and a rat!’;

/* Use CALL PRXCHANGE to perform the search and replace. */
/* Because the argument times has a value of -1, the */
/* replacement is performed as many times as possible. */

call prxchange(RegularExpressionId, -1, text);
put text;

run;

SAS writes the following line to the log:

The woods have a tree, tree, tree, and a tree!

See Also

Functions and CALL routines:

“CALL PRXDEBUG Routine” on page 479

“CALL PRXFREE Routine” on page 481

“CALL PRXNEXT Routine” on page 482

“CALL PRXPOSN Routine” on page 484

“CALL PRXSUBSTR Routine” on page 487

“PRXCHANGE Function” on page 1010

“PRXPAREN Function” on page 1019

“PRXMATCH Function” on page 1015

“PRXPARSE Function” on page 1021

“PRXPOSN Function” on page 1023

Functions and CALL Routines � CALL PRXDEBUG Routine 479

CALL PRXDEBUG Routine

Enables Perl regular expressions in a DATA step to send debugging output to the SAS log.

Category: Character String Matching

Restriction: Use with the CALL PRXCHANGE, CALL PRXFREE, CALL PRXNEXT,
CALL PRXPOSN, CALL PRXSUBSTR, PRXPARSE, PRXPAREN, and PRXMATCH
functions and CALL routines. The PRXPARSE function is not DBCS compatible.

Syntax
CALL PRXDEBUG (on-off);

Arguments

on-off
specifies a numeric constant, variable, or expression. If the value of on-off is positive
and non-zero, then debugging is turned on. If the value of on-off is zero, then
debugging is turned off.

Details
The CALL PRXDEBUG routine provides information about how a Perl regular
expression is compiled, and about which steps are taken when a pattern is matched to a
character value.

You can turn debugging on and off multiple times in your program if you want to see
debugging output for particular Perl regular expression function calls.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

The following example produces debugging output.

data _null_;

/* Turn the debugging option on. */
call prxdebug(1);
putlog ’PRXPARSE: ’;
re = prxparse(’/[bc]d(ef*g)+h[ij]k$/’);
putlog ’PRXMATCH: ’;
pos = prxmatch(re, ’abcdefg_gh_’);

480 CALL PRXDEBUG Routine � Chapter 4

/* Turn the debugging option off. */
call prxdebug(0);

run;

The following lines are written to the SAS log.

Output 4.13 SAS Log Results from CALL PRXDEBUG

PRXPARSE:
Compiling REx ’[bc]d(ef*g)+h[ij]k$’ u
size 41 first at 1 v
rarest char g at 0 y
rarest char d at 0

1: ANYOF[bc](10) w
10: EXACT <d>(12)
12: CURLYX[0] {1,32767}(26)
14: OPEN1(16)
16: EXACT <e>(18)
18: STAR(21)
19: EXACT <f>(0)
21: EXACT <g>(23)
23: CLOSE1(25)
25: WHILEM[1/1](0)
26: NOTHING(27)
27: EXACT <h>(29)
29: ANYOF[ij](38)
38: EXACT <k>(40)
40: EOL(41)
41: END(0)

anchored ’de’ at 1 floating ’gh’ at 3..2147483647 (checking floating) x
stclass ’ANYOF[bc]’ minlen 7 U x

PRXMATCH:
Guessing start of match, REx ’[bc]d(ef*g)+h[ij]k$’ against ’abcdefg_gh_’...
Did not find floating substr ’gh’...
Match rejected by optimizer

The following items correspond to the lines that are numbered in the SAS log that is
shown above.

u This line shows the precompiled form of the Perl regular expression.
v Size specifies a value in arbitrary units of the compiled form of the Perl regular

expression. 41 is the label ID of the first node that performs a match.
w This line begins a list of program nodes in compiled form for regular expressions.
x These two lines provide optimizer information. In the example above, the

optimizer found that the match should contain the substring de at offset 1, and
the substring gh at an offset between 3 and infinity. To rule out a pattern match
quickly, Perl checks substring gh before it checks substring de.

The optimizer might use the information that the match begins at the first ID
(v), with a character class (y), and cannot be shorter than seven characters (U).

See Also

Functions and CALL routines:

“CALL PRXCHANGE Routine” on page 476
“CALL PRXFREE Routine” on page 481
“CALL PRXNEXT Routine” on page 482

Functions and CALL Routines � CALL PRXFREE Routine 481

“CALL PRXPOSN Routine” on page 484
“CALL PRXSUBSTR Routine” on page 487
“CALL PRXCHANGE Routine” on page 476

“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXMATCH Function” on page 1015

“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

CALL PRXFREE Routine

Frees memory that was allocated for a Perl regular expression.

Category: Character String Matching
Restriction: Use with the PRXPARSE function.

Syntax
CALL PRXFREE (regular-expression-id);

Arguments

regular-expression-id
specifies a numeric variable with a value that is the identification number that is
returned by the PRXPARSE function. regular-expression-id is set to missing if the
call to the PRXFREE routine occurs without error.

Details
The CALL PRXFREE routine frees unneeded resources that were allocated for a Perl
regular expression.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476

482 CALL PRXNEXT Routine � Chapter 4

“CALL PRXDEBUG Routine” on page 479
“CALL PRXNEXT Routine” on page 482
“CALL PRXPOSN Routine” on page 484
“CALL PRXSUBSTR Routine” on page 487
“CALL PRXCHANGE Routine” on page 476
“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXPAREN Function” on page 1019
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

CALL PRXNEXT Routine

Returns the position and length of a substring that matches a pattern, and iterates over multiple
matches within one string.

Category: Character String Matching
Restriction: Use with the PRXPARSE function.
Interaction: When invoked by the %SYSCALL macro statement, CALL PRXNEXT
removes the quotation marks from arguments. For more information, see “Using CALL
Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL PRXNEXT (regular-expression-id, start, stop, source, position, length);

Arguments

regular-expression-id
specifies a numeric variable with a value that is the identification number that is
returned by the PRXPARSE function.

start
is a numeric variable that specifies the position at which to start the pattern
matching in source. If the match is successful, CALL PRXNEXT returns a value of
position + MAX(1, length). If the match is not successful, the value of start is not
changed.

stop
is a numeric constant, variable, or expression that specifies the last character to use
in source. If stop is -1, then the last character is the last non-blank character in
source.

source
specifies a character constant, variable, or expression that you want to search.

position
is a numeric variable with a returned value that is the position in source at which
the pattern begins. If no match is found, CALL PRXNEXT returns zero.

Functions and CALL Routines � CALL PRXNEXT Routine 483

length
is a numeric variable with a returned value that is the length of the string that is
matched by the pattern. If no match is found, CALL PRXNEXT returns zero.

Details
The CALL PRXNEXT routine searches the variable source with a pattern. It returns
the position and length of a pattern match that is located between the start and the
stop positions in source. Because the value of the start parameter is updated to be the
position of the next character that follows a match, CALL PRXNEXT enables you to
search a string for a pattern multiple times in succession.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

The following example finds all instances of cat, rat, or bat in a text string.

data _null_;
ExpressionID = prxparse(’/[crb]at/’);
text = ’The woods have a bat, cat, and a rat!’;
start = 1;
stop = length(text);

/* Use PRXNEXT to find the first instance of the pattern, */
/* then use DO WHILE to find all further instances. */
/* PRXNEXT changes the start parameter so that searching */
/* begins again after the last match. */

call prxnext(ExpressionID, start, stop, text, position, length);
do while (position > 0);

found = substr(text, position, length);
put found= position= length=;
call prxnext(ExpressionID, start, stop, text, position, length);

end;
run;

The following lines are written to the SAS log:

found=bat position=18 length=3
found=cat position=23 length=3
found=rat position=34 length=3

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476
“CALL PRXDEBUG Routine” on page 479

484 CALL PRXPOSN Routine � Chapter 4

“CALL PRXFREE Routine” on page 481
“CALL PRXPOSN Routine” on page 484
“CALL PRXSUBSTR Routine” on page 487
“CALL PRXCHANGE Routine” on page 476
“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXMATCH Function” on page 1015
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

CALL PRXPOSN Routine

Returns the start position and length for a capture buffer.

Category: Character String Matching
Restriction: Use with the PRXPARSE function.

Syntax
CALL PRXPOSN (regular-expression-id, capture-buffer, start <, length>);

Arguments

regular-expression-id
specifies a numeric variable with a value that is a pattern identifier that is returned
by the PRXPARSE function.

capture-buffer
is a numeric constant, variable, or expression with a value that identifies the capture
buffer from which to retrieve the start position and length:

� If the value of capture-buffer is zero, CALL PRXPOSN returns the start position
and length of the entire match.

� If the value of capture-buffer is between 1 and the number of open parentheses,
CALL PRXPOSN returns the start position and length for that capture buffer.

� If the value of capture-buffer is greater than the number of open parentheses,
CALL PRXPOSN returns missing values for the start position and length.

start
is a numeric variable with a returned value that is the position at which the capture
buffer is found:

� If the value of capture-buffer is not found, CALL PRXPOSN returns a zero value
for the start position.

� If the value of capture-buffer is greater than the number of open parentheses in
the pattern, CALL PRXPOSN returns a missing value for the start position.

length
is a numeric variable with a returned value that is the pattern length of the previous
pattern match:

Functions and CALL Routines � CALL PRXPOSN Routine 485

� If the pattern match is not found, CALL PRXPOSN returns a zero value for the
length.

� If the value of capture-buffer is greater than the number of open parentheses in
the pattern, CALL PRXPOSN returns a missing value for length.

Details
The CALL PRXPOSN routine uses the results of PRXMATCH, PRXSUBSTR,
PRXCHANGE, or PRXNEXT to return a capture buffer. A match must be found by one
of these functions for the CALL PRXPOSN routine to return meaningful information.

A capture buffer is part of a match, enclosed in parentheses, that is specified in a
regular expression. CALL PRXPOSN does not return the text for the capture buffer
directly. It requires a call to the SUBSTR function to return the text.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The CALL PRXPOSN routine is similar to the PRXPOSN function, except that CALL
PRXPOSN returns the position and length of the capture buffer rather than the capture
buffer itself.

The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

Example 1: Finding Submatches within a Match The following example searches a
regular expression and calls the PRXPOSN routine to find the position and length of
three submatches.

data _null_;
patternID = prxparse(’/(\d\d):(\d\d)(am|pm)/’);
text = ’The time is 09:56am.’;

if prxmatch(patternID, text) then do;
call prxposn(patternID, 1, position, length);
hour = substr(text, position, length);
call prxposn(patternID, 2, position, length);
minute = substr(text, position, length);
call prxposn(patternID, 3, position, length);
ampm = substr(text, position, length);

put hour= minute= ampm=;
put text=;

end;
run;

SAS writes the following lines to the log:

hour=09 minute=56 ampm=am
text=The time is 09:56am.

Example 2: Parsing Time Data The following example parses time data and writes the
results to the SAS log.

486 CALL PRXPOSN Routine � Chapter 4

data _null_;
if _N_ = 1 then
do;

retain patternID;
pattern = "/(\d+):(\d\d)(?:\.(\d+))?/";
patternID = prxparse(pattern);

end;

array match[3] $ 8;
input minsec $80.;
position = prxmatch(patternID, minsec);
if position ^= 0 then
do;

do i = 1 to prxparen(patternID);
call prxposn(patternID, i, start, length);
if start ^= 0 then

match[i] = substr(minsec, start, length);
end;
put match[1] "minutes, " match[2] "seconds" @;
if ^missing(match[3]) then

put ", " match[3] "milliseconds";
end;
datalines;

14:56.456
45:32
;

SAS writes the following lines to the log:

14 minutes, 56 seconds, 456 milliseconds
45 minutes, 32 seconds

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476
“CALL PRXDEBUG Routine” on page 479
“CALL PRXFREE Routine” on page 481
“CALL PRXNEXT Routine” on page 482
“CALL PRXSUBSTR Routine” on page 487
“CALL PRXCHANGE Routine” on page 476
“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXMATCH Function” on page 1015
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

Functions and CALL Routines � CALL PRXSUBSTR Routine 487

CALL PRXSUBSTR Routine

Returns the position and length of a substring that matches a pattern.

Category: Character String Matching

Restriction: Use with the PRXPARSE function.

Interaction: When invoked by the %SYSCALL macro statement, CALL PRXSUBSTR
removes the quotation marks from its arguments. For more information, see “Using
CALL Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL PRXSUBSTR (regular-expression-id, source, position <, length>);

Arguments

regular-expression-id
specifies a numeric variable with a value that is an identification number that is
returned by the PRXPARSE function.

source
specifies a character constant, variable, or expression that you want to search.

position
is a numeric variable with a returned value that is the position in source where the
pattern begins. If no match is found, CALL PRXSUBSTR returns zero.

length
is a numeric variable with a returned value that is the length of the substring that is
matched by the pattern. If no match is found, CALL PRXSUBSTR returns zero.

Details
The CALL PRXSUBSTR routine searches the variable source with the pattern from
PRXPARSE, returns the position of the start of the string, and if specified, returns the
length of the string that is matched. By default, when a pattern matches more than one
character that begins at a specific position, CALL PRXSUBSTR selects the longest
match.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
CALL PRXSUBSTR performs the same matching as PRXMATCH, but CALL
PRXSUBSTR additionally enables you to use the length argument to receive more
information about the match.

The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

488 CALL PRXSUBSTR Routine � Chapter 4

Examples

Example 1: Finding the Position and Length of a Substring The following example
searches a string for a substring, and returns its position and length in the string.

data _null_;
/* Use PRXPARSE to compile the Perl regular expression. */

patternID = prxparse(’/world/’);
/* Use PRXSUBSTR to find the position and length of the string. */

call prxsubstr(patternID, ’Hello world!’, position, length);
put position= length=;

run;

The following line is written to the SAS log:

position=7 length=5

Example 2: Finding a Match in a Substring The following example searches for
addresses that contain avenue, drive, or road, and extracts the text that was found.

data _null_;
if _N_ = 1 then
do;

retain ExpressionID;

/* The i option specifies a case insensitive search. */
pattern = "/ave|avenue|dr|drive|rd|road/i";
ExpressionID = prxparse(pattern);

end;

input street $80.;
call prxsubstr(ExpressionID, street, position, length);
if position ^= 0 then
do;

match = substr(street, position, length);
put match:$QUOTE. "found in " street:$QUOTE.;

end;
datalines;

153 First Street
6789 64th Ave
4 Moritz Road
7493 Wilkes Place
;

run;

The following lines are written to the SAS log:

"Ave" found in "6789 64th Ave"
"Road" found in "4 Moritz Road"

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476

Functions and CALL Routines � CALL RANBIN Routine 489

“CALL PRXDEBUG Routine” on page 479
“CALL PRXFREE Routine” on page 481
“CALL PRXNEXT Routine” on page 482
“CALL PRXPOSN Routine” on page 484
“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXMATCH Function” on page 1015
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

CALL RANBIN Routine

Returns a random variate from a binomial distribution.

Category: Random Number

Syntax
CALL RANBIN(seed,n,p,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANBIN is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

n
is an integer number of independent Bernoulli trials.
Range: n > 0

p
is a numeric probability of success parameter.
Range: 0<p<1

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANBIN is executed.

Details
The CALL RANBIN routine updates seed and returns a variate x that is generated from
a binomial distribution with mean np and variance np(1–p). If n�50, np�5, or
n(1–p)�5, SAS uses an inverse transform method applied to a RANUNI uniform
variate. If n>50, np>5, and n(1–p)>5, SAS uses the normal approximation to the

490 CALL RANBIN Routine � Chapter 4

binomial distribution. In that case, the Box-Muller transformation of RANUNI uniform
variates is used.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANBIN routine gives greater control of the seed and random number
streams than does the RANBIN function.

Examples

The following example uses the CALL RANBIN routine:

options pageno=1 nodate ls=80 ps=64;

data u1 (keep = x);
seed = 104;
do i = 1 to 5;

call ranbin(seed, 2000, 0.2 ,x);
output;

end;
call symputx(’seed’, seed);

run;

data u2 (keep = x);
seed = &seed;
do i = 1 to 5;

call ranbin(seed, 2000, 0.2 ,x);
output;

end;
run;

data all;
set u1 u2;
z = ranbin(104, 2000, 0.2);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Functions and CALL Routines � CALL RANCAU Routine 491

Output 4.14 Output from the CALL RANBIN Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 423 423
2 418 418
3 403 403
4 394 394
5 429 429
6 369 369
7 413 413
8 417 417
9 400 400

10 383 383

See Also

Functions:

“RAND Function” on page 1038

“RANBIN Function” on page 1036

CALL RANCAU Routine

Returns a random variate from a Cauchy distribution.

Category: Random Number

Syntax
CALL RANCAU(seed,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANCAU is
executed.

Range: seed < 231 - 1

Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number
Functions and CALL Routines” on page 317 for more information about seed values

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANCAU is executed.

492 CALL RANCAU Routine � Chapter 4

Details
The CALL RANCAU routine updates seed and returns a variate x that is generated
from a Cauchy distribution that has a location parameter of 0 and scale parameter of 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

An acceptance-rejection procedure applied to RANUNI uniform variates is used. If u
and v are independent uniform (−1/2, 1/2) variables and u2+v2 ≤ 1/4, then u/v is a
Cauchy variate.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANCAU routine gives greater control of the seed and random number
streams than does the RANCAU function.

Examples
options nodate pageno=1 linesize=80 pagesize=60;

data case;
retain Seed_1 Seed_2 Seed_3 45;
do i=1 to 10;

call rancau(Seed_1,X1);
call rancau(Seed_2,X2);
X3=rancau(Seed_3);
if i=5 then

do;
Seed_2=18;
Seed_3=18;

end;
output;

end;
run;

proc print;
id i;
var Seed_1-Seed_3 X1-X3;

run;

This example uses the CALL RANCAU routine:

options pageno=1 ls=80 ps=64 nodate;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call rancau(seed, X);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;

Functions and CALL Routines � CALL RANCAU Routine 493

do i = 1 to 5;
call rancau(seed, X);
output;

end;
run;

data all;
set u1 u2;
z = rancau(104);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.15 Output from the CALL RANCAU Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 -0.6780 -0.6780
2 0.1712 0.1712
3 1.1372 1.1372
4 0.1478 0.1478
5 16.6536 16.6536
6 0.0747 0.0747
7 -0.5872 -0.5872
8 1.4713 1.4713
9 0.1792 0.1792
10 -0.0473 -0.0473

See Also

Functions:

“RAND Function” on page 1038

“RANCAU Function” on page 1037

494 CALL RANEXP Routine � Chapter 4

CALL RANEXP Routine

Returns a random variate from an exponential distribution.

Category: Random Number

Syntax
CALL RANEXP(seed,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANEXP is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANEXP is executed.

Details
The CALL RANEXP routine updates seed and returns a variate x that is generated
from an exponential distribution that has a parameter of 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANEXP routine uses an inverse transform method applied to a RANUNI
uniform variate.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANEXP routine gives greater control of the seed and random number
streams than does the RANEXP function.

Functions and CALL Routines � CALL RANEXP Routine 495

Examples

This example uses the CALL RANEXP routine:

options pageno=1 ls=80 ps=64 nodate;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call ranexp(seed, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call ranexp(seed, x);
output;

end;
run;

data all;
set u1 u2;
z = ranexp(104);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.16 Output from the CALL RANEXP Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 1.44347 1.44347
2 0.11740 0.11740
3 0.54175 0.54175
4 0.02280 0.02280
5 0.16645 0.16645
6 0.21711 0.21711
7 0.75538 0.75538
8 1.21760 1.21760
9 1.72273 1.72273

10 0.08021 0.08021

496 CALL RANGAM Routine � Chapter 4

See Also

Functions:
“RAND Function” on page 1038
“RANEXP Function” on page 1049

CALL RANGAM Routine

Returns a random variate from a gamma distribution.

Category: Random Number

Syntax
CALL RANGAM(seed,a,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANGAM is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in

Random-Number Functions and CALL Routines” on page 317 for more information
about seed values

a
is a numeric shape parameter.
Range: a > 0

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANGAM is executed.

Functions and CALL Routines � CALL RANGAM Routine 497

Details
The CALL RANGAM routine updates seed and returns a variate x that is generated
from a gamma distribution with parameter a.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For a>1, an acceptance-rejection method by Cheng is used (Cheng, 1977; see in
“References” on page 1213). For a�1, an acceptance-rejection method by Fishman is
used (Fishman, 1978; see in “References” on page 1213).

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANGAM routine gives greater control of the seed and random number
streams than does the RANGAM function.

Examples

This example uses the CALL RANGAM routine:

options nodate pageno=1 linesize=80 pagesize=60;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call rangam(seed, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call rangam(seed, x);
output;

end;
run;

data all;
set u1 u2;
z = rangam(104);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

498 CALL RANNOR Routine � Chapter 4

Output 4.17 Output from the CALL RANGAM Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 1.44347 1.44347
2 0.11740 0.11740
3 0.54175 0.54175
4 0.02280 0.02280
5 0.16645 0.16645
6 0.21711 0.21711
7 0.75538 0.75538
8 1.21760 1.21760
9 1.72273 1.72273

10 0.08021 0.08021

Output 4.18 The RANGAM Example

The SAS System 1

i Seed_1 Seed_2 Seed_3 X1 X2 X3

1 1404437564 1404437564 45 1.30569 1.30569 1.30569
2 1326029789 1326029789 45 1.87514 1.87514 1.87514
3 1988843719 1988843719 45 1.71597 1.71597 1.71597
4 50049159 50049159 45 1.59304 1.59304 1.59304
5 802575599 18 18 0.43342 0.43342 0.43342
6 100573943 991271755 18 1.11812 1.32646 1.11812
7 1986749826 1437043694 18 0.68415 0.88806 0.68415
8 52428589 959908645 18 1.62296 2.46091 1.62296
9 1216356463 1225034217 18 2.26455 4.06596 2.26455

10 805366679 425626811 18 2.16723 6.94703 2.16723

Changing Seed_2 for the CALL RANGAM statement, when I=5, forces the stream of
the variates for X2 to deviate from the stream of the variates for X1. Changing Seed_3
on the RANGAM function, however, has no effect.

See Also

Functions:

“RAND Function” on page 1038

“RANGAM Function” on page 1050

CALL RANNOR Routine

Returns a random variate from a normal distribution.

Category: Random Number

Functions and CALL Routines � CALL RANNOR Routine 499

Syntax
CALL RANNOR(seed,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANNOR is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.

See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number
Functions and CALL Routines” on page 317 for more information about seed values

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANNOR is executed.

Details
The CALL RANNOR routine updates seed and returns a variate x that is generated
from a normal distribution, with mean 0 and variance 1.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANNOR routine uses the Box-Muller transformation of RANUNI
uniform variates.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANNOR routine gives greater control of the seed and random number
streams than does the RANNOR function.

Examples

This example uses the CALL RANNOR routine:

options pageno=1 ls=80 ps=64 nodate;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call rannor(seed, X);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

500 CALL RANPERK Routine � Chapter 4

call rannor(seed, X);
output;

end;
run;

data all;
set u1 u2;
z = rannor(104);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.19 Output from the CALL RANNOR Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 1.30390 1.30390
2 1.03049 1.03049
3 0.19491 0.19491
4 -0.34987 -0.34987
5 1.64273 1.64273
6 -1.75842 -1.75842
7 0.75080 0.75080
8 0.94375 0.94375
9 0.02436 0.02436
10 -0.97256 -0.97256

See Also

Functions:

“RAND Function” on page 1038

“RANNOR Function” on page 1053

CALL RANPERK Routine

Randomly permutes the values of the arguments, and returns a permutation of k out of n values.

Category: Combinatorial

Syntax
CALL RANPERK(seed, k, variable-1<, variable–2, ...>);

Functions and CALL Routines � CALL RANPERK Routine 501

Arguments

seed
is a numeric variable that contains the random number seed. For more information
about seeds, see “Seed Values” on page 313.

k
is the number of values that you want to have in the random permutation.

variable
specifies all numeric variables, or all character variables that have the same length.
K values of these variables are randomly permuted.

Details

Using CALL RANPERK with Macros You can call the RANPERK routine when you use
the %SYSCALL macro. In this case, the variable arguments are not required to be the
same type or length. If %SYSCALL identifies an argument as numeric, then
%SYSCALL reformats the returned value.

If an error occurs during the execution of the CALL RANPERK routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than -100.

If there are no errors, then &SYSERR and &SYSINFO are set to zero.

Examples

Example 1: Using CALL RANPERK in a DATA Step The following example shows how to
generate random permutations of given values by using the CALL RANPERK routine.

data _null_;
array x x1-x5 (1 2 3 4 5);
seed = 1234567890123;
do n=1 to 10;

call ranperk(seed, 3, of x1-x5);
put seed= @20 ’ x= ’ x1-x3;

end;
run;

Output 4.20 Log Output from Using the CALL RANPERK Routine in a DATA Step

seed=1332351321 x= 5 4 2
seed=829042065 x= 4 1 3
seed=767738639 x= 5 1 2
seed=1280236105 x= 3 2 5
seed=670350431 x= 4 3 5
seed=1956939964 x= 3 1 2
seed=353939815 x= 4 2 1
seed=1996660805 x= 3 4 5
seed=1835940555 x= 5 1 4
seed=910897519 x= 5 1 2

Example 2: Using CALL RANPERK with a Macro The following is an example of the
CALL RANPERK routine that is used with macros.

502 CALL RANPERM Routine � Chapter 4

%macro test;
%let x1=ant;
%let x2=-.1234;
%let x3=1e10;
%let x4=hippopotamus;
%let x5=zebra;
%let k=3;
%let seed = 12345;
%do j=1 %to 10;

%syscall ranperk(seed, k, x1, x2, x3, x4, x5);
%put j=&j &x1 &x2 &x3;

%end;
%mend;

%test;

Output 4.21 Output from Using the CALL RANPERK Routine with a Macro

j=1 -0.1234 hippopotamus zebra
j=2 hippopotamus -0.1234 10000000000
j=3 hippopotamus ant zebra
j=4 -0.1234 zebra ant
j=5 -0.1234 ant hippopotamus
j=6 10000000000 hippopotamus ant
j=7 10000000000 hippopotamus ant
j=8 ant 10000000000 -0.1234
j=9 zebra -0.1234 10000000000
j=10 zebra hippopotamus 10000000000

See Also

Functions and CALL Routines:
“RAND Function” on page 1038
“CALL ALLPERM Routine” on page 434
“CALL RANPERM Routine” on page 502

CALL RANPERM Routine

Randomly permutes the values of the arguments.

Category: Combinatorial

Syntax
CALL RANPERM(seed, variable-1<, variable–2, ...>);

Functions and CALL Routines � CALL RANPERM Routine 503

Arguments

seed
is a numeric variable that contains the random number seed. For more information
about seeds, see “Seed Values” on page 313.

variable
specifies all numeric variables or all character variables that have the same length.
The values of these variables are randomly permuted.

Details

Using CALL RANPERM with Macros You can call the RANPERM routine when you use
the %SYSCALL macro. In this case, the variable arguments are not required to be the
same type or length. If %SYSCALL identifies an argument as numeric, then
%SYSCALL reformats the returned value.

If an error occurs during the execution of the CALL RANPERM routine, then both of
the following values are set:

� &SYSERR is assigned a value that is greater than 4.
� &SYSINFO is assigned a value that is less than -100.

If there are no errors, then &SYSERR and &SYSINFO are set to zero.

Examples

Example 1: Using CALL RANPERM in a DATA Step The following example generates
random permutations of given values by using the CALL RANPERM routine.

data _null_;
array x x1-x4 (1 2 3 4);
seed = 1234567890123;
do n=1 to 10;

call ranperm(seed, of x1-x4);
put seed= @20 ’ x= ’ x1-x4;

end;
run;

Output 4.22 Output from Using the CALL RANPERM Routine in a DATA Step

seed=1332351321 x= 1 3 2 4
seed=829042065 x= 3 4 2 1
seed=767738639 x= 4 2 3 1
seed=1280236105 x= 1 2 4 3
seed=670350431 x= 2 1 4 3
seed=1956939964 x= 2 4 3 1
seed=353939815 x= 4 1 2 3
seed=1996660805 x= 4 3 1 2
seed=1835940555 x= 4 3 2 1
seed=910897519 x= 3 2 1 4

504 CALL RANPERM Routine � Chapter 4

Example 2: Using CALL RANPERM with a Macro The following is an example of the
CALL RANPERM routine that is used with the %SYSCALL macro.

%macro test;
%let x1=ant;
%let x2=-.1234;
%let x3=1e10;
%let x4=hippopotamus;
%let x5=zebra;
%let seed = 12345;
%do j=1 %to 10;

%syscall ranperm(seed, x1, x2, x3, x4, x5);
%put j=&j &x1 &x2 &x3;

%end;
%mend;

%test;

Output 4.23 Output from Using the CALL RANPERM Routine with a Macro

j=1 zebra ant hippopotamus
j=2 10000000000 ant -0.1234
j=3 -0.1234 10000000000 ant
j=4 hippopotamus ant zebra
j=5 -0.1234 zebra 10000000000
j=6 -0.1234 hippopotamus ant
j=7 zebra ant -0.1234
j=8 -0.1234 hippopotamus ant
j=9 ant -0.1234 hippopotamus
j=10 -0.1234 zebra 10000000000

See Also

Functions and CALL Routines:

“RAND Function” on page 1038
“CALL ALLPERM Routine” on page 434

“CALL RANPERK Routine” on page 500

Functions and CALL Routines � CALL RANPOI Routine 505

CALL RANPOI Routine

Returns a random variate from a Poisson distribution.

Category: Random Number

Syntax
CALL RANPOI(seed,m,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANPOI is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

m
is a numeric mean parameter.
Range: m�0

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANPOI is executed.

Details
The CALL RANPOI routine updates seed and returns a variate x that is generated from
a Poisson distribution, with mean m.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For m< 85, an inverse transform method applied to a RANUNI uniform variate is
used (Fishman, 1976; see in “References” on page 1213). For m ≥ 85, the normal
approximation of a Poisson random variable is used. To expedite execution, internal
variables are calculated only on initial calls (that is, with each new m).

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

506 CALL RANPOI Routine � Chapter 4

Comparisons
The CALL RANPOI routine gives greater control of the seed and random number
streams than does the RANPOI function.

Examples

This example uses the CALL RANPOI routine:

options pageno=1 ls=80 ps=64 nodate;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call ranpoi(seed, 2000, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call ranpoi(seed, 2000, x);
output;

end;
run;

data all;
set u1 u2;
z = ranpoi(104, 2000);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Functions and CALL Routines � CALL RANTBL Routine 507

Output 4.24 Output from the CALL RANPOI Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 2058 2058
2 2046 2046
3 2009 2009
4 1984 1984
5 2073 2073
6 1921 1921
7 2034 2034
8 2042 2042
9 2001 2001

10 1957 1957

See Also

Functions:
“RAND Function” on page 1038
“RANPOI Function” on page 1054

CALL RANTBL Routine

Returns a random variate from a tabled probability distribution.

Category: Random Number

Syntax
CALL RANTBL(seed,p1,...pi,...pn,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANTBL is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

508 CALL RANTBL Routine � Chapter 4

pi

is a numeric SAS value.

Range: 0�pi�1 for 0< i�n

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANTBL is executed.

Details
The CALL RANTBL routine updates seed and returns a variate x generated from the
probability mass function defined by p1 through pn.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

An inverse transform method applied to a RANUNI uniform variate is used. The
CALL RANTBL routine returns these data:

� ���� ����	��
��� ��

� ���� ����	��
��� ��

�

�

�

 ���� ����	��
��� ��

 � � ���� ����	��
��� � �

��

���

�� ��

��

���

�� � �

If, for some index j<n,

��

���

�� � �

RANTBL returns only the indices 1 through j, with the probability of occurrence of
the index j equal to

� �

����

���

��

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANTBL routine gives greater control of the seed and random number
streams than does the RANTBL function.

Functions and CALL Routines � CALL RANTBL Routine 509

Examples

This example uses the CALL RANTBL routine:

options pageno=1 ls=80 ps=64 nodate;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call rantbl(seed, .02, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call rantbl(seed, .02, x);
output;

end;
run;

data all;
set u1 u2;
z = rantbl(104, .02);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.25 Output from the CALL RANTBL Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 2 2
2 2 2
3 2 2
4 2 2
5 2 2
6 2 2
7 2 2
8 2 2
9 2 2

10 2 2

See Also

Functions:

“RAND Function” on page 1038

“RANTBL Function” on page 1055

510 CALL RANTRI Routine � Chapter 4

CALL RANTRI Routine

Returns a random variate from a triangular distribution.

Category: Random Number

Syntax
CALL RANTRI(seed,h,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANTRI is
executed.
Range: seed < 231 - 1
Note: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

h
is a numeric SAS value.
Range: 0<h<1

x
is a numeric SAS variable. A new value for the random variate x is returned each
time CALL RANTRI is executed.

Details
The CALL RANTRI routine updates seed and returns a variate x generated from a
triangular distribution on the interval (0,1) with parameter h, which is the modal value
of the distribution.

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

The CALL RANTRI routine uses an inverse transform method applied to a RANUNI
uniform variate.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANTRI routine gives greater control of the seed and random number
streams than does the RANTRI function.

Examples

This example uses the CALL RANTRI routine:

options pageno=1 ls=80 ps=64 nodate;

Functions and CALL Routines � CALL RANTRI Routine 511

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call rantri(seed, .5, x);
output;

end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call rantri(seed, .5, x);
output;

end;
run;

data all;
set u1 u2;
z = rantri(104, .5);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

Output 4.26 Output from the CALL RANTRI Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 0.34359 0.34359
2 0.76466 0.76466
3 0.54269 0.54269
4 0.89384 0.89384
5 0.72311 0.72311
6 0.68763 0.68763
7 0.48468 0.48468
8 0.38467 0.38467
9 0.29881 0.29881

10 0.80369 0.80369

See Also

Functions:
“RAND Function” on page 1038
“RANTRI Function” on page 1056

512 CALL RANUNI Routine � Chapter 4

CALL RANUNI Routine

Returns a random variate from a uniform distribution.

Category: Random Number

Syntax
CALL RANUNI(seed,x);

Arguments

seed
is the seed value. A new value for seed is returned each time CALL RANUNI is
executed.
Range: seed < 231 - 1

Tip: If seed ≤ 0, the time of day is used to initialize the seed stream.
See: “Seed Values” on page 313 and “Comparison of Seed Values in Random-Number

Functions and CALL Routines” on page 317 for more information about seed values

x
is a numeric variable. A new value for the random variate x is returned each time
CALL RANUNI is executed.

Details
The CALL RANUNI routine updates seed and returns a variate x that is generated
from the uniform distribution on the interval (0,1), using a prime modulus
multiplicative generator with modulus 231–1 and multiplier 397204094 (Fishman and
Moore 1982) (See “References” on page 1213).

By adjusting the seeds, you can force streams of variates to agree or disagree for
some or all of the observations in the same, or in subsequent, DATA steps.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANUNI routine gives greater control of the seed and random number
streams than does the RANUNI function.

Examples

This example uses the CALL RANUNI routine:

options pageno=1 nodate ls=80 ps=64;

data u1(keep=x);
seed = 104;
do i = 1 to 5;

call ranuni(seed, x);

Functions and CALL Routines � CALL SCAN Routine 513

output;
end;
call symputx(’seed’, seed);

run;

data u2(keep=x);
seed = &seed;
do i = 1 to 5;

call ranuni(seed, x);
output;

end;
run;

data all;
set u1 u2;
z = ranuni(104);

run;

proc print label;
label x = ’Separate Streams’ z = ’Single Stream’;

run;

The following output shows the results:

Output 4.27 Output from the CALL RANUNI Routine

The SAS System 1

Separate Single
Obs Streams Stream

1 0.23611 0.23611
2 0.88923 0.88923
3 0.58173 0.58173
4 0.97746 0.97746
5 0.84667 0.84667
6 0.80484 0.80484
7 0.46983 0.46983
8 0.29594 0.29594
9 0.17858 0.17858

10 0.92292 0.92292

See Also

Functions:

“RAND Function” on page 1038

“RANUNI Function” on page 1057

CALL SCAN Routine

Returns the position and length of the nth word from a character string.

514 CALL SCAN Routine � Chapter 4

Category: Character

Interaction: When invoked by the %SYSCALL macro statement, CALL SCAN removes
the quotation marks from its arguments. For more information, see “Using CALL
Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL SCAN(<string>, count, position, length <, <charlist> <, <modifier(s)>>>);

Arguments

string
specifies a character constant, variable, or expression.

count
is a non-zero numeric constant, variable, or expression that has an integer value that
specifies the number of the word in the character string that you want the CALL
SCAN routine to select. For example, a value of 1 indicates the first word, a value of
2 indicates the second word, and so on. The following rules apply:

� If count is positive, then CALL SCAN counts words from left to right in the
character string.

� If count is negative, then CALL SCAN counts words from right to left in the
character string.

position
specifies a numeric variable in which the position of the word is returned. If count
exceeds the number of words in the string, then the value that is returned in position
is zero. If count is zero or missing, then the value that is returned in position is
missing.

length
specifies a numeric variable in which the length of the word is returned. If count
exceeds the number of words in the string, then the value that is returned in length is
zero. If count is zero or missing, then the value that is returned in length is missing.

charlist
specifies an optional character constant, variable, or expression that initializes a list
of characters. This list determines which characters are used as the delimiters that
separate words. The following rules apply:

� By default, all characters in charlist are used as delimiters.

� If you specify the K modifier in the modifier argument, then all characters that
are not in charlist are used as delimiters.

Tip: You can add more characters to charlist by using other modifiers.

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the CALL SCAN routine. Blanks are ignored. You
can use the following characters as modifiers:

a or A adds alphabetic characters to the list of characters.

b or B scans backwards, from right to left instead of from left to right,
regardless of the sign of the count argument.

Functions and CALL Routines � CALL SCAN Routine 515

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, valid first
characters in a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

g or G adds graphic characters to the list of characters. Graphic
characters are those that, when printed, produce an image on
paper.

h or H adds a horizontal tab to the list of characters.

i or I ignores the case of the characters.

k or K causes all characters that are not in the list of characters to be
treated as delimiters. That is, if K is specified, then characters
that are in the list of characters are kept in the returned value
rather than being omitted because they are delimiters. If K is not
specified, then all characters that are in the list of characters are
treated as delimiters.

l or L adds lower case letters to the list of characters.

m or M specifies that multiple consecutive delimiters, and delimiters at
the beginning or end of the string argument, refer to words that
have a length of zero. If the M modifier is not specified, then
multiple consecutive delimiters are treated as one delimiter, and
delimiters at the beginning or end of the string argument are
ignored.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear in a SAS variable name using
VALIDVARNAME=V7) to the list of characters.

o or O processes the charlist and modifier arguments only once, rather
than every time the CALL SCAN routine is called.
Tip: Using the O modifier in the DATA step can make CALL

SCAN run faster when you call it in a loop where the charlist
and modifier arguments do not change. The O modifier applies
separately to each instance of the CALL SCAN routine in your
SAS code, and does not cause all instances of the CALL SCAN
routine to use the same delimiters and modifiers.

p or P adds punctuation marks to the list of characters.

q or Q ignores delimiters that are inside of substrings that are enclosed
in quotation marks. If the value of the string argument contains
unmatched quotation marks, then scanning from left to right will
produce different words than scanning from right to left.

s or S adds space characters to the list of characters (blank, horizontal
tab, vertical tab, carriage return, line feed, and form feed).

t or T trims trailing blanks from the string and charlist arguments.
Tip: If you want to remove trailing blanks from just one

character argument instead of both character arguments, then
use the TRIM function instead of the CALL SCAN routine with
the T modifier.

u or U adds upper case letters to the list of characters.

516 CALL SCAN Routine � Chapter 4

w or W adds printable (writable) characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.
Tip: If the modifier argument is a character constant, then enclose it in quotation

marks. Specify multiple modifiers in a single set of quotation marks. A modifier
argument can also be expressed as a character variable or expression.

Details

Definition of ”Delimiter” and “Word” A delimiter is any of several characters that are
used to separate words. You can specify the delimiters in the charlist and modifier
arguments.

If you specify the Q modifier, then delimiters inside of substrings that are enclosed in
quotation marks are ignored.

In the CALL SCAN routine, “word” refers to a substring that has all of the following
characteristics:

� is bounded on the left by a delimiter or the beginning of the string
� is bounded on the right by a delimiter or the end of the string
� contains no delimiters

A word can have a length of zero if there are delimiters at the beginning or end of
the string, or if the string contains two or more consecutive delimiters. However, the
CALL SCAN routine ignores words that have a length of zero unless you specify the M
modifier.

Using Default Delimiters in ASCII and EBCDIC Environments If you use the CALL
SCAN routine with only four arguments, then the default delimiters depend on whether
your computer uses ASCII or EBCDIC characters.

� If your computer uses ASCII characters, then the default delimiters are as follows:
blank ! $ % & ()* + , - . / ; < ^
In ASCII environments that do not contain the ^ character, the CALL SCAN

routine uses the ~ character instead.
� If your computer uses EBCDIC characters, then the default delimiters are as

follows:
blank ! $ % & ()* + , - . / ; < | ¢

If you use the modifier argument without specifying any characters as delimiters,
then the only delimiters that will be used are those that are defined by the modifier
argument. In this case, the lists of default delimiters for ASCII and EBCDIC
environments are not used. In other words, modifiers add to the list of delimiters that
are explicitly specified by the charlist argument. Modifiers do not add to the list of
default modifiers.

Using the CALL SCAN Routine with the M Modifier If you specify the M modifier, then
the number of words in a string is defined as one plus the number of delimiters in the
string. However, if you specify the Q modifier, delimiters that are inside quotation
marks are ignored.

If you specify the M modifier, the CALL SCAN routine returns a positive position and
a length of zero if one of the following conditions is true:

� The string begins with a delimiter and you request the first word.
� The string ends with a delimiter and you request the last word.
� The string contains two consecutive delimiters and you request the word that is

between the two delimiters.

Functions and CALL Routines � CALL SCAN Routine 517

In you specify a count that is greater in absolute value than the number of words in
the string, then the CALL SCAN routine returns a position and length of zero.

Using the CALL SCAN Routine without the M Modifier If you do not specify the M
modifier, then the number of words in a string is defined as the number of maximal
substrings of consecutive non-delimiters. However, if you specify the Q modifier,
delimiters that are inside quotation marks are ignored.

If you do not specify the M modifier, then the CALL SCAN routine does the following:
� ignores delimiters at the beginning or end of the string
� treats two or more consecutive delimiters as if they were a single delimiter

If the string contains no characters other than delimiters, or if you specify a count
that is greater in absolute value than the number of words in the string, then the CALL
SCAN routine returns a position and length of zero.

Finding the Word as a Character String To find the designated word as a character
string after calling the CALL SCAN routine, use the SUBSTRN function with the
string, position, and length arguments:

substrn(string, position, length);

Because CALL SCAN can return a length of zero, using the SUBSTR function can
cause an error.

Using Null Arguments The CALL SCAN routine allows character arguments to be
null. Null arguments are treated as character strings with a length of zero. Numeric
arguments cannot be null.

Examples

Example 1: Scanning for a Word in a String The following example shows how you
can use the CALL SCAN routine to find the position and length of a word in a string.

options pageno=1 nodate ls=80 ps=64;

data artists;
input string $60.;
drop string;
do i=1 to 99;

call scan(string, i, position, length);
if not position then leave;
Name=substrn(string, position, length);
output;

end;
datalines;

Picasso Toulouse-Lautrec Turner "Van Gogh" Velazquez
;

proc print data=artists;
run;

518 CALL SCAN Routine � Chapter 4

Output 4.28 SAS Output: Scanning for a Word in a String

The SAS System 1

Obs i position length Name

1 1 1 7 Picasso
2 2 9 8 Toulouse
3 3 18 7 Lautrec
4 4 26 6 Turner
5 5 33 4 "Van
6 6 38 5 Gogh"
7 7 44 9 Velazquez

Example 2: Finding the First and Last Words in a String The following example scans
a string for the first and last words. Note the following:

� A negative count instructs the CALL SCAN routine to scan from right to left.
� Leading and trailing delimiters are ignored because the M modifier is not used.
� In the last observation, all characters in the string are delimiters, so no words are

found.

options pageno=1 nodate ls=80 ps=64;

data firstlast;
input String $60.;
call scan(string, 1, First_Pos, First_Length);
First_Word = substrn(string, First_Pos, First_Length);
call scan(string, --1, Last_Pos, Last_Length);
Last_Word = substrn(string, Last_Pos, Last_Length);
datalines4;

Jack and Jill
& Bob & Carol & Ted & Alice &
Leonardo
! $ % & () * + , - . / ;
;;;;

proc print data=firstlast;
var First: Last:;

run;

Output 4.29 Results of Finding the First and Last Words in a String

The SAS System 1

First_ First_ First_ Last_ Last_
Obs Pos Length Word Last_Pos Length Word

1 1 4 Jack 10 4 Jill
2 3 3 Bob 23 5 Alice
3 1 8 Leonardo 1 8 Leonardo
4 0 0 0 0

Functions and CALL Routines � CALL SCAN Routine 519

Example 3: Finding All Words in a String without Using the M Modifier The following
example scans a string from left to right until no more words are found. Because the M
modifier is not used, the CALL SCAN routine does not return any words that have a
length of zero. Because blanks are included among the default delimiters, the CALL
SCAN routine returns a position or length of zero only when the count exceeds the
number of words in the string. The loop can be stopped when the returned position is
less than or equal to zero. It is safer to use an inequality comparison to end the loop,
rather than to use a strict equality comparison with zero, in case an error causes the
position to be missing. (In SAS, a missing value is considered to have a lesser value
than any nonmissing value.)

options pageno=1 nodate ls=80 ps=64;

data all;
length word $20;
drop string;
string = ’ The quick brown fox jumps over the lazy dog. ’;
do until(position <= 0);

count+1;
call scan(string, count, position, length);
word = substrn(string, position, length);
output;

end;
run;

proc print data=all noobs;
var count position length word;

run;

Output 4.30 Results of Finding All Words in a String without Using the M Modifier

The SAS System 1

count position length word

1 2 3 The
2 6 5 quick
3 12 5 brown
4 18 3 fox
5 22 5 jumps
6 28 4 over
7 33 3 the
8 37 4 lazy
9 42 3 dog

10 0 0

Example 4: Finding All Words in a String by Using the M and O Modifiers The
following example shows the results of using the M modifier with a comma as a
delimiter. With the M modifier, leading, trailing, and multiple consecutive delimiters
cause the CALL SCAN routine to return words that have a length of zero.

The O modifier is used for efficiency because the delimiters and modifiers are the
same in every call to the CALL SCAN routine.

options pageno=1 nodate ls=80 ps=64;

data comma;

520 CALL SCAN Routine � Chapter 4

length word $30;
string = ’,leading, trailing,and multiple,,delimiters,,’;
do until(position <= 0);

count + 1;
call scan(string, count, position, length, ’,’, ’mo’);
word = substrn(string, position, length);
output;

end;
run;

proc print data=comma noobs;
var count position length word;

run;

Output 4.31 Results of Finding All Words in a String by Using the M and O Modifiers

The SAS System 1

count position length word

1 1 0
2 2 7 leading
3 10 10 trailing
4 21 12 and multiple
5 34 0
6 35 10 delimiters
7 46 0
8 47 0
9 0 0

Example 5: Using Comma-Separated Values, Substrings in Quotation Marks, and the O
Modifier The following example uses the CALL SCAN routine with the O modifier
and a comma as a delimiter.

The O modifier is used for efficiency because in each call of the CALL SCAN routine,
the delimiters and modifiers do not change.

options pageno=1 nodate ls=80 ps=64;

data test;
length word word_r $30;
string = ’He said, "She said, ""No!""", not "Yes!"’;
do until(position <= 0);

count + 1;
call scan(string, count, position, length, ’,’, ’oq’);
word = substrn(string, position, length);
output;

end;
run;

proc print data=test noobs;
var count position length word;

run;

Functions and CALL Routines � CALL SCAN Routine 521

Output 4.32 Results of Comma-Separated Values and Substrings in Quotation Marks

The SAS System 1

count position length word

1 1 7 He said
2 9 20 "She said, ""No!"""
3 30 11 not "Yes!"
4 0 0

Example 6: Finding Substrings of Digits by Using the D and K Modifiers The following
example finds substrings of digits. The charlist argument is null, and consequently the
list of characters is initially empty. The D modifier adds digits to the list of characters.
The K modifier treats all characters that are not in the list as delimiters. Therefore, all
characters except digits are delimiters.

options pageno=1 nodate ls=80 ps=64;

data digits;
length digits $20;
string = ’Call (800) 555--1234 now!’;
do until(position <= 0);

count+1;
call scan(string, count, position, length, , ’dko’);
digits = substrn(string, position, length);
output;

end;
run;

proc print data=digits noobs;
var count position length digits;

run;

Output 4.33 Results of Finding Substrings of Digits by Using the D and K Modifiers

The SAS System 1

count position length digits

1 7 3 800
2 12 3 555
3 16 4 1234
4 0 0

See Also

Function:

“SCAN Function” on page 1076

“FINDW Function” on page 729
“COUNTW Function” on page 614

522 CALL SET Routine � Chapter 4

CALL SET Routine

Links SAS data set variables to DATA step or macro variables that have the same name and data
type.

Category: Variable Control

Syntax
CALL SET(data-set-id);

Arguments

data-set-id
is the identifier that is assigned by the OPEN function when the data set is opened.

Details
Using SET can significantly reduce the coding that is required for accessing variable
values for modification or verification when you use functions to read or to manipulate a
SAS file. After a CALL SET, whenever a read is performed from the SAS data set, the
values of the corresponding macro or DATA step variables are set to the values of the
matching SAS data set variables. If the variable lengths do not match, the values are
truncated or padded according to need. If you do not use SET, then you must use the
GETVARC and GETVARN functions to move values explicitly between data set
variables and macro or DATA step variables.

As a general rule, use CALL SET immediately following OPEN if you want to link
the data set and the macro and DATA step variables.

Examples

This example uses the CALL SET routine:
� The following statements automatically set the values of the macro variables

PRICE and STYLE when an observation is fetched:

%macro setvar;
%let dsid=%sysfunc(open(sasuser.houses,i));

/* No leading ampersand with %SYSCALL */
%syscall set(dsid);
%let rc=%sysfunc(fetchobs(&dsid,10));
%let rc=%sysfunc(close(&dsid));

%mend setvar;

%global price style;
%setvar
%put _global_;

� The %PUT statement writes these lines to the SAS log:

GLOBAL PRICE 127150
GLOBAL STYLE CONDO

Functions and CALL Routines � CALL SLEEP Routine 523

� The following statements obtain the values for the first 10 observations in
SASUSER.HOUSES and store them in MYDATA:

data mydata;
/* create variables for assignment */
/*by CALL SET */

length style $8 sqfeet bedrooms baths 8
street $16 price 8;

drop rc dsid;
dsid=open("sasuser.houses","i");
call set (dsid);
do i=1 to 10;

rc=fetchobs(dsid,i);
output;

end;
run;

See Also

Functions:

“FETCH Function” on page 674

“FETCHOBS Function” on page 675

“GETVARC Function” on page 778

“GETVARN Function” on page 779

CALL SLEEP Routine

For a specified period of time, suspends the execution of a program that invokes this CALL routine.

Category: Special

See: CALL SLEEP Routine in the documentation for your operating environment.

Syntax
CALL SLEEP(n<, unit>)

Arguments

n
is a numeric constant that specifies the number of units of time for which you want
to suspend execution of a program.

Range: n ≥ 0

unit
specifies the unit of time, as a power of 10, which is applied to n. For example, 1
corresponds to a second, and .001 corresponds to a millisecond.

Default: .001

524 CALL SOFTMAX Routine � Chapter 4

Details
The CALL SLEEP routine suspends the execution of a program that invokes this call
routine for a period of time that you specify. The program can be a DATA step, macro,
IML, SCL, or anything that can invoke a call routine. The maximum sleep period for
the CALL SLEEP routine is 46 days.

Examples

Example 1: Suspending Execution for a Specified Period of Time The following
example tells SAS to suspend the execution of the DATA step PAYROLL for 1 minute
and 10 seconds:

data payroll;
call sleep(7000,.01);
...more SAS statements...

run;

Example 2: Suspending Execution Based on a Calculation of Sleep Time The following
example tells SAS to suspend the execution of the DATA step BUDGET until March 1,
2004, at 3:00 AM. SAS calculates the length of the suspension based on the target date
and the date and time that the DATA step begins to execute.

data budget;
sleeptime=’01mar2004:03:00’dt-datetime();
call sleep(sleeptime,1);
...more SAS statements...;

run;

See Also

Functions:
“SLEEP Function” on page 1091

CALL SOFTMAX Routine

Returns the softmax value.

Category: Mathematical

Syntax
CALL SOFTMAX(argument<,argument,…>);

Functions and CALL Routines � CALL SORTC Routine 525

Arguments

argument
is numeric.
Restriction: The CALL SOFTMAX routine only accepts variables as valid

arguments. Do not use a constant or a SAS expression because the CALL routine
is unable to update these arguments.

Details
The CALL SOFTMAX routine replaces each argument with the softmax value of that
argument. For example �� is replaced by

�
��

����

���

�
��

If any argument contains a missing value, then CALL SOFTMAX returns missing
values for all the arguments. Upon a successful return, the sum of all the values is
equal to 1.

Examples

The following SAS statements produce these results:

SAS Statements Results

x=0.5;
y=-0.5;
z=1;
call softmax(x,y,z);
put x= y= z=;

x=0.3314989604 y=0.1219516523 z=0.5465493873

CALL SORTC Routine

Sorts the values of character arguments.

Category: Sort
Interaction: When invoked by the %SYSCALL macro statement, CALL SORTC removes
the quotation marks from its arguments. For more information, see “Using CALL
Routines and the %SYSCALL Macro Statement” on page 311.

Syntax
CALL SORTC(variable-1<, …, variable-n>)

526 CALL SORTC Routine � Chapter 4

Arguments

variable
specifies a character variable.

Details
The values of variable are sorted in ascending order by the CALL SORTC routine.

Comparisons
The CALL SORTC routine is used with character variables, and the CALL SORTN
routine is used with numeric variables.

Examples

The following example sorts the character variables in the array in ascending order.

data _null_;
array x(8) $10

(’tweedledum’ ’tweedledee’ ’baboon’ ’baby’
’humpty’ ’dumpty’ ’banana’ ’babylon’);

call sortc(of x(*));
put +3 x(*);

run;

SAS writes the following output to the log:

baboon baby babylon banana dumpty humpty tweedledee tweedledum

See Also

Functions and CALL routines:
“CALL SORTN Routine” on page 527

Functions and CALL Routines � CALL SORTN Routine 527

CALL SORTN Routine

Sorts the values of numeric arguments.

Category: Sort

Syntax
CALL SORTN(variable-1<, …, variable-n>)

Arguments

variable
specifies a numeric variable.

Details
The values of variable are sorted in ascending order by the CALL SORTN routine.

Comparisons
The CALL SORTN routine is used with numeric variables, and the CALL SORTC
routine is used with character variables.

Examples

The following example sorts the numeric variables in the array in ascending order.

data _null_;
array x(10) (0, ., .a, 1e-12, -1e-8, .z, -37, 123456789, 1e20, 42);
call sortn(of x(*));
put +3 x(*);

run;

SAS writes the following output to the log:

. A Z -37 -1E-8 0 1E-12 42 123456789 1E20

See Also

Functions and CALL routines:
“CALL SORTC Routine” on page 525

528 CALL STDIZE Routine � Chapter 4

CALL STDIZE Routine

Standardizes the values of one or more variables.

Category: Mathematical

Interaction: When invoked by the %SYSCALL macro statement, CALL STDIZE removes
the quotation marks from its arguments. For more information, see “Using CALL
Routines and the %SYSCALL Macro Statement” on page 311.

Syntax

CALL STDIZE(<option-1, option-2, …,>variable-1<,variable-2, …>);

Arguments

option
specifies a character expression whose values can be uppercase, lowercase, or mixed
case letters. Leading and trailing blanks are ignored.

Restriction: Use a separate argument for each option because you cannot specify
more than one option in a single argument.

Tip: Character expressions can end with an equal sign that is followed by another
argument that is a numeric constant, variable, or expression.

See Also: PROC STDIZE in SAS/STAT User’s Guide for information about
formulas and other details. The options that are used in CALL STDIZE are the
same as those used in PROC STDIZE.

option includes the following three categories:

standardization-options
specify how to compute the location and scale measures that are used to
standardize the variables. The following standardization options are available:

ABW=
must be followed by an argument that is a numeric expression specifying the
tuning constant.

AGK=
must be followed by an argument that is a numeric expression that specifies the
proportion of pairs to be included in the estimation of the within-cluster
variances.

AHUBER=
must be followed by an argument that is a numeric expression specifying the
tuning constant.

AWAVE=
must be followed by an argument that is a numeric expression specifying the
tuning constant.

Functions and CALL Routines � CALL STDIZE Routine 529

EUCLEN
specifies the Euclidean length.

IQR
specifies the interquartile range.

L=
must be followed by an argument that is a numeric expression with a value
greater than or equal to 1 specifying the power to which differences are to be
raised in computing an L(p) or Minkowski metric.

MAD
specifies the median absolute deviation from the median.

MAXABS
specifies the maximum absolute values.

MEAN
specifies the arithmetic mean (average).

MEDIAN
specifies the middle number in a set of data that is ordered according to rank.

MIDRANGE
specifies the midpoint of the range.

RANGE
specifies a range of values.

SPACING=
must be followed by an argument that is a numeric expression that specifies the
proportion of data to be contained in the spacing.

STD
specifies the standard deviation.

SUM
specifies the result that you obtain when you add numbers.

USTD
specifies the standard deviation about the origin, based on the uncorrected sum
of squares.

VARDEF-options
specify the divisor to be used in the calculation of variances. VARDEF options can
have the following values:

DF
specifies degrees of freedom.

N
specifies the number of observations.
Default: DF

530 CALL STDIZE Routine � Chapter 4

miscellaneous-options
Miscellaneous options can have the following values:

ADD=
is followed by a numeric argument that specifies a number to add to each value
after standardizing and multiplying by the value from the MULT= option. The
default value is 0.

FUZZ=
is followed by a numeric argument that specifies the relative fuzz factor.

MISSING=
is followed by a numeric argument that specifies a value to be assigned to
variables that have a missing value.

MULT=
is followed by a numeric argument that specifies a number by which to multiply
each value after standardizing. The default value is 1.

NORM
normalizes the scale estimator to be consistent for the standard deviation of a
normal distribution. This option affects only the methods AGK=, IQR, MAD,
and SPACING=.

PSTAT
writes the values of the location and scale measures in the log.

REPLACE
replaces missing values with the value 0 in the standardized data (this value
corresponds to the location measure before standardizing). To replace missing
values by other values, see the MISSING= option.

SNORM
normalizes the scale estimator to have an expectation of approximately 1 for a
standard normal distribution.
Tip: This option affects only the SPACING= method.

variable
is numeric. These values will be standardized according to the method that you use.

Details
The CALL STDIZE routine transforms one or more arguments that are numeric
variables by subtracting a location measure and dividing by a scale measure. You can
use a variety of location and scale measures. The default location option is MEAN, and
the default scale option is STD.

Functions and CALL Routines � CALL STDIZE Routine 531

In addition, you can multiply each standardized value by a constant and you can add
a constant. The final output value would be

������ � ��� ����� �

�
�	�
�
��� � �	��
	��

����

�

where

result specifies the final value that is returned for each variable.

add specifies the constant to add (ADD= option).

mult specifies the constant to multiply by (MULT= option).

original specifies the original input value.

location specifies the location measure.

scale specifies the scale measure.

You can replace missing values by any constant. If you do not specify the MISSING=
or the REPLACE option, variables that have missing values are not altered. The initial
estimation method for the ABW=, AHUBER=, and AWAVE= methods is MAD.
Percentiles are computed using definition 5. For more information about percentile
calculations, see “SAS Elementary Statistics Procedures” in Base SAS Procedures Guide.

Comparisons
The CALL STDIZE routine is similar to the STDIZE procedure in the SAS/STAT
product. However, the CALL STDIZE routine is primarily useful for standardizing the
rows of a SAS data set, whereas the STDIZE procedure can standardize only the
columns of a SAS data set. For more information, see PROC STDIZE in SAS/STAT
User’s Guide.

Examples

The following SAS statements produce these results.

SAS Statements Results

retain x 1 y 2 z 3;
call stdize(x,y,z);
put x= y= z=; x=-1 y=0 z=1

retain w 10 x 11 y 12 z 13;
call stdize(’iqr’,w,x,y,z);
put w= x= y= z=; w=-0.75 x=-0.25 y=0.25 z=0.75

retain w . x 1 y 2 z 3;
call stdize(’range’,w,x,y,z);
put w= x= y= z=; w=. x=0 y=0.5 z=1

retain w . x 1 y 2 z 3;
call stdize(’mult=’,10,’missing=’,

-1,’range’,w,x,y,z);
put w= x= y= z=; w=-1 x=0 y=5 z=10

532 CALL STREAMINIT Routine � Chapter 4

CALL STREAMINIT Routine

Specifies a seed value to use for subsequent random number generation by the RAND function.

Category: Random Number

Syntax
CALL STREAMINIT(seed);

Arguments

seed
is an integer seed value.
Range: seed� �

��
� �

Tip: If you specify a nonpositive seed, then CALL STREAMINIT is ignored. Any
subsequent random number generation seeds itself from the system clock.

Details
If you want to create reproducible streams of random numbers, then specify CALL
STREAMINIT before any calls to the RAND random number function. If you call the
RAND function before you specify a seed with the CALL STREAMINIT routine (or if
you specify a nonpositive seed value in the CALL STREAMINIT routine), then the
RAND function uses a call to the system clock to seed itself. For more information
about seed values see “Seed Values” on page 313.

Examples

Example 1: Creating a Reproducible Stream of Random Numbers The following
example shows how to specify a seed value with CALL STREAMINIT to create a
reproducible stream of random numbers with the RAND function.

options nodate ps=60 ls=80 pageno=1;

data random;
call streaminit(123);
do i=1 to 10;

x1=rand(’cauchy’);
output;

end;

proc print data=random;
id i;

run;

Functions and CALL Routines � CALL SYMPUT Routine 533

Output 4.34 Number String Seeded with CALL STREAMINIT

The SAS System 1

i x1

1 -0.17593
2 3.76106
3 1.23427
4 0.49095
5 -0.05094
6 0.72496
7 -0.51646
8 7.61304
9 0.89784
10 1.69348

See Also

Functions:

“RAND Function” on page 1038

CALL SYMPUT Routine

Assigns DATA step information to a macro variable.

Category: Macro

Syntax
CALL SYMPUT(argument-1,argument-2);

Arguments

argument-1
specifies a character expression that identifies the macro variable that is assigned a
value. If the macro variable does not exist, the routine creates it.

argument-2
specifies a character constant, variable, or expression that contains the value that is
assigned.

Details
The CALL SYMPUT routine either creates a macro variable whose value is information
from the DATA step or assigns a DATA step value to an existing macro variable. CALL
SYMPUT is fully documented in “SYMPUT Routine” in SAS Macro Language:
Reference.

534 CALL SYMPUTX Routine � Chapter 4

See Also

Function:
“SYMGET Function” on page 1114

CALL SYMPUTX Routine

Assigns a value to a macro variable, and removes both leading and trailing blanks.

Category: Macro

Syntax
CALL SYMPUTX(macro-variable, value <,symbol-table>);

Arguments

macro-variable
can be one of the following:

� a character string that is a SAS name, enclosed in quotation marks.
� the name of a character variable whose values are SAS names.
� a character expression that produces a macro variable name. This form is

useful for creating a series of macro variables.

a character constant, variable, or expression. Leading and trailing blanks are
removed from the value of name, and the result is then used as the name of the
macro variable.

value
specifies a character or numeric constant, variable, or expression. If value is numeric,
SAS converts the value to a character string using the BEST. format and does not
issue a note to the SAS log. Leading and trailing blanks are removed, and the
resulting character string is assigned to the macro variable.

symbol-table
specifies a character constant, variable, or expression. The value of symbol-table is
not case sensitive. The first non-blank character in symbol-table specifies the symbol
table in which to store the macro variable. The following values are valid as the first
non-blank character in symbol-table:

G specifies that the macro variable is stored in the global symbol
table, even if the local symbol table exists.

L specifies that the macro variable is stored in the most local
symbol table that exists, which will be the global symbol table, if
used outside a macro.

F specifies that if the macro variable exists in any symbol table,
CALL SYMPUTX uses the version in the most local symbol table
in which it exists. If the macro variable does not exist, CALL
SYMPUTX stores the variable in the most local symbol table.

Functions and CALL Routines � CALL SYSTEM Routine 535

Note: If you omit symbol-table, or if symbol-table is blank, CALL SYMPUTX stores
the macro variable in the same symbol table as does the CALL SYMPUT routine. �

Comparisons
CALL SYMPUTX is similar to CALL SYMPUT except that

� CALL SYMPUTX does not write a note to the SAS log when the second argument
is numeric. CALL SYMPUT, however, writes a note to the log stating that numeric
values were converted to character values.

� CALL SYMPUTX uses a field width of up to 32 characters when it converts a
numeric second argument to a character value. CALL SYMPUT uses a field width
of up to 12 characters.

� CALL SYMPUTX left-justifies both arguments and trims trailing blanks. CALL
SYMPUT does not left-justify the arguments, and trims trailing blanks from the
first argument only. Leading blanks in the value of name cause an error.

� CALL SYMPUTX enables you to specify the symbol table in which to store the
macro variable, whereas CALL SYMPUT does not.

Examples

The following example shows the results of using CALL SYMPUTX.

data _null_;
call symputx(’ items ’, ’ leading and trailing blanks removed ’,

’lplace’);
call symputx(’ x ’, 123.456);

run;

%put items=!&items!;
%put x=!&x!;

The following lines are written to the SAS log:

----+----1----+----2----+----3----+----4----+----5
items=!leading and trailing blanks removed!
x=!123.456!

See Also

Functions and CALL Routines:
SYMGET Function“SYMGET Function” on page 1114
CALL SYMPUT“CALL SYMPUT Routine” on page 533

CALL SYSTEM Routine

Submits an operating environment command for execution.

Category: Special
Interaction: When invoked by the %SYSCALL macro statement, CALL SYSTEM removes
quotation marks from its arguments. For more information, see “Using CALL Routines
and the %SYSCALL Macro Statement” on page 311.

536 CALL TANH Routine � Chapter 4

See: CALL SYSTEM Routine in the documentation for your operating environment.

Syntax
CALL SYSTEM(command);

Arguments

command
specifies any of the following: a system command that is enclosed in quotation marks
(character string), an expression whose value is a system command, or the name of a
character variable whose value is a system command that is executed.

Operating Environment Information: See the SAS documentation for your operating
environment for information about what you can specify. �

Restriction: The length of the command cannot be greater than 1024 characters,
including trailing blanks.

Comparisons
The behavior of the CALL SYSTEM routine is similar to that of the X command, the X
statement, and the SYSTEM function. It is useful in certain situations because it can
be conditionally executed, it accepts an expression as an argument, and it is executed at
run time.

See Also

Function:

“SYSTEM Function” on page 1122

CALL TANH Routine

Returns the hyperbolic tangent.

Category: Mathematical

Syntax
CALL TANH(argument<, argument,...>);

Arguments

argument
is numeric.

Functions and CALL Routines � CALL VNAME Routine 537

Restriction: The CALL TANH routine only accepts variables as valid arguments.
Do not use a constant or a SAS expression, because the CALL routine is unable to
update these arguments.

Details
The subroutine TANH replaces each argument by the tanh of that argument. For
example �� is replaced by

���� ���� �
�
��
� �

���

��� � ����

If any argument contains a missing value, then CALL TANH returns missing values
for all the arguments.

Examples

The following SAS statements produce these results:

SAS Statements Results

x=0.5;
y=-0.5;
call tanh(x,y);
put x= y=;

x=0.4621171573 y=-0.462117157

See Also

Function:
“TANH Function” on page 1124

CALL VNAME Routine

Assigns a variable name as the value of a specified variable.

Category: Variable Control

Syntax
CALL VNAME(variable-1,variable-2);

Arguments

variable-1

538 CALL VNEXT Routine � Chapter 4

specifies any SAS variable.

variable-2
specifies any SAS character variable. Because SAS variable names can contain up to
32 characters, the length of variable-2 should be at least 32.

Details
The CALL VNAME routine assigns the name of the variable-1 variable as the value of
the variable-2 variable.

Examples

This example uses the CALL VNAME routine with array references to return the
names of all variables in the data set OLD:

data new(keep=name);
set old;

/* all character variables in old */
array abc{*} _character_;

/* all numeric variables in old */
array def{*} _numeric_;

/* name is not in either array */
length name $32;
do i=1 to dim(abc);

/* get name of character variable */
call vname(abc{i},name);

/* write name to an observation */
output;

end;
do j=1 to dim(def);

/* get name of numeric variable */
call vname(def{j},name);

/* write name to an observation */
output;

end;
stop;

run;

See Also

Functions:
“VNAME Function” on page 1179
“VNAMEX Function” on page 1180

CALL VNEXT Routine

Returns the name, type, and length of a variable that is used in a DATA step.

Category: Variable Information

Functions and CALL Routines � CALL VNEXT Routine 539

Syntax
CALL VNEXT(varname <,vartype <, varlength>>);

Arguments

varname
is a character variable that is updated by the CALL VNEXT routine. The following
rules apply:

� If the input value of varname is blank, the value that is returned in varname is
the name of the first variable in the DATA step’s list of variables.

� If the CALL VNEXT routine is executed for the first time in the DATA step, the
value that is returned in varname is the name of the first variable in the DATA
step’s list of variables.

If neither of the above conditions exists, the input value of varname is ignored. Each
time the CALL VNEXT routine is executed, the value that is returned in varname is
the name of the next variable in the list.

After the names of all the variables in the DATA step are returned, the value that
is returned in varname is blank.

vartype
is a character variable whose input value is ignored. The value that is returned is
“N” or “C.” The following rules apply:

� If the value that is returned in varname is the name of a numeric variable, the
value that is returned in vartype is “N.”

� If the value that is returned in varname is the name of a character variable, the
value that is returned in vartype is “C.”

� If the value that is returned in varname is blank, the value that is returned in
vartype is also blank.

varlength
is a numeric variable. The input value of varlength is ignored.

The value that is returned is the length of the variable whose name is returned in
varname. If the value that is returned in varname is blank, the value that is
returned in varlength is zero.

Details
The variable names that are returned by the CALL VNEXT routine include automatic
variables such as _N_ and _ERROR_. If the DATA step contains a BY statement, the
variable names that are returned by CALL VNEXT include the FIRST.variable and
LAST.variable names. CALL VNEXT also returns the names of the variables that are
used as arguments to CALL VNEXT.

Note: The order in which variable names are returned by CALL VNEXT can vary in
different releases of SAS and in different operating environments. �

Examples

The following example shows the results from using the CALL VNEXT routine.

data test;
x=1;

540 CAT Function � Chapter 4

y=’abc’;
z=.;
length z 5;

run;

data attributes;
set test;
by x;
input a b $ c;
length name $32 type $3;
name=’ ’;
length=666;
do i=1 to 99 until(name=’ ’);

call vnext(name,type,length);
put i= name @40 type= length=;

end;
this_is_a_long_variable_name=0;
datalines;

1 q 3
;

Output 4.35 Partial SAS Log Output for the CALL VNEXT Routine

i=1 x type=N length=8
i=2 y type=C length=3
i=3 z type=N length=5
i=4 FIRST.x type=N length=8
i=5 LAST.x type=N length=8
i=6 a type=N length=8
i=7 b type=C length=8
i=8 c type=N length=8
i=9 name type=C length=32
i=10 type type=C length=3
i=11 length type=N length=8
i=12 i type=N length=8
i=13 this_is_a_long_variable_name type=N length=8
i=14 _ERROR_ type=N length=8
i=15 _N_ type=N length=8
i=16 type= length=0

CAT Function

Does not remove leading or trailing blanks, and returns a concatenated character string.

Category: Character

Restriction: “I18N Level 2” on page 313

Tip: DBCS equivalent function is KSTRCAT in SAS National Language Support (NLS):
Reference Guide.

Syntax
CAT(item-1 <, …, item-n>)

Functions and CALL Routines � CAT Function 541

Arguments

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string by using the BESTw.
format. In this case, leading blanks are removed and SAS does not write a note to
the log.

Details

Length of Returned Variable
In a DATA step, if the CAT function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes. If
the concatenation operator (||) returns a value to a variable that has not previously
been assigned a length, then that variable is given a length that is the sum of the
lengths of the values which are being concatenated.

Length of Returned Variable: Special Cases The CAT function returns a value to a
variable, or returns a value in a temporary buffer. The value that is returned from the
CAT function has the following length:

� up to 200 characters in WHERE clauses and in PROC SQL
� up to 32767 characters in the DATA step except in WHERE clauses
� up to 65534 characters when CAT is called from the macro processor

If CAT returns a value in a temporary buffer, the length of the buffer depends on the
calling environment, and the value in the buffer can be truncated after CAT finishes
processing. In this case, SAS does not write a message about the truncation to the log.

If the length of the variable or the buffer is not large enough to contain the result of
the concatenation, SAS does the following:

� changes the result to a blank value in the DATA step, and in PROC SQL
� writes a warning message to the log stating that the result was either truncated or

set to a blank value, depending on the calling environment
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation
� sets _ERROR_ to 1 in the DATA step

The CAT function removes leading and trailing blanks from numeric arguments after
it formats the numeric value with the BESTw. format.

Comparisons
The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to
results that are produced by certain combinations of the concatenation operator (||)
and the TRIM and LEFT functions. However, the default length for the CAT, CATS,
CATT, and CATX functions is different from the length that is obtained when you use
the concatenation operator. For more information, see “Length of Returned Variable” on
page 541.

Using the CAT, CATS, CATT, and CATX functions is faster than using TRIM and
LEFT, and you can use them with the OF syntax for variable lists in calling
environments that support variable lists.

The following table shows equivalents of the CAT, CATS, CATT, and CATX functions.
The variables X1 through X4 specify character variables, and SP specifies a delimiter,
such as a blank or comma.

542 CAT Function � Chapter 4

Function Equivalent Code

CAT(OF X1-X4) X1||X2||X3||X4

CATS(OF X1-X4) TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4))

CATT(OF X1-X4) TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

Examples

The following example shows how the CAT function concatenates strings.

data _null_;
x=’ The 2002 Olym’;
y=’pic Arts Festi’;
z=’ val included works by D ’;
a=’ale Chihuly.’;
result=cat(x,y,z,a);
put result $char.;

run;

SAS writes the following line to the log:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7
The 2002 Olympic Arts Festi val included works by D ale Chihuly.

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CATQ Function” on page 543
“CATS Function” on page 547
“CATT Function” on page 549
“CATX Function” on page 551

Functions and CALL Routines � CATQ Function 543

CATQ Function

Concatenates character or numeric values by using a delimiter to separate items and by adding
quotation marks to strings that contain the delimiter.

Category: Character

Syntax
CATQ(modifiers<, delimiter>, item-1 <, …, item-n>)

Arguments

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the CATQ function. Blanks are ignored. You can use
the following characters as modifiers:

1 or ’ uses single quotation marks when CATQ adds quotation marks to
a string.

2 or ” uses double quotation marks when CATQ adds quotation marks
to a string.

a or A adds quotation marks to all of the item arguments.

b or B adds quotation marks to item arguments that have leading or
trailing blanks that are not removed by the S or T modifiers.

c or C uses a comma as a delimiter.

d or D indicates that you have specified the delimiter argument.

h or H uses a horizontal tab as the delimiter.

m or M inserts a delimiter for every item argument after the first. If you
do not use the M modifier, then CATQ does not insert delimiters
for item arguments that have a length of zero after processing
that is specified by other modifiers. The M modifier can cause
delimiters to appear at the beginning or end of the result and can
cause multiple consecutive delimiters to appear in the result.

n or N converts item arguments to name literals when the value does not
conform to the usual syntactic conventions for a SAS name. A
name literal is a string in quotation marks that is followed by the
letter “n” without any intervening blanks. To use name literals in
SAS statements, you must specify the SAS option,
VALIDVARNAME=ANY.

q or Q adds quotation marks to item arguments that already contain
quotation marks.

s or S strips leading and trailing blanks from subsequently processed
arguments:

� To strip leading and trailing blanks from the delimiter
argument, specify the S modifier before the D modifier.

544 CATQ Function � Chapter 4

� To strip leading and trailing blanks from the item arguments
but not from the delimiter argument, specify the S modifier
after the D modifier.

t or T trims trailing blanks from subsequently processed arguments:
� To trim trailing blanks from the delimiter argument, specify

the T modifier before the D modifier.
� To trim trailing blanks from the item arguments but not

from the delimiter argument, specify the T modifier after the
D modifier.

x or X converts item arguments to hexadecimal literals when the value
contains nonprintable characters.

Tip: If modifier is a constant, enclose it in quotation marks. You can also express
modifier as a variable name or an expression.

Tip: The A, B, N, Q, S, T, and X modifiers operate internally to the CATQ function.
If an item argument is a variable, then the value of that variable is not changed
by CATQ unless the result is assigned to that variable.

delimiter
specifies a character constant, variable, or expression that is used as a delimiter
between concatenated strings. If you specify this argument, then you must also
specify the D modifier.

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string by using the BESTw.
format. In this case, leading blanks are removed and SAS does not write a note to
the log.

Details

Length of Returned Variable The CATQ function returns a value to a variable or if
CATQ is called inside an expression, CATQ returns a value to a temporary buffer. The
value that is returned has the following length:

� up to 200 characters in WHERE clauses and in PROC SQL
� up to 32767 characters in the DATA step except in WHERE clauses
� up to 65534 characters when CATQ is called from the macro processor

If the length of the variable or the buffer is not large enough to contain the result of
the concatenation, then SAS does the following steps:

� changes the result to a blank value in the DATA step and in PROC SQL
� writes a warning message to the log stating that the result was either truncated or

set to a blank value, depending on the calling environment
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation
� sets _ERROR_ to 1 in the DATA step

If CATQ returns a value in a temporary buffer, then the length of the buffer depends
on the calling environment, and the value in the buffer can be truncated after CATQ
finishes processing. In this case, SAS does not write a message about the truncation to
the log.

The Basics If you do not use the C, D, or H modifiers, then CATQ uses a blank as a
delimiter.

Functions and CALL Routines � CATQ Function 545

If you specify neither a quotation mark in modifier nor the 1 or 2 modifiers, then
CATQ decides independently for each item argument which type of quotation mark to
use, if quotation marks are required. The following rules apply:

� CATQ uses single quotation marks for strings that contain an ampersand (&) or
percent (%) sign, or that contain more double quotation marks than single
quotation marks.

� CATQ uses double quotation marks for all other strings.

The CATQ function initializes the result to a length of zero and then performs the
following actions for each item argument:

1 If item is not a character string, then CATQ converts item to a character string by
using the BESTw. format and removes leading blanks.

2 If you used the S modifier, then CATQ removes leading blanks from the string.
3 If you used the S or T modifiers, then CATQ removes trailing blanks from the

string.
4 CATQ determines whether to add quotation marks based on the following

conditions:
� If you use the X modifier and the string contains control characters, then the

string is converted to a hexadecimal literal.
� If you use the N modifier, then the string is converted to a name literal if

either of the following conditions is true:
� The first character in the string is not an underscore or an English letter.
� The string contains any character that is not a digit, underscore, or

English letter.

� If you did not use the X or the N modifiers, then CATQ adds quotation marks
to the string if any of the following conditions is true:

� You used the A modifier.
� You used the B modifier and the string contains leading or trailing

blanks that were not removed by the S or T modifiers.
� You used the Q modifier and the string contains quotation marks.
� The string contains a substring that equals the delimiter with leading

and trailing blanks omitted.

5 For the second and subsequent item arguments, CATQ appends the delimiter to
the result if either of the following conditions is true:

� You used the M modifier.
� The string has a length greater than zero after it has been processed by the

preceding steps.

6 CATQ appends the string to the result.

Comparisons
The CATX function is similar to the CATQ function except that CATX does not add
quotation marks.

546 CATQ Function � Chapter 4

Examples

The following example shows how the CATQ function concatenates strings.

options ls=110;

data _null_;
result1=CATQ(’ ’,

’noblanks’,
’one blank’,
12345,
’ lots of blanks ’);

result2=CATQ(’CS’,
’Period (.) ’,
’Ampersand (&) ’,
’Comma (,) ’,
’Double quotation marks (") ’,
’ Leading Blanks’);

result3=CATQ(’BCQT’,
’Period (.) ’,
’Ampersand (&) ’,
’Comma (,) ’,
’Double quotation marks (") ’,
’ Leading Blanks’);

result4=CATQ(’ADT’,
’#=#’,
’Period (.) ’,
’Ampersand (&) ’,
’Comma (,) ’,
’Double quotation marks (") ’,
’ Leading Blanks’);

result5=CATQ(’N’,
’ABC_123 ’,
’123 ’,
’ABC 123’);

put (result1-result5) (=/);
run;

SAS writes the following output to the log.

result1=noblanks "one blank" 12345 " lots of blanks "

result2=Period (.),Ampersand (&),"Comma (,)",Double quotation marks ("),Leading Blanks

result3=Period (.),Ampersand (&),"Comma (,)",’Double quotation marks (")’," Leading Blanks"

result4="Period (.)"#=#’Ampersand (&)’#=#"Comma (,)"#=#’Double quotation marks (")’#=#" Leading Blanks"

result5=ABC_123 "123"n "ABC 123"n

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATS Function” on page 547

Functions and CALL Routines � CATS Function 547

“CATT Function” on page 549
“CATX Function” on page 551

CATS Function

Removes leading and trailing blanks, and returns a concatenated character string.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
CATS(item-1 <, …, item-n>)

Arguments

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string by using the BESTw.
format. In this case, SAS does not write a note to the log.

Details

Length of Returned Variable
In a DATA step, if the CATS function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes. If
the concatenation operator (||) returns a value to a variable that has not previously
been assigned a length, then that variable is given a length that is the sum of the
lengths of the values which are being concatenated.

Length of Returned Variable: Special Cases The CATS function returns a value to a
variable, or returns a value in a temporary buffer. The value that is returned from the
CATS function has the following length:

� up to 200 characters in WHERE clauses and in PROC SQL
� up to 32767 characters in the DATA step except in WHERE clauses
� up to 65534 characters when CATS is called from the macro processor

If CATS returns a value in a temporary buffer, the length of the buffer depends on the
calling environment, and the value in the buffer can be truncated after CATS finishes
processing. In this case, SAS does not write a message about the truncation to the log.

If the length of the variable or the buffer is not large enough to contain the result of
the concatenation, SAS does the following:

� changes the result to a blank value in the DATA step, and in PROC SQL
� writes a warning message to the log stating that the result was either truncated or

set to a blank value, depending on the calling environment
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation

548 CATS Function � Chapter 4

� sets _ERROR_ to 1 in the DATA step

The CATS function removes leading and trailing blanks from numeric arguments
after it formats the numeric value with the BESTw. format.

Comparisons
The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to
results that are produced by certain combinations of the concatenation operator (||)
and the TRIM and LEFT functions. However, the default length for the CAT, CATS,
CATT, and CATX functions is different from the length that is obtained when you use
the concatenation operator. For more information, see “Length of Returned Variable” on
page 547.

Using the CAT, CATS, CATT, and CATX functions is faster than using TRIM and
LEFT, and you can use them with the OF syntax for variable lists in calling
environments that support variable lists.

The following table shows equivalents of the CAT, CATS, CATT, and CATX functions.
The variables X1 through X4 specify character variables, and SP specifies a delimiter,
such as a blank or comma.

Function Equivalent Code

CAT(OF X1-X4) X1||X2||X3||X4

CATS(OF X1-X4) TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4))

CATT(OF X1-X4) TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

Examples

The following example shows how the CATS function concatenates strings.

data _null_;
x=’ The Olym’;
y=’pic Arts Festi’;
z=’ val includes works by D ’;
a=’ale Chihuly.’;
result=cats(x,y,z,a);
put result $char.;

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4----+----5----+----6
The Olympic Arts Festival includes works by Dale Chihuly.

Functions and CALL Routines � CATT Function 549

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATQ Function” on page 543
“CATT Function” on page 549
“CATX Function” on page 551

CATT Function

Removes trailing blanks, and returns a concatenated character string.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
CATT(item-1 <, … item-n>)

Arguments

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string by using the BESTw.
format. In this case, leading blanks are removed and SAS does not write a note to
the log.

Details

Length of Returned Variable
In a DATA step, if the CATT function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes. If
the concatenation operator (||) returns a value to a variable that has not previously
been assigned a length, then that variable is given a length that is the sum of the
lengths of the values which are being concatenated.

Length of Returned Variable: Special Cases The CATT function returns a value to a
variable, or returns a value in a temporary buffer. The value that is returned from the
CATT function has the following length:

� up to 200 characters in WHERE clauses and in PROC SQL
� up to 32767 characters in the DATA step except in WHERE clauses
� up to 65534 characters when CATT is called from the macro processor

550 CATT Function � Chapter 4

If CATT returns a value in a temporary buffer, the length of the buffer depends on the
calling environment, and the value in the buffer can be truncated after CATT finishes
processing. In this case, SAS does not write a message about the truncation to the log.

If the length of the variable or the buffer is not large enough to contain the result of
the concatenation, SAS does the following:

� changes the result to a blank value in the DATA step, and in PROC SQL
� writes a warning message to the log stating that the result was either truncated or

set to a blank value, depending on the calling environment
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation
� sets _ERROR_ to 1 in the DATA step

The CATT function removes leading and trailing blanks from numeric arguments
after it formats the numeric value with the BESTw. format.

Comparisons
The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to
results that are produced by certain combinations of the concatenation operator (||)
and the TRIM and LEFT functions. However, the default length for the CAT, CATS,
CATT, and CATX functions is different from the length that is obtained when you use
the concatenation operator. For more information, see “Length of Returned Variable” on
page 549.

Using the CAT, CATS, CATT, and CATX functions is faster than using TRIM and
LEFT, and you can use them with the OF syntax for variable lists in calling
environments that support variable lists.

The following table shows equivalents of the CAT, CATS, CATT, and CATX functions.
The variables X1 through X4 specify character variables, and SP specifies a delimiter,
such as a blank or comma.

Function Equivalent Code

CAT(OF X1-X4) X1||X2||X3||X4

CATS(OF X1-X4) TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4))

CATT(OF X1-X4) TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

Examples

The following example shows how the CATT function concatenates strings.

data _null_;
x=’ The Olym’;
y=’pic Arts Festi’;
z=’ val includes works by D ’;
a=’ale Chihuly.’;
result=catt(x,y,z,a);
put result $char.;

Functions and CALL Routines � CATX Function 551

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7
The Olympic Arts Festi val includes works by Dale Chihuly.

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATQ Function” on page 543
“CATS Function” on page 547
“CATX Function” on page 551

CATX Function

Removes leading and trailing blanks, inserts delimiters, and returns a concatenated character
string.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
CATX(delimiter, item-1 <, … item-n>)

Arguments

delimiter
specifies a character string that is used as a delimiter between concatenated items.

item
specifies a constant, variable, or expression, either character or numeric. If item is
numeric, then its value is converted to a character string by using the BESTw.
format. In this case, SAS does not write a note to the log. For more information, see
“The Basics” on page 551.

Details

The Basics
The CATX function first copies item-1 to the result, omitting leading and trailing
blanks. Then for each subsequent argument item-i, i=2, …, n, if item-i contains at least
one non-blank character, then CATX appends delimiter and item-i to the result, omitting

552 CATX Function � Chapter 4

leading and trailing blanks from item-i. CATX does not insert the delimiter at the
beginning or end of the result. Blank items do not produce delimiters at the beginning
or end of the result, nor do blank items produce multiple consecutive delimiters.

Length of Returned Variable
In a DATA step, if the CATX function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes. If
the concatenation operator (||) returns a value to a variable that has not previously
been assigned a length, then that variable is given a length that is the sum of the
lengths of the values which are being concatenated.

Length of Returned Variable: Special Cases The CATX function returns a value to a
variable, or returns a value in a temporary buffer. The value that is returned from the
CATX function has the following length:

� up to 200 characters in WHERE clauses and in PROC SQL
� up to 32767 characters in the DATA step except in WHERE clauses
� up to 65534 characters when CATX is called from the macro processor

If CATX returns a value in a temporary buffer, the length of the buffer depends on the
calling environment, and the value in the buffer can be truncated after CATX finishes
processing. In this case, SAS does not write a message about the truncation to the log.

If the length of the variable or the buffer is not large enough to contain the result of
the concatenation, SAS does the following:

� changes the result to a blank value in the DATA step, and in PROC SQL
� writes a warning message to the log stating that the result was either truncated or

set to a blank value, depending on the calling environment
� writes a note to the log that shows the location of the function call and lists the

argument that caused the truncation
� sets _ERROR_ to 1 in the DATA step

Comparisons
The results of the CAT, CATS, CATT, and CATX functions are usually equivalent to
results that are produced by certain combinations of the concatenation operator (||)
and the TRIM and LEFT functions. However, the default length for the CAT, CATS,
CATT, and CATX functions is different from the length that is obtained when you use
the concatenation operator. For more information, see “Length of Returned Variable” on
page 552.

Using the CAT, CATS, CATT, and CATX functions is faster than using TRIM and
LEFT, and you can use them with the OF syntax for variable lists in calling
environments that support variable lists.

Note: In the case of variables that have missing values, the concatenation produces
different results. See Example 2 on page 553. �

The following table shows equivalents of the CAT, CATS, CATT, and CATX functions.
The variables X1 through X4 specify character variables, and SP specifies a delimiter,
such as a blank or comma.

Functions and CALL Routines � CATX Function 553

Function Equivalent Code

CAT(OF X1-X4) X1||X2||X3||X4

CATS(OF X1-X4) TRIM(LEFT(X1))||TRIM(LEFT(X2))||TRIM(LEFT(X3))||
TRIM(LEFT(X4))

CATT(OF X1-X4) TRIM(X1)||TRIM(X2)||TRIM(X3)||TRIM(X4)

CATX(SP, OF X1-X4) TRIM(LEFT(X1))||SP||TRIM(LEFT(X2))||SP||
TRIM(LEFT(X3))||SP||TRIM(LEFT(X4))

Examples

Example 1: Concatenating Strings That Have No Missing Values
The following example shows how the CATX function concatenates strings the have no
missing values.

data _null_;
separator=’%%$%%’;
x=’The Olympic ’;
y=’ Arts Festival ’;
z=’ includes works by ’;
a=’Dale Chihuly.’;
result=catx(separator,x,y,z,a);
put result $char.;

run;

The following line is written to the SAS log:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7
The Olympic%%$%%Arts Festival%%$%%includes works by%%$%%Dale Chihuly.

Example 2: Concatenating Strings That Have Missing Values
The following example shows how the CATX function concatenates strings that contain
missing values.

options nodate nostimer ls=78 ps=60;

data one;
length x1--x4 $1;
input x1--x4;
datalines;

A B C D
E . F G
H . . J
;
run;

data two;
set one;
SP=’^’;
test1=catx(sp, of x1--x4);
test2=trim(left(x1)) || sp || trim(left(x2)) || sp || trim(left(x3)) || sp ||

trim(left(x4));

554 CDF Function � Chapter 4

run;

proc print data=two;
run;

SAS creates the following output:

Output 4.36 Using CATX with Missing Values

The SAS System 1

Obs x1 x2 x3 x4 SP test1 test2

1 A B C D ^ A^B^C^D A^B^C^D
2 E F G ^ E^F^G E^ ^F^G
3 H J ^ H^J H^ ^ ^J

See Also

Functions and CALL Routines:
“CALL CATS Routine” on page 438
“CALL CATT Routine” on page 440
“CALL CATX Routine” on page 442
“CAT Function” on page 540
“CATQ Function” on page 543
“CATS Function” on page 547
“CATT Function” on page 549

CDF Function
Returns a value from a cumulative probability distribution.

Category: Probability

Syntax
CDF (distribution,quantile< ,parm-1, … ,parm-k>)

Arguments

distribution
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli BERNOULLI

Beta BETA

Binomial BINOMIAL

Functions and CALL Routines � CDF Function 555

Distribution Argument

Cauchy CAUCHY

Chi-Square CHISQUARE

Exponential EXPONENTIAL

F F

Gamma GAMMA

Geometric GEOMETRIC

Hypergeometric HYPERGEOMETRIC

Laplace LAPLACE

Logistic LOGISTIC

Lognormal LOGNORMAL

Negative binomial NEGBINOMIAL

Normal NORMAL|GAUSS

Normal mixture NORMALMIX

Pareto PARETO

Poisson POISSON

T T

Uniform UNIFORM

Wald (inverse Gaussian) WALD|IGAUSS

Weibull WEIBULL

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric constant, variable, or expression that specifies the value of the random
variable.

parm-1, … ,parm-k
are optional constants, variables, or expressions that specify shape, location, or scale
parameters appropriate for the specific distribution.
See: “Details” on page 555 for complete information about these parameters

Details
The CDF function computes the left cumulative distribution function from various
continuous and discrete probability distributions.

Note: The QUANTILE function returns the quantile from a distribution that you
specify. The QUANTILE function is the inverse of the CDF function. For more
information, see “QUANTILE Function” on page 1033 . �

Bernoulli Distribution

CDF(’BERNOULLI’,x,p)

where

556 CDF Function � Chapter 4

x
is a numeric random variable.

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

The CDF function for the Bernoulli distribution returns the probability that an
observation from a Bernoulli distribution, with probability of success equal to p, is less
than or equal to x. The equation follows:

���
�

����� �� �� 	
�
�

�
� �
 �

�� 	 � � �
 �

� � � �

Note: There are no location or scale parameters for this distribution. �

Beta Distribution

CDF(’BETA’,x,a,b<,l,r>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

l
is the numeric left location parameter.
Default: 0

r
is the right location parameter.
Default: 1
Range: r > l

The CDF function for the beta distribution returns the probability that an
observation from a beta distribution, with shape parameters a and b, is less than or
equal to v. The following equation describes the CDF function of the beta distribution:

���
�

������� �� � �� �� �
�
�

���
��
� � � �

�

������

��

�

����������������

����������
�� � � � � �

� � � �

where

� ��	
� �
� ��� � �
�

� ���
�

Functions and CALL Routines � CDF Function 557

and

� ��� �

��

�

���������

Binomial Distribution

CDF(’BINOMIAL’,m,p,n)

where

m
is an integer random variable that counts the number of successes.
Range: m = 0, 1, ...

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of independent Bernoulli trials.
Range: n = 0, 1, ...

The CDF function for the binomial distribution returns the probability that an
observation from a binomial distribution, with parameters p and n, is less than or equal
to m. The equation follows:

���
�
���	
� ��� �� �

�
�

���
��

� � �
��
���

�
	
�

�
�� ��� ����� � � � � �

� � � �

Note: There are no location or scale parameters for the binomial distribution. �

Cauchy Distribution

CDF(’CAUCHY’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter.
Default: 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The CDF function for the Cauchy distribution returns the probability that an
observation from a Cauchy distribution, with the location parameter � and the scale
parameter �, is less than or equal to x. The equation follows:

558 CDF Function � Chapter 4

���
�

������� �� �� 	�

�
�
�

�
�
�

�
����

�
�� 	

�

Chi-Square Distribution

CDF(’CHISQUARE’,x,df <,nc>)

where

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric non-centrality parameter.
Range: nc ≥ 0

The CDF function for the chi-square distribution returns the probability that an
observation from a chi-square distribution, with df degrees of freedom and
non-centrality parameter nc, is less than or equal to x. This function accepts
non-integer degrees of freedom. If nc is omitted or equal to zero, the value returned is
from the central chi-square distribution. In the following equation, let ν = df and
let λ = nc. The following equation describes the CDF function of the
chi-square distribution:

���
�
�������� �� ��

�
�

�
� � � �
��
���

��
�

�

��
�
�
�

��
�� ��� � � ��� � � �

where Pc(.,.) denotes the probability from the central chi-square distribution:

�� ��� �� � ��

��
�
�
�

�

�

and where Pg(y,b) is the probability from the gamma distribution given by

�� ��� �� �
�

� ���

��

�

���	���
	

Exponential Distribution

CDF(’EXPONENTIAL’,x <,�>)

where

x
is a numeric random variable.

�

is a scale parameter.

Functions and CALL Routines � CDF Function 559

Default: 1
Range: � > 0

The CDF function for the exponential distribution returns the probability that an
observation from an exponential distribution, with the scale parameter �, is less than or
equal to x. The equation follows:

���
�

������� 	� �
�
�

�
� 	
 �

� � ��
�

� 	 � �

F Distribution

CDF(’F’,x,ndf,ddf <,nc>)

where

x
is a numeric random variable.

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is a numeric non-centrality parameter.
Range: nc ≥ 0

The CDF function for the F distribution returns the probability that an observation
from an F distribution, with ndf numerator degrees of freedom, ddf denominator
degrees of freedom, and non-centrality parameter nc, is less than or equal to x. This
function accepts non-integer degrees of freedom for ndf and ddf. If nc is omitted or
equal to zero, the value returned is from a central F distribution. In the following
equation, let ν_1 = ndf, let ν_2 = ddf, and let λ = nc. The following
equation describes the CDF function of the F distribution:

���
�
�� �� 	� ��� ��� �

�
�

�
� 	
 �
��
���

��
�

�

��
�
�
�

��
�� ��� �� � ��� ��� � � �

where Pf(f,u1,u2) is the probability from the central F distribution with

�� ������ ��� � ��

�
���

���� ��

�
��

�
�
��

�

�

and PB(x,a,b) is the probability from the standard beta distribution.

Note: There are no location or scale parameters for the F distribution. �

Gamma Distribution

CDF(’GAMMA’,x,a<,�>)

560 CDF Function � Chapter 4

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The CDF function for the gamma distribution returns the probability that an
observation from a gamma distribution, with shape parameter a and scale parameter �,
is less than or equal to x. The equation follows:

���
�

�������� �� 	��
�
�

�
� �
 �

�

������

��
�

������
�

�� � � �

Geometric Distribution

CDF(’GEOMETRIC’,m,p)

where

m
is a numeric random variable that denotes the number of failures.
Range: m = 0, 1, ...

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

The CDF function for the geometric distribution returns the probability that an
observation from a geometric distribution, with parameter p, is less than or equal to m.
The equation follows:

���
�

����� ���� 	
�
�

�
� �
 �
� � �� � 	������ � � �

Note: There are no location or scale parameters for this distribution. �

Hypergeometric Distribution

CDF(’HYPER’,x,N,R,n<,o>)

where

x
is an integer random variable.

N
is an integer population size parameter.
Range: N = 1, 2, ...

Functions and CALL Routines � CDF Function 561

R
is an integer number of items in the category of interest.

Range: R = 0, 1, ..., N

n
is an integer sample size parameter.

Range: n = 1, 2, ..., N

o
is an optional numeric odds ratio parameter.

Range: o > 0

The CDF function for the hypergeometric distribution returns the probability that an
observation from an extended hypergeometric distribution, with population size N,
number of items R, sample size n, and odds ratio o, is less than or equal to x. If o is
omitted or equal to 1, the value returned is from the usual hypergeometric distribution.
The equation follows:

���
�

��� ����� 	�
��� �� �
�
���������

�������

� 	 ��	 ��� � � ��
�
��
���

�
�
�

��

 ��
�� �

�
�
�

���������
��������������

�
�
�

��

 ��
�� �

�
�
�

��	 ��� � � ��
� � 	 � ��� �����

� 	 � ��� �����

Laplace Distribution

CDF(’LAPLACE’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter.

Default: 0

�

is a numeric scale parameter.

Default: 1

Range: � > 0

The CDF function for the Laplace distribution returns the probability that an
observation from the Laplace distribution, with the location parameter � and the scale
parameter �, is less than or equal to x. The equation follows:

���
�

�������� �	
	 �	 �
�
�

����
���

�

�
�

�
� ��
�
 � �

�� �

�
�

�
�

�
� ��
�

�

 � �

562 CDF Function � Chapter 4

Logistic Distribution

CDF(’LOGISTIC’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter
Default: 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The CDF function for the logistic distribution returns the probability that an
observation from a logistic distribution, with a location parameter � and a scale
parameter �, is less than or equal to x. The equation follows:

���
�

�����	
�� �� �� �� �
�
�

�

� � �
���

�

Lognormal Distribution

CDF(’LOGNORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

specifies a numeric log scale parameter. (exp(�) is a scale parameter.)
Default: 0

�

specifies a numeric shape parameter.
Default: 1
Range: � > 0

The CDF function for the lognormal distribution returns the probability that an
observation from a lognormal distribution, with the log scale parameter � and the shape
parameter �, is less than or equal to x. The equation follows:

���
�
����� �� �� �� �

�
�

��
�
� � � �

�

�
�
��

�������

��
���

�
�

������
���

�
�� � � �

Negative Binomial Distribution

CDF(’NEGBINOMIAL’,m,p,n)

where

Functions and CALL Routines � CDF Function 563

m
is a positive integer random variable that counts the number of failures.
Range: m = 0, 1, ...

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

n
is a numeric value that counts the number of successes.
Range: n > 0

The CDF function for the negative binomial distribution returns the probability that
an observation from a negative binomial distribution, with probability of success p and
number of successes n, is less than or equal to m. The equation follows:

���
�

����� ���� 	�

�
�

��
�
� � � �

	�
��
���

�

 � � � �

� �

�
�� � 	�� � � �

Note: There are no location or scale parameters for the negative binomial
distribution. �

Normal Distribution

CDF(’NORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter.
Default: 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The CDF function for the normal distribution returns the probability that an
observation from the normal distribution, with the location parameter � and the scale
parameter �, is less than or equal to x. The equation follows:

���
�

�����	
�� �� �� �
�
�

�

�
�
�

��
��

���

�
�
�� � ���

���

�
��

Normal Mixture Distribution

CDF(’NORMALMIX’,x,n,p,m,s)

where

x

564 CDF Function � Chapter 4

is a numeric random variable.

n
is the integer number of mixtures.
Range: n = 1, 2, ...

p

is the n proportions, ��� ��� � � � � ��, where
����

���

�� � �.

Range: p = 0, 1, ...

m
is the n means ������ � � � ���.

s
is the n standard deviations ��� ��� � � � � ��.
Range: s > 0

The CDF function for the normal mixture distribution returns the probability that an
observation from a mixture of normal distribution is less than or equal to x. The
equation follows:

���
�

���	
��
� �� �� �� ���� �
�
�

����
���

�� ���
�

���	
���� ����� ��
�

Note: There are no location or scale parameters for the normal mixture
distribution. �

Pareto Distribution

CDF(’PARETO’,x,a<,k>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

k
is a numeric scale parameter.
Default: 1
Range: k > 0

The CDF function for the Pareto distribution returns the probability that an
observation from a Pareto distribution, with the shape parameter a and the scale
parameter k, is less than or equal to x. The equation follows:

���
�

���	����� �� �� �
�
�

�
� � � �
��

�
�

�

��
� � �

Poisson Distribution

CDF(’POISSON’,n,m)

Functions and CALL Routines � CDF Function 565

where

n
is an integer random variable.
Range: n = 0, 1, ...

m
is a numeric mean parameter.
Range: m > 0

The CDF function for the Poisson distribution returns the probability that an
observation from a Poisson distribution, with mean m, is less than or equal to n. The
equation follows:

���
�

�������� �� 	�

�
�

�
� 	 � �
��
���

�� ��
� �
�

��
	 � �

Note: There are no location or scale parameters for the Poisson distribution. �

T Distribution

CDF(’T’,t,df<,nc>)

where

t
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric non-centrality parameter.

The CDF function for the T distribution returns the probability that an observation
from a T distribution, with degrees of freedom df and non-centrality parameter nc, is
less than or equal to x. This function accepts non-integer degrees of freedom. If nc is
omitted or equal to zero, the value returned is from the central T distribution. In the
following equation, let ν = df and let δ = nc. The equation follows:

���
�

�� �� �� �� �
�
�

�

��
�

�
�����

�
�

��
�
��

�

����	�
�

�
�
� �
�
�

��
�
��

��

	�
�

�
����������

Note: There are no location or scale parameters for the T distribution. �

Uniform Distribution

CDF(’UNIFORM’,x<,l,r>)

where

x
is a numeric random variable.

566 CDF Function � Chapter 4

l
is the numeric left location parameter.
Default: 0

r
is the numeric right location parameter.
Default: 1
Range: r > l

The CDF function for the uniform distribution returns the probability that an
observation from a uniform distribution, with the left location parameter l and the right
location parameter r, is less than or equal to x. The equation follows:

���
�

�������� �	
	 �	 �
�
�

�
�
 �
���

���
� �
 �

�
 � �

Note: The default values for l and r are 0 and 1, respectively. �

Wald (Inverse Gaussian) Distribution

CDF(’WALD’,x,d)

CDF(’IGAUSS’,x,d)

where

x
is a numeric random variable.

d
is a numeric shape parameter.
Range: d > 0

The CDF function for the Wald distribution returns the probability that an
observation from a Wald distribution, with shape parameter d, is less than or equal to
x. The equation follows:

���
�
������	
	 �

�
�

� �
 � �

�

�
�
� ��

�
�

�

�
� ����

�
� �
� ��

�
�

�

�

 � �

where �(.) denotes the probability from the standard normal distribution.

Note: There are no location or scale parameters for the Wald distribution. �

Weibull Distribution

CDF(’WEIBULL’,x,a<,�>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

Functions and CALL Routines � CDF Function 567

�

is a numeric scale parameter.

Default: 1

Range: � > 0
The CDF function for the Weibull distribution returns the probability that an

observation from a Weibull distribution, with the shape parameter a and the scale
parameter � is less than or equal to x. The equation follows:

���
�

���������	
	 �	�
�
�
� �
 �
�� ���

�

�
�
�

 � �

Examples

SAS Statements Results

y=cdf(’BERN’,0,.25); 0.75

y=cdf(’BETA’,0.2,3,4); 0.09888

y=cdf(’BINOM’,4,.5,10); 0.37695

y=cdf(’CAUCHY’,2); 0.85242

y=cdf(’CHISQ’,11.264,11); 0.57858

y=cdf(’EXPO’,1); 0.63212

y=cdf(’F’,3.32,2,3); 0.82639

y=cdf(’GAMMA’,1,3); 0.080301

y=cdf(’HYPER’,2,200,50,10); 0.52367

y=cdf(’LAPLACE’,1); 0.81606

y=cdf(’LOGISTIC’,1); 0.73106

y=cdf(’LOGNORMAL’,1); 0.5

y=cdf(’NEGB’,1,.5,2); 0.5

y=cdf(’NORMAL’,1.96); 0.97500

y=cdf(’NORMALMIX’,2.3,3,.33,.33,.34,
.5,1.5,2.5,.79,1.6,4.3); 0.7181

y=cdf(’PARETO’,1,1); 0

y=cdf(’POISSON’,2,1); 0.91970

y=cdf(’T’,.9,5); 0.79531

y=cdf(’UNIFORM’,0.25); 0.25

y=cdf(’WALD’,1,2); 0.62770

y=cdf(’WEIBULL’,1,2); 0.63212

See Also

Functions:

568 CEIL Function � Chapter 4

“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085
“QUANTILE Function” on page 1033

CEIL Function

Returns the smallest integer that is greater than or equal to the argument, fuzzed to avoid
unexpected floating-point results.

Category: Truncation

Syntax
CEIL (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
If the argument is within 1E-12 of an integer, the function returns that integer.

Comparisons
Unlike the CEILZ function, the CEIL function fuzzes the result. If the argument is
within 1E-12 of an integer, the CEIL function fuzzes the result to be equal to that
integer. The CEILZ function does not fuzz the result. Therefore, with the CEILZ
function you might get unexpected results.

Examples

The following SAS statements produce these results.

SAS Statements Results

var1=2.1;
a=ceil(var1);
put a; 3

b=ceil(-2.4);
put b; -2

c=ceil(1+1.e-11);
put c; 2

Functions and CALL Routines � CEILZ Function 569

SAS Statements Results

d=ceil(-1+1.e-11);
put d; 0

e=ceil(1+1.e-13);
put e; 1

f=ceil(223.456);
put f; 224

g=ceil(763);
put g; 763

h=ceil(-223.456);
put h; -223

See Also

Functions:

“CEILZ Function” on page 569

CEILZ Function

Returns the smallest integer that is greater than or equal to the argument, using zero fuzzing.

Category: Truncation

Syntax
CEILZ (argument)

Arguments

argument
is a numeric constant, variable, or expression.

Comparisons
Unlike the CEIL function, the CEILZ function uses zero fuzzing. If the argument is
within 1E-12 of an integer, the CEIL function fuzzes the result to be equal to that
integer. The CEILZ function does not fuzz the result. Therefore, with the CEILZ
function you might get unexpected results.

Examples

The following SAS statements produce these results.

570 CEILZ Function � Chapter 4

SAS Statements Results

a=ceilz(2.1);
put a; 3

b=ceilz(-2.4);
put b; −2

c=ceilz(1+1.e-11);
put c; 2

d=ceilz(-1+1.e-11);
put d; 0

e=ceilz(1+1.e-13);
put e; 2

f=ceilz(223.456);
put f; 224

g=ceilz(763);
put g; 763

h=ceilz(-223.456);
put h; -223

See Also

Functions:
“CEIL Function” on page 568
“FLOOR Function” on page 742
“FLOORZ Function” on page 743
“INT Function” on page 812
“INTZ Function” on page 843
“ROUND Function” on page 1065
“ROUNDE Function” on page 1072
“ROUNDZ Function” on page 1073

Functions and CALL Routines � CEXIST Function 571

CEXIST Function

Verifies the existence of a SAS catalog or SAS catalog entry.

Category: SAS File I/O

Syntax
CEXIST(entry<,’U’>)

Arguments

entry
is a character constant, variable, or expression that specifies a SAS catalog, or the
name of an entry in a catalog. If the entry value is a one- or two-level name, then it
is assumed to be the name of a catalog. Use a three- or four-level name to test for the
existence of an entry within a catalog.

’U’
tests whether the catalog can be opened for updating.

Details
CEXIST returns 1 if the SAS catalog or catalog entry exists, or 0 if the SAS catalog or
catalog entry does not exist.

Examples

Example 1: Verifying the Existence of an Entry in a Catalog This example verifies the
existence of the entry X.PROGRAM in LIB.CAT1:

data _null_;
if cexist("lib.cat1.x.program") then
put "Entry X.PROGRAM exists";

run;

Example 2: Determining if a Catalog Can Be Opened for Update This example tests
whether the catalog LIB.CAT1 exists and can be opened for update. If the catalog does
not exist, a message is written to the SAS log. Note that in a macro statement you do
not enclose character strings in quotation marks.

%if %sysfunc(cexist(lib.cat1,u)) %then
%put The catalog LIB.CAT1 exists and can be opened for update.;

%else
%put %sysfunc(sysmsg());

572 CHAR Function � Chapter 4

See Also

Functions:
“EXIST Function” on page 665

CHAR Function

Returns a single character from a specified position in a character string.

Category: Character

Syntax
CHAR(string, position)

Arguments

string
specifies a character constant, variable, or expression.

position
is an integer that specifies the position of the character to be returned.

Details
In a DATA step, the default length of the target variable for the CHAR function is 1.

If position has a missing value, then CHAR returns a string with a length of 0.
Otherwise, CHAR returns a string with a length of 1.

If position is less than or equal to 0, or greater than the length of the string, then
CHAR returns a blank. Otherwise, CHAR returns the character at the specified
position in the string.

Comparisons
The CHAR function returns the same result as SUBPAD(string, position, 1). While the
results are the same, the default length of the target variable is different.

Functions and CALL Routines � CHOOSEC Function 573

Examples

The following example shows the results of using the CHAR function.

options pageno=1 ps=64 ls=80 nodate;

data test;
retain string "abc";
do position = -1 to 4;

result=char(string, position);
output;

end;
run;

proc print noobs data=test;
run;

Output 4.37 Output from the CHAR Function

The SAS System 1

string position result

abc -1
abc 0
abc 1 a
abc 2 b
abc 3 c
abc 4

See Also

Functions:
“FIRST Function” on page 740

CHOOSEC Function

Returns a character value that represents the results of choosing from a list of arguments.

Category: Character
Restriction: “I18N Level 2” on page 313

574 CHOOSEC Function � Chapter 4

Syntax

CHOOSEC (index-expression, selection-1 < ,…selection-n>)

Arguments

index-expression
specifies a numeric constant, variable, or expression.

selection
specifies a character constant, variable, or expression. The value of this argument is
returned by the CHOOSEC function.

Details

Length of Returned Variable In a DATA step, if the CHOOSEC function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

The Basics The CHOOSEC function uses the value of index-expression to select from
the arguments that follow. For example, if index-expression is three, CHOOSEC returns
the value of selection-3. If the first argument is negative, the function counts backwards
from the list of arguments, and returns that value.

Comparisons

The CHOOSEC function is similar to the CHOOSEN function except that CHOOSEC
returns a character value while CHOOSEN returns a numeric value.

Examples

The following example shows how CHOOSEC chooses from a series of values:

data _null_;
Fruit=choosec(1,’apple’,’orange’,’pear’,’fig’);
Color=choosec(3,’red’,’blue’,’green’,’yellow’);
Planet=choosec(2,’Mars’,’Mercury’,’Uranus’);
Sport=choosec(-3,’soccer’,’baseball’,’gymnastics’,’skiing’);
put Fruit= Color= Planet= Sport=;

run;

SAS writes the following line to the log:

Fruit=apple Color=green Planet=Mercury Sport=baseball

See Also

Functions:

“CHOOSEN Function” on page 575

Functions and CALL Routines � CHOOSEN Function 575

CHOOSEN Function

Returns a numeric value that represents the results of choosing from a list of arguments.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
CHOOSEN (index-expression, selection-1 < ,…selection-n>)

Arguments

index-expression
specifies a numeric constant, variable, or expression.

selection
specifies a numeric constant, variable, or expression. The value of this argument is
returned by the CHOOSEN function.

Details
The CHOOSEN function uses the value of index-expression to select from the
arguments that follow. For example, if index-expression is 3, CHOOSEN returns the
value of selection-3. If the first argument is negative, the function counts backwards
from the list of arguments, and returns that value.

Comparisons
The CHOOSEN function is similar to the CHOOSEC function except that CHOOSEN
returns a numeric value while CHOOSEC returns a character value.

Examples

The following example shows how CHOOSEN chooses from a series of values:

data _null_;
ItemNumber=choosen(5,100,50,3784,498,679);
Rank=choosen(-2,1,2,3,4,5);
Score=choosen(3,193,627,33,290,5);
Value=choosen(-5,-37,82985,-991,3,1014,-325,3,54,-618);
put ItemNumber= Rank= Score= Value=;

run;

SAS writes the following line to the log:

ItemNumber=679 Rank=4 Score=33 Value=1014

See Also

576 CINV Function � Chapter 4

Functions:
“CHOOSEC Function” on page 573

CINV Function

Returns a quantile from the chi-square distribution.

Category: Quantile

Syntax
CINV (p,df< ,nc>)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is a numeric noncentrality parameter.
Range: nc ≥ 0

Details
The CINV function returns the pth quantile from the chi-square distribution with
degrees of freedom df and a noncentrality parameter nc. The probability that an
observation from a chi-square distribution is less than or equal to the returned quantile
is p. This function accepts a noninteger degrees of freedom parameter df.

If the optional parameter nc is not specified or has the value 0, the quantile from the
central chi-square distribution is returned. The noncentrality parameter nc is defined
such that if X is a normal random variable with mean � and variance 1, X2 has a
noncentral chi-square distribution with df=1 and nc = �

2.

CAUTION:
For large values of nc, the algorithm could fail. In that case, a missing value is returned.
�

Note: CINV is the inverse of the PROBCHI function. �

Examples

The first statement following shows how to find the 95th percentile from a central
chi-square distribution with 3 degrees of freedom. The second statement shows how to
find the 95th percentile from a noncentral chi-square distribution with 3.5 degrees of
freedom and a noncentrality parameter equal to 4.5.

Functions and CALL Routines � CLOSE Function 577

SAS Statements Results

q1=cinv(.95,3); 7.8147279033

a2=cinv(.95,3.5,4.5); 7.504582117

See Also

Functions:
“QUANTILE Function” on page 1033

CLOSE Function

Closes a SAS data set.

Category: SAS File I/O

Syntax
CLOSE(data-set-id)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that the OPEN function
returns.

Details
CLOSE returns zero if the operation was successful, or returns a non-zero value if it
was not successful. Close all SAS data sets as soon as they are no longer needed by the
application.

Note: All data sets opened within a DATA step are closed automatically at the end
of the DATA step. �

578 CMISS Function � Chapter 4

Examples

This example uses OPEN to open the SAS data set PAYROLL. If the data set opens
successfully, indicated by a positive value for the variable PAYID, the example uses
CLOSE to close the data set.

%let payid=%sysfunc(open(payroll,is));
macro statements

%if &payid > 0 %then
%let rc=%sysfunc(close(&payid));

See Also

Function:
“OPEN Function” on page 955

CMISS Function

Counts the number of missing arguments.

Category: Descriptive Statistics

Syntax
CMISS(argument-1 <, argument-2,…>)

Arguments

argument
specifies a constant, variable, or expression. Argument can be either a character
value or a numeric value.

Functions and CALL Routines � CNONCT Function 579

Details
A character expression is counted as missing if it evaluates to a string that contains all
blanks or has a length of zero.

A numeric expression is counted as missing if it evaluates to a numeric missing
value: ., ._, .A, … , .Z.

Comparisons
The CMISS function does not convert any argument. The NMISS function converts all
arguments to numeric values.

See Also

Functions:
“NMISS Function” on page 924
“MISSING Function” on page 906

CNONCT Function

Returns the noncentrality parameter from a chi-square distribution.

Category: Mathematical

Syntax
CNONCT(x,df,prob)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

df
is a numeric degrees of freedom parameter.
Range: df > 0

prob
is a probability.
Range: 0 < prob < 1

580 CNONCT Function � Chapter 4

Details
The CNONCT function returns the nonnegative noncentrality parameter from a
noncentral chi-square distribution whose parameters are x, df, and nc. If prob is greater
than the probability from the central chi-square distribution with the parameters x and
df, a root to this problem does not exist. In this case a missing value is returned. A
Newton-type algorithm is used to find a nonnegative root nc of the equation

�� ������ ���� ��	
 � �

where

�� ������ ��� � �
���

�

��

���

�
��
�

��
��

��

�
�

�
�
��

�
� �

�

where �� ���� is the probability from the gamma distribution given by

�� ���� �
�

� ��

��
�

�
���

�
��

��

If the algorithm fails to converge to a fixed point, a missing value is returned.

Examples
data work;

x=2;
df=4;
do nc=1 to 3 by .5;

prob=probchi(x,df,nc);
ncc=cnonct(x,df,prob);
output;

end;
run;
proc print;
run;

Output 4.38 Computations of the Noncentrality Parameters from the Chi-squared
Distribution

OBS x df nc prob ncc

1 2 4 1.0 0.18611 1.0
2 2 4 1.5 0.15592 1.5
3 2 4 2.0 0.13048 2.0
4 2 4 2.5 0.10907 2.5
5 2 4 3.0 0.09109 3.0

Functions and CALL Routines � COALESCE Function 581

COALESCE Function

Returns the first non-missing value from a list of numeric arguments.

Category: Mathematical

Syntax
COALESCE(argument-1<..., argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details

The Basics COALESCE accepts one or more numeric arguments. The COALESCE
function checks the value of each argument in the order in which they are listed and
returns the first non-missing value. If only one value is listed, then the COALESCE
function returns the value of that argument. If all the values of all arguments are
missing, then the COALESCE function returns a missing value.

Comparisons
The COALESCE function searches numeric arguments, whereas the COALESCEC
function searches character arguments.

Examples

SAS Statements Results

x = COALESCE(42, .); 42

y = COALESCE(.A, .B, .C); .

z = COALESCE(., 7, ., ., 42); 7

See Also

Function:
“COALESCEC Function” on page 582

582 COALESCEC Function � Chapter 4

COALESCEC Function

Returns the first non-missing value from a list of character arguments.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
COALESCEC(argument-1< ..., argument-n>)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the COALESCEC function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

The Basics COALESCEC accepts one or more character arguments. The
COALESCEC function checks the value of each argument in the order in which they
are listed and returns the first non-missing value. If only one value is listed, then the
COALESCEC function returns the value of that argument. A character value is
considered missing if it has a length of zero or if all the characters are blank. If all the
values of all arguments are missing, then the COALESCEC function returns a string
with a length of zero.

Comparisons
The COALESCEC function searches character arguments, whereas the COALESCE
function searches numeric arguments.

Examples

SAS Statements Results

COALESCEC(’’, ’Hello’) Hello

COALESCEC (’’, ’Goodbye’, ’Hello’) Goodbye

See Also

Function:
“COALESCE Function” on page 581

Functions and CALL Routines � COLLATE Function 583

COLLATE Function

Returns a character string in ASCII or EBCDIC collating sequence.

Category: Character

Restriction: “I18N Level 0” on page 312

See: COLLATE Function in the documentation for your operating environment.

Syntax
COLLATE (start-position<,end-position>) | (start-position<,,length>)

Arguments

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.

Interaction: If you specify only start-position, COLLATE returns consecutive
characters from that position to the end of the collating sequence or up to 255
characters, whichever comes first.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

The maximum end-position for the EBCDIC collating sequence is 255. For ASCII
collating sequences, the characters that correspond to end-position values between 0
and 127 represent the standard character set. Other ASCII characters that
correspond to end-position values between 128 and 255 are available on certain
ASCII operating environments, but the information that those characters represent
varies with the operating environment.

Tip: end-position must be larger than start-position

Tip: If you specify end-position, COLLATE returns all character values in the
collating sequence between start-position and end-position, inclusive.

Tip: If you omit end-position and use length, mark the end-position place with a
comma.

length
specifies the number of characters in the collating sequence.

Default: 200

Tip: If you omit end-position, use length to specify the length of the result explicitly.

Details

Length of Returned Variable In a DATA step, if the COLLATE function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

584 COMB Function � Chapter 4

The Basics If you specify both end-position and length, COLLATE ignores length. If
you request a string longer than the remainder of the sequence, COLLATE returns a
string through the end of the sequence.

Examples

The following SAS statements produce these results.

SAS Statements Results

ASCII ----+----1----+-----2--

x=collate(48,,10);
y=collate(48,57);
put @1 x @14 y; 0123456789 0123456789

EBCDIC

x=collate(240,,10);
y=collate(240,249);
put @1 x @14 y; 0123456789 0123456789

See Also

Functions:
“BYTE Function” on page 428
“RANK Function” on page 1052

COMB Function

Computes the number of combinations of n elements taken r at a time.

Category: Combinatorial

Syntax
COMB(n, r)

Arguments

n
is a nonnegative integer that represents the total number of elements from which the
sample is chosen.

Functions and CALL Routines � COMPARE Function 585

r
is a nonnegative integer that represents the number of chosen elements.

Restriction: r ≤ n

Details
The mathematical representation of the COMB function is given by the following
equation:

���� ��� �� �
�
�

�

�
�

��

� � �� � ���

with n ≥ 0, r ≥ 0, and n≥ r.
If the expression cannot be computed, a missing value is returned. For moderately

large values, it is sometimes not possible to compute the COMB function.

Examples

SAS Statements Results

x=comb(5,1); 5

See Also

Functions:

“FACT Function” on page 668

“PERM Function” on page 980

“LCOMB Function” on page 861

COMPARE Function

Returns the position of the leftmost character by which two strings differ, or returns 0 if there is no
difference.

Category: Character

Restriction: “I18N Level 0” on page 312

Tip: DBCS equivalent function is KCOMPARE in SAS National Language Support
(NLS): Reference Guide. See also “DBCS Compatibility” on page 586.

Syntax
COMPARE(string–1, string–2<,modifiers>)

586 COMPARE Function � Chapter 4

Arguments

string–1
specifies a character constant, variable, or expression.

string–2
specifies a character constant, variable, or expression.

modifier
specifies a character string that can modify the action of the COMPARE function.
You can use one or more of the following characters as a valid modifier:

i or I ignores the case in string–1 and string–2.

l or L removes leading blanks in string–1 and string–2 before comparing
the values.

n or N removes quotation marks from any argument that is a name
literal and ignores the case of string–1 and string–2.
Tip: A name literal is a name token that is expressed as a string

within quotation marks, followed by the uppercase or lowercase
letter n. Name literals enable you to use special characters
(including blanks) that are not otherwise allowed in SAS data
set or variable names. For COMPARE to recognize a string as
a name literal, the first character must be a quotation mark.

: (colon) truncates the longer of string–1 or string–2 to the length of the
shorter string, or to one, whichever is greater. If you do not
specify this modifier, the shorter string is padded with blanks to
the same length as the longer string.

Tip: COMPARE ignores blanks that are used as modifiers.

Details

The Basics The order in which the modifiers appear in the COMPARE function is
relevant.

� “LN” first removes leading blanks from each string, and then removes quotation
marks from name literals.

� “NL” first removes quotation marks from name literals, and then removes leading
blanks from each string.

In the COMPARE function, if string–1 and string–2 do not differ, COMPARE returns
a value of zero. If the arguments differ, then the following apply:

� The sign of the result is negative if string–1 precedes string–2 in a sort sequence,
and positive if string–1 follows string–2 in a sort sequence.

� The magnitude of the result is equal to the position of the leftmost character at
which the strings differ.

DBCS Compatibility
The DBCS equivalent function is KCOMPARE, which is documented in SAS National
Language Support (NLS): Reference Guide. There are minor differences between the
COMPARE and KCOMPARE functions. While both functions accept varying numbers of
arguments, usage of the third argument is not compatible. The following example
shows the differences in the syntax:

COMPARE(string-1, string-2 <, modifiers>)

Functions and CALL Routines � COMPARE Function 587

KCOMPARE(string-1 <, position <, count>>, string-2)

Examples

Example 1: Understanding the Order of Comparisons When Comparing Two Strings The
following example compares two strings by using the COMPARE function.

options pageno=1 nodate ls=80 ps=60;

data test;
infile datalines missover;
input string1 $char8. string2 $char8. modifiers $char8.;
result=compare(string1, string2, modifiers);
datalines;

1234567812345678
123 abc
abc abx
xyz abcdef
aBc abc
aBc AbC i

abc abc
abc abc l

abc abx
abc abx l
ABC ’abc’n
ABC ’abc’n n
’$12’n $12 n
’$12’n $12 nl
’$12’n $12 ln
;

proc print data=test;
run;

The following output shows the results.

Output 4.39 Results of Comparing Two Strings by Using the COMPARE Function

The SAS System 1

Obs string1 string2 modifiers result

1 12345678 12345678 0
2 123 abc -1
3 abc abx -3
4 xyz abcdef 1
5 aBc abc -2
6 aBc AbC i 0
7 abc abc -1
8 abc abc l 0
9 abc abx 2

10 abc abx l -3
11 ABC ’abc’n 1
12 ABC ’abc’n n 0
13 ’$12’n $12 n -1
14 ’$12’n $12 nl 1
15 ’$12’n $12 ln 0

588 COMPBL Function � Chapter 4

Example 2: Truncating Strings Using the COMPARE Function The following example
uses the : (colon) modifier to truncate strings.

options pageno=1 nodate ls=80 pagesize=60;

data test2;
pad1=compare(’abc’,’abc ’);
pad2=compare(’abc’,’abcdef ’);
truncate1=compare(’abc’,’abcdef’,’:’);
truncate2=compare(’abcdef’,’abc’,’:’);
blank=compare(’’,’abc’, ’:’);

run;

proc print data=test2 noobs;
run;

The following output shows the results.

Output 4.40 Results of Using the Truncation Modifier

The SAS System 1

pad1 pad2 truncate1 truncate2 blank

0 -4 0 0 -1

See Also

Functions and CALL Routines:
“COMPGED Function” on page 590
“COMPLEV Function” on page 595
“CALL COMPCOST Routine” on page 444

COMPBL Function

Removes multiple blanks from a character string.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
COMPBL(source)

Functions and CALL Routines � COMPBL Function 589

Arguments

source
specifies a character constant, variable, or expression to compress.

Details

Length of Returned Variable In a DATA step, if the COMPBL function returns a
value to a variable that has not previously been assigned a length, then the length of
that variable defaults to the length of the first argument.

The Basics The COMPBL function removes multiple blanks in a character string by
translating each occurrence of two or more consecutive blanks into a single blank.

Comparisons
The COMPRESS function removes every occurrence of the specific character from a
string. If you specify a blank as the character to remove from the source string, the
COMPRESS function removes all blanks from the source string, while the COMPBL
function compresses multiple blanks to a single blank and has no effect on a single
blank.

Examples

The following SAS statements produce these results.

SAS Statements Results

----+----1----+-----2--

string=’Hey
Diddle Diddle’;
string=compbl(string);
put string; Hey Diddle Diddle

string=’125 E Main St’;
length address $10;
address=compbl(string);
put address; 125 E Main

See Also

Function:
“COMPRESS Function” on page 598

590 COMPGED Function � Chapter 4

COMPGED Function

Returns the generalized edit distance between two strings.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
COMPGED(string-1, string-2 <,cutoff> <,modifiers>)

Arguments

string–1
specifies a character constant, variable, or expression.

string-2
specifies a character constant, variable, or expression.

cutoff
is a numeric constant, variable, or expression. If the actual generalized edit distance
is greater than the value of cutoff, the value that is returned is equal to the value of
cutoff.
Tip: Using a small value of cutoff improves the efficiency of COMPGED if the

values of string–1 and string–2 are long.

modifiers
specifies a character string that can modify the action of the COMPGED function.
You can use one or more of the following characters as a valid modifier:

i or I ignores the case in string–1 and string–2.

l or L removes leading blanks in string–1 and string–2 before comparing
the values.

n or N removes quotation marks from any argument that is an n-literal
and ignores the case of string–1 and string–2.

: (colon) truncates the longer of string–1 or string–2 to the length of the
shorter string, or to one, whichever is greater.

Tip: COMPGED ignores blanks that are used as modifiers.

Details

The Order in Which Modifiers Appear The order in which the modifiers appear in the
COMPGED function is relevant.

� “LN” first removes leading blanks from each string and then removes quotation
marks from n-literals.

� “NL” first removes quotation marks from n-literals and then removes leading
blanks from each string.

Definition of Generalized Edit Distance Generalized edit distance is a generalization
of Levenshtein edit distance, which is a measure of dissimilarity between two strings.

Functions and CALL Routines � COMPGED Function 591

The Levenshtein edit distance is the number of deletions, insertions, or replacements of
single characters that are required to transform string-1 into string-2.

Computing the Generalized Edit Distance The COMPGED function returns the
generalized edit distance between string-1 and string-2. The generalized edit distance is
the minimum-cost sequence of operations for constructing string-1 from string-2.

The algorithm for computing the sum of the costs involves a pointer that points to a
character in string-2 (the input string). An output string is constructed by a sequence of
operations that might advance the pointer, add one or more characters to the output
string, or both. Initially, the pointer points to the first character in the input string, and
the output string is empty.

The operations and their costs are described in the following table.

Operation
Default Cost in
Units Description of Operation

APPEND 50 When the output string is longer than the
input string, add any one character to the
end of the output string without moving
the pointer.

BLANK 10 Do any of the following:

� Add one space character to the end
of the output string without moving
the pointer.

� When the character at the pointer
is a space character, advance the
pointer by one position without
changing the output string.

� When the character at the pointer
is a space character, add one space
character to the end of the output
string, and advance the pointer by
one position.

If the cost for BLANK is set to zero by the
COMPCOST function, the COMPGED
function removes all space characters from
both strings before doing the comparison.

DELETE 100 Advance the pointer by one position
without changing the output string.

DOUBLE 20 Add the character at the pointer to the
end of the output string without moving
the pointer.

FDELETE 200 When the output string is empty, advance
the pointer by one position without
changing the output string.

FINSERT 200 When the pointer is in position one, add
any one character to the end of the output
string without moving the pointer.

592 COMPGED Function � Chapter 4

Operation
Default Cost in
Units Description of Operation

FREPLACE 200 When the pointer is in position one and
the output string is empty, add any one
character to the end of the output string,
and advance the pointer by one position.

INSERT 100 Add any one character to the end of the
output string without moving the pointer.

MATCH 0 Copy the character at the pointer from
the input string to the end of the output
string, and advance the pointer by one
position.

PUNCTUATION 30 Do any of the following:

� Add one punctuation character to
the end of the output string without
moving the pointer.

� When the character at the pointer
is a punctuation character, advance
the pointer by one position without
changing the output string.

� When the character at the pointer
is a punctuation character, add one
punctuation character to the end of
the output string, and advance the
pointer by one position.

If the cost for PUNCTUATION is set to
zero by the COMPCOST function, the
COMPGED function removes all
punctuation characters from both strings
before doing the comparison.

REPLACE 100 Add any one character to the end of the
output string, and advance the pointer by
one position.

SINGLE 20 When the character at the pointer is the
same as the character that follows in the
input string, advance the pointer by one
position without changing the output
string.

SWAP 20 Copy the character that follows the
pointer from the input string to the output
string. Then copy the character at the
pointer from the input string to the output
string. Advance the pointer two positions.

TRUNCATE 10 When the output string is shorter than
the input string, advance the pointer by
one position without changing the output
string.

Functions and CALL Routines � COMPGED Function 593

To set the cost of the string operations, you can use the CALL COMPCOST routine or
use default costs. If you use the default costs, the values that are returned by
COMPGED are approximately 100 times greater than the values that are returned by
COMPLEV.

Examples of Errors The rationale for determining the generalized edit distance is
based on the number and types of typographical errors that can occur. COMPGED
assigns a cost to each error and determines the minimum sum of these costs that could
be incurred. Some types of errors can be more serious than others. For example,
inserting an extra letter at the beginning of a string might be more serious than
omitting a letter from the end of a string. For another example, if you type a word or
phrase that exists in string-2 and introduce a typographical error, you might produce
string-1 instead of string-2.

Making the Generalized Edit Distance Symmetric Generalized edit distance is not
necessarily symmetric. That is, the value that is returned by COMPGED(string1,
string2) is not always equal to the value that is returned by COMPGED(string2,
string1). To make the generalized edit distance symmetric, use the CALL COMPCOST
routine to assign equal costs to the operations within each of the following pairs:

� INSERT, DELETE
� FINSERT, FDELETE
� APPEND, TRUNCATE
� DOUBLE, SINGLE

Comparisons
You can compute the Levenshtein edit distance by using the COMPLEV function. You
can compute the generalized edit distance by using the CALL COMPCOST routine and
the COMPGED function. Computing generalized edit distance requires considerably
more computer time than does computing Levenshtein edit distance. But generalized
edit distance usually provides a more useful measure than Levenshtein edit distance for
applications such as fuzzy file merging and text mining.

Examples

The following example uses the default costs to calculate the generalized edit
distance.

options nodate pageno=1 linesize=70 pagesize=60;

data test;
infile datalines missover;
input String1 $char8. +1 String2 $char8. +1 Operation $40.;
GED=compged(string1, string2);
datalines;

baboon baboon match
baXboon baboon insert
baoon baboon delete
baXoon baboon replace
baboonX baboon append
baboo baboon truncate
babboon baboon double
babon baboon single
baobon baboon swap
bab oon baboon blank

594 COMPGED Function � Chapter 4

bab,oon baboon punctuation
bXaoon baboon insert+delete
bXaYoon baboon insert+replace
bXoon baboon delete+replace
Xbaboon baboon finsert
aboon baboon trick question: swap+delete
Xaboon baboon freplace
axoon baboon fdelete+replace
axoo baboon fdelete+replace+truncate
axon baboon fdelete+replace+single
baby baboon replace+truncate*2
balloon baboon replace+insert
;

proc print data=test label;
label GED=’Generalized Edit Distance’;
var String1 String2 GED Operation;

run;

The following output shows the results.

Output 4.41 Generalized Edit Distance Based on Operation

The SAS System 1

Generalized
Edit

Obs String1 String2 Distance Operation

1 baboon baboon 0 match
2 baXboon baboon 100 insert
3 baoon baboon 100 delete
4 baXoon baboon 100 replace
5 baboonX baboon 50 append
6 baboo baboon 10 truncate
7 babboon baboon 20 double
8 babon baboon 20 single
9 baobon baboon 20 swap
10 bab oon baboon 10 blank
11 bab,oon baboon 30 punctuation
12 bXaoon baboon 200 insert+delete
13 bXaYoon baboon 200 insert+replace
14 bXoon baboon 200 delete+replace
15 Xbaboon baboon 200 finsert
16 aboon baboon 200 trick question: swap+delete
17 Xaboon baboon 200 freplace
18 axoon baboon 300 fdelete+replace
19 axoo baboon 310 fdelete+replace+truncate
20 axon baboon 320 fdelete+replace+single
21 baby baboon 120 replace+truncate*2
22 balloon baboon 200 replace+insert

See Also

Functions:

“COMPARE Function” on page 585

“CALL COMPCOST Routine” on page 444

“COMPLEV Function” on page 595

Functions and CALL Routines � COMPLEV Function 595

COMPLEV Function

Returns the Levenshtein edit distance between two strings.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
COMPLEV(string-1, string-2 <,cutoff> <,modifiers>)

Arguments

string–1
specifies a character constant, variable, or expression.

string–2
specifies a character constant, variable, or expression.

cutoff
specifies a numeric constant, variable, or expression. If the actual Levenshtein edit
distance is greater than the value of cutoff, the value that is returned is equal to the
value of cutoff.
Tip: Using a small value of cutoff improves the efficiency of COMPLEV if the values

of string–1 and string–2 are long.

modifiers
specifies a character string that can modify the action of the COMPLEV function.
You can use one or more of the following characters as a valid modifier:

i or I ignores the case in string–1 and string–2.

l or L removes leading blanks in string–1 and string–2 before comparing
the values.

n or N removes quotation marks from any argument that is an n-literal
and ignores the case of string–1 and string–2.

: (colon) truncates the longer of string–1 or string–2 to the length of the
shorter string, or to one, whichever is greater.

TIP: COMPLEV ignores blanks that are used as modifiers.

Details
The order in which the modifiers appear in the COMPLEV function is relevant.

� “LN” first removes leading blanks from each string and then removes quotation
marks from n-literals.

� “NL” first removes quotation marks from n-literals and then removes leading
blanks from each string.

The COMPLEV function ignores trailing blanks.
COMPLEV returns the Levenshtein edit distance between string-1 and string-2.

Levenshtein edit distance is the number of insertions, deletions, or replacements of

596 COMPLEV Function � Chapter 4

single characters that are required to convert one string to the other. Levenshtein edit
distance is symmetric. That is, COMPLEV(string-1,string-2) is the same as
COMPLEV(string-2,string-1).

Comparisons
The Levenshtein edit distance that is computed by COMPLEV is a special case of the
generalized edit distance that is computed by COMPGED.

COMPLEV executes much more quickly than COMPGED.

Examples

The following example compares two strings by computing the Levenshtein edit
distance.

options pageno=1 nodate ls=80 ps=60;

data test;
infile datalines missover;
input string1 $char8. string2 $char8. modifiers $char8.;
result=complev(string1, string2, modifiers);
datalines;

1234567812345678
abc abxc
ac abc
aXc abc
aXbZc abc
aXYZc abc
WaXbYcZ abc
XYZ abcdef
aBc abc
aBc AbC i

abc abc
abc abc l

AxC ’abc’n
AxC ’abc’n n
;

proc print data=test;
run;

The following output shows the results.

Functions and CALL Routines � COMPOUND Function 597

Output 4.42 Results of Comparing Two Strings by Computing the Levenshtein Edit Distance

The SAS System 1

Obs string1 string2 modifiers result

1 12345678 12345678 0
2 abc abxc 1
3 ac abc 1
4 aXc abc 1
5 aXbZc abc 2
6 aXYZc abc 3
7 WaXbYcZ abc 4
8 XYZ abcdef 6
9 aBc abc 1

10 aBc AbC i 0
11 abc abc 2
12 abc abc l 0
13 AxC ’abc’n 6
14 AxC ’abc’n n 1

See Also

Functions and CALL Routines:
“COMPARE Function” on page 585
“COMPGED Function” on page 590
“CALL COMPCOST Routine” on page 444

COMPOUND Function

Returns compound interest parameters.

Category: Financial

Syntax
COMPOUND(a,f,r,n)

Arguments

a
is numeric, and specifies the initial amount.
Range: a ≥ 0

f
is numeric, and specifies the future amount (at the end of n periods).
Range: f ≥ 0

r
is numeric, and specifies the periodic interest rate expressed as a fraction.

598 COMPRESS Function � Chapter 4

Range: r ≥ 0

n
is an integer, and specifies the number of compounding periods.
Range: n ≥ 0

Details
The COMPOUND function returns the missing argument in the list of four arguments
from a compound interest calculation. The arguments are related by the following
equation:

� � � �� � ���

One missing argument must be provided. A compound interest parameter is then
calculated from the remaining three values. No adjustment is made to convert the
results to round numbers.

If n=0, then � � � and �� � ��� are equal to 1.

Note: If you choose r as your missing value, then COMPOUND returns an error. �

Examples

The accumulated value of an investment of $2000 at a nominal annual interest rate
of 9 percent, compounded monthly after 30 months, can be expressed as

future=compound(2000,.,0.09/12,30);

The value returned is 2502.54. The second argument has been set to missing,
indicating that the future amount is to be calculated. The 9 percent nominal annual
rate has been converted to a monthly rate of 0.09/12. The rate argument is the
fractional (not the percentage) interest rate per compounding period.

COMPRESS Function

Returns a character string with specified characters removed from the original string.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KCOMPRESS in SAS National Language Support
(NLS): Reference Guide.

Syntax
COMPRESS(<source><, chars><, modifiers>)

Arguments

Functions and CALL Routines � COMPRESS Function 599

source
specifies a character constant, variable, or expression from which specified characters
will be removed.

chars
specifies a character constant, variable, or expression that initializes a list of
characters.

By default, the characters in this list are removed from the source argument. If
you specify the K modifier in the third argument, then only the characters in this list
are kept in the result.

Tip: You can add more characters to this list by using other modifiers in the third
argument.

Tip: Enclose a literal string of characters in quotation marks.

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the COMPRESS function. Blanks are ignored. The
following characters can be used as modifiers:

a or A adds alphabetic characters to the list of characters.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds the underscore character and English letters to the list of
characters.

g or G adds graphic characters to the list of characters.

h or H adds a horizontal tab to the list of characters.

i or I ignores the case of the characters to be kept or removed.

k or K keeps the characters in the list instead of removing them.

l or L adds lowercase letters to the list of characters.

n or N adds digits, the underscore character, and English letters to the
list of characters.

o or O processes the second and third arguments once rather than every
time the COMPRESS function is called. Using the O modifier in
the DATA step (excluding WHERE clauses), or in the SQL
procedure, can make COMPRESS run much faster when you call
it in a loop where the second and third arguments do not change.

p or P adds punctuation marks to the list of characters.

s or S adds space characters (blank, horizontal tab, vertical tab, carriage
return, line feed, and form feed) to the list of characters.

t or T trims trailing blanks from the first and second arguments.

u or U adds uppercase letters to the list of characters.

w or W adds printable characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.

Tip: If the modifier is a constant, enclose it in quotation marks. Specify multiple
constants in a single set of quotation marks. Modifier can also be expressed as a
variable or an expression.

600 COMPRESS Function � Chapter 4

Details

Length of Returned Variable In a DATA step, if the COMPRESS function returns a
value to a variable that has not previously been assigned a length, then that variable is
given the length of the first argument.

The Basics The COMPRESS function allows null arguments. A null argument is
treated as a string that has a length of zero.

Based on the number of arguments, the COMPRESS functions works as follows:

Number of Arguments Result

only the first argument, source The argument has all blanks removed. If the
argument is completely blank, then the result is
a string with a length of zero. If you assign the
result to a character variable with a fixed
length, then the value of that variable will be
padded with blanks to fill its defined length.

the first two arguments, source and chars All characters that appear in the second
argument are removed from the result.

three arguments, source, chars, and modifier(s) The K modifier (specified in the third argument)
determines whether the characters in the second
argument are kept or removed from the result.

The COMPRESS function compiles a list of characters to keep or remove, comprising
the characters in the second argument plus any types of characters that are specified by
the modifiers. For example, the D modifier specifies digits. Both of the following
function calls remove digits from the result:

COMPRESS(source, "1234567890");
COMPRESS(source, , "d");

To remove digits and plus or minus signs, you can use either of the following function
calls:

COMPRESS(source, "1234567890+-");
COMPRESS(source, "+-", "d");

Examples

Example 1: Compressing Blanks

SAS Statements Results

----+----1

a=’AB C D ’;
b=compress(a);
put b; ABCD

Functions and CALL Routines � COMPRESS Function 601

Example 2: Compressing Lowercase Letters

SAS Statements Results

----+----1----+----2----+----3

x=’123-4567-8901 B 234-5678-9012 c’;
y=compress(x,’ABCD’,’l’);
put y; 123-4567-8901 234-5678-9012

Example 3: Compressing Space Characters

SAS Statements Results

----+----1

x=’1 2 3 4 5’;
y=compress(x,,’s’);
put y; 12345

Example 4: Keeping Characters in the List

SAS Statements Results

----+----1

x=’Math A English B Physics A’;
y=compress(x,’ABCD’,’k’);
put y; ABA

Example 5: Compressing a String and Returning a Length of 0

SAS Statements Results

----+----1

x=’ ’;
l=lengthn(compress(x));
put l; 0

See Also

Functions:
“COMPBL Function” on page 588
“LEFT Function” on page 862

602 CONSTANT Function � Chapter 4

“TRIM Function” on page 1135

CONSTANT Function

Computes machine and mathematical constants.

Category: Mathematical

Syntax
CONSTANT(constant<, parameter>)

Arguments

constant
is a character constant, variable, or expression that identifies the constant to be
returned. Valid constants are as follows:

Description Constant

The natural base ’E’

Euler constant ’EULER’

Pi ’PI’

Exact integer ’EXACTINT’ <,nbytes>

The largest double-precision number ’BIG’

The log with respect to base of BIG ’LOGBIG’ <,base>

The square root of BIG ’SQRTBIG’

The smallest double-precision number ’SMALL’

The log with respect to base of SMALL ’LOGSMALL’ <,base>

The square root of SMALL ’SQRTSMALL’

Machine precision constant ’MACEPS’

The log with respect to base of MACEPS ’LOGMACEPS’ <,base>

The square root of MACEPS ’SQRTMACEPS’

parameter
is an optional numeric parameter. Some of the constants specified in constant have
an optional argument that alters the functionality of the CONSTANT function.

Details
CAUTION:

In some operating environments, the run-time library might have limitations that prevent
the use of the full range of floating-point numbers that the hardware provides. In such

Functions and CALL Routines � CONSTANT Function 603

cases, the CONSTANT function attempts to return values that are compatible with
the limitations of the run-time library.

For example, if the run-time library cannot compute
EXP(LOG(CONSTANT(’BIG’))), then CONSTANT(’LOGBIG’) will not return the same
value as LOG(CONSTANT(’BIG’)), but will return a value such that
EXP(CONSTANT(’LOGBIG’)) can be computed. �

The natural base

CONSTANT(’E’)

The natural base is described by the following equation:

���
���

�� � ��
�

�

� ����	�	�	�	
��
�

Euler constant

CONSTANT(’EULER’)

Euler’s constant is described by the following equation:

���
���

��
�

����
���

�

�
� ��� ���

��
� � �����	��

�����	�
�

Pi

CONSTANT(’PI’)

Pi is the ratio between the circumference and the diameter of a circle. Many
expressions exist for computing this constant. One such expression for the series is
described by the following equation:

�

����
���

�����

	� � �
� ������	
������	��

Exact integer

CONSTANT(’EXACTINT’ <, nbytes>)

where

nbytes
is a numeric value that is the number of bytes.
Range: 2 ≤ nbytes ≤ 8
Default: 8

The exact integer is the largest integer k such that all integers less than or equal to
k in absolute value have an exact representation in a SAS numeric variable of length
nbytes. This information can be useful to know before you trim a SAS numeric variable
from the default 8 bytes of storage to a lower number of bytes to save storage.

The largest double-precision number

CONSTANT(’BIG’)

604 CONSTANT Function � Chapter 4

This case returns the largest double-precision floating-point number (8-bytes) that is
representable on your computer.

The logarithm of BIG

CONSTANT(’LOGBIG’ <, base>)

where

base
is a numeric value that is the base of the logarithm.
Restriction: The base that you specify must be greater than the value of

1+SQRTMACEPS.

Default: the natural base, E.
This case returns the logarithm with respect to base of the largest double-precision

floating-point number (8-bytes) that is representable on your computer.
It is safe to exponentiate the given base raised to a power less than or equal to

CONSTANT(’LOGBIG’, base) by using the power operation (**) without causing any
overflows.

It is safe to exponentiate any floating-point number less than or equal to
CONSTANT(’LOGBIG’) by using the exponential function, EXP, without causing any
overflows.

The square root of BIG

CONSTANT(’SQRTBIG’)

This case returns the square root of the largest double-precision floating-point number
(8-bytes) that is representable on your computer.

It is safe to square any floating-point number less than or equal to
CONSTANT(’SQRTBIG’) without causing any overflows.

The smallest double-precision number

CONSTANT(’SMALL’)

This case returns the smallest double-precision floating-point number (8-bytes) that is
representable on your computer.

The logarithm of SMALL

CONSTANT(’LOGSMALL’ <, base>)

where

base
is a numeric value that is the base of the logarithm.
Restriction: The base that you specify must be greater than the value of

1+SQRTMACEPS.
Default: the natural base, E.

This case returns the logarithm with respect to base of the smallest double-precision
floating-point number (8-bytes) that is representable on your computer.

It is safe to exponentiate the given base raised to a power greater than or equal to
CONSTANT(’LOGSMALL’, base) by using the power operation (**) without causing any
underflows or 0.

It is safe to exponentiate any floating-point number greater than or equal to
CONSTANT(’LOGSMALL’) by using the exponential function, EXP, without causing
any underflows or 0.

Functions and CALL Routines � CONVX Function 605

The square root of SMALL

CONSTANT(’SQRTSMALL’)

This case returns the square root of the smallest double-precision floating-point number
(8-bytes) that is representable on the computer.

It is safe to square any floating-point number greater than or equal to
CONSTANT(’SQRTBIG’) without causing any underflows or 0.

Machine precision

CONSTANT(’MACEPS’)

This case returns the smallest double-precision floating-point number (8-bytes) � � ���

for some integer j, such that � � � � �.
This constant is important in finite precision computations.

The logarithm of MACEPS

CONSTANT(’LOGMACEPS’ <, base>)

where

base
is a numeric value that is the base of the logarithm.
Restriction: The base that you specify must be greater than the value of

1+SQRTMACEPS.
Default: the natural base, E.

This case returns the logarithm with respect to base of CONSTANT(’MACEPS’).

The square root of MACEPS

CONSTANT(’SQRTMACEPS’)

This case returns the square root of CONSTANT(’MACEPS’).

CONVX Function

Returns the convexity for an enumerated cash flow.

Category: Financial

Syntax
CONVX(y,f,c(1), ... ,c(k))

Arguments

y
specifies the effective per-period yield-to-maturity, expressed as a fraction.
Range: � � � � �

f

606 CONVXP Function � Chapter 4

specifies the frequency of cash flows per period.
Range: � � �

c(1), ... ,c(k)
specifies a list of cash flows.

Details
The CONVX function returns the value

� �
��

���

� �� � ��
����

�����
�
�

�
�
�� � ���

�
��

where

� �
��
���

� ���

�� � ��
�

�

Examples
data _null_;

c=convx(1/20,1,.33,.44,.55,.49,.50,.22,.4,.8,.01,.36,.2,.4);
put c;

run;

The value returned is 42.3778.

CONVXP Function

Returns the convexity for a periodic cash flow stream, such as a bond.

Category: Financial

Syntax
CONVXP(A,c,n,K,k0,y)

Arguments

A
specifies the par value.
Range: � � �

c

Functions and CALL Routines � CONVXP Function 607

specifies the nominal per-period coupon rate, expressed as a fraction.
Range: � � � � �

n
specifies the number of coupons per period.
Range: � � � and is an integer

K
specifies the number of remaining coupons.
Range: � � � and is an integer

k0

specifies the time from the present date to the first coupon date, expressed in terms
of the number of periods.

Range: � � �� �
�
�

y
specifies the nominal per-period yield-to-maturity, expressed as a fraction.
Range: � � �

Details
The CONVXP function returns the value

� �
�

��

�
����

��
���

�� ��� � �� ����

��� �

��
��

	
�
� � �

�

��

�
����

where
�� � ��� � � � �
� ��� � �

�

 �� � � �� � � � �� � �

� ��� �
�
� � �

�

�

and where

	 �

�	
���

� ����
� � �

�

���

Examples

In the following example, the CONVXP function returns the convexity of a bond that
has a face value of 1000, an annual coupon rate of 0.01, 4 coupons per year, and 14
remaining coupons. The time from settlement date to next coupon date is 0.165, and
the annual yield-to-maturity is 0.08.

data _null_;
y=convxp(1000,.01,4,14,.33/2,.08);
put y;

608 COS Function � Chapter 4

run;

The value that is returned is 11.729001987.

COS Function

Returns the cosine.

Category: Trigonometric

Syntax
COS (argument)

Arguments

argument
specifies a numeric constant, variable, or expression and is expressed in radians. If
the magnitude of argument is so great that mod(argument,pi) is accurate to less
than about three decimal places, COS returns a missing value.

Examples

SAS Statements Results

x=cos(0.5); 0.8775825619

x=cos(0); 1

x=cos(3.14159/3); 0.500000766

COSH Function

Returns the hyperbolic cosine.

Category: Hyperbolic

Syntax
COSH(argument)

Arguments

Functions and CALL Routines � COUNT Function 609

argument
specifies a numeric constant, variable, or expression.

Details
The COSH function returns the hyperbolic cosine of the argument, given by

�
���������

� ����������
�
��

Examples

SAS Statements Results

x=cosh(0); 1

x=cosh(-5.0); 74.209948525

x=cosh(0.5); 1.1276259652

COUNT Function

Counts the number of times that a specified substring appears within a character string.

Category: Character
Restriction: “I18N Level 1” on page 312
Tip: You can use the KCOUNT function in SAS National Language Support (NLS):
Reference Guide for DBCS processing, but the functionality is different. See “DBCS
Compatibility” on page 610.

Syntax
COUNT(string, substring < ,modifiers>)

Arguments

string
specifies a character constant, variable, or expression in which substrings are to be
counted.
Tip: Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to count in string.
Tip: Enclose a literal string of characters in quotation marks.

modifiers

610 COUNT Function � Chapter 4

is a character constant, variable, or expression that specifies one or more modifiers.
The following modifiers can be in uppercase or lowercase:

i ignores character case during the count. If this modifier is not
specified, COUNT only counts character substrings with the same
case as the characters in substring.

t trims trailing blanks from string and substring.

Tip: If the modifier is a constant, enclose it in quotation marks. Specify multiple
constants in a single set of quotation marks. Modifier can also be expressed as a
variable or an expression.

Details

The Basics The COUNT function searches string, from left to right, for the number of
occurrences of the specified substring, and returns that number of occurrences. If the
substring is not found in string, COUNT returns a value of 0.

CAUTION:
If two occurrences of the specified substring overlap in the string, the result is undefined.
For example, COUNT(’boobooboo’, ’booboo’) might return either a 1 or a 2. �

DBCS Compatibility
You can use the KCOUNT function, which is documented in SAS National Language
Support (NLS): Reference Guide, for DBCS processing, but the functionality is different.

If the value of substring in the COUNT function is longer than two bytes, then the
COUNT function can handle DBCS strings. The following examples show the
differences in syntax:

COUNT(string, substring <,modifiers>

KCOUNT(string)

Comparisons

The COUNT function counts substrings of characters in a character string, whereas the
COUNTC function counts individual characters in a character string.

Examples

The following SAS statements produce these results:

SAS Statements Results

xyz=’This is a thistle? Yes, this is a thistle.’;
howmanythis=count(xyz,’this’);
put howmanythis; 3

xyz=’This is a thistle? Yes, this is a thistle.’;
howmanyis=count(xyz,’is’);
put howmanyis; 6

howmanythis_i=count(’This is a thistle? Yes, this is a thistle.’
,’this’,’i’);

put howmanythis_i; 4

Functions and CALL Routines � COUNTC Function 611

SAS Statements Results

variable1=’This is a thistle? Yes, this is a thistle.’;
variable2=’is ’;
variable3=’i’;
howmanyis_i=count(variable1,variable2,variable3);
put howmanyis_i; 4

expression1=’This is a thistle? ’||’Yes, this is a thistle.’;
expression2=kscan(’This is’,2)||’ ’;
expression3=compress(’i ’||’ t’);
howmanyis_it=count(expression1,expression2,expression3);
put howmanyis_it; 6

See Also

Functions:
“COUNTC Function” on page 611
“COUNTW Function” on page 614
“FIND Function” on page 721
“INDEX Function” on page 801

COUNTC Function

Counts the number of characters in a string that appear or do not appear in a list of characters.

Category: Character
Restriction: “I18N Level 1” on page 312

Syntax
COUNTC(string, charlist < ,modifiers>)

Arguments

string
specifies a character constant, variable, or expression in which characters are
counted.
Tip: Enclose a literal string of characters in quotation marks.

charlist
specifies a character constant, variable, or expression that initializes a list of
characters. COUNTC counts characters in this list, provided that you do not specify
the V modifier in the modifier argument. If you specify the V modifier, then all
characters that are not in this list are counted. You can add more characters to the
list by using other modifiers.
Tip: Enclose a literal string of characters in quotation marks.

612 COUNTC Function � Chapter 4

Tip: If there are no characters in the list after processing the modifiers, COUNTC
returns 0.

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the COUNTC function. Blanks are ignored. The
following characters, in uppercase or lowercase, can be used as modifiers:

blank is ignored.

a or A adds alphabetic characters to the list of characters.

b or B scans string from right to left, instead of from left to right.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, the characters
that can begin a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

g or G adds graphic characters to the list of characters.

h or H adds a horizontal tab to the list of characters.

i or I ignores case.

l or L adds lowercase letters to the list of characters.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear in a SAS variable name using
VALIDVARNAME=V7) to the list of characters.

o or O processes the charlist and modifier arguments only once, at the
first call to this instance of COUNTC. If you change the value of
charlist or modifier in subsequent calls, the change might be
ignored by COUNTC.

p or P adds punctuation marks to the list of characters.

s or S adds space characters to the list of characters (blank, horizontal
tab, vertical tab, carriage return, line feed, and form feed).

t or T trims trailing blanks from string and chars.
Tip: If you want to remove trailing blanks from only one

character argument instead of both (or all) character
arguments, use the TRIM function instead of the COUNTC
function with the T modifier.

u or U adds uppercase letters to the list of characters.

v or V counts characters that do not appear in the list of characters. If
you do not specify this modifier, then COUNTC counts characters
that do appear in the list of characters.

w or W adds printable characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.
Tip: If modifier is a constant, enclose it in quotation marks. Specify multiple

constants in a single set of quotation marks.

Details
The COUNTC function allows character arguments to be null. Null arguments are
treated as character strings with a length of zero. If there are no characters in the list
of characters to be counted, COUNTC returns zero.

Functions and CALL Routines � COUNTC Function 613

Comparisons
The COUNTC function counts individual characters in a character string, whereas the
COUNT function counts substrings of characters in a character string.

Examples

The following example uses the COUNTC function with and without modifiers to
count the number of characters in a string.

data test;
string = ’Baboons Eat Bananas ’;
a = countc(string, ’a’);
b = countc(string,’b’);
b_i = countc(string,’b’,’i’);
abc_i = countc(string,’abc’,’i’);

/* Scan string for characters that are not "a", "b", */
/* and "c", ignore case, (and include blanks). */

abc_iv = countc(string,’abc’,’iv’);
/* Scan string for characters that are not "a", "b", */
/* and "c", ignore case, and trim trailing blanks. */

abc_ivt = countc(string,’abc’,’ivt’);
run;

options pageno=1 ls=80 nodate;
proc print data=test noobs;
run;

Output 4.43 Output from Using the COUNTC Functions with and without Modifiers

The SAS System 1

string a b b_i abc_i abc_iv abc_ivt

Baboons Eat Bananas 5 1 3 8 16 11

See Also

Functions:

“ANYALNUM Function” on page 376

“ANYALPHA Function” on page 378

“ANYCNTRL Function” on page 380
“ANYDIGIT Function” on page 381

“ANYGRAPH Function” on page 385

“ANYLOWER Function” on page 387
“ANYPRINT Function” on page 391

“ANYPUNCT Function” on page 393

“ANYSPACE Function” on page 394

“ANYUPPER Function” on page 396
“ANYXDIGIT Function” on page 398

614 COUNTW Function � Chapter 4

“NOTALNUM Function” on page 925
“NOTALPHA Function” on page 927
“NOTCNTRL Function” on page 929
“NOTDIGIT Function” on page 930
“NOTGRAPH Function” on page 935
“NOTLOWER Function” on page 937
“NOTPRINT Function” on page 941
“NOTPUNCT Function” on page 942
“NOTSPACE Function” on page 944
“NOTUPPER Function” on page 946
“NOTXDIGIT Function” on page 948
“FINDC Function” on page 723
“INDEXC Function” on page 802
“VERIFY Function” on page 1155

COUNTW Function

Counts the number of words in a character string.

Category: Character

Syntax
COUNTW(<string><, chars><, modifiers>)

Arguments

string
specifies a character constant, variable, or expression in which words are counted.

chars
specifies an optional character constant, variable, or expression that initializes a list
of characters. The characters in this list are the delimiters that separate words,
provided that you do not use the K modifier in the modifier argument. If you specify
the K modifier, then all characters that are not in this list are delimiters. You can
add more characters to the list by using other modifiers.

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the COUNTW function. The following characters, in
uppercase or lowercase, can be used as modifiers:

blank is ignored.

a or A adds alphabetic characters to the list of characters.

b or B counts from right to left instead of from left to right. Right-to-left
counting makes a difference only when you use the Q modifier
and the string contains unbalanced quotation marks.

Functions and CALL Routines � COUNTW Function 615

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, the characters
that can begin a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

g or G adds graphic characters to the list of characters.

h or H adds a horizontal tab to the list of characters.

i or I ignores the case of the characters.

k or K causes all characters that are not in the list of characters to be
treated as delimiters. If K is not specified, then all characters
that are in the list of characters are treated as delimiters.

l or L adds lowercase letters to the list of characters.

m or M specifies that multiple consecutive delimiters, and delimiters at
the beginning or end of the string argument, refer to words that
have a length of zero. If the M modifier is not specified, then
multiple consecutive delimiters are treated as one delimiter, and
delimiters at the beginning or end of the string argument are
ignored.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear after the first character in a SAS
variable name using VALIDVARNAME=V7) to the list of
characters.

o or O processes the chars and modifier arguments only once, rather
than every time the COUNTW function is called. Using the O
modifier in the DATA step (excluding WHERE clauses), or in the
SQL procedure, can make COUNTW run faster when you call it
in a loop where chars and modifier arguments do not change.

p or P adds punctuation marks to the list of characters.

q or Q ignores delimiters that are inside of substrings that are enclosed
in quotation marks. If the value of string contains unmatched
quotation marks, then scanning from left to right will produce
different words than scanning from right to left.

s or S adds space characters (blank, horizontal tab, vertical tab, carriage
return, line feed, and form feed) to the list of characters.

t or T trims trailing blanks from the string and chars arguments.

u or U adds uppercase letters to the list of characters.

w or W adds printable characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.

Details

Definition of “Word” In the COUNTW function, “word” refers to a substring that has
one of the following characteristics:

� is bounded on the left by a delimiter or the beginning of the string
� is bounded on the right by a delimiter or the end of the string

616 COUNTW Function � Chapter 4

� contains no delimiters, except if you use the Q modifier and the delimiters are
within substrings that have quotation marks

Note: The definition of “word” is the same in both the SCAN function and the
COUNTW.sgml function. �

Delimiter refers to any of several characters that you can specify to separate words.

Using the COUNTW Function in ASCII and EBCDIC Environments If you use the
COUNTW function with only two arguments, the default delimiters depend on whether
your computer uses ASCII or EBCDIC characters.

� If your computer uses ASCII characters, then the default delimiters are as follows:

blank ! $ % & ()* + , - . / ; < ^ |

In ASCII environments that do not contain the ^ character, the SCAN function
uses the ~ character instead.

� If your computer uses EBCDIC characters, then the default delimiters are as
follows:

blank ! $ % & ()* + , - . / ; < | ¢

Using Null Arguments The COUNTW function allows character arguments to be null.
Null arguments are treated as character strings with a length of zero. Numeric
arguments cannot be null.

Using the M Modifier
If you do not use the M modifier, then a word must contain at least one character. If
you use the M modifier, then a word can have a length of zero. In this case, the number
of words is one plus the number of delimiters in the string, not counting delimiters
inside of strings that are enclosed in quotation marks when you use the Q modifier.

Examples

The following example shows how to use the COUNTW function with the M and P
modifiers.

options ls=64 pageno=1 nodate;
data test;

length default blanks mp 8;
input string $char60.;
default = countw(string);
blanks = countw(string, ’ ’);
mp = countw(string, ’mp’);
datalines;

The quick brown fox jumps over the lazy dog.
Leading blanks

2+2=4
/unix/path/names/use/slashes
\Windows\Path\Names\Use\Backslashes
;
run;

proc print noobs data=test;
run;

Functions and CALL Routines � CSS Function 617

Output 4.44 Output from the COUNTW Function

The SAS System 1

default blanks mp string

9 9 2 The quick brown fox jumps over the lazy dog.
2 2 1 Leading blanks
2 1 1 2+2=4
5 1 3 /unix/path/names/use/slashes
1 1 2 \Windows\Path\Names\Use\Backslashes

See Also

Functions and CALL Routines:
“COUNT Function” on page 609
“COUNTC Function” on page 611
“FINDW Function” on page 729
“SCAN Function” on page 1076
“CALL SCAN Routine” on page 513

CSS Function

Returns the corrected sum of squares.

Category: Descriptive Statistics

Syntax
CSS(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one nonmissing
argument is required. Otherwise, the function returns a missing value. If you have
more than one argument, the argument list can consist of a variable list, which is
preceded by OF.

618 CUROBS Function � Chapter 4

Examples

SAS Statements Results

x1=css(5,9,3,6); 18.75

x2=css(5,8,9,6,.); 10

x3=css(8,9,6,.); 4.6666666667

x4=css(of x1-x3); 101.11574074

CUROBS Function

Returns the observation number of the current observation.

Category: SAS File I/O
Requirement: Use this function only with an uncompressed SAS data set that is accessed
using a native library engine.

Syntax
CUROBS(data-set-id)

Arguments

data-set-id
is a numeric value that specifies the data set identifier that the OPEN function
returns.

Details
If the engine being used does not support observation numbers, the function returns a
missing value.

With a SAS view, the function returns the relative observation number, that is, the
number of the observation within the SAS view (as opposed to the number of the
observation within any related SAS data set).

Examples

This example uses the FETCHOBS function to fetch the tenth observation in the
data set MYDATA. The value of OBSNUM returned by CUROBS is 10.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetchobs(&dsid,10));
%let obsnum=%sysfunc(curobs(&dsid));

See Also

Functions and CALL Routines � DACCDB Function 619

Functions:
“FETCHOBS Function” on page 675
“OPEN Function” on page 955

CV Function

Returns the coefficient of variation.

Category: Descriptive Statistics

Syntax
CV(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two arguments are
required. The argument list can consist of a variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=cv(5,9,3,6); 43.47826087

x2=cv(5,8,9,6,.); 26.082026548

x3=cv(8,9,6,.); 19.924242152

x4=cv(of x1-x3); 40.953539216

DACCDB Function

Returns the accumulated declining balance depreciation.

Category: Financial

Syntax
DACCDB(p,v,y,r)

Arguments

620 DACCDBSL Function � Chapter 4

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.

Range: y > 0

r
is numeric, the rate of depreciation expressed as a decimal.

Range: r > 0

Details
The DACCDB function returns the accumulated depreciation by using a declining
balance method. The formula is

��������� � � �� �� �

� � � � �

�

�
� �

�
� � �

�

���������
� � ��� ��� ���� �

�

�
� � �

Note that int(p) is the integer part of p. The p and y arguments must be expressed
by using the same units of time. A double-declining balance is obtained by setting r
equal to 2.

Examples

An asset has a depreciable initial value of $1000 and a fifteen-year lifetime. Using a
200 percent declining balance, the depreciation throughout the first 10 years can be
expressed as

a=daccdb(10,1000,15,2);

The value returned is 760.93. The first and the third arguments are expressed in
years.

DACCDBSL Function

Returns the accumulated declining balance with conversion to a straight-line depreciation.

Category: Financial

Syntax
DACCDBSL(p,v,y,r)

Functions and CALL Routines � DACCSL Function 621

Arguments

p
is numeric, the period for which the calculation is to be done.

v
is numeric, the depreciable initial value of the asset.

y
is an integer, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.
Range: r > 0

Details
The DACCDBSL function returns the accumulated depreciation by using a declining
balance method, with conversion to a straight-line depreciation function that is defined
by

�������� ��� �� �� �� �

��

���

�	
���� ��� �� �� ��

The declining balance with conversion to a straight-line depreciation chooses for each
time period the method of depreciation (declining balance or straight-line on the
remaining balance) that gives the larger depreciation. The p and y arguments must be
expressed by using the same units of time.

Examples

An asset has a depreciable initial value of $1,000 and a ten-year lifetime. Using a
declining balance rate of 150 percent, the accumulated depreciation of that asset in its
fifth year can be expressed as

y5=daccdbsl(5,1000,10,1.5);

The value returned is 564.99. The first and the third arguments are expressed in
years.

DACCSL Function

Returns the accumulated straight-line depreciation.

Category: Financial

Syntax
DACCSL(p,v,y)

622 DACCSYD Function � Chapter 4

Arguments

p
is numeric, the period for which the calculation is to be done. For fractional p, the
depreciation is prorated between the two consecutive time periods that precede and
follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

Details
The DACCSL function returns the accumulated depreciation by using the straight-line
method, which is given by

������ ��� �� �� �

��
�
� � � �

�

�
�

�

�
� � � � �

� � � �

The p and y arguments must be expressed by using the same units of time.

Examples

An asset, acquired on 01APR86, has a depreciable initial value of $1000 and a
ten-year lifetime. The accumulated depreciation in the value of the asset through
31DEC87 can be expressed as

a=daccsl(1.75,1000,10);

The value returned is 175.00. The first and the third arguments are expressed in
years.

DACCSYD Function

Returns the accumulated sum-of-years-digits depreciation.

Category: Financial

Syntax
DACCSYD(p,v,y)

Arguments

Functions and CALL Routines � DACCTAB Function 623

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

Details
The DACCSYD function returns the accumulated depreciation by using the
sum-of-years-digits method. The formula is

���������� �� �� �

��
�
� � � �

�
��������� ��������

� ����������������������

��������� ��������

� �������������
� � � � �

� � � �

Note that int(y) indicates the integer part of y. The p and y arguments must be
expressed by using the same units of time.

Examples

An asset, acquired on 01OCT86, has a depreciable initial value of $1,000 and a
five-year lifetime. The accumulated depreciation of the asset throughout 01JAN88 can
be expressed as

y2=daccsyd(15/12,1000,5);

The value returned is 400.00. The first and the third arguments are expressed in
years.

DACCTAB Function

Returns the accumulated depreciation from specified tables.

Category: Financial

Syntax
DACCTAB(p,v,t1, . . . ,tn)

Arguments

p

624 DAIRY Function � Chapter 4

is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

t1,t2, . . . ,tn
are numeric, the fractions of depreciation for each time period with t1+t2+...tn�1.

Details
The DACCTAB function returns the accumulated depreciation by using user-specified
tables. The formula for this function is

������� ��� �� ��� ��� 			� ��� �

�
� � � �
�
�
�� � �� � 			� ������� � ���
�� ���� ���������

�
� � � � �

� � � �

For a given p, only the arguments ��� ��� � � � � �� need to be specified with k=ceil(p).

Examples

An asset has a depreciable initial value of $1000 and a five-year lifetime. Using a
table of the annual depreciation rates of .15, .22, .21, .21, and .21 during the first,
second, third, fourth, and fifth years, respectively, the accumulated depreciation
throughout the third year can be expressed as

y3=dacctab(3,1000,.15,.22,.21,.21,.21);

The value that is returned is 580.00. The fourth rate, .21, and the fifth rate, .21, can
be omitted because they are not needed in the calculation.

DAIRY Function

Returns the derivative of the AIRY function.

Category: Mathematical

Syntax
DAIRY(x)

Arguments

x
specifies a numeric constant, variable, or expression.

Functions and CALL Routines � DATDIF Function 625

Details
The DAIRY function returns the value of the derivative of the AIRY function
(Abramowitz and Stegun 1964; Amos, Daniel, and Weston 1977).

Examples

SAS Statements Results

x=dairy(2.0); -0.053090384

x=dairy(-2.0); 0.6182590207

DATDIF Function

Returns the number of days between two dates after computing the difference between the dates
according to specified day count conventions.

Category: Date and Time

Syntax
DATDIF(sdate,edate,basis)

Arguments

sdate
specifies a SAS date value that identifies the starting date.
Tip: If sdate falls at the end of a month, then SAS treats the date as if it were the

last day of a 30-day month.

edate
specifies a SAS date value that identifies the ending date.
Tip: If edate falls at the end of a month, then SAS treats the date as if it were the

last day of a 30-day month.

basis
specifies a character string that represents the day count basis. The following values
for basis are valid:

’30/360’
specifies a 30-day month and a 360-day year, regardless of the actual number of
calendar days in a month or year.

A security that pays interest on the last day of a month will either always make
its interest payments on the last day of the month, or it will always make its
payments on the numerically same day of a month, unless that day is not a valid
day of the month, such as February 30. For more information, see “Method of
Calculation for Day Count Basis (30/360)” on page 626.
Alias: ’360’

626 DATDIF Function � Chapter 4

’ACT/ACT’
uses the actual number of days between dates. Each month is considered to have
the actual number of calendar days in that month, and each year is considered to
have the actual number of calendar days in that year.

Alias: ’Actual’

’ACT/360’
uses the actual number of calendar days in a particular month, and 360 days as
the number of days in a year, regardless of the actual number of days in a year.

Tip: ACT/360 is used for short-term securities.

’ACT/365’
uses the actual number of calendar days in a particular month, and 365 days as
the number of days in a year, regardless of the actual number of days in a year.

Tip: ACT/365 is used for short-term securities.

Details

The Basics
The DATDIF function has a specific meaning in the securities industry, and the method
of calculation is not the same as the actual day count method. Calculations can use
months and years that contain the actual number of days. Calculations can also be
based on a 30-day month or a 360-day year. For more information about standard
securities calculation methods, see “References” on page 627.

Note: When counting the number of days in a month, DATDIF always includes the
starting date and excludes the ending date. �

Method of Calculation for Day Count Basis (30/360) To calculate the number of days
between two dates, use the following formula:

���������	
� � ��� �� � �� � ���	
 ��� ��� � ��	
 ��� ����

where

Y2 specifies the year of the later date.

Y1 specifies the year of the earllier date.

M2 specifies the month of the later date.

M1 specifies the month of the earlier date.

D2 specifies the day of the later date.

D1 specifies the day of the earlier date.

Because all months can contain only 30 days, you must adjust for the months that do
not contain 30 days. Do this before you calculate the number of days between the two
dates.

The following rules apply:
� If the security follows the End-of-Month rule, and D2 is the last day of February

(28 days in a non-leap year, 29 days in a leap year), and D1 is the last day of
February, then change D2 to 30.

� If the security follows the End-of-Month rule, and D1 is the last day of February,
then change D1 to 30.

Functions and CALL Routines � DATE Function 627

� If the value of D2 is 31 and the value of D1 is 30 or 31, then change D2 to 30.

� If the value of D1 is 31, then change D1 to 30.

Examples

In the following example, DATDIF returns the actual number of days between two
dates, as well as the number of days based on a 30-day month and a 360-day year.

data _null;
sdate=’16oct78’d;
edate=’16feb96’d;
actual=datdif(sdate, edate, ’act/act’);
days360=datdif(sdate, edate, ’30/360’);
put actual= days360=;

run;

SAS Statements Results

put actual=; 6332

put days360=; 6240

See Also

Functions:

“YRDIF Function” on page 1195

References
Securities Industry Association. 1994. Standard Securities Calculation Methods -

Fixed Income Securities Formulas for Analytic Measures, Volume 2. New York:
Securities Industry Association.

DATE Function

Returns the current date as a SAS date value.

Category: Date and Time

Alias: TODAY

See: “TODAY Function” on page 1128

Syntax
DATE()

628 DATEJUL Function � Chapter 4

DATEJUL Function

Converts a Julian date to a SAS date value.

Category: Date and Time

Syntax
DATEJUL(julian-date)

Arguments

julian-date
specifies a SAS numeric expression that represents a Julian date. A Julian date in
SAS is a date in the form yyddd or yyyyddd, where yy or yyyy is a two-digit or
four-digit integer that represents the year and ddd is the number of the day of the
year. The value of ddd must be between 1 and 365 (or 366 for a leap year).

Examples

The following SAS statements produce these results:

SAS Statements Results

Xstart=datejul(94365);
put Xstart / Xstart date9.; 12783

31DEC1994

Xend=datejul(2001001);
put Xend / Xend date9.; 14976

01JAN2001

See Also

Function:

“JULDATE Function” on page 848

DATEPART Function

Extracts the date from a SAS datetime value.

Category: Date and Time

Functions and CALL Routines � DATETIME Function 629

Syntax
DATEPART(datetime)

Arguments

datetime
specifies a SAS expression that represents a SAS datetime value.

Examples

The following SAS statements produce this result:

SAS Statements Results

conn=’01feb94:8:45’dt;
servdate=datepart(conn);
put servdate worddate.; February 1, 1994

See Also

Functions:
“DATETIME Function” on page 629
“TIMEPART Function” on page 1125

DATETIME Function

Returns the current date and time of day as a SAS datetime value.

Category: Date and Time

Syntax
DATETIME()

Examples

This example returns a SAS value that represents the number of seconds between
January 1, 1960 and the current time:

when=datetime();
put when=;

See Also

630 DAY Function � Chapter 4

Functions:
“DATE Function” on page 627
“TIME Function” on page 1124

DAY Function

Returns the day of the month from a SAS date value.

Category: Date and Time

Syntax
DAY(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The DAY function produces an integer from 1 to 31 that represents the day of the month.

Examples

The following SAS statements produce this result:

SAS Statements Results

now=’05may97’d;
d=day(now);
put d; 5

See Also

Functions:
“MONTH Function” on page 913
“YEAR Function” on page 1192

DCLOSE Function

Closes a directory that was opened by the DOPEN function.

Functions and CALL Routines � DCLOSE Function 631

Category: External Files

Syntax
DCLOSE(directory-id)

Argument

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

Details
DCLOSE returns 0 if the operation was successful, ≠0 if it was not successful. The
DCLOSE function closes a directory that was previously opened by the DOPEN
function. DCLOSE also closes any open members.

Note: All directories or members opened within a DATA step are closed
automatically when the DATA step ends. �

Examples

Example 1: Using DCLOSE to Close a Directory This example opens the directory to
which the fileref MYDIR has previously been assigned, returns the number of members,
and then closes the directory:

%macro memnum(filrf,path);
%let rc=%sysfunc(filename(filrf,&path));
%if %sysfunc(fileref(&filrf)) = 0 %then

%do;
/* Open the directory. */

%let did=%sysfunc(dopen(&filrf));
%put did=&did;

/* Get the member count. */
%let memcount=%sysfunc(dnum(&did));
%put &memcount members in &filrf.;

/* Close the directory. */
%let rc= %sysfunc(dclose(&did));

%end;
%else %put Invalid FILEREF;
%mend;
%memnum(MYDIR,physical-filename)

Example 2: Using DCLOSE within a DATA Step This example uses the DCLOSE
function within a DATA step:

%let filrf=MYDIR;
data _null_;
rc=filename("&filrf","physical-filename");
if fileref("&filrf") = 0 then

do;
/* Open the directory. */

632 DCREATE Function � Chapter 4

did=dopen("&filrf");
/* Get the member count. */

memcount=dnum(did);
put memcount "members in &filrf";

/* Close the directory. */
rc=dclose(did);

end;
else put "Invalid FILEREF";

run;

See Also

Functions:
“DOPEN Function” on page 652
“FCLOSE Function” on page 670
“FOPEN Function” on page 747
“MOPEN Function” on page 913

DCREATE Function
Returns the complete pathname of a new, external directory.

Category: External Files

Syntax
DCREATE(directory-name<,parent-directory>)

Arguments

directory-name
is a character constant, variable, or expression that specifies the name of the
directory to create. This value cannot include a pathname.

parent-directory
is a character constant, variable, or expression that contains the complete pathname
of the directory in which to create the new directory. If you do not supply a value for
parent-directory, then the current directory is the parent directory.

Details
The DCREATE function enables you to create a directory in your operating
environment. If the directory cannot be created, then DCREATE returns an empty
string.

Examples

To create a new directory in the UNIX operating environment, using the name that is
stored in the variable DirectoryName, follow this form:

Functions and CALL Routines � DEPDB Function 633

NewDirectory=dcreate(DirectoryName,’/local/u/abcdef/’);

To create a new directory in the Windows operating environment, using the name
that is stored in the variable DirectoryName, follow this form:

NewDirectory=dcreate(DirectoryName,’d:\testdir\’);

DEPDB Function
Returns the declining balance depreciation.

Category: Financial

Syntax
DEPDB(p,v,y,r)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.
Range: r ≥ 0

Details
The DEPDB function returns the depreciation by using the declining balance method,
which is given by

�������� �� �� �� � ��������� �� �� ��

���������� �� �� �� ��

The p and y arguments must be expressed by using the same units of time. A
double-declining balance is obtained by setting r equal to 2.

Examples

An asset has an initial value of $1,000 and a fifteen-year lifetime. Using a declining
balance rate of 200 percent, the depreciation of the value of the asset for the tenth year
can be expressed as

634 DEPDBSL Function � Chapter 4

y10=depdb(10,1000,15,2);

The value returned is 36.78. The first and the third arguments are expressed in
years.

DEPDBSL Function

Returns the declining balance with conversion to a straight-line depreciation.

Category: Financial

Syntax
DEPDBSL(p,v,y,r)

Arguments

p
is an integer, the period for which the calculation is to be done.

v
is numeric, the depreciable initial value of the asset.

y
is an integer, the lifetime of the asset.
Range: y > 0

r
is numeric, the rate of depreciation that is expressed as a fraction.
Range: r ≥ 0

Details
The DEPDBSL function returns the depreciation by using the declining balance method
with conversion to a straight-line depreciation, which is given by the following equation:

������� ��� �� �� �� �

������
�����

	 � � �

� �
�

�
�� �

�

����

� � � � �

���� �

�
� �

����� � � � � �

� � � �

where

� � ���

�
� �

�

�
� �

�

and int()denotes the integer part of a numeric argument.

Functions and CALL Routines � DEPSL Function 635

The p and y arguments must be expressed by using the same units of time. The
declining balance that changes to a straight-line depreciation chooses for each time
period the method of depreciation (declining balance or straight-line on the remaining
balance) that gives the larger depreciation.

Examples

An asset has a depreciable initial value of $1,000 and a ten-year lifetime. Using a
declining balance rate of 150 percent, the depreciation of the value of the asset in the
fifth year can be expressed as

y5=depdbsl(5,1000,10,1.5);

The value 87.001041667 is returned. The first and the third arguments are
expressed in years.

DEPSL Function

Returns the straight-line depreciation.

Category: Financial

Syntax
DEPSL(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For fractional p, the
depreciation is prorated between the two consecutive time periods that precede and
follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset.
Range: y > 0

Details
The DEPSL function returns the straight-line depreciation, which is given by

����� ��� �� �� � ��		�� ��� �� ��

���		�� �� �
� �� ��

The p and y arguments must be expressed by using the same units of time.

636 DEPSYD Function � Chapter 4

Examples

An asset, acquired on 01APR86, has a depreciable initial value of $1,000 and a
ten-year lifetime. The depreciation in the value of the asset for the year 1986 can be
expressed as

d=depsl(9/12,1000,10);

The value returned is 75.00. The first and the third arguments are expressed in
years.

DEPSYD Function

Returns the sum-of-years-digits depreciation.

Category: Financial

Syntax
DEPSYD(p,v,y)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

y
is numeric, the lifetime of the asset in number of depreciation periods.
Range: y > 0

Details
The DEPSYD function returns the sum-of-years-digits depreciation, which is given by

��������� �� �� � ��		��� ��� �� ��

���		������
� �� ��

The p and y arguments must be expressed by using the same units of time.

Examples

An asset, acquired on 01OCT86, has a depreciable initial value of $1,000 and a
five-year lifetime. The depreciations in the value of the asset for the years 1986 and
1987 can be expressed as

Functions and CALL Routines � DEPTAB Function 637

y1=depsyd(3/12,1000,5);
y2=depsyd(15/12,1000,5);

The values returned are 83.33 and 316.67, respectively. The first and the third
arguments are expressed in years.

DEPTAB Function

Returns the depreciation from specified tables.

Category: Financial

Syntax
DEPTAB(p,v,t1,...,tn)

Arguments

p
is numeric, the period for which the calculation is to be done. For noninteger p
arguments, the depreciation is prorated between the two consecutive time periods
that precede and follow the fractional period.

v
is numeric, the depreciable initial value of the asset.

t1,t2, . . . ,tn
are numeric, the fractions of depreciation for each time period with t1+t2+...tn�1.

Details
The DEPTAB function returns the depreciation by using specified tables. The formula is

������ ��� �� 	�� 	��

� 	�� � ������� ��� �� 	�� 	��

� 	��

�������� �� � �� �� 	�� 	��

� 	��

For a given p, only the arguments 	�� 	�� � � � � 	� need to be specified with k=ceil(p).

Examples

An asset has a depreciable initial value of $1,000 and a five-year lifetime. Using a
table of the annual depreciation rates of .15, .22, .21, .21, and .21 during the first,
second, third, fourth, and fifth years, respectively, the depreciation in the third year can
be expressed as

�� � ������ ��� ����� ���� ���� ���� ���� ���� �

638 DEQUOTE Function � Chapter 4

The value that is returned is 210.00. The fourth rate, .21, and the fifth rate, .21, can be
omitted because they are not needed in the calculation.

DEQUOTE Function

Removes matching quotation marks from a character string that begins with a quotation mark, and
deletes all characters to the right of the closing quotation mark.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
DEQUOTE(string)

Arguments

string
specifies a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the DEQUOTE function returns a
value to a variable that has not been previously assigned a length, then that variable is
given the length of the argument.

The Basics The value that is returned by the DEQUOTE function is determined as
follows:

� If the first character of string is not a single or double quotation mark, DEQUOTE
returns string unchanged.

� If the first two characters of string are both single quotation marks or both double
quotation marks, and the third character is not the same type of quotation mark,
then DEQUOTE returns a result with a length of zero.

� If the first character of string is a single quotation mark, the DEQUOTE function
removes that single quotation mark from the result. DEQUOTE then scans string
from left to right, looking for more single quotation marks. Each pair of
consecutive, single quotation marks is reduced to one single quotation mark. The
first single quotation mark that does not have an ending quotation mark in string
is removed and all characters to the right of that quotation mark are also removed.

� If the first character of string is a double quotation mark, the DEQUOTE function
removes that double quotation mark from the result. DEQUOTE then scans string
from left to right, looking for more double quotation marks. Each pair of
consecutive, double quotation marks is reduced to one double quotation mark. The
first double quotation mark that does not have an ending quotation mark in string
is removed and all characters to the right of that quotation mark are also removed.

Note: If string is a constant enclosed by quotation marks, those quotation marks are
not part of the value of string. Therefore, you do not need to use DEQUOTE to remove
the quotation marks that denote a constant. �

Functions and CALL Routines � DEQUOTE Function 639

Examples

This example demonstrates the use of DEQUOTE within a DATA step.

options pageno=1 nodate ls=80 ps=64;

data test;
input string $60.;
result = dequote(string);
datalines;

No quotation marks, no change
No "leading" quotation marks, no change
"Matching double quotation marks are removed"
’Matching single quotation marks are removed’
"Paired ""quotation marks"" are reduced"
’Paired ’’ quotation marks ’’ are reduced’
"Single ’quotation marks’ inside ’’ double’’ quotation marks are unchanged"
’Double "quotation marks" inside ""single"" quotation marks are unchanged’
"No matching quotation mark, no problem
Don’t remove this apostrophe
"Text after the matching quotation mark" is "deleted"
;

proc print noobs;
title ’Input Strings and Output Results from DEQUOTE’;
run;

Output 4.45 Removing Matching Quotation Marks with the DEQUOTE Function

Input Strings and Output Results from DEQUOTE 1

string

No quotation marks, no change
No "leading" quotation marks, no change
"Matching double quotation marks are removed"
’Matching single quotation marks are removed’
"Paired ""quotation marks"" are reduced"
’Paired ’’ quotation marks ’’ are reduced’
"Single ’quotation marks’ inside ’’ double’’ quotation marks
’Double "quotation marks" inside ""single"" quotation marks
"No matching quotation mark, no problem
Don’t remove this apostrophe
"Text after the matching quotation mark" is "deleted"

result

No quotation marks, no change
No "leading" quotation marks, no change
Matching double quotation marks are removed
Matching single quotation marks are removed
Paired "quotation marks" are reduced
Paired ’ quotation marks ’ are reduced
Single ’quotation marks’ inside ’’ double’’ quotation marks
Double "quotation marks" inside ""single"" quotation marks
No matching quotation mark, no problem
Don’t remove this apostrophe
Text after the matching quotation mark

640 DEVIANCE Function � Chapter 4

DEVIANCE Function

Returns the deviance based on a probability distribution.

Category: Mathematical

Syntax
DEVIANCE(distribution, variable, shape-parameters<,�>)

Arguments

distribution
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are listed in the following table:

Distribution Argument

Bernoulli ’BERNOULLI’ | ’BERN’

Binomial ’BINOMIAL’ | ’BINO’

Gamma ’GAMMA’

Inverse Gauss (Wald) ’IGAUSS’ | ’WALD’

Normal ’NORMAL’ | ’GAUSSIAN’

Poisson ’POISSON’ | ’POIS’

variable
is a numeric constant, variable, or expression.

shape-parameter
are one or more distribution-specific numeric parameters that characterize the shape
of the distribution.

�

is an optional numeric small value used for all of the distributions, except for the
normal distribution.

Details

The Bernoulli Distribution

DEVIANCE(’BERNOULLI’, variable, p<, �>)

where

variable
is a binary numeric random variable that has the value of 1 for success and 0 for
failure.

p

Functions and CALL Routines � DEVIANCE Function 641

is a numeric probability of success with � ≤ p ≤ 1–�.

�

is an optional positive numeric value that is used to bound p. Any value of p in the
interval 0 ≤ p ≤ � is replaced by �. Any value of p in the interval 1 – � ≤ p ≤ 1 is
replaced by 1 – �.

The DEVIANCE function returns the deviance from a Bernoulli distribution with a
probability of success p, where success is defined as a random variable value of 1. The
equation follows:

��������
�

����� �� �����	
�� ��
�
�

�
�� 	
� �� �� � � �
�� 	
� ��� � �
� ���������

The Binomial Distribution

DEVIANCE(’BINO’, variable, �, n<, �>)

where

variable
is a numeric random variable that contains the number of successes.
Range: 0 ≤ variable ≤ 1

�

is a numeric mean parameter.
Range: n� ≤ � ≤ n(1–�)

n
is an integer number of Bernoulli trials parameter
Range: n ≥ 0

�

is an optional positive numeric value that is used to bound �. Any value of � in
the interval 0 ≤ � ≤ n� is replaced by n�. Any value of � in the interval n(1 – �) ≤ �

≤ n is replaced by n(1 – �).

The DEVIANCE function returns the deviance from a binomial distribution, with a
probability of success p, and a number of independent Bernoulli trials n. The following
equation describes the DEVIANCE function for the Binomial distribution, where x is
the random variable.

��������
�

�
����

�� � � ���
�
�

�
� � � �

�
�
� 	
�

�
�

�

�
� �� � � � ���

�
���

���

��
� � � � �

� � � �

The Gamma Distribution

DEVIANCE(’GAMMA’, variable, � <, �>)

where

variable
is a numeric random variable.
Range: variable ≥ �

642 DEVIANCE Function � Chapter 4

�

is a numeric mean parameter.
Range: � ≥�

�

is an optional positive numeric value that is used to bound variable and �. Any
value of variable in the interval 0 ≤ variable ≤ � is replaced by �. Any value of � in
the interval 0 ≤ � ≤ � is replaced by �.

The DEVIANCE function returns the deviance from a gamma distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
gamma distribution, where x is the random variable:

��������
�

�
�����

�
� � � �

�
�

�
� � � �

�
�
� 	
�

�
�

�

�
� ���

�

�
� � �� � � �

The Inverse Gauss (Wald) Distribution

DEVIANCE(’IGAUSS’ | ’WALD’, variable, �<, �>)

where

variable
is a numeric random variable.
Range: variable ≥ �

�

is a numeric mean parameter.
Range: � ≥�

�

is an optional positive numeric value that is used to bound variable and �. Any
value of variable in the interval 0 ≤ variable ≤ � is replaced by �. Any value of � in
the interval 0 ≤ � ≤ � is replaced by �.

The DEVIANCE function returns the deviance from an inverse Gaussian distribution
with a mean parameter �. The following equation describes the DEVIANCE function
for the inverse Gaussian distribution, where x is the random variable:

��������
�

�
������

�
� � � �

�
�

�
� � � �
������

���
� � �� � � �

The Normal Distribution

DEVIANCE(’NORMAL’ | ’GAUSSIAN’, variable, �)

where

variable
is a numeric random variable.

�

is a numeric mean parameter.

The DEVIANCE function returns the deviance from a normal distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
normal distribution, where x is the random variable:

Functions and CALL Routines � DHMS Function 643

��������
�

�
������

�
� � � �

�
� �� � �	�

The Poisson Distribution

DEVIANCE(’POISSON’, variable, �<, �>)

where

variable
is a numeric random variable.
Range: variable ≥ 0

�

is a numeric mean parameter.
Range: � ≥�

�

is an optional positive numeric value that is used to bound �. Any value of � in
the interval 0 ≤ � ≤ � is replaced by �.

The DEVIANCE function returns the deviance from a Poisson distribution with a
mean parameter �. The following equation describes the DEVIANCE function for the
Poisson distribution, where x is the random variable:

��������
�

�
���		��

�
� � � �

�
�

�
� � �

�
� ���

�
�

�

�
� �� � ��

�
� � � � � � �

DHMS Function

Returns a SAS datetime value from date, hour, minute, and second values.

Category: Date and Time

Syntax
DHMS(date,hour,minute,second)

Arguments

date
specifies a SAS expression that represents a SAS date value.

hour
is numeric.

minute
is numeric.

second
is numeric.

644 DIF Function � Chapter 4

Details
The DHMS function returns a numeric value that represents a SAS datetime value.

This numeric value can be either positive or negative.

Examples

The following SAS statements produce these results:

SAS Statements Results

dtid=dhms(’01jan03’d,15,30,15);
put dtid;
put dtid datetime.;

1357054215
01JAN03:15:30:15

dtid2=dhms(’01jan03’d,15,30,61);
put dtid2;
put dtid2 datetime.;

1357054261
01JAN03:15:31:01

dtid3=dhms(’01jan03’d,15,.5,15);
put dtid3;
put dtid3 datetime.;

1357052445
01JAN03:15:00:45

The following SAS statements show how to combine a SAS date value with a SAS
time value into a SAS datetime value. If you execute these statements on April 2, 2003
at the time of 15:05:02, it produces these results:

SAS Statements Result

day=date();
time=time();
sasdt=dhms(day,0,0,time);
put sasdt datetime.; 02APR03:15:05:02

See Also

Function:
“HMS Function” on page 787

DIF Function

Returns differences between an argument and its nth lag.

Category: Special

Syntax
DIF<n>(argument)

Functions and CALL Routines � DIGAMMA Function 645

Arguments

n
specifies the number of lags.

argument
specifies a numeric constant, variable, or expression.

Details
The DIF functions, DIF1, DIF2, ..., DIF100, return the first differences between the
argument and its nth lag. DIF1 can also be written as DIF. DIFn is defined as
DIFn(x)=x-LAGn(x).

For details on storing and returning values from the LAGn queue, see the LAG
function.

Comparisons
The function DIF2(X) is not equivalent to the second difference DIF(DIF(X)).

Examples

This example demonstrates the difference between the LAG and DIF functions.

data two;
input X @@;
Z=lag(x);
D=dif(x);
datalines;

1 2 6 4 7
;
proc print data=two;
run;

Results of the PROC PRINT step follow:

OBS X Z D
1 1 . .
2 2 1 1
3 6 2 4
4 4 6 - 2
5 7 4 3

See Also

Function:
“LAG Function” on page 851

DIGAMMA Function
Returns the value of the digamma function.

646 DIM Function � Chapter 4

Category: Mathematical

Syntax
DIGAMMA(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.
Restriction: Nonpositive integers are invalid.

Details
The DIGAMMA function returns the ratio that is given by

���� � �� ��� �� ���

where � ��� and �� ��� denote the Gamma function and its derivative, respectively. For
argument>0, the DIGAMMA function is the derivative of the LGAMMA function.

Examples

SAS Statements Results

x=digamma(1.0); -0.577215665

DIM Function

Returns the number of elements in an array.

Category: Array

Syntax
DIM<n>(array-name)

DIM(array-name,bound-n)

Arguments

n

Functions and CALL Routines � DIM Function 647

specifies the dimension, in a multidimensional array, for which you want to know the
number of elements. If no n value is specified, the DIM function returns the number
of elements in the first dimension of the array.

array-name
specifies the name of an array that was previously defined in the same DATA step.
This argument cannot be a constant, variable, or expression.

bound-n
is a numeric constant, variable, or expression that specifies the dimension, in a
multidimensional array, for which you want to know the number of elements. Use
bound-n only when n is not specified.

Details
The DIM function returns the number of elements in a one-dimensional array or the
number of elements in a specified dimension of a multidimensional array when the lower
bound of the dimension is 1. Use DIM in array processing to avoid changing the upper
bound of an iterative DO group each time you change the number of array elements.

Comparisons
� DIM always returns a total count of the number of elements in an array dimension.

� HBOUND returns the literal value of the upper bound of an array dimension.

Note: This distinction is important when the lower bound of an array dimension has
a value other than 1 and the upper bound has a value other than the total number of
elements in the array dimension. �

Examples

Example 1: One-dimensional Array In this example, DIM returns a value of 5.
Therefore, SAS repeats the statements in the DO loop five times.

array big{5} weight sex height state city;
do i=1 to dim(big);
more SAS statements;

end;

Example 2: Multidimensional Array This example shows two ways of specifying the
DIM function for multidimensional arrays. Both methods return the same value for
DIM, as shown in the table that follows the SAS code example.

array mult{5,10,2} mult1-mult100;

Syntax Alternative Syntax Value

DIM(MULT) DIM(MULT,1) 5

DIM2(MULT) DIM(MULT,2) 10

DIM3(MULT) DIM(MULT,3) 2

648 DINFO Function � Chapter 4

See Also

Functions:
“HBOUND Function” on page 786
“LBOUND Function” on page 859

Statements:
“ARRAY Statement” on page 1395
“Array Reference Statement” on page 1400

“Array Processing” in SAS Language Reference: Concepts

DINFO Function

Returns information about a directory.

Category: External Files
See: DINFO Function in the documentation for your operating environment.

Syntax
DINFO(directory-id,info-item)

Arguments

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

info-item
is a character constant, variable, or expression that specifies the information item to
be retrieved. DINFO returns a blank if the value of the info-item argument is
invalid. The information available varies according to the operating environment.

Details
Use the DOPTNAME function to determine the names of the available
system-dependent directory information items. Use the DOPTNUM function to
determine the number of directory information items that are available.

Operating Environment Information: DINFO returns the value of a system-dependent
directory parameter. See the SAS documentation for your operating environment for
information about system-dependent directory parameters. �

Examples

Example 1: Using DINFO to Return Information about a Directory This example opens
the directory MYDIR, determines the number of directory information items available,
and retrieves the value of the last one:

Functions and CALL Routines � DIVIDE Function 649

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let numopts=%sysfunc(doptnum(&did));
%let foption=%sysfunc(doptname(&did,&numopts));
%let charval=%sysfunc(dinfo(&did,&foption));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DINFO within a DATA Step This example creates a data set that
contains the name and value of each directory information item:

data diropts;
length foption $ 12 charval $ 40;
keep foption charval;
rc=filename("mydir","physical-name");
did=dopen("mydir");
numopts=doptnum(did);
do i=1 to numopts;

foption=doptname(did,i);
charval=dinfo(did,foption);
output;

end;
run;

See Also

Functions:
“DOPEN Function” on page 652
“DOPTNAME Function” on page 653
“DOPTNUM Function” on page 655
“FINFO Function” on page 734
“FOPTNAME Function” on page 749
“FOPTNUM Function” on page 751

DIVIDE Function

Returns the result of a division that handles special missing values for ODS output.

Category: Arithmetic

Syntax
DIVIDE(x, y)

Arguments

x

650 DIVIDE Function � Chapter 4

is a numeric constant, variable, or expression.

y
is a numeric constant, variable, or expression.

Details
The DIVIDE function divides two numbers and returns a result that is compatible with
ODS conventions. The function handles special missing values for ODS output. The
following list shows how certain special missing values are interpreted in ODS:

� .I as infinity

� .M as minus infinity
� ._ as a blank

The following table shows the values that are returned by the DIVIDE function,
based on the values of x and y.

Display 4.7 Values That Are Returned by the DIVIDE Function

positive

zero

negative

.I

.M

other

.__

x/y or .I

.I

x/y or .M

0

0

y

.__

positive

0

.

0

0

0

y

.__

zero

x/y or .M

.M

x/y or .I

0

0

y

.__

negative

.I

.I

.M

.

.

y

.__

.I

.M

.M

.I

.

.

y

.__

.M

.__

.__

.__

.__

.__

.__

.__

.__

x

x

x

x

x

x

.__

other

x

y

Note: The DIVIDE function never writes a note to the SAS log regarding missing
values, division by zero, or overflow. �

Examples

The following example shows the results of using the DIVIDE function.

data _null_;
a = divide(1, 0);
put +3 a= ’(infinity)’;
b = divide(2, .I);
put +3 b=;
c = divide(.I, -1);
put +3 c= ’(minus infinity)’;
d = divide(constant(’big’), constant(’small’));
put +3 d= ’(infinity because of overflow)’;

run;

SAS writes the following output to the log:

a=I (infinity)
b=0

Functions and CALL Routines � DNUM Function 651

c=M (minus infinity)
d=I (infinity because of overflow)

DNUM Function

Returns the number of members in a directory.

Category: External Files

Syntax
DNUM(directory-id)

Argument

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

Details
You can use DNUM to determine the highest possible member number that can be
passed to DREAD.

Examples

Example 1: Using DNUM to Return the Number of Members This example opens the
directory MYDIR, determines the number of members, and closes the directory:

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let memcount=%sysfunc(dnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DNUM within a DATA Step This example creates a DATA step that
returns the number of members in a directory called MYDIR:

data _null_;
rc=filename("mydir","physical-name");
did=dopen("mydir");
memcount=dnum(did);
rc=dclose(did);

run;

See Also

Functions:

652 DOPEN Function � Chapter 4

“DOPEN Function” on page 652
“DREAD Function” on page 656

DOPEN Function

Opens a directory, and returns a directory identifier value.

Category: External Files
See: DOPEN Function in the documentation for your operating environment.

Syntax
DOPEN(fileref)

Argument

fileref
is a character constant, variable, or expression that specifies the fileref assigned to
the directory.
Restriction: You must associate a fileref with the directory before calling DOPEN.

Details
DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions. If the directory could not be opened, DOPEN returns 0, and you can obtain
the error message by calling the SYSMSG function. The directory to be opened must be
identified by a fileref. You can assign filerefs using the FILENAME statement or the
FILENAME external file access function. Under some operating environments, you can
also assign filerefs using system commands.

If you call the DOPEN function from a macro, then the result of the call is valid only
when the result is passed to functions in a macro. If you call the DOPEN function from
the DATA step, then the result is valid only when the result is passed to functions in
the same DATA step.

Operating Environment Information: The term directory that is used in the description
of this function and related SAS external file access functions refers to an aggregate
grouping of files managed by the operating environment. Different operating
environments identify such groupings with different names, such as directory,
subdirectory, folder, MACLIB, or partitioned data set. For details, see the SAS
documentation for your operating environment. �

Examples

Example 1: Using DOPEN to Open a Directory This example assigns the fileref MYDIR
to a directory. It uses DOPEN to open the directory. DOPTNUM determines the
number of system-dependent directory information items available, and DCLOSE closes
the directory:

Functions and CALL Routines � DOPTNAME Function 653

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPEN within a DATA Step This example opens a directory for
processing within a DATA step.

data _null_;
drop rc did;
rc=filename("mydir","physical-name");
did=dopen("mydir");
if did > 0 then do;

...more statements...
end;
else do;

msg=sysmsg();
put msg;

end;
run;

See Also

Functions:
“DCLOSE Function” on page 630
“DOPTNUM Function” on page 655
“FOPEN Function” on page 747
“MOPEN Function” on page 913
“SYSMSG Function” on page 1117

DOPTNAME Function

Returns directory attribute information.

Category: External Files
See: DOPTNAME Function in the documentation for your operating environment.

Syntax
DOPTNAME(directory-id,nval)

Arguments

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

654 DOPTNAME Function � Chapter 4

nval
is a numeric constant, variable, or expression that specifies the sequence number of
the option.

Details
Operating Environment Information: The number, names, and nature of the directory
information varies between operating environments. The number of options that are
available for a directory varies depending on the operating environment. For details,
see the SAS documentation for your operating environment. �

Examples

Example 1: Using DOPTNAME to Retrieve Directory Attribute Information This example
opens the directory with the fileref MYDIR, retrieves all system-dependent directory
information items, writes them to the SAS log, and closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%do j=1 %to &infocnt;

%let opt=%sysfunc(doptname(&did,&j));
%put Directory information=&opt;

%end;
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNAME within a DATA Step This example creates a data set that
contains the name and value of each directory information item:

data diropts;
length optname $ 12 optval $ 40;
keep optname optval;
rc=filename("mydir","physical-name");
did=dopen("mydir");
numopts=doptnum(did);
do i=1 to numopts;

optname=doptname(did,i);
optval=dinfo(did,optname);
output;

end;
run;

See Also

Functions:
“DINFO Function” on page 648
“DOPEN Function” on page 652
“DOPTNUM Function” on page 655

Functions and CALL Routines � DOPTNUM Function 655

DOPTNUM Function

Returns the number of information items that are available for a directory.

Category: External Files
See: DOPTNUM Function in the documentation for your operating environment.

Syntax
DOPTNUM(directory-id)

Argument

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

Details
Operating Environment Information: The number, names, and nature of the directory
information varies between operating environments. The number of options that are
available for a directory varies depending on the operating environment. For details,
see the SAS documentation for your operating environment. �

Examples

Example 1: Retrieving the Number of Information Items This example retrieves the
number of system-dependent directory information items that are available for the
directory MYDIR and closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNUM within a DATA Step This example creates a data set that
retrieves the number of system-dependent information items that are available for the
MYDIR directory:

data _null_;
rc=filename("mydir","physical-name");
did=dopen("mydir");
infocnt=doptnum(did);
rc=dclose(did);

run;

See Also

Functions:

656 DREAD Function � Chapter 4

“DINFO Function” on page 648
“DOPEN Function” on page 652
“DOPTNAME Function” on page 653

DREAD Function

Returns the name of a directory member.

Category: External Files

Syntax
DREAD(directory-id,nval)

Arguments

directory-id
is a numeric value that specifies the identifier that was assigned when the directory
was opened by the DOPEN function.

nval
is a numeric constant, variable, or expression that specifies the sequence number of
the member within the directory.

Details
DREAD returns a blank if an error occurs (such as when nval is out-of-range). Use
DNUM to determine the highest possible member number that can be passed to
DREAD.

Examples

This example opens the directory identified by the fileref MYDIR, retrieves the
number of members, and places the number in the variable MEMCOUNT. It then
retrieves the name of the last member, places the name in the variable LSTNAME , and
closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let lstname=;
%let memcount=%sysfunc(dnum(&did));
%if &memcount > 0 %then

%let lstname=%sysfunc(dread(&did,&memcount));
%let rc=%sysfunc(dclose(&did));

See Also

Functions and CALL Routines � DROPNOTE Function 657

Functions:
“DNUM Function” on page 651
“DOPEN Function” on page 652

DROPNOTE Function

Deletes a note marker from a SAS data set or an external file.

Category: SAS File I/O
Category: External Files

Syntax
DROPNOTE(data-set-id | file-id,note-id)

Arguments

data-set-id | file-id
is a numeric variable that specifies the identifier that was assigned when the data set
or external file was opened, generally by the OPEN function or the FOPEN function.

note-id
is a numeric value that specifies the identifier that was assigned by the NOTE or
FNOTE function.

Details
DROPNOTE deletes a marker set by NOTE or FNOTE. It returns a 0 if successful and
≠0 if not successful.

Examples

This example opens the SAS data set MYDATA, fetches the first observation, and
sets a note ID at the beginning of the data set. It uses POINT to return to the first
observation, and then uses DROPNOTE to delete the note ID:

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));
%let noteid=%sysfunc(note(&dsid));

more macro statements
%let rc=%sysfunc(point(&dsid,¬eid));
%let rc=%sysfunc(fetch(&dsid));
%let rc=%sysfunc(dropnote(&dsid,¬eid));

See Also

Functions:
“FETCH Function” on page 674

658 DSNAME Function � Chapter 4

“FNOTE Function” on page 745
“FOPEN Function” on page 747
“FPOINT Function” on page 752
“NOTE Function” on page 932
“OPEN Function” on page 955
“POINT Function” on page 982

DSNAME Function

Returns the SAS data set name that is associated with a data set identifier.

Category: SAS File I/O

Syntax
DSNAME(data-set-id)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that is returned by the
OPEN function.

Details
DSNAME returns the data set name that is associated with a data set identifier, or a
blank if the data set identifier is not valid.

Examples

This example determines the name of the SAS data set that is associated with the
variable DSID and displays the name in the SAS log.

%let dsid=%sysfunc(open(sasuser.houses,i));
%put The current open data set
is %sysfunc(dsname(&dsid)).;

See Also

Function:
“OPEN Function” on page 955

DUR Function
Returns the modified duration for an enumerated cash flow.

Functions and CALL Routines � DURP Function 659

Category: Financial

Syntax
DUR(y,f,c(1), ... ,c(k))

Arguments

y
specifies the effective per-period yield-to-maturity, expressed as a fraction.
Range: � � �

f
specifies the frequency of cash flows per period.
Range: � � �

c(1), ... ,c(k)
specifies a list of cash flows.

Details
The DUR function returns the value

� �
��

���

�

�
����

�����
�
�

�

�� �� � �� ��

where

� �
��
���

� ���

�� � ��
�

�

Examples
data _null_;

d=dur(1/20,1,.33,.44,.55,.49,.50,.22,.4,.8,.01,.36,.2,.4);
put d;

run;

The value that is returned is 5.28402.

DURP Function

Returns the modified duration for a periodic cash flow stream, such as a bond.

660 DURP Function � Chapter 4

Category: Financial

Syntax
DURP(A,c,n,K,k0,y)

Arguments

A
specifies the par value.
Range: � � �

c
specifies the nominal per-period coupon rate, expressed as a fraction.
Range: � � � � �

n
specifies the number of coupons per period.
Range: � � � and is an integer

K
specifies the number of remaining coupons.
Range: � � � and is an integer

k0

specifies the time from the present date to the first coupon date, expressed in terms
of the number of periods.
Range: � � �� �

�

�

y
specifies the nominal per-period yield-to-maturity, expressed as a fraction.
Range: � � �

Details
The DURP function returns the value

� �
�

�

��

���

	�
����

��� �

��
��

�
�
� � �

�

�

where
�� � ��� � � � �
� ��� � �

�
� ��� � � �	 � � � 	
 � �

� �
� �
�
� � �

�

�
�

and where

� �
��

���

� ���
�
� � �

�

���

Functions and CALL Routines � ENVLEN Function 661

Examples
data _null_;
d=durp(1000,1/100,4,14,.33/2,.10);
put d;
run;

The value returned is 3.26496.

ENVLEN Function

Returns the length of an environment variable.

Category: SAS File I/O

Syntax
ENVLEN(argument)

Arguments

argument
specifies a character variable that is the name of an operating system environment
variable. Enclose argument in quotation marks.

Details
The ENVLEN function returns the length of the value of an operating system
environment variable. If the environment variable does not exist, SAS returns –1.

Operating Environment Information: The value of argument is specific to your
operating environment. �

Examples

The following examples are for illustration purposes only. The actual value that is
returned depends on where SAS is installed on your computer.

662 ERF Function � Chapter 4

SAS Statements Results

/* Windows operating environment */
x=envlen("PATH");
put x;

309

/* UNIX operating environment */
y=envlen("PATH");
put y; 365

z=envlen("THIS IS NOT DEFINED");
put z; -1

ERF Function

Returns the value of the (normal) error function.

Category: Mathematical

Syntax
ERF(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The ERF function returns the integral, given by

��� �� � �
�
�
�

��

�

�
��

�

��

Examples

You can use the ERF function to find the probability (p) that a normally distributed
random variable with mean 0 and standard deviation will take on a value less than X.
For example, the quantity that is given by the following statement is equivalent to
PROBNORM(X):

p=.5+.5*erf(x/sqrt(2));

Functions and CALL Routines � EUCLID Function 663

SAS Statements Results

y=erf(1.0); 0.8427007929

y=erf(-1.0); -0.842700793

ERFC Function

Returns the value of the complementary (normal) error function.

Category: Mathematical

Syntax
ERFC(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The ERFC function returns the complement to the ERF function (that is, 1 −
ERF(argument)).

Examples

SAS Statements Results

x=erfc(1.0); 0.1572992071

x=erfc(-1.0); .8427007929

EUCLID Function

Returns the Euclidean norm of the non-missing arguments.

Category: Descriptive Statistics

Syntax
EUCLID(value-1 <,value-2 ...>)

664 EUCLID Function � Chapter 4

Arguments

value
specifies a numeric constant, variable, or expression.

Details

If all arguments have missing values, then the result is a missing value. Otherwise, the
result is the Euclidean norm of the non-missing values.

In the following example, ��� ��� ���� �� are the values of the non-missing arguments.

�����	 ���� ��� ���� ��� �
�
��� � ��� � ���� ���

Examples

Example 1: Calculating the Euclidean Norm of Non-missing Arguments The following
example returns the Euclidean norm of the non-missing arguments.

data _null_;
x=euclid(.,3,0,.q,-4);
put x=;

run;

SAS writes the following output to the log:

x=5

Example 2: Calculating the Euclidean Norm When You Use a Variable List The
following example uses a variable list to calculate the Euclidean norm.

data _null_;
x1 = 1;
x2 = 3;
x3 = 4;
x4 = 3;
x5 = 1;
x = euclid(of x1-x5);
put x=;

run;

SAS writes the following output to the log:

x=6

See Also

Functions:

“RMS Function” on page 1064

“LPNORM Function” on page 893

Functions and CALL Routines � EXIST Function 665

EXIST Function

Verifies the existence of a SAS library member.

Category: SAS File I/O

Syntax
EXIST(member-name< ,member-type< , generation>>)

Arguments

member-name
is a character constant, variable, or expression that specifies the SAS library
member. If member-name is blank or a null string, then EXIST uses the value of the
LAST system variable as the member name.

member-type
is a character constant, variable, or expression that specifies the type of SAS library
member. A few common member types include ACCESS, CATALOG, DATA, and
VIEW. If you do not specify a member-type, then the member type DATA is assumed.

generation
is a numeric constant, variable, or expression that specifies the generation number of
the SAS data set whose existence you are checking. If member-type is not DATA,
generation is ignored.

Positive numbers are absolute references to a historical version by its generation
number. Negative numbers are relative references to a historical version in relation
to the base version, from the youngest predecessor to the oldest. For example, –1
refers to the youngest version or, one version back from the base version. Zero is
treated as a relative generation number.

Details
If you use a sequential library, then the results of the EXIST function are undefined. If
you do not use a sequential library, then EXIST returns 1 if the library member exists,
or 0 if member-name does not exist or member-type is invalid.

Use the CEXIST function to verify the existence of an entry in a catalog.

Examples

Example 1: Verifying the Existence of a Data Set This example verifies the existence
of a data set. If the data set does not exist, then the example displays a message in the
log:

%let dsname=sasuser.houses;
%macro opends(name);
%if %sysfunc(exist(&name)) %then

%let dsid=%sysfunc(open(&name,i));
%else %put Data set &name does not exist.;
%mend opends;

666 EXIST Function � Chapter 4

%opends(&dsname);

Example 2: Verifying the Existence of a Data View This example verifies the existence
of the SAS view TEST.MYVIEW. If the view does not exist, then the example displays a
message in the log:

data _null_;
dsname="test.myview";

if (exist(dsname,"VIEW")) then
dsid=open(dsname,"i");

else put dsname ’does not exist.’;
run;

Example 3: Determining If a Generation Data Set Exists This example verifies the
existence of a generation data set by using positive generation numbers (absolute
reference):

data new(genmax=3);
x=1;

run;
data new;

x=99;
run;
data new;

x=100;
run;
data new;

x=101;
run;
data _null_;

test=exist(’new’, ’DATA’, 4);
put test=;
test=exist(’new’, ’DATA’, 3);
put test=;
test=exist(’new’, ’DATA’, 2);
put test=;
test=exist(’new’, ’DATA’, 1);
put test=;

run;

These lines are written to the SAS log:

test=1
test=1
test=1
test=0

You can change this example to verify the existence of the generation data set by
using negative numbers (relative reference):

data new2(genmax=3);
x=1;

run;
data new2;

x=99;
run;
data new2;

x=100;

Functions and CALL Routines � EXP Function 667

run;
data new2;

x=101;
run;
data _null_;

test=exist(’new2’, ’DATA’, 0);
put test=;
test=exist(’new2’, ’DATA’, -1);
put test=;
test=exist(’new2’, ’DATA’, -2);
put test=;
test=exist(’new2’, ’DATA’, -3);
put test=;
test=exist(’new2’, ’DATA’, -4);
put test=;

run;

These lines are written to the SAS log:

test=1
test=1
test=1
test=0
test=0

See Also

Functions:

“CEXIST Function” on page 571

“FEXIST Function” on page 676

“FILEEXIST Function” on page 679

EXP Function

Returns the value of the exponential function.

Category: Mathematical

Syntax
EXP(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

668 FACT Function � Chapter 4

Details
The EXP function raises the constant e, which is approximately 2.71828, to the power
that is supplied by the argument. The result is limited by the maximum value of a
floating-point value on the computer.

Examples

SAS Statements Results

x=exp(1.0); 2.7182818285

x=exp(0); 1

FACT Function
Computes a factorial.

Category: Mathematical

Syntax
FACT(n)

Arguments

n
is a numeric constant, variable, or expression.

Details
The mathematical representation of the FACT function is given by the following
equation:

���� ��� � ��

with n ≥ 0.
If the expression cannot be computed, a missing value is returned. For moderately

large values, it is sometimes not possible to compute the FACT function.

Examples

SAS Statements Results

x=fact(5); 120

Functions and CALL Routines � FAPPEND Function 669

See Also

Functions:
“COMB Function” on page 584
“PERM Function” on page 980
“LFACT Function” on page 878

FAPPEND Function

Appends the current record to the end of an external file.

Category: External Files

Syntax
FAPPEND(file-id<,cc>)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

cc
is a character constant, variable, or expression that specifies a carriage-control
character:

blank indicates that the record starts a new line.

0 skips one blank line before this new line.

- skips two blank lines before this new line.

1 specifies that the line starts a new page.

+ specifies that the line overstrikes a previous line.

P specifies that the line is a computer prompt.

= specifies that the line contains carriage control information.

all else specifies that the line record starts a new line.

Details
FAPPEND adds the record that is currently contained in the File Data Buffer (FDB) to
the end of an external file. FAPPEND returns a 0 if the operation was successful and
≠0 if it was not successful.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it moves data into the File Data Buffer, appends a

670 FCLOSE Function � Chapter 4

record, and then closes the file. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,a));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fput(&fid,

Data for the new record));
%let rc=%sysfunc(fappend(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%else

%do;
/* unsuccessful open processing */

%end;

See Also

Functions:
“DOPEN Function” on page 652
“FCLOSE Function” on page 670
“FGET Function” on page 677
“FOPEN Function” on page 747
“FPUT Function” on page 756
“FWRITE Function” on page 763
“MOPEN Function” on page 913

FCLOSE Function

Closes an external file, directory, or directory member.

Category: External Files
See: FCLOSE Function in the documentation for your operating environment.

Syntax
FCLOSE(file-id)

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Functions and CALL Routines � FCOL Function 671

Details
FCLOSE returns a 0 if the operation was successful and ≠0 if it was not successful. If
you open a file within a DATA step, it is closed automatically when the DATA step ends.

Operating Environment Information: In some operating environments you must close
the file with the FCLOSE function at the end of the DATA step. For more information,
see the SAS documentation for your operating environment. �

Examples

This example assigns the fileref MYFILE to an external file, and attempts to open
the file. If the file is opened successfully, indicated by a positive value in the variable
FID, the program reads the first record, closes the file, and deassigns the fileref:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%else

%do;
%put %sysfunc(sysmsg());

%end;
%let rc=%sysfunc(filename(filrf));

See Also

Functions:

“DCLOSE Function” on page 630

“DOPEN Function” on page 652

“FOPEN Function” on page 747

“FREAD Function” on page 757

“MOPEN Function” on page 913

FCOL Function

Returns the current column position in the File Data Buffer (FDB).

Category: External Files

Syntax
FCOL(file-id)

672 FDELETE Function � Chapter 4

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Details
Use FCOL combined with FPOS to manipulate data in the File Data Buffer (FDB).

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is successfully opened, indicated by a positive value in the variable FID,
it puts more data into the FDB relative to position POS, writes the record, and closes
the file:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,o));
%if (&fid > 0) %then

%do;
%let record=This is data for the record.;
%let rc=%sysfunc(fput(&fid,&record));
%let pos=%sysfunc(fcol(&fid));
%let rc=%sysfunc(fpos(&fid,%eval(&pos+1)));
%let rc=%sysfunc(fput(&fid,more data));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));

The new record written to the external file is

This is data for the record. more data

See Also

Functions:
“FCLOSE Function” on page 670
“FOPEN Function” on page 747
“FPOS Function” on page 754
“FPUT Function” on page 756
“FWRITE Function” on page 763
“MOPEN Function” on page 913

FDELETE Function
Deletes an external file or an empty directory.

Functions and CALL Routines � FDELETE Function 673

Category: External Files
See: FDELETE Function in the documentation for your operating environment.

Syntax
FDELETE(fileref | directory)

Argument

fileref
is a character constant, variable, or expression that specifies the fileref that you
assigned to the external file. You can assign filerefs by using the FILENAME
statement or the FILENAME external file access function.

Restriction: The fileref that you use with FDELETE cannot be a concatenation.

Operating Environment Information: In some operating environments, you can
specify a fileref that was assigned with an environment variable. You can also assign
filerefs using system commands. For details, see the SAS documentation for your
operating environment. �

directory
is a character constant, variable, or expression that specifies an empty directory that
you want to delete.

Restriction: You must have authorization to delete the directory.

Details
FDELETE returns 0 if the operation was successful or ≠0 if it was not successful.

Examples

Example 1: Deleting an External File This example generates a fileref for an external
file in the variable FNAME. Then it calls FDELETE to delete the file and calls the
FILENAME function again to deassign the fileref.

data _null_;
fname="tempfile";
rc=filename(fname,"physical-filename");
if rc = 0 and fexist(fname) then

rc=fdelete(fname);
rc=filename(fname);

run;

Example 2: Deleting a Directory This example uses FDELETE to delete an empty
directory to which you have write access. If the directory is not empty, the optional
SYSMSG function returns an error message stating that SAS is unable to delete the file.

filename testdir ’physical-filename’;
data _null_;

rc=fdelete(’testdir’);
put rc=;

674 FETCH Function � Chapter 4

msg=sysmsg();
put msg=;

run;

See Also

Functions:
“FEXIST Function” on page 676
“FILENAME Function” on page 680

Statement:
“FILENAME Statement” on page 1473

FETCH Function

Reads the next non-deleted observation from a SAS data set into the Data Set Data Vector (DDV).

Category: SAS File I/O

Syntax
FETCH(data-set-id <,’NOSET’>)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that is returned by the
OPEN function.

’NOSET’
prevents the automatic passing of SAS data set variable values to macro or DATA
step variables even if the SET routine has been called.

Details
FETCH returns a 0 if the operation is successful, ≠0 if it is not successful, and − 1 if the
end of the data set is reached. FETCH skips observations marked for deletion.

If the SET routine has been called previously, the values for any data set variables
are automatically passed from the DDV to the corresponding DATA step or macro
variables. To override this behavior temporarily so that fetched values are not
automatically copied to the DATA step or macro variables, use the NOSET option.

Examples

This example fetches the next observation from the SAS data set MYDATA. If the
end of the data set is reached or if an error occurs, SYSMSG retrieves the appropriate
message and writes it to the SAS log. Note that in a macro statement you do not
enclose character strings in quotation marks.

Functions and CALL Routines � FETCHOBS Function 675

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));
%if &rc ne 0 %then
%put %sysfunc(sysmsg());

%else
%do;

...more macro statements...
%end;

%let rc=%sysfunc(close(&dsid));

See Also

CALL Routine:
“CALL SET Routine” on page 522

Functions:
“FETCHOBS Function” on page 675
“GETVARC Function” on page 778
“GETVARN Function” on page 779

FETCHOBS Function

Reads a specified observation from a SAS data set into the Data Set Data Vector (DDV).

Category: SAS File I/O

Syntax
FETCHOBS(data-set-id,obs-number< ,options>)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that is returned by the
OPEN function.

obs-number
is a numeric constant, variable, or expression that specifies the number of the
observation to read. FETCHOBS treats the observation value as a relative
observation number unless you specify the ABS option. The relative observation
number might not coincide with the physical observation number on disk, because
the function skips observations marked for deletion. When a WHERE clause is
active, the function counts only observations that meet the WHERE condition.
Default: FETCHOBS skips deleted observations.

options
is a character constant, variable, or expression that names one or more options,
separated by blanks:

676 FEXIST Function � Chapter 4

ABS specifies that the value of obs-number is absolute. That is, deleted
observations are counted.

NOSET prevents the automatic passing of SAS data set variable values to
DATA step or macro variables even if the SET routine has been
called.

Details
FETCHOBS returns 0 if the operation was successful, ≠0 if it was not successful, and
−1 if the end of the data set is reached. To retrieve the error message that is associated
with a non-zero return code, use the SYSMSG function. If the SET routine has been
called previously, the values for any data set variables are automatically passed from
the DDV to the corresponding DATA step or macro variables. To override this behavior
temporarily, use the NOSET option.

If obs-number is less than 1, the function returns an error condition. If obs-number is
greater than the number of observations in the SAS data set, the function returns an
end-of-file condition.

Examples

This example fetches the tenth observation from the SAS data set MYDATA. If an
error occurs, the SYSMSG function retrieves the error message and writes it to the SAS
log. Note that in a macro statement you do not enclose character strings in quotation
marks.

%let rc = %sysfunc(fetchobs(&mydataid,10));
%if &rc = −1 %then

%put End of data set has been reached.;
%if &rc > 0 %then %put %sysfunc(sysmsg());

See Also

CALL Routine:
“CALL SET Routine” on page 522

Functions:
“FETCH Function” on page 674
“GETVARC Function” on page 778
“GETVARN Function” on page 779

FEXIST Function

Verifies the existence of an external file that is associated with a fileref.

Category: External Files
See: FEXIST Function in the documentation for your operating environment.

Syntax
FEXIST(fileref)

Functions and CALL Routines � FGET Function 677

Argument

fileref
is a character constant, variable, or expression that specifies the fileref that is
assigned to an external file.
Restriction: The fileref must have been previously assigned.

Operating Environment Information: In some operating environments, you can specify
a fileref that was assigned with an environment variable. For details, see the SAS
documentation for your operating environment. �

Details
FEXIST returns 1 if the external file that is associated with fileref exists, and 0 if the
file does not exist. You can assign filerefs by using the FILENAME statement or the
FILENAME external file access function. In some operating environments, you can also
assign filerefs by using system commands.

Comparison
FILEEXIST verifies the existence of a file based on its physical name.

Examples

This example verifies the existence of an external file and writes the result to the
SAS log:

%if %sysfunc(fexist(&fref)) %then
%put The file identified by the fileref

&fref exists.;
%else

%put %sysfunc(sysmsg());

See Also

Functions:
“EXIST Function” on page 665
“FILEEXIST Function” on page 679
“FILENAME Function” on page 680
“FILEREF Function” on page 682

Statement:
“FILENAME Statement” on page 1473

FGET Function

Copies data from the File Data Buffer (FDB) into a variable.

Category: External Files

678 FGET Function � Chapter 4

Syntax
FGET(file-id,variable<,length>)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

variable
in a DATA step, specifies a character variable to hold the data. In a macro, specifies
a macro variable to hold the data. If variable is a macro variable and it does not
exist, it is created.

length
specifies the number of characters to retrieve from the FDB. If length is specified,
only the specified number of characters is retrieved (or the number of characters
remaining in the buffer if that number is less than length). If length is omitted, all
characters in the FDB from the current column position to the next delimiter are
returned. The default delimiter is a blank. The delimiter is not retrieved.

See: The “FSEP Function” on page 760 for more information about delimiters.

Details
FGET returns 0 if the operation was successful, or −1 if the end of the FDB was
reached or no more tokens were available.

After FGET is executed, the column pointer moves to the next read position in the
FDB.

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it reads the first record into the File Data Buffer,
retrieves the first token of the record and stores i t in the variable MYSTRING, and
then closes the file. Note that in a macro statement you do not enclose character strings
in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));
%let rc=%sysfunc(fget(&fid,mystring));
%put &mystring;
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));

Functions and CALL Routines � FILEEXIST Function 679

See Also

Functions:

“FCLOSE Function” on page 670
“FILENAME Function” on page 680
“FOPEN Function” on page 747
“FPOS Function” on page 754
“FREAD Function” on page 757
“FSEP Function” on page 760
“MOPEN Function” on page 913

FILEEXIST Function

Verifies the existence of an external file by its physical name.

Category: External Files
See: FILEEXIST Function in the documentation for your operating environment.

Syntax
FILEEXIST(file-name)

Argument

file-name
is a character constant, variable, or expression that specifies a fully qualified physical
filename of the external file in the operating environment.

Details
FILEEXIST returns 1 if the external file exists and 0 if the external file does not exist.
The specification of the physical name for file-name varies according to the operating
environment.

Although your operating environment utilities might recognize partial physical
filenames, you must always use fully qualified physical filenames with FILEEXIST.

Examples

This example verifies the existence of an external file. If the file exists, FILEEXIST
opens the file. If the file does not exist, FILEEXIST displays a message in the SAS log.
Note that in a macro statement you do not enclose character strings in quotation marks.

%if %sysfunc(fileexist(&myfilerf)) %then
%let fid=%sysfunc(fopen(&myfilerf));

%else
%put The external file &myfilerf does not exist.;

680 FILENAME Function � Chapter 4

See Also

Functions:

“EXIST Function” on page 665
“FEXIST Function” on page 676

“FILENAME Function” on page 680
“FILEREF Function” on page 682

“FOPEN Function” on page 747

FILENAME Function

Assigns or deassigns a fileref to an external file, directory, or output device.

Category: External Files

See: FILENAME Function in the documentation for your operating environment.

Syntax
FILENAME(fileref <,file-name> <,device-type> <,’host-options’> <,dir-ref>)

Arguments

fileref
specifies the fileref to assign to the external file. In a DATA step, fileref can be a
character expression, a string enclosed in quotation marks that specifies the fileref,
or a DATA step variable whose value contains the fileref. In a macro (for example, in
the %SYSFUNC function), fileref is the name of a macro variable (without an
ampersand) whose value contains the fileref to assign to the external file.
Requirement: If fileref is a DATA step variable, its length must be no longer than

eight characters.

Tip: If a fileref is a DATA step character variable with a blank value and a
maximum length of eight characters, or if a macro variable named in fileref has a
null value, then a fileref is generated and assigned to the character variable or
macro variable, respectively.

file-name
is a character constant, variable, or expression that specifies the external file.
Specifying a blank file-name deassigns a fileref that was assigned previously.

device-type
is a character constant, variable, or expression that specifies the type of device or the
access method that is used if the fileref points to an input or output device or location
that is not a physical file:

DISK specifies that the device is a disk drive.

Tip: When you assign a fileref to a file on disk, you are not
required to specify DISK.

Functions and CALL Routines � FILENAME Function 681

Alias: BASE

DUMMY specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

GTERM indicates that the output device type is a graphics device that will
be receiving graphics data.

PIPE specifies an unnamed pipe.

Note: Some operating environments do not support pipes. �

PLOTTER specifies an unbuffered graphics output device.

PRINTER specifies a printer or printer spool file.

TAPE specifies a tape drive.

TEMP creates a temporary file that exists only as long as the filename is
assigned. The temporary file can be accessed only through the
logical name and is available only while the logical name exists.
Restriction: Do not specify a physical pathname. If you do, SAS

returns an error.
Tip: Files that are manipulated by the TEMP device can have the

same attributes and behave identically to DISK files.

TERMINAL specifies the user’s personal computer.

UPRINTER specifies a Universal Printing printer definition name.

Operating Environment Information: The FILENAME function also supports
operating environment-specific devices. For more information, see the SAS
documentation for your operating environment. �

’host-options’
specifies host-specific details such as file attributes and processing attributes. For
more information, see the SAS documentation for your operating environment.

dir-ref
specifies the fileref that was assigned to the directory or partitioned data set in which
the external file resides.

Details
FILENAME returns 0 if the operation was successful; ≠0 if it was not successful. The
name that is associated with the file or device is called a fileref (file reference name).
Other system functions that manipulate external files and directories require that the
files be identified by fileref rather than by physical filename. The association between a
fileref and a physical file lasts only for the duration of the current SAS session or until
you change or discontinue the association by using FILENAME. You can deassign
filerefs by specifying a null string for the file-name argument in FILENAME.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files that are managed by the operating environment.
Different operating environments identify these groupings with different names, such
as directory, subdirectory, folder, MACLIB, or partitioned data set. For details, see the
SAS documentation for your operating environment.

Under some operating environments, you can also assign filerefs by using system
commands. Depending on the operating environment, FILENAME might be unable to
change or deassign filerefs that are assigned outside of SAS. �

682 FILEREF Function � Chapter 4

Examples

Example 1: Assigning a Fileref to an External File This example assigns the fileref
MYFILE to an external file. Next, it deassigns the fileref. Note that in a macro
statement you do not enclose character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf, physical-filename));
%if &rc ne 0 %then

%put %sysfunc(sysmsg());
%let rc=%sysfunc(filename(filrf));

Example 2: Assigning a System-Generated Fileref This example assigns a
system-generated fileref to an external file. The fileref is stored in the variable FNAME.
Note that in a macro statement you do not enclose character strings in quotation marks.

%let rc=%sysfunc(filename(fname, physical-filename));
%if &rc %then

%put %sysfunc(sysmsg());
%else

%do;
more macro statements

%end;

Example 3: Assigning a Fileref to a Pipe File This example assigns the fileref
MYPIPE to a pipe file with the output from the UNIX command LS, which lists the files
in the directory /u/myid. Note that in a macro statement you do not enclose character
strings in quotation marks.

%let filrf=mypipe;
%let rc=%sysfunc(filename(filrf, %str(ls /u/myid), pipe));

See Also

Functions:
“FEXIST Function” on page 676
“FILEEXIST Function” on page 679
“FILEREF Function” on page 682
“SYSMSG Function” on page 1117

FILEREF Function
Verifies whether a fileref has been assigned for the current SAS session.

Category: External Files
See: FILEREF Function in the documentation for your operating environment.

Syntax
FILEREF(fileref)

Functions and CALL Routines � FINANCE Function 683

Argument

fileref
is a character constant, variable, or expression that specifies the fileref to be
validated.
Range: 1 to 8 characters

Details
A negative return code indicates that the fileref exists but the physical file associated
with the fileref does not exist. A positive value indicates that the fileref is not assigned.
A value of zero indicates that the fileref and external file both exist.

A fileref can be assigned to an external file by using the FILENAME statement or
the FILENAME function.

Operating Environment Information: Under some operating environments, filerefs can
also be assigned by using system commands. For details, see the SAS documentation
for your operating environment. �

Examples

Example 1: Verifying That a Fileref Is Assigned This example tests whether the fileref
MYFILE is currently assigned to an external file. A system error message is issued if
the fileref is not currently assigned:

%if %sysfunc(fileref(myfile))>0 %then
%put MYFILE is not assigned;

Example 2: Verifying That Both a Fileref and a File Exist This example tests for a zero
value to determine whether both the fileref and the file exist:

%if %sysfunc(fileref(myfile)) ne 0 %then
%put %sysfunc(sysmsg());

See Also

Functions:
“FEXIST Function” on page 676
“FILEEXIST Function” on page 679
“FILENAME Function” on page 680
“SYSMSG Function” on page 1117

Statement:
“FILENAME Statement” on page 1473

FINANCE Function

Computes financial calculations such as depreciation, maturation, accrued interest, net present
value, periodic savings, and internal rates of return.

684 FINANCE Function � Chapter 4

Category: Financial

Syntax
FINANCE(string-identifier, parm1, parm2,…)

Arguments

string-identifier
specifies a character constant, variable, or expression. Valid values for
string-identifier are listed in the following table.

string-identifier Description

“ACCRINT” on page 687 computes the accrued interest for a security that
pays periodic interest.

“ACCRINTM” on page 687 computes the accrued interest for a security that
pays interest at maturity.

“AMORDEGRC” on page 688 computes the depreciation for each accounting
period by using a depreciation coefficient.

“AMORLINC” on page 688 computes the depreciation for each accounting
period.

“COUPDAYBS” on page 689 computes the number of days from the beginning
of the coupon period to the settlement date.

“COUPDAYS” on page 689 computes the number of days in the coupon period
that contains the settlement date.

“COUPDAYSNC” on page 689 computes the number of days from the settlement
date to the next coupon date.

“COUPNCD” on page 690 computes the next coupon date after the
settlement date.

“COUPNUM” on page 690 computes the number of coupons that are payable
between the settlement date and the maturity date.

“COUPPCD” on page 690 computes the previous coupon date before the
settlement date.

“CUMIPMT” on page 691 computes the cumulative interest that is paid
between two periods.

“CUMPRINC” on page 691 computes the cumulative principal that is paid on
a loan between two periods.

“DB” on page 692 computes the depreciation of an asset for a
specified period by using the fixed-declining
balance method.

“DDB” on page 692 computes the depreciation of an asset for a
specified period by using the double-declining
balance method or some other method that you
specify.

“DISC” on page 692 computes the discount rate for a security.

Functions and CALL Routines � FINANCE Function 685

string-identifier Description

“DOLLARDE” on page 693 converts a dollar price, expressed as a fraction, to
a dollar price, expressed as a decimal number.

“DOLLARFR” on page 693 converts a dollar price, expressed as a decimal
number, to a dollar price, expressed as a fraction.

“DURATION” on page 693 computes the annual duration of a security with
periodic interest payments.

“EFFECT” on page 694 computes the effective annual interest rate.

“FV” on page 694 computes the future value of an investment.

“FVSCHEDULE” on page 694 computes the future value of an initial principal
after applying a series of compound interest rates.

“INTRATE” on page 695 computes the interest rate for a fully invested
security.

“IPMT” on page 695 computes the interest payment for an investment
for a given period.

“IRR” on page 695 computes the internal rate of return for a series of
cash flows.

“MDURATION” on page 696 computes the Macaulay modified duration for a
security with an assumed face value of $100.

“MIRR” on page 696 computes the internal rate of return where
positive and negative cash flows are financed at
different rates.

“NOMINAL” on page 696 computes the annual nominal interest rate.

“NPER” on page 697 computes the number of periods for an investment.

“NPV” on page 697 computes the net present value of an investment
based on a series of periodic cash flows and a
discount rate.

“ODDFPRICE” on page 697 computes the price per $100 face value of a
security with an odd first period.

“ODDFYIELD” on page 698 computes the yield of a security with an odd first
period.

“ODDLPRICE” on page 698 computes the price per $100 face value of a
security with an odd last period.

“ODDLYIELD” on page 699 computes the yield of a security with an odd last
period.

“PMT” on page 700 computes the periodic payment for an annuity.

“PPMT” on page 700 computes the payment on the principal for an
investment for a given period.

“PRICE” on page 701 computes the price per $100 face value of a
security that pays periodic interest.

“PRICEDISC” on page 701 computes the price per $100 face value of a
discounted security.

“PRICEMAT” on page 701 computes the price per $100 face value of a
security that pays interest at maturity.

686 FINANCE Function � Chapter 4

string-identifier Description

“PV” on page 702 computes the present value of an investment.

“RATE” on page 702 computes the interest rate per period of an annuity.

“RECEIVED” on page 703 computes the amount received at maturity for a
fully invested security.

“SLN” on page 703 computes the straight-line depreciation of an asset
for one period.

“SYD” on page 703 computes the sum-of-years digits depreciation of
an asset for a specified period.

“TBILLEQ” on page 704 computes the bond-equivalent yield for a treasury
bill.

“TBILLPRICE” on page 704 computes the price per $100 face value for a
treasury bill.

“TBILLYIELD” on page 704 computes the yield for a treasury bill.

“VDB” on page 704 computes the depreciation of an asset for a
specified or partial period by using a declining
balance method.

“XIRR” on page 705 computes the internal rate of return for a schedule
of cash flows that is not necessarily periodic.

“XNPV” on page 705 computes the net present value for a schedule of
cash flows that is not necessarily periodic.

“YIELD” on page 706 computes the yield on a security that pays periodic
interest.

“YIELDDISC” on page 706 computes the annual yield for a discounted
security (for example, a treasury bill).

“YIELDMAT” on page 707 computes the annual yield of a security that pays
interest at maturity.

parm
specifies a parameter that is associated with each string-identifier. The following
parameters are available:

basis
is an optional parameter that specifies a character or numeric value that indicates
the type of day count basis to use.

Numeric Value String Value Day Count Method

0 "30/360" US (NASD) 30/360

1 "ACTUAL" Actual/actual

2 "ACT/360" Actual/360

3 "ACT/365" Actual/365

4 "EU30/360" European 30/360

Functions and CALL Routines � FINANCE Function 687

interest-rates
specifies rates that are provided as numeric values and not as percentages.

dates
specifies that all dates in the financial functions are SAS dates.

sign-of-cash-values
for all the arguments, specifies that the cash you pay out, such as deposits to
savings or other withdrawals, is represented by negative numbers. It also specifies
that the cash you receive, such as dividend checks and other deposits, is
represented by positive numbers.

Details

ACCRINT Computes the accrued interest for a security that pays periodic interest.

FINANCE(’ACCRINT’, issue, first-interest, settlement, rate, par, frequency, <basis>);

where

issue
specifies the issue date of the security.

first-interest
specifies the first interest date of the security.

settlement
specifies the settlement date.

rate
specifies the interest rate.

par
specifies the par value of the security. If you omit par, SAS uses the value $1000.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 1 on page 707

ACCRINTM Computes the accrued interest for a security that pays interest at
maturity.

FINANCE(’ACCRINTM’, issue, settlement, rate, par, <basis>);

where

issue
specifies the issue date of the security.

settlement
specifies the settlement date.

rate
specifies the interest rate.

par
specifies the par value of the security. If you omit par, SAS uses the value $1000.

688 FINANCE Function � Chapter 4

basis
specifies the optional day count value.

Featured in: Example 2 on page 707

AMORDEGRC Computes the depreciation for each accounting period by using a
depreciation coefficient.

FINANCE(’AMORDEGRC’, cost, date-purchased, first-period, salvage, period, rate,
<basis>);

where

cost
specifies the initial cost of the asset.

date-purchased
specifies the date of the purchase of the asset.

first-period
specifies the date of the end of the first period.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

period
specifies the depreciation period.

rate
specifies the rate of depreciation.

basis
specifies the optional day count value.
Tip: When the first argument of the FINANCE function is AMORDEGRC and

the value of basis is 2, the function returns a missing value.

Featured in: Example 3 on page 708

AMORLINC Computes the depreciation for each accounting period.

FINANCE(’AMORLINC’, cost, date-purchased, first-period, salvage, period, rate,
<basis>);

where

cost
specifies the initial cost of the asset.

date-purchased
specifies the date of the purchase of the asset.

first-period
specifies the date of the end of the first period.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

period
specifies the depreciation period.

rate
specifies the rate of depreciation.

Functions and CALL Routines � FINANCE Function 689

basis
specifies the optional day count value.
Tip: When the first argument of the FINANCE function is AMORLINC and the

value of basis is 2, the function returns a missing value.

Featured in: Example 4 on page 708

COUPDAYBS Computes the number of days from the beginning of the coupon period to
the settlement date.

FINANCE(’COUPDAYBS’, date-purchased, first-period, period, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 5 on page 708

COUPDAYS Computes the number of days in the coupon period that contains the
settlement date.

FINANCE(’COUPDAYS’, settlement, maturity, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 6 on page 709

COUPDAYSNC Computes the number of days from the settlement date to the next
coupon date.

FINANCE(’COUPDAYSNC’, settlement, maturity, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity

690 FINANCE Function � Chapter 4

specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 7 on page 709

COUPNCD Computes the next coupon date after the settlement date.

FINANCE(’COUPNCD’, settlement, maturity, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 8 on page 709

COUPNUM Computes the number of coupons that are payable between the settlement
date and the maturity date.

FINANCE(’COUPNUM’, settlement, maturity, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 9 on page 709

COUPPCD Computes the previous coupon date before the settlement date.

FINANCE(’COUPPCD’, settlement, maturity, frequency, <basis>);

where

settlement
specifies the settlement date.

Functions and CALL Routines � FINANCE Function 691

maturity
specifies the maturity date.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 10 on page 710

CUMIPMT Computes the cumulative interest paid between two periods.

FINANCE(’CUMIPMT’, rate, nper, pv, start-period, end-period, <type>);

where

rate
specifies the interest rate.

nper
specifies the total number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently.

start-period
specifies the first period in the calculation. Payment periods are numbered
beginning with 1.

end-period
specifies the last period in the calculation.

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 11 on page 710

CUMPRINC Computes the cumulative principal that is paid on a loan between two
periods.

FINANCE(’CUMPRINC’, rate, nper, pv, start-period, end-period, <type>);

where

rate
specifies the interest rate.

nper
specifies the total number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently.

start-period
specifies the first period in the calculation. Payment periods are numbered
beginning with 1.

end-period
specifies the last period in the calculation.

692 FINANCE Function � Chapter 4

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 12 on page 710

DB Computes the depreciation of an asset for a specified period by using the
fixed-declining balance method.

FINANCE(’DB’, cost, salvage, life, period, <month>);

where

cost
specifies the initial cost of the asset.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

life
specifies the number of periods over which the asset is depreciated (also called the
useful life of the asset).

period
specifies the period for which you want to calculate the depreciation. Period must
use the same time units as life.

month
specifies the number of months (month is an optional numeric argument). If
month is omitted, it defaults to a value of 12.

Featured in: Example 13 on page 710

DDB Computes the depreciation of an asset for a specified period by using the
double-declining balance method or some other method that you specify.

FINANCE(’DDB’, cost, salvage, life, period, <factor>);

where

cost
specifies the initial cost of the asset.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

life
specifies the number of periods over which the asset is depreciated (also called the
useful life of the asset).

period
specifies the period for which you want to calculate the depreciation. Period must
use the same time units as life.

factor
specifies the rate at which the balance declines. If factor is omitted, it is assumed
to be 2 (the double-declining balance method).

Featured in: Example 14 on page 711

DISC Computes the discount rate for a security.

Functions and CALL Routines � FINANCE Function 693

FINANCE(’DISC’, settlement, maturity, pr, redemption, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

pr
specifies the price of security per $100 face value.

redemption
specifies the amount to be received at maturity.

basis
specifies the optional day count value.

Featured in: Example 15 on page 711

DOLLARDE Converts a dollar price, expressed as a fraction, to a dollar price,
expressed as a decimal number.

FINANCE(’DOLLARDE’, fractionaldollar, fraction);

where

fractionaldollar
specifies the number expressed as a fraction.

fraction
specifies the integer to use in the denominator of a fraction.

Featured in: Example 16 on page 711

DOLLARFR Converts a dollar price, expressed as a decimal number, to a dollar price,
expressed as a fraction.

FINANCE(’DOLLARFR’, decimaldollar, fraction);

where

decimaldollar
specifies a decimal number.

fraction
specifies the integer to use in the denominator of a fraction.

Featured in: Example 17 on page 711

DURATION Computes the annual duration of a security with periodic interest
payments.

FINANCE(’DURATION’, settlement, maturity, coupon, yld, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

coupon
specifies the annual coupon rate of the security.

694 FINANCE Function � Chapter 4

yld
specifies the annual yield of the security.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 18 on page 712

EFFECT Computes the effective annual interest rate.

FINANCE(’EFFECT’, nominalrate, npery);

where

nominalrate
specifies the nominal interest rate.

npery
specifies the number of compounding periods per year.

Featured in: Example 19 on page 712

FV Computes the future value of an investment.

FINANCE(’FV’, rate, nper, <pmt>, <pv>, <type>);

where

rate
specifies the interest rate.

nper
specifies the total number of payment periods.

pmt
specifies the payment that is made each period; the payment cannot change over
the life of the annuity. Typically, pmt contains principal and interest but no fees
and taxes. If pmt is omitted, you must include the pv argument.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the pmt argument.

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 20 on page 712

FVSCHEDULE Computes the future value of the initial principal after applying a series
of compound interest rates.

FINANCE(’FVSCHEDULE’, principal, schedule1, schedule2...);

where

principal
specifies the present value.

Functions and CALL Routines � FINANCE Function 695

schedule
specifies the sequence of interest rates to apply.

Featured in: Example 21 on page 712

INTRATE Computes the interest rate for a fully invested security.

FINANCE(’INTRATE’, settlement, maturity, investment, redemption, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

investment
specifies the amount that is invested in the security.

redemption
specifies the amount to be received at maturity.

basis
specifies the optional day count value.

Featured in: Example 22 on page 713

IPMT Computes the interest payment for an investment for a specified period.

FINANCE(’IPMT’, rate, period, nper, pv, <fv>, <type>);

where

rate
specifies the interest rate.

period
specifies the period for which you want to calculate the depreciation. Period must
use the same units as life.

nper
specifies the total number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the fv argument.

fv
specifies the future value or a cash balance that you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 23 on page 713

IRR Computes the internal rate of return for a series of cash flows.

FINANCE(’IRR’, value1, value2, …, value_n);

where

696 FINANCE Function � Chapter 4

value
specifies a list of numeric arguments that contain numbers for which you want to
calculate the internal rate of return.

Featured in: Example 24 on page 713

MDURATION Computes the Macaulay modified duration for a security with an
assumed face value of $100.

FINANCE(’MDURATION’, settlement, maturity, coupon, yld, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

coupon
specifies the annual coupon rate of the security.

yld
specifies the annual yield of the security.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 25 on page 713

MIRR Computes the internal rate of return where positive and negative cash flows
are financed at different rates.

FINANCE(’MIRR’, value1, …, value_n, financerate, reinvestrate);

where

values
specifies a list of numeric arguments that contain numbers. These numbers
represent a series of payments (negative values) and income (positive values) that
occur at regular periods. Values must contain at least one positive value and one
negative value to calculate the modified internal rate of return.

financerate
specifies the interest rate that you pay on the money that is used in the cash flows.

reinvestrate
specifies the interest rate that you receive on the cash flows as you reinvest them.

Featured in: Example 26 on page 714

NOMINAL Computes the annual nominal interest rates.

FINANCE(’NOMINAL’, effectrate, npery);

where

effectrate
specifies the effective interest rate.

Functions and CALL Routines � FINANCE Function 697

npery
specifies the number of compounding periods per year.

Featured in: Example 27 on page 714

NPER Computes the number of periods for an investment.

FINANCE(’NPER’, rate, pmt, pv, <fv>, <type>);

where

rate
specifies the interest rate.

pmt
specifies the payment that is made each period; the payment cannot change over
the life of the annuity. Typically, pmt contains principal and interest but no other
fees or taxes. If pmt is omitted, you must include the pv argument.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the pmt argument.

fv
specifies the future value or a cash balance that you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 28 on page 714

NPV Computes the net present value of an investment based on a series of periodic
cash flows and a discount rate.

FINANCE(’NPV’, rate, value−1 <,…value-n>);

where

rate
specifies the interest rate.

value
represents the sequence of the cash flows.

Featured in: Example 29 on page 714

ODDFPRICE Computes the price of a security per $100 face value with an odd first
period.

FINANCE(’ODDFPRICE’, settlement, maturity, issue, first-coupon, rate, yld,
redemption, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

issue

698 FINANCE Function � Chapter 4

specifies the issue date of the security.

first-coupon
specifies the first coupon date of the security.

rate
specifies the interest rate.

yld
specifies the annual yield of the security.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 30 on page 715

ODDFYIELD Computes the yield of a security with an odd first period.

FINANCE(’ODDFYIELD’, settlement, maturity, issue, first-coupon, rate, pr,
redemption, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

issue
specifies the issue date of the security.

first-coupon
specifies the first coupon date of the security.

rate
specifies the interest rate.

pr
specifies the price of the security per $100 face value.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 31 on page 715

ODDLPRICE Computes the price of a security per $100 face value with an odd last
period.

Functions and CALL Routines � FINANCE Function 699

FINANCE(’ODDLPRICE’, settlement, maturity, last_interest, rate, yld, redemption,
frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

last_interest
specifies the last coupon date of the security.

rate
specifies the interest rate.

yld
specifies the annual yield of the security.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 32 on page 715

ODDLYIELD Computes the yield of a security with an odd last period.

FINANCE(’ODDLYIELD’, settlement, maturity, last_interest, rate, pr, redemption,
frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

last_interest
specifies the last coupon date of the security.

rate
specifies the interest rate.

pr
specifies the price of the security per $100 face value.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

700 FINANCE Function � Chapter 4

Featured in: Example 33 on page 716

PMT Computes the periodic payment of an annuity.

FINANCE(’PMT’, rate, nper, pv, <fv>, <type>);

where

rate
specifies the interest rate.

nper
specifies the number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the fv argument.

fv
specifies the future value or a cash balance that you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 34 on page 716

PPMT Computes the payment on the principal for an investment for a specified
period.

FINANCE(’PPMT’, rate, per, nper, pv, <fv>, <type>);

where

rate
specifies the interest rate.

per
specifies the period.

Range: 1–nper

nper
specifies the number of payment periods.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the fv argument.

fv
specifies the future value or a cash balance that you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 35 on page 716

Functions and CALL Routines � FINANCE Function 701

PRICE Computes the price of a security per $100 face value that pays periodic
interest.

FINANCE(’PRICE’, settlement, maturity, rate, yld, redemption, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

rate
specifies the interest rate.

yld
specifies the annual yield of the security.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 36 on page 717

PRICEDISC Computes the price of a discounted security per $100 face value.

FINANCE(’PRICEDISC’, settlement, maturity, discount, redemption, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

discount
specifies the discount rate of the security.

redemption
specifies the amount to be received at maturity.

basis
specifies the optional day count value.

Featured in: Example 37 on page 717

PRICEMAT Computes the price of a security per $100 face value that pays interest at
maturity.

FINANCE(’PRICEMAT’, settlement, maturity, issue, rate, yld, <basis>);

where

settlement
specifies the settlement date.

maturity

702 FINANCE Function � Chapter 4

specifies the maturity date.

issue
specifies the issue date of the security.

rate
specifies the interest rate.

yld
specifies the annual yield of the security.

basis
specifies the optional day count value.

Featured in: Example 38 on page 717

PV Computes the present value of an investment.

FINANCE(’PV’, rate, nper, pmt, <fv>, <type>);

where

rate
specifies the interest rate.

nper
specifies the total number of payment periods.

pmt
specifies the payment that is made each period; the payment cannot change over
the life of the annuity. Typically, pmt contains principal and interest but no other
fees or taxes.

fv
specifies the future value or a cash balance that you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 39 on page 717

RATE Computes the interest rate per period of an annuity.

FINANCE(’RATE’, nper, pmt, pv, <fv>, <type>);

where

nper
specifies the total number of payment periods.

pmt
specifies the payment that is made each period; the payment cannot change over
the life of the annuity. Typically, pmt contains principal and interest but no other
fees or taxes. If pmt is omitted, you must include the pv argument.

pv
specifies the present value or the lump-sum amount that a series of future
payments is worth currently. If pv is omitted, it is assumed to be 0 (zero), and you
must include the fv argument.

fv

Functions and CALL Routines � FINANCE Function 703

specifies the future value or a cash balance you want to attain after the last
payment is made. If fv is omitted, it is assumed to be 0 (for example, the future
value of a loan is 0).

type
specifies the number 0 or 1 and indicates when payments are due. If type is
omitted, it is assumed to be 0.

Featured in: Example 40 on page 718

RECEIVED Computes the amount that is received at maturity for a fully invested
security.

FINANCE(’RECEIVED’, settlement, maturity, investment, discount, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

investment
specifies the amount that is invested in the security.

discount
specifies the discount rate of the security.

basis
specifies the optional day count value.

Featured in: Example 41 on page 718

SLN Computes the straight-line depreciation of an asset for one period.

FINANCE(’SLN’, cost, salvage, life);

where

cost
specifies the initial cost of the asset.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
an asset).

life
specifies the number of periods over which the asset is depreciated (also called the
useful life of the asset).

Featured in: Example 42 on page 718

SYD Computes the sum-of-years digits depreciation of an asset for a specified period.

FINANCE(’SYD’, cost, salvage, life, period);

where

cost
specifies the initial cost of the asset.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

704 FINANCE Function � Chapter 4

life
specifies the number of periods over which the asset is depreciated (also called the
useful life of the asset).

period
specifies a period in the same time units that are used for the argument life.

Featured in: Example 43 on page 718

TBILLEQ Computes the bond-equivalent yield for a treasury bill.

FINANCE(’TBILLEQ’, settlement, maturity, discount);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

discount
specifies the discount rate of the security.

Featured in: Example 44 on page 719

TBILLPRICE Computes the price of a treasury bill per $100 face value.

FINANCE(’TBILLPRICE’, settlement, maturity, discount);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

discount
specifies the discount rate of the security.
See

Featured in: Example 45 on page 719

TBILLYIELD Computes the yield for a treasury bill.

FINANCE(’TBILLYIELD’, settlement, maturity, pr);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

pr
specifies the price of the security per $100 face value.

Featured in: Example 46 on page 719

VDB Computes the depreciation of an asset for a specified or partial period by using a
declining balance method.

FINANCE(’VDB’, cost, salvage, life, start-period, end-period, <factor>, <noswitch>);

Functions and CALL Routines � FINANCE Function 705

where

cost
specifies the initial cost of the asset.

salvage
specifies the value at the end of the depreciation (also called the salvage value of
the asset).

life
specifies the number of periods over which the asset is depreciated (also called the
useful life of the asset).

start-period
specifies the first period in the calculation. Payment periods are numbered
beginning with 1.

end-period
specifies the last period in the calculation.

factor
specifies the rate at which the balance declines. If factor is omitted, it is assumed
to be 2 (the double-declining balance method).

noswitch
specifies a logical value that determines whether to switch to straight-line
depreciation when the depreciation is greater than the declining balance
calculation. If noswitch is omitted, it is assumed to be 1.

Featured in: Example 47 on page 719

XIRR Computes the internal rate of return for a schedule of cash flows that is not
necessarily periodic.

FINANCE(’XIRR’, values, dates, <guess>);

where

values
specifies a series of cash flows that corresponds to a schedule of payments in dates.
The first payment is optional and corresponds to a cost or payment that occurs at
the beginning of the investment. If the first value is a cost or payment, it must be
a negative value. All succeeding payments are discounted based on a 365-day year.
The series of values must contain at least one positive value and one negative
value.

dates
specifies a schedule of payment dates that corresponds to the cash flow payments.
The first payment date indicates the beginning of the schedule of payments. All
other dates must be later than this date, but they can occur in any order.

guess
specifies an optional number that you guess is close to the result of XIRR.

Featured in: Example 48 on page 720

XNPV Computes the net present value for a schedule of cash flows that is not
necessarily periodic.

FINANCE(’XNPV’, rate, values, dates);

where

rate

706 FINANCE Function � Chapter 4

specifies the interest rate.

values
specifies a series of cash flows that corresponds to a schedule of payments in dates.
The first payment is optional and corresponds to a cost or payment that occurs at
the beginning of the investment. If the first value is a cost or payment, it must be
a negative value. All succeeding payments are discounted based on a 365-day year.
The series of values must contain at least one positive value and one negative
value.

dates
specifies a schedule of payment dates that corresponds to the cash flow payments.
The first payment date indicates the beginning of the schedule of payments. All
other dates must be later than this date, but they can occur in any order.

Featured in: Example 49 on page 720

YIELD Computes the yield on a security that pays periodic interest.

FINANCE(’YIELD’, settlement, maturity, rate, pr, redemption, frequency, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

rate
specifies the interest rate.

pr
specifies the price of the security per $100 face value.

redemption
specifies the amount to be received at maturity.

frequency
specifies the number of coupon payments per year. For annual payments,
frequency = 1; for semiannual payments, frequency = 2; for quarterly payments,
frequency = 4.

basis
specifies the optional day count value.

Featured in: Example 50 on page 720

YIELDDISC Computes the annual yield for a discounted security (for example, a
treasury bill).

FINANCE(’YIELDDISC’, settlement, maturity, rate, pr, redemption, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

rate
specifies the interest rate.

pr

Functions and CALL Routines � FINANCE Function 707

specifies the price of the security per $100 face value.

redemption
specifies the amount to be received at maturity.

basis
specifies the optional day count value.

Featured in: Example 51 on page 720

YIELDMAT Computes the annual yield of a security that pays interest at maturity.

FINANCE(’YIELDMAT’, settlement, maturity, issue, rate, pr, <basis>);

where

settlement
specifies the settlement date.

maturity
specifies the maturity date.

issue
specifies the issue date of the security.

rate
specifies the interest rate.

pr
specifies the price of the security per $100 face value.

basis
specifies the optional day count value.

Featured in: Example 52 on page 721

Examples

Example 1: Computing Accrued Interest: ACCRINT The following example computes
the accrued interest for a security that pays periodic interest.

data _null_;
issue = mdy(2,27,1996);
firstinterest = mdy(8,31,1998);
settlement = mdy(5,1,1998);
rate = 0.1;
par = 1000;
frequency = 2;
basis = 1;
r = finance(’accrint’, issue, firstinterest,

settlement, rate, par, frequency, basis);
put r=;

run;

The value of r that is returned is 217.39728.

Example 2: Computing Accrued Interest: ACCRINTM The following example computes
the accrued interest for a security that pays interest at maturity.

data _null_;
issue = mdy(2,28,1998);

708 FINANCE Function � Chapter 4

maturity = mdy(8,31,1998);
rate = 0.1;
par = 1000;
basis = 0;
r = finance(’accrintm’, issue, maturity, rate, par, basis);
put r=;

run;

The value of r that is returned is 50.555555556.

Example 3: Computing Depreciation: AMORDEGRC The following example computes
the depreciation for each accounting period by using a depreciation coefficient.

data _null_;
cost = 2400;
datepurchased = mdy(8,19,2008);
firstperiod = mdy(12,31,2008);
salvage = 300;
period = 1;
rate = 0.15;
basis = 1;
r = finance(’amordegrc’, cost, datepurchased,

firstperiod, salvage, period, rate, basis);
put r=;

run;

The value of r that is returned is 776.

Example 4: Computing Description: AMORLINC The following example computes the
depreciation for each accounting period.

data _null_;
cost = 2400;
dp = mdy(9,30,1998);
fp = mdy(12,31,1998);
salvage = 245;
period = 0;
rate = 0.115;
basis = 0;
r = finance(’amorlinc’, cost, dp, fp, salvage,

period, rate, basis);
put r = ;

run;

The value of r that is returned is 69.

Example 5: Computing Description: COUPDAYBS The following example computes the
number of days from the beginning of the coupon period to the settlement date.

data _null_;
settlement = mdy(12,30,1994);
maturity = mdy(11,29,1997);
frequency = 4;
basis = 2;
r = finance(’coupdaybs’, settlement, maturity, frequency, basis);
put r = ;

run;

Functions and CALL Routines � FINANCE Function 709

The value of r that is returned is 31.

Example 6: Computing Description: COUPDAYS The following example computes the
number of days in the coupon period that contains the settlement date.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(11,15,2008);
frequency = 2;
basis = 1;
r = finance(’coupdays’, settlement, maturity, frequency, basis);
put r = ;

run;

The value of r that is returned is 181.

Example 7: Computing Description: COUPDAYSNC The following example computes
the number of days from the settlement date to the next coupon date.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(11,15,2008);
frequency = 2;
basis = 1;
r = finance(’coupdaysnc’, settlement, maturity, frequency, basis);
put r = ;

run;

The value of r that is returned is 110.

Example 8: Computing Description: COUPNCD The following example computes the
next coupon date after the settlement date.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(11,15,2008);
frequency = 2;
basis = 1;
r = finance(’coupncd’, settlement, maturity, frequency, basis);
put r = date7.;

run;

The value of r that is returned is 15MAY07.

Note: r is a numeric SAS value and can be printed using the DATE7 format. �

Example 9: Computing Description: COUPNUM The following example computes the
number of coupons that are payable between the settlement date and the maturity date.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(11,15,2008);
frequency = 2;
basis = 1;
r = finance(’coupnum’, settlement, maturity, frequency, basis);
put r = ;

run;

The value of r that is returned is 4.

710 FINANCE Function � Chapter 4

Example 10: Computing Description: COUPPCD The following example computes the
previous coupon date before the settlement date.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(11,15,2008);
frequency = 2;
basis = 1;
r = finance(’couppcd’, settlement, maturity, frequency, basis);
put settlement;
put maturity;
put r date7.;

run;

The value of r that is returned is 11/15/2006.

Example 11: Computing Description: CUMIPMT The following example computes the
cumulative interest that is paid between two periods.

data _null_;
rate = 0.09;
nper = 30;
pv = 125000;
startperiod = 13;
endperiod = 24;
type = 0;
r = finance(’cumipmt’, rate, nper, pv,

startperiod, endperiod, type);
put r = ;

run;

The value of r that is returned is −94054.82033.

Example 12: Computing Description: CUMPRINC The following example computes the
cumulative principal that is paid on a loan between two periods.

data _null_;
rate = 0.09;
nper = 30;
pv = 125000;
startperiod = 13;
endperiod = 24;
type = 0;
r = finance(’cumprinc’, rate, nper, pv,

startperiod, endperiod, type);
put r = ;

run;

The value of r that is returned is −51949.70676.

Example 13: Computing Description: DB The following example computes the
depreciation of an asset for a specified period by using the fixed-declining balance
method.

data _null_;
cost = 1000000;
salvage = 100000;
life = 6;

Functions and CALL Routines � FINANCE Function 711

period = 2;
month = 7;
r = finance(’db’, cost, salvage, life, period, month);
put r = ;

run;

The value of r that is returned is 259639.41667.

Example 14: Computing Description: DDB The following example computes the
depreciation of an asset for a specified period by using the double-declining balance
method or some other method that you specify.

data _null_;
cost = 2400;
salvage = 300;
life = 10*365;
period = 1;
factor = .;
r = finance(’ddb’, cost, salvage, life, period, factor);
put r = ;

run;

The value of r that is returned is 1.3150684932.

Example 15: Computing Description: DISC The following example computes the
discount rate for a security.

data _null_;
settlement = mdy(1,25,2007);
maturity = mdy(6,15,2007);
pr = 97.975;
redemption = 100;
basis = 1;
r = finance(’disc’, settlement, maturity, pr, redemption, basis);
put r = ;

run;

The value of r that is returned is 0.052420213.

Example 16: Computing Description: DOLLARDE The following example converts a
dollar price, expressed as a fraction, to a dollar price, expressed as a decimal number.

data _null_;
fractionaldollar = 1.125;
fraction = 16;
r = finance(’dollarde’, fractionaldollar, fraction);
put r = ;

run;

The value of r that is returned is 1.78125.

Example 17: Computing Description: DOLLARFR The following example converts a
dollar price, expressed as a decimal number, to a dollar price, expressed as a fraction.

data _null_;
decimaldollar = 1.125;
fraction = 16;
r = finance(’dollarfr’, decimaldollar, fraction);
put r = ;

712 FINANCE Function � Chapter 4

run;

The value of r that is returned is 1.02. In fraction form, the value of r is read as

1 2/16 .

Example 18: Computing Description: DURATION The following example computes the
annual duration of a security with periodic interest payments.

data _null_;
settlement = mdy(1,1,2008);
maturity = mdy(1,1,2016);
couponrate = 0.08;
yield = 0.09;
frequency = 2;
basis = 1;
r = finance(’duration’, settlement,

maturity, couponrate, yield, frequency, basis);
put r = ;

run;

The value of r that is returned is 5.993775.

Example 19: Computing Description: EFFECT The following example computes the
effective annual interest rate.

data _null_;
nominalrate = 0.0525;
npery = 4;
r = finance(’effect’, nominalrate, npery);
put r = ;

run;

The value of r that is returned is 0.053543.

Example 20: Computing Description: FV The following example computes the future
value of an investment.

data _null_;
rate = 0.06/12;
nper = 10;
pmt = −200;
pv = −500;
type = 1;
r = finance(’fv’, rate, nper, pmt, pv, type);
put r = ;

run;

The value of r that is returned is 2581.4033741.

Example 21: Computing Description: FVSCHEDULE The following example computes
the future value of the initial principal after applying a series of compound interest
rates.

data _null_;
principal = 1;
r1 = 0.09;
r2 = 0.11;
r3 = 0.1;

Functions and CALL Routines � FINANCE Function 713

r = finance(’fvschedule’, principal, r1, r2, r3);
put r = ;

run;

The value of r that is returned is 1.33089.

Example 22: Computing Description: INTRATE The following example computes the
interest rate for a fully invested security.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(5,15,2008);
investment = 1000000;
redemption = 1014420;
basis = 2;
r = finance(’intrate’, settlement, maturity,

investment, redemption, basis);
put r = ;

run;

The value of r that is returned is 0.05768

Example 23: Computing Description: IPMT The following example computes the
interest payment for an investment for a specified period.

data _null_;
rate = 0.1/12;
per = 2;
nper = 3;
pv = 100;
fv = .;
type = .;
r = finance(’ipmt’, rate, per, nper, pv, fv, type);
put r = ;

run;

The value of r that is returned is −0.557857564.

Example 24: Computing Description: IRR The following example computes the
internal rate of return for a series of cash flows.

data _null_;
v1 = -70000;
v2 = 12000;
v3 = 15000;
v4 = 18000;
v5 = 21000;
v6 = 26000;
r = finance(’irr’, v1, v2, v3, v4, v5, v6);
put r = ;

run;

The value of r that is returned is 0.086630948.

Example 25: Computing Description: MDURATION The following example computes the
Macaulay modified duration for a security with an assumed face value of $100.

data _null_;
settlement = mdy(1,1,2008);

714 FINANCE Function � Chapter 4

maturity = mdy(1,1,2016);
couponrate = 0.08;
yield = 0.09;
frequency = 2;
basis = 1;
r = finance(’mduration’, settlement, maturity,
couponrate, yield, frequency, basis);

put r = ;
run;

The value of r that is returned is 5.7356698139.

Example 26: Computing Description: MIRR The following example computes the
internal rate of return where positive and negative cash flows are financed at different
rates.

data _null_;
v1 = -1000;
v2 = 3000;
v3 = 4000;
v4 = 5000;
financerate = 0.08;
reinvestrate = 0.10;
r = finance(’mirr’, v1, v2, v3, v4, financerate, reinvestrate);
put r = ;

run;

The value of r that is returned is 1.3531420172.

Example 27: Computing Description: NOMINAL The following example computes the
annual nominal interest rate.

data _null_;
effectrate = 0.08;
npery = 4;
r = finance(’nominal’, effectrate, npery);
put r = ;

run;

The value of r that is returned is 0.0777061876.

Example 28: Computing Description: NPER The following example computes the
number of periods for an investment.

data _null_;
rate = 0.08;
pmt = 200;
pv = 1000;
fv = 0;
type = 0;
r = finance(’nper’, rate, pmt, pv, fv, type);
put r = ;

run;

The value of r that is returned is −4.371981351.

Example 29: Computing Description: NPV The following example computes the net
present value of an investment based on a series of periodic cash flows and a discount
rate.

Functions and CALL Routines � FINANCE Function 715

data _null_;
rate = 0.08;
v1 = 200;
v2 = 1000;
v3 = 0.;
r = finance(’npv’, rate, v1, v2, v3);
put r = ;

run;

The value of r that is returned is 1042.5240055.

Example 30: Computing Description: ODDFPRICE The following example computes the
price of a security per $100 face value with an odd first period.

data _null_;
settlement = mdy(1,15,93);
maturity = mdy(1,1,98);
issue = mdy(1,1,93);
firstcoupon = mdy(7,1,94);
rate = 0.07;
yld = 0.06;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’oddfprice’,
settlement, maturity, issue, firstcoupon, rate, yld, redemption,
frequency, basis);
put r = ;

run;

The value of r that is returned is 103.94103984.

Example 31: Computing Description: ODDFYIELD The following example computes the
interest of a yield with an odd first period.

data _null_;
settlement = mdy(1,15,93);
maturity = mdy(1,1,98);
issue = mdy(1,1,93);
firstcoupon = mdy(7,1,94);
rate = 0.07;
pr = 103.94103984;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’oddfyield’,
settlement, maturity, issue, firstcoupon, rate, pr, redemption,
frequency, basis);
put r = ;

run;

The value of r that is returned is 0.06.

Example 32: Computing Description: ODDLPRICE The following example computes the
price of a security per $100 face value with an odd last period.

data _null_;
settlement = mdy(2,7,2008);

716 FINANCE Function � Chapter 4

maturity = mdy(6,15,2008);
lastinterest = mdy(10,15,2007);
rate = 0.0375;
yield = 0.0405;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’oddlprice’, settlement, maturity, lastinterest,
rate, yield, redemption, frequency, basis);
put r = ;

run;

The value of r that is returned is 99.878286015.

Example 33: Computing Description: ODDLYIELD The following example computes the
yield of a security with an odd last period.

data _null_;
settlement = mdy(2,7,2008);
maturity = mdy(6,15,2008);
lastinterest = mdy(10,15,2007);
rate = 0.0375;
pr = 99.878286015;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’oddlyield’, settlement, maturity, lastinterest,
rate, pr, redemption, frequency, basis);
put r = ;

run;

The value of r that is returned is 0.0405.

Example 34: Computing Description: PMT The following example computes the
periodic payment for an annuity.

data _null_;
rate = 0.08;
nper = 5;
pv = 91;
fv = 3;
type = 0;
r = finance(’pmt’, rate, nper, pv, fv, type);
put r = ;

run;

The value of r that is returned is -23.30290673.

Example 35: Computing Description: PPMT The following example computes the
payment on the principal for an investment for a specified period.

data _null_;
rate = 0.08;
per = 10;
nper = 10;
pv = 200000;
fv = 0;
type = 0;

Functions and CALL Routines � FINANCE Function 717

r = finance(’ppmt’, rate, per, nper, pv, fv, type);
put r = ;

run;

The value of r that is returned is −27598.05346.

Example 36: Computing Description: PRICE The following example computes the price
of a security per $100 face value that pays periodic interest.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(11,15,2017);
rate = 0.0575;
yield = 0.065;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’price’, settlement, maturity, rate, yield, redemption,
frequency, basis);

put r = ;
run;

The value of r that is returned is 94.634361621.

Example 37: Computing Description: PRICEDISC The following example computes the
price of a discounted security per $100 face value.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(11,15,2017);
discount = 0.0525;
redemption = 100;
basis = 0;
r = finance(’pricedisc’, settlement, maturity, discount, redemption, basis);
put r = ;

run;

The value of r that is returned is 48.8125.

Example 38: Computing Description: PRICEMAT The following example computes the
price of a security per $100 face value that pays interest at maturity.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(4,13,2008);
issue = mdy(11,11,2007);
rate = 0.061;
yield = 0.061;
basis = 0;
r = finance(’pricemat’, settlement, maturity, issue, rate, yield, basis);
put r = ;

run;

The value of r that is returned is 99.98449888.

Example 39: Computing Description: PV The following example computes the present
value of an investment.

718 FINANCE Function � Chapter 4

data _null_;
rate = 0.05;
nper = 10;
pmt = 1000;
fv = 200;
type = 0;
r = finance(’pv’, rate, nper, pmt, fv, type);
put r = ;

run;

The value of r that is returned is −7844.51758.

Example 40: Computing Description: RATE The following example computes the
interest rate per period of an annuity.

data _null_;
nper = 4;
pmt = -2481;
pv = 8000;
r = finance(’rate’, nper, pmt, pv);
put r = ;

run;

The value of r that is returned is 0.0921476841.

Example 41: Computing Description: RECEIVED The following example computes the
amount that is received at maturity for a fully invested security.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(5,15,2008);
investment = 1000000;
discount = 0.0575;
basis = 2;
r = finance(’received’, settlement, maturity, investment, discount, basis);
put r = ;

run;

The value of r that is returned is 1014584.6544.

Example 42: Computing Description: SLN The following example computes the
straight-line depreciation of an asset for one period.

data _null_;
cost = 2000;
salvage = 200;
life = 11;
r = finance(’sln’, cost, salvage, life);
put r = ;

run;

The value of r that is returned is 163.63636364.

Example 43: Computing Description: SYD The following example computes the
sum-of-years digits depreciation of an asset for a specified period.

data _null_;
cost = 2000;
salvage = 200;

Functions and CALL Routines � FINANCE Function 719

life = 11;
per = 1;
r = finance(’syd’, cost, salvage, life, per);
put r = ;

run;

The value of r that is returned is 300.

Example 44: Computing Description: TBILLEQ The following example computes the
bond-equivalent yield for a treasury bill.

data _null_;
settlement = mdy(3,31,2008);
maturity = mdy(6,1,2008);
discount = 0.0914;
r = finance(’tbilleq’, settlement, maturity, discount);
put r = ;

run;

The value of r that is returned is 0.0941514936.

Example 45: Computing Description: TBILLPRICE The following example computes the
price of a treasury bill per $100 face value.

data _null_;
settlement = mdy(3,31,2008);
maturity = mdy(6,1,2008);
discount = 0.09;
r = finance(’tbillprice’, settlement, maturity, discount);
put r = ;

run;

The value of r that is returned is 98.45.

Example 46: Computing Description: TBILLYIELD The following example computes the
yield for a treasury bill.

data _null_;
settlement = mdy(3,31,2008);
maturity = mdy(6,1,2008);
pr = 98;
r = finance(’tbillyield’, settlement, maturity, pr);
put r = ;

run;

The value of r that is returned is 0.1184990125.

Example 47: Computing Description: VDB The following example computes the
depreciation of an asset for a specified or partial period by using a declining balance
method.

data _null_;
cost = 2400;
salvage = 300;
life = 10;
startperiod = 0;
endperiod = 1;
factor = 1.5;
r = finance(’vdb’, cost, salvage, life, startperiod, endperiod, factor);

720 FINANCE Function � Chapter 4

put r = ;
run;

The value of r that is returned is 360.

Example 48: Computing Description: XIRR The following example computes the
internal rate of return for a schedule of cash flows that is not necessarily periodic.

data _null_;
v1 = −10000; d1 = mdy(1,1,2008);
v2 = 2750; d2 = mdy(3,1,2008);
v3 = 4250; d3 = mdy(10,30,2008);
v4 = 3250; d4 = mdy(2,15,2009);
v5 = 2750; d5 = mdy(4,1,2009);
r = finance(’xirr’, v1, v2, v3, v4, v5, d1, d2, d3, d4, d5, 0.1);
put r = ;

run;

The value of r that is returned is 0.3733625335.

Example 49: Computing Description: XNPV The following example computes the net
present value for a schedule of cash flows that is not necessarily periodic.

data _null_;
r = 0.09;
v1 = −10000; d1 = mdy(1,1,2008);
v2 = 2750; d2 = mdy(3,1,2008);
v3 = 4250; d3 = mdy(10,30,2008);
v4 = 3250; d4 = mdy(2,15,2009);
v5 = 2750; d5 = mdy(4,1,2009);
r = finance(’xnpv’, r, v1, v2, v3, v4, v5, d1, d2, d3, d4, d5);
put r = ;

run;

The value of r that is returned is 2086.647602.

Example 50: Computing Description: YIELD The following example computes the yield
on a security that pays periodic interest.

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(11,15,2016);
rate = 0.0575;
pr = 95.04287;
redemption = 100;
frequency = 2;
basis = 0;
r = finance(’yield’, settlement, maturity, rate, pr, redemption, frequency, basis);
put r = ;

run;

The value of r that is returned is 0.0650000069.

Example 51: Computing Description: YIELDDISC The following example computes the
annual yield for a discounted security (for example, a treasury bill).

data _null_;
settlement = mdy(2,15,2008);
maturity = mdy(11,15,2016);

Functions and CALL Routines � FIND Function 721

pr = 95.04287;
redemption = 100;
basis = 0;
r = finance(’yielddisc’, settlement, maturity, pr, redemption, basis);
put r = ;

run;

The value of r that is returned is 0.0059607748.

Example 52: Computing Description: YIELDMAT The following example computes the
annual yield of a security that pays interest at maturity.

data _null_;
settlement = mdy(3,15,2008);
maturity = mdy(11,3,2008);
issue = mdy(11,8,2007);
rate = 0.0625;
pr = 100.0123;
basis = 0;
r = finance(’yieldmat’, settlement, maturity, issue, rate, pr, basis);
put r = ;

run;

The value of r that is returned is 0.0609543337.

FIND Function

Searches for a specific substring of characters within a character string.

Category: Character
Restriction: “I18N Level 1” on page 312
Tip: Use the KINDEX function in SAS National Language Support (NLS): Reference
Guide instead to write encoding independent code.

Syntax
FIND(string,substring< ,modifiers>< ,startpos>)

FIND(string,substring< ,startpos><,modifiers>)

Arguments

string
specifies a character constant, variable, or expression that will be searched for
substrings.
Tip: Enclose a literal string of characters in quotation marks.

substring
is a character constant, variable, or expression that specifies the substring of
characters to search for in string.
Tip: Enclose a literal string of characters in quotation marks.

722 FIND Function � Chapter 4

modifiers
is a character constant, variable, or expression that specifies one or more modifiers.
The following modifiers can be in uppercase or lowercase:

i ignores character case during the search. If this modifier is not
specified, FIND only searches for character substrings with the
same case as the characters in substring.

t trims trailing blanks from string and substring.

Note: If you want to remove trailing blanks from only one
character argument instead of both (or all) character arguments,
use the TRIM function instead of the FIND function with the T
modifier. �

Tip: If modifier is a constant, enclose it in quotation marks. Specify multiple
constants in a single set of quotation marks. Modifier can also be expressed as a
variable or an expression.

startpos
is a numeric constant, variable, or expression with an integer value that specifies the
position at which the search should start and the direction of the search.

Details
The FIND function searches string for the first occurrence of the specified substring,
and returns the position of that substring. If the substring is not found in string, FIND
returns a value of 0.

If startpos is not specified, FIND starts the search at the beginning of the string and
searches the string from left to right. If startpos is specified, the absolute value of
startpos determines the position at which to start the search. The sign of startpos
determines the direction of the search.

Value of startpos Action

greater than 0 starts the search at position startpos and the direction of the
search is to the right. If startpos is greater than the length of
string, FIND returns a value of 0.

less than 0 starts the search at position –startpos and the direction of the
search is to the left. If –startpos is greater than the length of
string, the search starts at the end of string.

equal to 0 returns a value of 0.

Comparisons
� The FIND function searches for substrings of characters in a character string,

whereas the FINDC function searches for individual characters in a character
string.

� The FIND function and the INDEX function both search for substrings of
characters in a character string. However, the INDEX function does not have the
modifiers nor the startpos arguments.

Functions and CALL Routines � FINDC Function 723

Examples

SAS Statements Results

whereisshe=find(’She sells seashells? Yes, she does.’,’she ’);
put whereisshe; 27

variable1=’She sells seashells? Yes, she does.’;
variable2=’she ’;
variable3=’i’;
whereisshe_i=find(variable1,variable2,variable3);
put whereisshe_i; 1

expression1=’She sells seashells? ’||’Yes, she does.’;
expression2=kscan(’he or she’,3)||’ ’;
expression3=trim(’t ’);
whereisshe_t=find(expression1,expression2,expression3);
put whereisshe_t; 14

xyz=’She sells seashells? Yes, she does.’;
startposvar=22;
whereisshe_22=find(xyz,’she’,startposvar);
put whereisshe_22; 27

xyz=’She sells seashells? Yes, she does.’;
startposexp=1-23;
whereisShe_ineg22=find(xyz,’She’,’i’,startposexp);
put whereisShe_ineg22; 14

See Also

Functions:
“COUNT Function” on page 609
“FINDC Function” on page 723

“INDEX Function” on page 801

FINDC Function

Searches a string for any character in a list of characters.

Category: Character
Restriction: “I18N Level 1” on page 312
Tip: Use the KINDEXC function in SAS National Language Support (NLS): Reference
Guide instead to write encoding independent code.

Syntax
FINDC(string <, charlist>)

FINDC(string, charlist < , modifiers>)

FINDC(string, charlist, modifier(s) <, startpos>)

724 FINDC Function � Chapter 4

FINDC(string, charlist, <startpos>, <modifiers)>

Arguments

string
is a character constant, variable, or expression that specifies the character string to
be searched.
Tip: Enclose a literal string of characters in quotation marks.

charlist
is an optional constant, variable, or character expression that initializes a list of
characters. FINDC searches for the characters in this list provided that you do not
specify the K modifier in the modifier argument. If you specify the K modifier,
FINDC searches for all characters that are not in this list of characters. You can add
more characters to the list by using other modifiers.

modifier
is an optional character constant, variable, or expression in which each character
modifies the action of the FINDC function. The following characters, in upper- or
lowercase, can be used as modifiers:

blank is ignored.

a or A adds alphabetic characters to the list of characters.

b or B searches from right to left, instead of from left to right, regardless
of the sign of the startpos argument.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, the characters
that can begin a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

g or G adds graphic characters to the list of characters.

h or H adds a horizontal tab to the list of characters.

i or I ignores character case during the search.

k or K searches for any character that does not appear in the list of
characters. If you do not specify this modifier, then FINDC
searches for any character that appears in the list of characters.

l or L adds lowercase letters to the list of characters.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear in a SAS variable name using
VALIDVARNAME=V7) to the list of characters.

o or O processes the charlist and the modifier arguments only once,
rather than every time the FINDC function is called. Using the O
modifier in the DATA step (excluding WHERE clauses), or in the
SQL procedure can make FINDC run faster when you call it in a
loop where the charlist and the modifier arguments do not change.

p or P adds punctuation marks to the list of characters.

s or S adds space characters to the list of characters (blank, horizontal
tab, vertical tab, carriage return, line feed, and form feed).

Functions and CALL Routines � FINDC Function 725

t or T trims trailing blanks from the string and charlist arguments.

Note: If you want to remove trailing blanks from just one
character argument instead of both (or all) character arguments,
use the TRIM function instead of the FINDC function with the T
modifier. �

u or U adds uppercase letters to the list of characters.

w or W adds printable characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.
Tip: If modifier is a constant, then enclose it in quotation marks. Specify multiple

constants in a single set of quotation marks. Modifier can also be expressed as a
variable or an expression.

startpos
is an optional numeric constant, variable, or expression having an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The FINDC function searches string for the first occurrence of the specified characters,
and returns the position of the first character found. If no characters are found in
string, then FINDC returns a value of 0.

The FINDC function allows character arguments to be null. Null arguments are
treated as character strings that have a length of zero. Numeric arguments cannot be
null.

If startpos is not specified, FINDC begins the search at the end of the string if you
use the B modifier, or at the beginning of the string if you do not use the B modifier.

If startpos is specified, the absolute value of startpos specifies the position at which to
begin the search. If you use the B modifier, the search always proceeds from right to
left. If you do not use the B modifier, the sign of startpos specifies the direction in which
to search. The following table summarizes the search directions:

Value of startpos Action

greater than 0 search begins at position startpos and proceeds to the right. If
startpos is greater than the length of the string, FINDC returns a
value of 0.

less than 0 search begins at position –startpos and proceeds to the left. If
startpos is less than the negative of the length of the string, the
search begins at the end of the string.

equal to 0 returns a value of 0.

Comparisons
� The FINDC function searches for individual characters in a character string,

whereas the FIND function searches for substrings of characters in a character
string.

� The FINDC function and the INDEXC function both search for individual
characters in a character string. However, the INDEXC function does not have the
modifier nor the startpos arguments.

726 FINDC Function � Chapter 4

� The FINDC function searches for individual characters in a character string,
whereas the VERIFY function searches for the first character that is unique to an
expression. The VERIFY function does not have the modifier nor the startpos
arguments.

Examples

Example 1: Searching for Characters in a String This example searches a character
string and returns the characters that are found.

data _null_;
string = ’Hi, ho!’;
charlist = ’hi’;
j = 0;
do until (j = 0);

j = findc(string, charlist, j+1);
if j = 0 then put +3 "That’s all";
else do;

c = substr(string, j, 1);
put +3 j= c=;

end;
end;

run;

SAS writes the following output to the log:

j=2 c=i
j=5 c=h
That’s all

Example 2: Searching for Characters in a String and Ignoring Case This example
searches a character string and returns the characters that are found. The I modifier is
used to ignore the case of the characters.

data _null_;
string = ’Hi, ho!’;
charlist = ’ho’;
j = 0;
do until (j = 0);

j = findc(string, charlist, j+1, "i");
if j = 0 then put +3 "That’s all";
else do;

c = substr(string, j, 1);
put +3 j= c=;

end;
end;

run;

SAS writes the following output to the log:

j=1 c=H
j=5 c=h
j=6 c=o
That’s all

Example 3: Searching for Characters and Using the K Modifier This example searches
a character string and returns the characters that do not appear in the character list.

Functions and CALL Routines � FINDC Function 727

data _null_;
string = ’Hi, ho!’;
charlist = ’hi’;
j = 0;
do until (j = 0);

j = findc(string, charlist, "k", j+1);
if j = 0 then put +3 "That’s all";
else do;

c = substr(string, j, 1);
put +3 j= c=;

end;
end;

run;

SAS writes the following output to the log:

j=1 c=H
j=3 c=,
j=4 c=
j=6 c=o
j=7 c=!
That’s all

Example 4: Searching for the Characters h, i, and Blank This example searches for
the three characters h, i, and blank. The characters h and i are in lowercase. The
uppercase characters H and I are ignored in this search.

data _null_;
whereishi=0;
do until(whereishi=0);

whereishi=findc(’Hi there, Ian!’,’hi ’,whereishi+1);
if whereishi=0 then put ‘‘The End’’;
else do;

whatfound=substr(’Hi there, Ian!’,whereishi,1);
put whereishi= whatfound=;

end;
end;

run;

SAS writes the following output to the log:

whereishi=2 whatfound=i
whereishi=3 whatfound=
whereishi=5 whatfound=h
whereishi=10 whatfound=
The End

Example 5: Searching for the Characters h and i While Ignoring Case This example
searches for the four characters h, i, H, and I. FINDC with the i modifier ignores
character case during the search.

data _null_;
whereishi_i=0;
do until(whereishi_i=0);

variable1=’Hi there, Ian!’;
variable2=’hi’;
variable3=’i’;
whereishi_i=findc(variable1,variable2,variable3,whereishi_i+1);

728 FINDC Function � Chapter 4

if whereishi_i=0 then put ‘‘The End’’;
else do;

whatfound=substr(variable1,whereishi_i,1);
put whereishi_i= whatfound=;

end;
end;

run;

SAS writes the following output to the log:

whereishi_i=1 whatfound=H
whereishi_i=2 whatfound=i
whereishi_i=5 whatfound=h
whereishi_i=11 whatfound=I
The End

Example 6: Searching for the Characters h and i with Trailing Blanks Trimmed This
example searches for the two characters h and i. FINDC with the t modifier trims
trailing blanks from the string argument and the characters argument.

data _null_;
whereishi_t=0;
do until(whereishi_t=0);

expression1=’Hi there, ’||’Ian!’;
expression2=kscan(’bye or hi’,3)||’ ’;
expression3=trim(’t ’);
whereishi_t=findc(expression1,expression2,expression3,whereishi_t+1);
if whereishi_t=0 then put ‘‘The End’’;
else do;

whatfound=substr(expression1,whereishi_t,1);
put whereishi_t= whatfound=;

end;
end;

run;

SAS writes the following lines output to the log:

whereishi_t=2 whatfound=i
whereishi_t=5 whatfound=h
The End

Example 7: Searching for all Characters, Excluding h, i, H, and I This example
searches for all of the characters in the string, excluding the characters h, i, H, and I.
FINDC with the v modifier counts only the characters that do not appear in the
characters argument. This example also includes the i modifier and therefore ignores
character case during the search.

data _null_;
whereishi_iv=0;
do until(whereishi_iv=0);

xyz=’Hi there, Ian!’;
whereishi_iv=findc(xyz,’hi’,whereishi_iv+1,’iv’);
if whereishi_iv=0 then put ‘‘The End’’;
else do;

whatfound=substr(xyz,whereishi_iv,1);
put whereishi_iv= whatfound=;

end;
end;

Functions and CALL Routines � FINDW Function 729

run;

SAS writes the following output to the log:

whereishi_iv=3 whatfound=
whereishi_iv=4 whatfound=t
whereishi_iv=6 whatfound=e
whereishi_iv=7 whatfound=r
whereishi_iv=8 whatfound=e
whereishi_iv=9 whatfound=,
whereishi_iv=10 whatfound=
whereishi_iv=12 whatfound=a
whereishi_iv=13 whatfound=n
whereishi_iv=14 whatfound=!
The End

See Also

Functions:
“ANYALNUM Function” on page 376
“ANYALPHA Function” on page 378
“ANYCNTRL Function” on page 380
“ANYDIGIT Function” on page 381
“ANYGRAPH Function” on page 385
“ANYLOWER Function” on page 387
“ANYPRINT Function” on page 391
“ANYPUNCT Function” on page 393
“ANYSPACE Function” on page 394
“ANYUPPER Function” on page 396
“ANYXDIGIT Function” on page 398
“COUNTC Function” on page 611
“INDEXC Function” on page 802
“VERIFY Function” on page 1155
“NOTALNUM Function” on page 925
“NOTALPHA Function” on page 927
“NOTCNTRL Function” on page 929
“NOTDIGIT Function” on page 930
“NOTGRAPH Function” on page 935
“NOTLOWER Function” on page 937
“NOTPRINT Function” on page 941
“NOTPUNCT Function” on page 942
“NOTSPACE Function” on page 944
“NOTUPPER Function” on page 946
“NOTXDIGIT Function” on page 948

FINDW Function
Returns the character position of a word in a string, or returns the number of the word in a string.

730 FINDW Function � Chapter 4

Category: Character

Syntax
FINDW(string, word <, chars>)

FINDW(string, word, chars, modifiers <, startpos>)

FINDW(string, word, chars, startpos <, modifiers>)

FINDW(string, word, startpos <, chars <, modifiers>>)

Arguments

string
is a character constant, variable, or expression that specifies the character string to
be searched.

word
is a character constant, variable, or expression that specifies the word to be searched.

chars
is an optional character constant, variable, or expression that initializes a list of
characters.

The characters in this list are the delimiters that separate words, provided that
you do not specify the K modifier in the modifier argument. If you specify the K
modifier, then all characters that are not in this list are delimiters. You can add more
characters to this list by using other modifiers.

startpos
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should begin and the direction in which to
search.

modifier
specifies a character constant, variable, or expression in which each non-blank
character modifies the action of the FINDW function.
Tip: If you use the modifier argument, then it must be positioned after the chars

argument.
You can use the following characters as modifiers:

blank is ignored.

a or A adds alphabetic characters to the list of characters.

b or B scans from right to left instead of from left to right, regardless of
the sign of the startpos argument.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

e or E counts the words that are scanned until the specified word is
found, instead of determining the character position of the
specified word in the string. Fragments of a word are not counted.

f or F adds an underscore and English letters (that is, the characters
that can begin a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

Functions and CALL Routines � FINDW Function 731

g or G adds graphic characters to the list of characters.

h or H adds a horizontal tab to the list of characters.

i or I ignores the case of the characters.

k or K causes all characters that are not in the list of characters to be
treated as delimiters. If K is not specified, then all characters
that are in the list of characters are treated as delimiters.

l or L adds lowercase letters to the list of characters.

m or M specifies that multiple consecutive delimiters, and delimiters at
the beginning or end of the string argument, refer to words that
have a length of zero.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear after the first character in a SAS
variable name using VALIDVARNAME=V7) to the list of
characters.

o or O processes the chars and modifier arguments only once, rather
than every time the FINDW function is called. Using the O
modifier in the DATA step (excluding WHERE clauses), or in the
SQL procedure, can make FINDW run faster when you call it in a
loop where the chars and modifier arguments do not change.

p or P adds punctuation marks to the list of characters.

q or Q ignores delimiters that are inside of substrings that are enclosed
in quotation marks. If the value of the string argument contains
unmatched quotation marks, then scanning from left to right will
produce different words than scanning from right to left.

r or R removes leading and trailing delimiters from the word argument.

s or S adds space characters (blank, horizontal tab, vertical tab, carriage
return, line feed, and form feed) to the list of characters.

t or T trims trailing blanks from the string, word, and chars arguments.

u or U adds uppercase letters to the list of characters.

w or W adds printable characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.

Details

Definition of “Delimiter” “Delimiter” refers to any of several characters that are used
to separate words. You can specify the delimiters by using the chars argument, the
modifier argument, or both. If you specify the Q modifier, then the characters inside of
substrings that are enclosed in quotation marks are not treated as delimiters.

Definition of “Word” “Word” refers to a substring that has both of the following
characteristics:

� bounded on the left by a delimiter or the beginning of the string

� bounded on the right by a delimiter or the end of the string

Note: A word can contain delimiters. In this case, the FINDW function differs from
the SCAN function, in which words are defined as not containing delimiters. �

732 FINDW Function � Chapter 4

Searching for a String If the FINDW function fails to find a substring that both
matches the specified word and satisfies the definition of a word, then FINDW returns a
value of 0.

If the FINDW function finds a substring that both matches the specified word and
satisfies the definition of a word, the value that is returned by FINDW depends on
whether the E modifier is specified:

� If you specify the E modifier, then FINDW returns the number of complete words
that were scanned while searching for the specified word. If startpos specifies a
position in the middle of a word, then that word is not counted.

� If you do not specify the E modifier, then FINDW returns the character position of
the substring that is found.

If you specify the startpos argument, then the absolute value of startpos specifies the
position at which to begin the search. The sign of startpos specifies the direction in
which to search:

Value of startpos Action

greater than 0 search begins at position startpos and proceeds to the right. If
startpos is greater than the length of the string, then FINDW
returns a value of 0.

less than 0 search begins at position –startpos and proceeds to the left. If
startpos is less than the negative of the length of the string, then
the search begins at the end of the string.

equal to 0 FINDW returns a value of 0.

If you do not specify the startpos argument or the B modifier, then FINDW searches
from left to right starting at the beginning of the string. If you specify the B modifier,
but do not use the startpos argument, then FINDW searches from right to left starting
at the end of the string.

Using the FINDW Function in ASCII and EBCDIC Environments If you use the FINDW
function with only two arguments, the default delimiters depend on whether your
computer uses ASCII or EBCDIC characters.

� If your computer uses ASCII characters, then the default delimiters are as follows:
blank ! $ % & ()* + , - . / ; < ^ |
In ASCII environments that do not contain the ^ character, the FINDW

function uses the ~ character instead.
� If your computer uses EBCDIC characters, then the default delimiters are as

follows:
blank ! $ % & ()* + , - . / ; < | ¢

Using Null Arguments The FINDW function allows character arguments to be null.
Null arguments are treated as character strings with a length of zero. Numeric
arguments cannot be null.

Examples

Example 1: Searching a Character String for a Word The following example searches a
character string for the word “she”, and returns the position of the beginning of the
word.

Functions and CALL Routines � FINDW Function 733

data _null_;
whereisshe=findw(’She sells sea shells? Yes, she does.’,’she’);
put whereisshe=;

run;

SAS writes the following output to the log:

whereisshe=28

Example 2: Searching a Character String and Using the Chars and Startpos
Arguments The following example contains two occurrences of the word “rain.” Only
the second occurrence is found by FINDW because the search begins in position 25. The
chars argument specifies a space as the delimiter.

data _null_;
result = findw(’At least 2.5 meters of rain falls in a rain forest.’,

’rain’, ’ ’, 25);
put result=;

run;

SAS writes the following output to the log:

result=40

Example 3: Searching a Character String and Using the I Modifier and the Startpos
Argument The following example uses the I modifier and returns the position of the
beginning of the word. The I modifier disregards case, and the startpos argument
identifies the starting position from which to search.

data _null_;
string=’Artists from around the country display their art at

an art festival.’;
result=findw(string, ’Art’,’ ’, ’i’, 10);
put result=;

run;

SAS writes the following output to the log:

result=47

Example 4: Searching a Character String and Using the E Modifier The following
example uses the E modifier and returns the number of complete words that are
scanned while searching for the word “art.”

data _null_;
string=’Artists from around the country display their art at

an art festival.’;
result=findw(string,’art’,’ ’,’E’);
put result=;

run;

SAS writes the following output to the log:

result=8

Example 5: Searching a Character String and Using the E Modifier and the Startpos
Argument The following example uses the E modifier to count words in a character
string. The word count begins at position 50 in the string. The result is 3 because “art”
is the third word after the 50th character position.

734 FINFO Function � Chapter 4

data _null_;
string=’Artists from around the country display their art at

an art festival.’;
result=findw(string, ’art’,’ ’,’E’,50);
put result=;

run;

SAS writes the following output to the log:

result=3

Example 6: Searching a Character String and Using Two Modifiers The following
example uses the I and the E modifiers to find a word in a string.

data _null_;
string=’The Great Himalayan National Park was created in 1984. Because

of its terrain and altitude, the park supports a diversity
of wildlife and vegetation.’;

result=findw(string,’park’,’ ’,’I E’);
put result=;

run;

SAS writes the following output to the log:

result=5

Example 7: Searching a Character String and Using the R Modifier The following
example uses the R modifier to remove leading and trailing delimiters from a word.

data _null_;
string=’Artists from around the country display their art at

an art festival.’;
word=’ art ’;
result=findw(string, word, ’ ’, ’R’);
put result=;

run;

SAS writes the following output to the log:

result=47

See Also

Functions and CALL Routines:
“CALL SCAN Routine” on page 513
“COUNTW Function” on page 614
“FIND Function” on page 721
“FINDC Function” on page 723
“INDEXW Function” on page 804
“SCAN Function” on page 1076

FINFO Function
Returns the value of a file information item.

Functions and CALL Routines � FINFO Function 735

Category: External Files
See: FINFO Function in the documentation for your operating environment.

Syntax
FINFO(file-id,info-item)

Arguments

file-id
is a numeric constant, variable, or expression that specifies the identifier that was
assigned when the file was opened, generally by the FOPEN function.

info-item
is a character constant, variable, or expression that specifies the name of the file
information item to be retrieved.

Details
FINFO returns the value of a system-dependent information item for an external file.
FINFO returns a blank if the value given for info-item is invalid.

Operating Environment Information: The information available on files depends on the
operating environment. �

Comparisons
� The FOPTNAME function determines the names of the available file information

items.
� The FOPTNUM function determines the number of system-dependent information

items that are available.

Examples

This example stores information items about an external file in a SAS data set:

data info;
length infoname infoval $60;
drop rc fid infonum i close;
rc=filename(’abc’,’physical-filename’);
fid=fopen(’abc’);
infonum=foptnum(fid);
do i=1 to infonum;

infoname=foptname(fid,i);
infoval=finfo(fid,infoname);
output;

end;
close=fclose(fid);

run;

See Also

736 FINV Function � Chapter 4

Functions:
“FCLOSE Function” on page 670
“FOPTNUM Function” on page 751
“MOPEN Function” on page 913

FINV Function

Returns a quantile from the F distribution.

Category: Quantile

Syntax
FINV (p, ndf, ddf <,nc>)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

Details
The FINV function returns the pth quantile from the F distribution with numerator
degrees of freedom ndf, denominator degrees of freedom ddf, and noncentrality
parameter nc. The probability that an observation from the F distribution is less than
the quantile is p. This function accepts noninteger degrees of freedom parameters ndf
and ddf.

If the optional parameter nc is not specified or has the value 0, the quantile from the
central F distribution is returned. The noncentrality parameter nc is defined such that
if X and Y are normal random variables with means � and 0, respectively, and variance
1, then ���� � has a noncentral F distribution with nc = �

2.

CAUTION:
For large values of nc, the algorithm could fail. In that case, a missing value is

returned. �

Note: FINV is the inverse of the PROBF function. �

Functions and CALL Routines � FIPNAME Function 737

Examples

These statements compute the 95th quantile value of a central F distribution with 2
and 10 degrees of freedom and a noncentral F distribution with 2 and 10.3 degrees of
freedom and a noncentrality parameter equal to 2:

SAS Statements Results

q1=finv(.95,2,10); 4.1028210151

q2=finv(.95,2,10.3,2); 7.583766024

See Also

Functions:
“QUANTILE Function” on page 1033

FIPNAME Function

Converts two-digit FIPS codes to uppercase state names.

Category: State and ZIP Code

Syntax
FIPNAME(expression)

Arguments

expression
specifies a numeric constant, variable, or expression that represents a U.S. FIPS code.

Details
If the FIPNAME function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 20.

The FIPNAME function converts a U.S. Federal Information Processing Standards
(FIPS) code to the corresponding state or U.S. territory name in uppercase, returning a
value of up to 20 characters.

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns
mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

738 FIPNAMEL Function � Chapter 4

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:
“FIPNAMEL Function” on page 738
“FIPSTATE Function” on page 739
“STFIPS Function” on page 1098
“STNAME Function” on page 1100
“STNAMEL Function” on page 1101

FIPNAMEL Function

Converts two-digit FIPS codes to mixed case state names.

Category: State and ZIP Code

Syntax
FIPNAMEL(expression)

Arguments

expression
specifies a numeric constant, variable, or expression that represents a U.S. FIPS code.

Details
If the FIPNAMEL function returns a value to a variable that has not yet been assigned
a length, by default the variable is assigned a length of 20.

The FIPNAMEL function converts a U.S. Federal Information Processing Standards
(FIPS) code to the corresponding state or U.S. territory name in mixed case, returning a
value of up to 20 characters.

Functions and CALL Routines � FIPSTATE Function 739

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns
mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:
“FIPNAME Function” on page 737

“FIPSTATE Function” on page 739
“STFIPS Function” on page 1098

“STNAME Function” on page 1100
“STNAMEL Function” on page 1101

FIPSTATE Function

Converts two-digit FIPS codes to two-character state postal codes.

Category: State and ZIP Code

Syntax
FIPSTATE(expression)

Arguments

expression
specifies a numeric constant, variable, or expression that represents a U.S. FIPS code.

740 FIRST Function � Chapter 4

Details
If the FIPSTATE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 20.

The FIPSTATE function converts a U.S. Federal Information Processing Standards
(FIPS) code to a two-character state postal code (or world-wide GSA geographic code for
U.S. territories) in uppercase.

Comparisons
The FIPNAME, FIPNAMEL, and FIPSTATE functions take the same argument but
return different values. FIPNAME returns uppercase state names. FIPNAMEL returns
mixed case state names. FIPSTATE returns a two-character state postal code (or
world-wide GSA geographic code for U.S. territories) in uppercase.

Examples

The examples show the differences when using FIPNAME, FIPNAMEL, and
FIPSTATE.

SAS Statements Results

x=fipname(37);
put x; NORTH CAROLINA

x=fipnamel(37);
put x; North Carolina

x=fipstate(37);
put x; NC

See Also

Functions:
“FIPNAME Function” on page 737
“FIPNAMEL Function” on page 738
“STFIPS Function” on page 1098
“STNAME Function” on page 1100
“STNAMEL Function” on page 1101

FIRST Function

Returns the first character in a character string.

Category: Character

Syntax
FIRST(string)

Functions and CALL Routines � FIRST Function 741

Arguments

string
specifies a character string.

Details
In a DATA step, the default length of the target variable for the FIRST function is 1.

The FIRST function returns a string with a length of 1. If string has a length of 0,
then the FIRST function returns a single blank.

Comparisons
The FIRST function returns the same result as CHAR(string, 1) and SUBPAD(string, 1,
1). While the results are the same, the default length of the target variable is different.

Examples

The following example shows the results of using the FIRST function.

options pageno=1 ps=64 ls=80 nodate;

data test;
string1="abc";
result1=first(string1);

string2="";
result2=first(string2);

run;

proc print noobs data=test;
run;

Output 4.46 Output from the FIRST Function

The SAS System 1

string1 result1 string2 result2

abc a

See Also

Functions:
“CHAR Function” on page 572

742 FLOOR Function � Chapter 4

FLOOR Function

Returns the largest integer that is less than or equal to the argument, fuzzed to avoid unexpected
floating-point results.

Category: Truncation

Syntax
FLOOR (argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
If the argument is within 1E-12 of an integer, the function returns that integer.

Comparisons
Unlike the FLOORZ function, the FLOOR function fuzzes the result. If the argument is
within 1E-12 of an integer, the FLOOR function fuzzes the result to be equal to that
integer. The FLOORZ function does not fuzz the result. Therefore, with the FLOORZ
function you might get unexpected results.

Examples

The following SAS statements produce these results.

SAS Statements Results

var1=2.1;
a=floor(var1);
put a; 2

var2=-2.4;
b=floor(var2);
put b; -3

c=floor(-1.6);
put c; -2

d=floor(1.-1.e-13);
put d; 1

e=floor(763);
put e; 763

f=floor(-223.456);
put f; -224

Functions and CALL Routines � FLOORZ Function 743

See Also

Functions:

“FLOORZ Function” on page 743

FLOORZ Function

Returns the largest integer that is less than or equal to the argument, using zero fuzzing.

Category: Truncation

Syntax

FLOORZ (argument)

Arguments

argument
is a numeric constant, variable, or expression.

Comparisons

Unlike the FLOOR function, the FLOORZ function uses zero fuzzing. If the argument
is within 1E-12 of an integer, the FLOOR function fuzzes the result to be equal to that
integer. The FLOORZ function does not fuzz the result. Therefore, with the FLOORZ
function you might get unexpected results.

Examples

The following SAS statements produce these results.

SAS Statements Results

var1=2.1;
a=floorz(var1);
put a; 2

var2=-2.4;
b=floorz(var2);
put b; -3

c=floorz(-1.6);
put c; -2

var6=(1.-1.e-13);
d=floorz(1-1.e-13);
put d; 0

744 FNONCT Function � Chapter 4

SAS Statements Results

e=floorz(763);
put e; 763

f=floorz(-223.456);
put f; -224

See Also

Functions:
“FLOOR Function” on page 742

FNONCT Function

Returns the value of the noncentrality parameter of an F distribution.

Category: Mathematical

Syntax
FNONCT(x,ndf,ddf,prob)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

ndf
is a numeric numerator degree of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degree of freedom parameter.
Range: ddf > 0

prob
is a probability.
Range: 0 < prob < 1

Details
The FNONCT function returns the nonnegative noncentrality parameter from a
noncentral F distribution whose parameters are x, ndf, ddf, and nc. If prob is greater
than the probability from the central F distribution whose parameters are x, ndf, and
ddf, a root to this problem does not exist. In this case a missing value is returned. A
Newton-type algorithm is used to find a nonnegative root nc of the equation

Functions and CALL Routines � FNOTE Function 745

�� ������� ���� ���� ��	
 � �

where

�� ������� ���� ��� � �
���

�

��

���

�
��
�

��
��

 ������

����������

�
���

�
� ��

���

�

�

where I (. . .) is the probability from the beta distribution that is given by

� ���
� � ��������
������

��
�

���� �� � ����� ��

If the algorithm fails to converge to a fixed point, a missing value is returned.

Examples
data work;

x=2;
df=4;
ddf=5;
do nc=1 to 3 by .5;

prob=probf(x,df,ddf,nc);
ncc=fnonct(x,df,ddf,prob);
output;

end;
run;
proc print;
run;

Output 4.47 FNONCT Example Output

OBS x df ddf nc prob ncc
1 2 4 5 1.0 0.69277 1.0
2 2 4 5 1.5 0.65701 1.5
3 2 4 5 2.0 0.62232 2.0
4 2 4 5 2.5 0.58878 2.5
5 2 4 5 3.0 0.55642 3.0

FNOTE Function

Identifies the last record that was read, and returns a value that the FPOINT function can use.

Category: External Files

746 FNOTE Function � Chapter 4

Syntax
FNOTE(file-id)

Argument

file-id
is a numeric constant, variable, or expression that specifies the identifier that was
assigned when the file was opened, generally by the FOPEN function.

Details
You can use FNOTE like a bookmark, marking the position in the file so that your
application can later return to that position using FPOINT. The value that is returned
by FNOTE is required by the FPOINT function to reposition the file pointer on a
specific record.

To free the memory associated with each FNOTE identifier, use DROPNOTE.

Note: You cannot write a new record in place of the current record if the new record
has a length that is greater than the current record. �

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, indicated by a positive value in the variable FID,
then it reads the records, stores in the variable NOTE 3 the position of the third record
read, and then later uses FPOINT to point back to NOTE3 to update the file. After
updating the record, it closes the file:

%let
fref=MYFILE;
%let rc=%sysfunc(filename(fref,

physical-filename));
%let fid=%sysfunc(fopen(&fref,u));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));

/* Read second record. */
%let rc=%sysfunc(fread(&fid));

/* Read third record. */
%let rc=%sysfunc(fread(&fid));

/* Note position of third record. */
%let note3=%sysfunc(fnote(&fid));

/* Read fourth record. */
%let rc=%sysfunc(fread(&fid));

/* Read fifth record. */
%let rc=%sysfunc(fread(&fid));

/* Point to third record. */
%let rc=%sysfunc(fpoint(&fid,¬e3));

/* Read third record. */
%let rc=%sysfunc(fread(&fid));

/* Copy new text to FDB. */
%let rc=%sysfunc(fput(&fid,New text));

/* Update third record */

Functions and CALL Routines � FOPEN Function 747

/* with data in FDB. */
%let rc=%sysfunc(fwrite(&fid));

/* Close file. */
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(fref));

See Also

Functions:
“DROPNOTE Function” on page 657
“FCLOSE Function” on page 670
“FILENAME Function” on page 680
“FOPEN Function” on page 747
“FPOINT Function” on page 752
“FPUT Function” on page 756
“FREAD Function” on page 757
“FREWIND Function” on page 758
“FWRITE Function” on page 763
“MOPEN Function” on page 913

FOPEN Function

Opens an external file and returns a file identifier value.

Category: External Files
See: FOPEN Function in the documentation for your operating environment.

Syntax
FOPEN(fileref<,open-mode<,record-length<,record-format>>>)

Arguments

fileref
is a character constant, variable, or expression that specifies the fileref assigned to
the external file.
Tip: If fileref is longer than eight characters, then it will be truncated to eight

characters.

open-mode
is a character constant, variable, or expression that specifies the type of access to the
file:

A APPEND mode allows writing new records after the current end
of the file.

748 FOPEN Function � Chapter 4

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the
operating environment option in the FILENAME statement or
function. If no operating environment option is specified, it allows
writing new records at the beginning of the file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.
Default: I

record-length
is a numeric constant, variable, or expression that specifies the logical record length
of the file. To use the existing record length for the file, specify a length of 0, or do
not provide a value here.

record-format
is a character constant, variable, or expression that specifies the record format of the
file. To use the existing record format, do not specify a value here. Valid values are:

B data are to be interpreted as binary data.

D use default record format.

E use editable record format.

F file contains fixed length records.

P file contains printer carriage control in operating
environment-dependent record format. Note: For z/OS data sets
with FBA or VBA record format, specify ’P’ for the record-format
argument.

V file contains variable length records.

Note: If an argument is invalid, FOPEN returns 0, and you can obtain the text of
the corresponding error message from the SYSMSG function. Invalid arguments do not
produce a message in the SAS log and do not set the _ERROR_ automatic variable. �

Details
CAUTION:

Use OUTPUT mode with care. Opening an existing file for output overwrites the
current contents of the file without warning. �

The FOPEN function opens an external file for reading or updating and returns a file
identifier value that is used to identify the open file to other functions. You must
associate a fileref with the external file before calling the FOPEN function. FOPEN
returns a 0 if the file could not be opened. You can assign filerefs by using the
FILENAME statement or the FILENAME external file access function. Under some
operating environments, you can also assign filerefs by using system commands.

If you call the FOPEN function from a macro, then the result of the call is valid only
when it is passed to functions in a macro. If you call the FOPEN function from the
DATA step, then the result is valid only when it is passed to functions in the same
DATA step.

Operating Environment Information: It is good practice to use the FCLOSE function
at the end of a DATA step if you used FOPEN to open the file, even though using
FCLOSE might not be required in your operating environment. For more information
about FOPEN, see the SAS documentation for your operating environment. �

Functions and CALL Routines � FOPTNAME Function 749

Examples

Example 1: Opening a File Using Defaults This example assigns the fileref MYFILE to
an external file and attempts to open the file for input using all defaults. Note that in a
macro statement you do not enclose character strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));

Example 2: Opening a File without Using Defaults This example attempts to open a
file for input without using defaults. Note that in a macro statement you do not enclose
character strings in quotation marks.

%let fid=%sysfunc(fopen(file2,o,132,e));

Example 3: Handling Errors This example shows how to check for errors and write an
error message from the SYSMSG function.

data _null_;
f=fopen(’bad’,’?’);
if not f then do;

m=sysmsg();
put m;
abort;
end;
... more SAS statements ...

run;

See Also

Functions:

“DOPEN Function” on page 652

“FCLOSE Function” on page 670

“FILENAME Function” on page 680

“FILEREF Function” on page 682

“MOPEN Function” on page 913

“SYSMSG Function” on page 1117

Statement:

“FILENAME Statement” on page 1473

FOPTNAME Function

Returns the name of an item of information about a file.

Category: External Files

See: FOPTNAME Function in the documentation for your operating environment.

750 FOPTNAME Function � Chapter 4

Syntax
FOPTNAME(file-id,nval)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

nval
is a numeric constant, variable, or expression that specifies the number of the
information item.

Details
FOPTNAME returns a blank if an error occurred.

Operating Environment Information: The number, value, and type of information
items that are available depend on the operating environment. �

Examples

Example 1: Retrieving File Information Items and Writing Them to the Log This
example retrieves the system-dependent file information items that are available and
writes them to the log:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%let infonum=%sysfunc(foptnum(&fid));
%do j=1 %to &infonum;

%let name=%sysfunc(foptname(&fid,&j));
%let value=%sysfunc(finfo(&fid,&name));
%put File attribute &name equals &value;

%end;
%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

Example 2: Creating a Data Set with Names and Values of File Attributes This example
creates a data set that contains the name and value of the available file attributes:

data fileatt;
length name $ 20 value $ 40;
drop rc fid j infonum;
rc=filename("myfile","physical-filename");
fid=fopen("myfile");
infonum=foptnum(fid);
do j=1 to infonum;

name=foptname(fid,j);
value=finfo(fid,name);
put ’File attribute ’ name
’has a value of ’ value;
output;

Functions and CALL Routines � FOPTNUM Function 751

end;
rc=filename("myfile");

run;

See Also

Functions:

“DINFO Function” on page 648

“DOPTNAME Function” on page 653

“DOPTNUM Function” on page 655

“FCLOSE Function” on page 670

“FILENAME Function” on page 680

“FINFO Function” on page 734

“FOPEN Function” on page 747

“FOPTNUM Function” on page 751

“MOPEN Function” on page 913

FOPTNUM Function

Returns the number of information items that are available for an external file.

Category: External Files

See: FOPTNUM Function in the documentation for your operating environment.

Syntax
FOPTNUM(file-id)

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Details
Operating Environment Information: The number, value, and type of information
items that are available depend on the operating environment. �

Comparisons
� Use FOPTNAME to determine the names of the items that are available for a

particular operating environment.

� Use FINFO to retrieve the value of a particular information item.

752 FPOINT Function � Chapter 4

Examples

This example opens the external file with the fileref MYFILE and determines the
number of system-dependent file information items available:

%let fid=%sysfunc(fopen(myfile));
%let infonum=%sysfunc(foptnum(&fid));

See Also

Functions:
“DINFO Function” on page 648
“DOPTNAME Function” on page 653
“DOPTNUM Function” on page 655
“FINFO Function” on page 734
“FOPEN Function” on page 747
“FOPTNAME Function” on page 749
“MOPEN Function” on page 913

See the “Examples” on page 750 in the FOPTNAME Function.

FPOINT Function

Positions the read pointer on the next record to be read.

Category: External Files

Syntax
FPOINT(file-id,note-id)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

note-id
specifies the identifier that was assigned by the FNOTE function.

Details
FPOINT returns 0 if the operation was successful, or ≠0 if it was not successful.
FPOINT determines only the record to read next. It has no impact on which record is
written next. When you open the file for update, FWRITE writes to the most recently
read record.

Note: You cannot write a new record in place of the current record if the new record
has a length that is greater than the current record. �

Functions and CALL Routines � FPOINT Function 753

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it reads the records and uses NOTE3 to store the
position of the third record read. Later, it points back to NOTE3 to update the file, and
closes the file afterward:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf,u));
%if &fid > 0 %then

%do;
/* Read first record. */

%let rc=%sysfunc(fread(&fid));
/* Read second record. */

%let rc=%sysfunc(fread(&fid));
/* Read third record. */

%let rc=%sysfunc(fread(&fid));
/* Note position of third record. */

%let note3=%sysfunc(fnote(&fid));
/* Read fourth record. */

%let rc=%sysfunc(fread(&fid));
/* Read fifth record. */

%let rc=%sysfunc(fread(&fid));
/* Point to third record. */

%let rc=%sysfunc(fpoint(&fid,¬e3));
/* Read third record. */

%let rc=%sysfunc(fread(&fid));
/* Copy new text to FDB. */

%let rc=%sysfunc(fput(&fid,New text));
/* Update third record */
/* with data in FDB. */

%let rc=%sysfunc(fwrite(&fid));
/* Close file. */

%let rc=%sysfunc(fclose(&fid));
%end;

%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“DROPNOTE Function” on page 657
“FCLOSE Function” on page 670
“FILENAME Function” on page 680
“FNOTE Function” on page 745
“FOPEN Function” on page 747
“FPUT Function” on page 756
“FREAD Function” on page 757
“FREWIND Function” on page 758
“FWRITE Function” on page 763
“MOPEN Function” on page 913

754 FPOS Function � Chapter 4

FPOS Function

Sets the position of the column pointer in the File Data Buffer (FDB).

Category: External Files

Syntax
FPOS(file-id,nval)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

nval
is a numeric constant, variable, or expression that specifies the column at which to
set the pointer.

Details
FPOS returns 0 if the operation was successful, ≠0 if it was not successful. If you open
a file in output mode and the specified position is past the end of the current record, the
size of the record is increased appropriately. However, in a fixed block or VBA file, if
you specify a column position beyond the end of the record, the record size does not
change and the text string is not written to the file.

If you open a file in update mode and the specified position is not past the end of the
current record, then SAS writes the record to the file. If the specified position is past
the end of the current record, then SAS returns an error message and does not write
the new record:

ERROR: Cannot increase record length in update mode.

Note: If you use the update mode with the FOPEN function, then you must execute
FREAD before you execute FWRITE functions. �

Examples

This example assigns the fileref MYFILE to an external file and opens the file in
update mode. If the file is opened successfully, indicated by a positive value in the
variable FID, SAS reads a record and places data into the file’s buffer at column 12. If
the resulting record length is less than or equal to the original record length, then SAS
writes the record and closes the file. If the resulting record length is greater than the
original record length, then SAS writes an error message to the log.

%macro ptest;
%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,test.txt));
%let fid=%sysfunc(fopen(&filrf,o));

Functions and CALL Routines � FPOS Function 755

%let rc=%sysfunc(fread(&fid));
%put &fid;
%if (&fid > 0) %then

%do;
%let dataline=This is some data.;

/* Position at column 12 in the FDB. */
%let rc=%sysfunc(fpos(&fid,12));
%put &rc one;

/* Put the data in the FDB. */
%let rc=%sysfunc(fput(&fid,&dataline));
%put &rc two;
%if (&rc ne 0) %then

%do;
%put %sysfunc(sysmsg());

%end;
%else %do;

/* Write the record. */
%let rc=%sysfunc(fwrite(&fid));
%if (&rc ne 0) %then

%do;
%put write fails &rc;

%end;
%end;

/* Close the file. */
%let rc=%sysfunc(fclose(&fid));

%end;
%let rc=%sysfunc(filename(filrf));
%mend;
%ptest;

Output 4.48 Output from the FPOS Function

1
0 one
0 two

See Also

Functions:
“FCLOSE Function” on page 670
“FCOL Function” on page 671
“FILENAME Function” on page 680
“FOPEN Function” on page 747
“FPUT Function” on page 756
“FWRITE Function” on page 763
“MOPEN Function” on page 913

756 FPUT Function � Chapter 4

FPUT Function

Moves data to the File Data Buffer (FDB) of an external file, starting at the FDB’s current column
position.

Category: External Files

Syntax
FPUT(file-id,cval)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

cval
is a character constant, variable, or expression that specifies the file data.

Details
FPUT returns 0 if the operation was successful, ≠0 if it was not successful. The number
of bytes moved to the FDB is determined by the length of the variable. The value of the
column pointer is then increased to one position past the end of the new text.

Note: You cannot write a new record in place of the current record if the new record
has a length that is greater than the current record. �

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file in APPEND mode. If the file is opened successfully, indicated by a positive value in
the variable FID, it moves data to the FDB using FPUT, appends a record using
FWRITE, and then closes the file. Note that in a macro statement you do not enclose
character strings in quotation marks.

%macro ptest;
%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,test.txt));
%let fid=%sysfunc(fopen(&filrf,a));
%if &fid > 0 %then

%do;
%let rc=%sysfunc(fread(&fid));
%let mystring=This is some data.;
%let rc=%sysfunc(fput(&fid,&mystring));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

%end;

Functions and CALL Routines � FREAD Function 757

%else
%put %sysfunc(sysmsg());

%let rc=%sysfunc(filename(filrf));
%put return code = &rc;
%mend;
%ptest;

SAS writes the following output to the log:

return code = 0

See Also

Functions:
“FCLOSE Function” on page 670
“FILENAME Function” on page 680
“FNOTE Function” on page 745
“FOPEN Function” on page 747
“FPOINT Function” on page 752
“FPOS Function” on page 754
“FWRITE Function” on page 763
“MOPEN Function” on page 913
“SYSMSG Function” on page 1117

FREAD Function

Reads a record from an external file into the File Data Buffer (FDB).

Category: External Files

Syntax
FREAD(file-id)

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Details
FREAD returns 0 if the operation was successful, ≠0 if it was not successful. The
position of the file pointer is updated automatically after the read operation so that
successive FREAD functions read successive file records.

To position the file pointer explicitly, use FNOTE, FPOINT, and FREWIND.

758 FREWIND Function � Chapter 4

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file opens successfully, it lists all of the file’s records in the log:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%if &fid > 0 %then

%do %while(%sysfunc(fread(&fid)) = 0);
%let rc=%sysfunc(fget(&fid,c,200));

%put &c;
%end;

%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“FCLOSE Function” on page 670
“FGET Function” on page 677
“FILENAME Function” on page 680
“FNOTE Function” on page 745
“FOPEN Function” on page 747
“FREWIND Function” on page 758
“FREWIND Function” on page 758
“MOPEN Function” on page 913

FREWIND Function
Positions the file pointer to the start of the file.

Category: External Files

Syntax
FREWIND(file-id)

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Details
FREWIND returns 0 if the operation was successful, ≠0 if it was not successful.
FREWIND has no effect on a file opened with sequential access.

Functions and CALL Routines � FRLEN Function 759

Examples

This example assigns the fileref MYFILE to an external file. Then it opens the file
and reads the records until the end of the file is reached. The FREWIND function then
repositions the pointer to the beginning of the file. The first record is read again and
stored in the File Data Buffer (FDB). The first token is retrieved and stored in the
macro variable VAL:

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

physical-filename));
%let fid=%sysfunc(fopen(&filrf));
%let rc=0;
%do %while (&rc ne −1);

/* Read a record. */
%let rc=%sysfunc(fread(&fid));

%end;
/* Reposition pointer to beginning of file. */

%if &rc = −1 %then
%do;

%let rc=%sysfunc(frewind(&fid));
/* Read first record. */

%let rc=%sysfunc(fread(&fid));
/* Read first token */
/* into macro variable VAL. */

%let rc=%sysfunc(fget(&fid,val));
%put val=&val;

%end;
%else
%put Error on fread=%sysfunc(sysmsg());

%let rc=%sysfunc(fclose(&fid));
%let rc=%sysfunc(filename(filrf));

See Also

Functions:
“FCLOSE Function” on page 670
“FGET Function” on page 677
“FILENAME Function” on page 680
“FOPEN Function” on page 747
“FREAD Function” on page 757
“MOPEN Function” on page 913
“SYSMSG Function” on page 1117

FRLEN Function

Returns the size of the last record that was read, or, if the file is opened for output, returns the
current record size.

Category: External Files

760 FSEP Function � Chapter 4

Syntax
FRLEN(file-id)

Argument

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

Examples

This example opens the file that is identified by the fileref MYFILE. It determines
the minimum and maximum length of records in the external file and writes the results
to the log:

%let fid=%sysfunc(fopen(myfile));
%let min=0;
%let max=0;
%if (%sysfunc(fread(&fid)) = 0) %then

%do;
%let min=%sysfunc(frlen(&fid));
%let max=&min;
%do %while(%sysfunc(fread(&fid)) = 0);

%let reclen=%sysfunc(frlen(&fid));
%if (&reclen > &max) %then

%let max=&reclen;
%if (&reclen < &min) %then

%let min=&reclen;
%end;

%end;
%let rc=%sysfunc(fclose(&fid));
%put max=&max min=&min;

See Also

Functions:
“FCLOSE Function” on page 670
“FOPEN Function” on page 747

“FREAD Function” on page 757
“MOPEN Function” on page 913

FSEP Function

Sets the token delimiters for the FGET function.

Functions and CALL Routines � FSEP Function 761

Category: External Files

Syntax
FSEP(file-id,characters<,’x’ |’X’>)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

character
is a character constant, variable, or expression that specifies one or more delimiters
that separate items in the File Data Buffer (FDB). Each character listed is a
delimiter. That is, if character is #@, either # or @ can separate items. Multiple
consecutive delimiters, such as @#@, are treated as a single delimiter.
Default: blank

’x’ | ’X’
specifies that the character delimiter is a hexadecimal value.
Restriction: ’x’ and ’X’ are the only valid values for this argument. All other values

will cause an error to occur.
Restriction: If you pass ’x’ or ’X’ as the third argument, a valid hexadecimal string

must be passed as the second argument, character. Otherwise, the function will
fail. A valid hexadecimal string is an even number of 0–9 and A–F characters.

Tip: If you use a macro statement, then quotation marks enclosing x or X are not
required.

Details
FSEP returns 0 if the operation was successful, ≠0 if it was not successful.

Examples

An external file has data in this form:

John J. Doe,Male,25,Weight Lifter
Pat O’Neal,Female,22,Gymnast

Note that each field is separated by a comma.

This example reads the file that is identified by the fileref MYFILE, using the comma
as a separator, and writes the values for NAME, GENDER, AGE, and WORK to the
SAS log. Note that in a macro statement you do not enclose character strings in
quotation marks, but a literal comma in a function argument must be enclosed in a
macro quoting function such as %STR.

%let fid=%sysfunc(fopen(myfile));
%let rc=%sysfunc(fsep(&fid,%str(,)));
%do %while(%sysfunc(fread(&fid)) = 0);

%let rc=%sysfunc(fget(&fid,name));
%let rc=%sysfunc(fget(&fid,gender));

762 FUZZ Function � Chapter 4

%let rc=%sysfunc(fget(&fid,age));
%let rc=%sysfunc(fget(&fid,work));
%put name=%bquote(&name) gender=&gender

age=&age work=&work;
%end;
%let rc=%sysfunc(fclose(&fid));

See Also

Functions:
“FCLOSE Function” on page 670
“FGET Function” on page 677
“FOPEN Function” on page 747
“FREAD Function” on page 757
“MOPEN Function” on page 913

FUZZ Function
Returns the nearest integer if the argument is within 1E−12 of that integer.

Category: Truncation

Syntax
FUZZ(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The FUZZ function returns the nearest integer value if the argument is within 1E−12 of
the integer (that is, if the absolute difference between the integer and argument is less
than 1E−12). Otherwise, the argument is returned.

Examples

SAS Statements Results

var1=5.9999999999999;
x=fuzz(var1);
put x 16.14 6.000000000000000

x=fuzz(5.99999999);
put x 16.14; 5.999999990000000

Functions and CALL Routines � FWRITE Function 763

FWRITE Function

Writes a record to an external file.

Category: External Files

Syntax
FWRITE(file-id<,cc>)

Arguments

file-id
is a numeric variable that specifies the identifier that was assigned when the file was
opened, generally by the FOPEN function.

cc
is a character constant, variable, or expression that specifies a carriage-control
character:

blank starts the record on a new line.

0 skips one blank line before a new line.

- skips two blank lines before a new line.

1 starts the line on a new page.

+ overstrikes the line on a previous line.

P interprets the line as a computer prompt.

= interprets the line as carriage control information.

all else starts the line record on a new line.

Details
FWRITE returns 0 if the operation was successful, ≠0 if it was not successful. FWRITE
moves text from the File Data Buffer (FDB) to the external file. In order to use the
carriage control characters, you must open the file with a record format of P (print
format) in FOPEN.

Note: When you use the update mode, you must execute FREAD before you execute
FWRITE. You cannot write a new record in place of the current record if the new record
has a length that is greater than the current record. �

Examples

This example assigns the fileref MYFILE to an external file and attempts to open the
file. If the file is opened successfully, it writes the numbers 1 to 50 to the external file,
skipping two blank lines. Note that in a macro statement you do not enclose character
strings in quotation marks.

%let filrf=myfile;
%let rc=%sysfunc(filename(filrf,

764 GAMINV Function � Chapter 4

physical-filename));
%let fid=%sysfunc(fopen(&filrf,o,0,P));

%do i=1 %to 50;
%let rc=%sysfunc(fput(&fid,

%sysfunc(putn(&i,2.))));

%if (%sysfunc(fwrite(&fid,-)) ne 0) %then
%put %sysfunc(sysmsg());

%end;

%let rc=%sysfunc(fclose(&fid));

See Also

Functions:
“FAPPEND Function” on page 669
“FCLOSE Function” on page 670
“FGET Function” on page 677
“FILENAME Function” on page 680
“FOPEN Function” on page 747
“FPUT Function” on page 756
“SYSMSG Function” on page 1117

GAMINV Function
Returns a quantile from the gamma distribution.

Category: Quantile

Syntax
GAMINV(p,a)

Arguments

p
is a numeric probability.
Range: 0 ≤ p < 1

a
is a numeric shape parameter.
Range: a > 0

Details
The GAMINV function returns the pth quantile from the gamma distribution, with
shape parameter a. The probability that an observation from a gamma distribution is
less than or equal to the returned quantile is p.

Functions and CALL Routines � GAMMA Function 765

Note: GAMINV is the inverse of the PROBGAM function. �

Examples

SAS Statements Results

q1=gaminv(0.5,9); 8.6689511844

q2=gaminv(0.1,2.1); 0.5841932369

See Also

Functions:

“QUANTILE Function” on page 1033

GAMMA Function

Returns the value of the gamma function.

Category: Mathematical

Syntax
GAMMA(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Restriction: Nonpositive integers are invalid.

Details
The GAMMA function returns the integral given by

�������� �

��

�

�
���

�
��

���

For positive integers, GAMMA(x) is (x − 1)!. This function is commonly denoted by
� ���.

766 GARKHCLPRC Function � Chapter 4

Examples

SAS Statements Results

x=gamma(6); 120

GARKHCLPRC Function

Calculates call prices for European options on stocks, based on the Garman-Kohlhagen model.

Category: Financial

Syntax
GARKHCLPRC(E, t, S, Rd, Rf, sigma)

Arguments

E
is a non-missing, positive value that specifies the exercise price.
Requirement: Specify E and S in the same units.

t
is a non-missing value that specifies the time to maturity.

S
is a non-missing, positive value that specifies the spot currency price.
Requirement: Specify S and E in the same units.

Rd

is a non-missing, positive fraction that specifies the risk-free domestic interest rate
for period t.
Requirement: Specify a value for Rd for the same time period as the unit of t.

Rf

is a non-missing, positive fraction that specifies the risk-free foreign interest rate for
period t.
Requirement: Specify a value for Rf for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility of the currency rate.
Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The GARKHCLPRC function calculates the call prices for European options on stocks,
based on the Garman-Kohlhagen model. The function is based on the following
relationship:

Functions and CALL Routines � GARKHCLPRC Function 767

���� � �� ����

�
�
��� �

�
� �� ����

�
�
����

�

where

S specifies the spot currency price.

N specifies the cumulative normal density function.

E specifies the exercise price of the option.

t specifies the time to expiration.

Rd specifies the risk-free domestic interest rate for period t.

Rf specifies the risk-free foreign interest rate for period t.

�� �

�
��
�
�
�

�
�
�
�� ��� �

��

�

�
�
�

�
�
�

�� � �� � �
�
�

where

� specifies the volatility of the underlying asset.

�� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

���� � ��� ��� � �� � 	�

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The GARKHCLPRC function calculates the call prices for European options on stocks,
based on the Garman-Kohlhagen model. The GARKHPTPRC function calculates the
put prices for European options on stocks, based on the Garman-Kohlhagen model.
These functions return a scalar value.

Examples

SAS Statements Results

----+----1----+-----2--

a=garkhclprc(1000, .5, 950, 4, 4, 2);
put a; 65.335687119

b=garkhclprc(850, 1.2, 125, 5, 3, 1);
put b; 1.9002767538

768 GARKHPTPRC Function � Chapter 4

SAS Statements Results

c=garkhclprc(7500, .9, 950, 3, 2, 2);
put c; 69.328647279

d=garkhclprc(5000, -.5, 237, 3, 3, 2);
put d; 0

See Also

Function:
“GARKHPTPRC Function” on page 768

GARKHPTPRC Function

Calculates put prices for European options on stocks, based on the Garman-Kohlhagen model.

Category: Financial

Syntax
GARKHPTPRC(E, t, S, Rd, Rf, sigma)

Arguments

E
is a non-missing, positive value that specifies the exercise price.
Requirement: Specify E and S in the same units.

t
is a non-missing value that specifies the time to maturity.

S
is a non-missing, positive value that specifies the spot currency price.
Requirement: Specify S and E in the same units.

Rd

is a non-missing, positive fraction that specifies the risk-free domestic interest rate
for period t.
Requirement: Specify a value for Rd for the same time period as the unit of t.

Rf

is a non-missing, positive fraction that specifies the risk-free foreign interest rate for
period t.
Requirement: Specify a value for Rt for the same time period as the unit of t.

sigma
is a non-missing, positive fraction that specifies the volatility of the currency rate.

Functions and CALL Routines � GARKHPTPRC Function 769

Requirement: Specify a value for sigma for the same time period as the unit of t.

Details
The GARKHPTPRC function calculates the put prices for European options on stocks,
based on the Garman-Kohlhagen model. The function is based on the following
relationship:

��� � ����� �

�
�
��� �

�
� �

�
�
����

�

where

S specifies the spot currency price.

E specifies the exercise price of the option.

t specifies the time to expiration.

Rd specifies the risk-free domestic interest rate for period t.

Rf specifies the risk-free foreign interest rate for period t.

�� �

�
��
�
�
�

�
�

�
�� ��� �

��

�

�
�
�

�
�
�

�� � �� � �
�
�

where

� specifies the volatility of the underlying asset.

�� specifies the variance of the rate of return.

For the special case of t=0, the following equation is true:

��� � ��� ��� � �� � ��

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The GARKHPTPRC function calculates the put prices for European options on stocks,
based on the Garman-Kohlhagen model. The GARKHCLPRC function calculates the
call prices for European options on stocks, based on the Garman-Kohlhagen model.
These functions return a scalar value.

Examples

SAS Statements Results

----+----1----+-----2--

a=garkhptprc(1000, .5. 950, 4, 4, 2):
put a; 72.102451281

b=garkhptprc(850, 1.2. 125, 5, 3, 1):
put b; 0.5917507981

770 GCD Function � Chapter 4

SAS Statements Results

c=garkhptprc(7500, .9. 950, 3, 2, 2):
put c; 416.33604902

d=garkhptprc(5000, -.5, 237, 3, 3, 2):
put d; 0

See Also

Function:
“GARKHCLPRC Function” on page 766

GCD Function

Returns the greatest common divisor for one or more integers.

Category: Mathematical

Syntax
GCD(x1, x2, x3, …, xn)

Arguments

x
specifies a numeric constant, variable, or expression that has an integer value.

Details
The GCD (greatest common divisor) function returns the greatest common divisor of
one or more integers. For example, the greatest common divisor for 30 and 42 is 6. The
greatest common divisor is also called the highest common factor.

If any of the arguments are missing, then the returned value is a missing value.

Examples

The following example returns the greatest common divisor of the integers 10 and 15.

data _null_;
x=gcd(10, 15);
put x=;

run;

SAS writes the following output to the log:

x=5

Functions and CALL Routines � GEODIST Function 771

See Also

Functions:
“LCM Function” on page 860

GEODIST Function

Returns the geodetic distance between two latitude and longitude coordinates.

Category: Distance

Syntax
GEODIST(latitude-1, longitude-1, latitude-2, longitude-2 <,options>)

Arguments

latitude
is a numeric constant, variable, or expression that specifies the coordinate of a given
position north or south of the equator. Coordinates that are located north of the
equator have positive values; coordinates that are located south of the equator have
negative values.
Restriction: If the value is expressed in degrees, it must be between 90 and –90. If

the value is expressed in radians, it must be between pi/2 and –pi/2.

longitude
is a numeric constant, variable, or expression that specifies the coordinate of a given
position east or west of the prime meridian, which runs through Greenwich,
England. Coordinates that are located east of the prime meridian have positive
values; coordinates that are located west of the prime meridian have negative values.
Restriction: If the value is expressed in degrees, it must be between 180 and –180.

If the value is expressed in radians, it must be between pi and –pi.

option
specifies a character constant, variable, or expression that contains any of the
following characters:

M specifies distance in miles.

K specifies distance in kilometers. K is the default value for
distance.

D specifies that input values are expressed in degrees. D is the
default for input values.

R specifies that input values are expressed in radians.

Details
The GEODIST function computes the geodetic distance between any two arbitrary
latitude and longitude coordinates. Input values can be expressed in degrees or in
radians.

772 GEODIST Function � Chapter 4

Examples

Example 1: Calculating the Geodetic Distance in Kilometers The following example
shows the geodetic distance in kilometers between Mobile, AL (latitude 30.68 N,
longitude 88.25 W), and Asheville, NC (latitude 35.43 N, longitude 82.55 W). The
program uses the default K option.

data _null_;
distance=geodist(30.68, -88.25, 35.43, -82.55);
put ’Distance= ’ distance ’kilometers’;

run;

SAS writes the following output to the log:

Distance= 748.6529147 kilometers

Example 2: Calculating the Geodetic Distance in Miles The following example uses
the M option to compute the geodetic distance in miles between Mobile, AL (latitude
30.68 N, longitude 88.25 W), and Asheville, NC (latitude 35.43 N, longitude 82.55 W).

data _null_;
distance=geodist(30.68, -88.25, 35.43, -82.55, ’M’);
put ’Distance = ’ distance ’miles’;

run;

SAS writes the following output to the log:

Distance = 465.29081088 miles

Example 3: Calculating the Geodetic Distance with Input Measured in Degrees The
following example uses latitude and longitude values that are expressed in degrees to
compute the geodetic distance between two locations. Both the D and the M options are
specified in the program.

data _null_;
input lat1 long1 lat2 long2;
Distance = geodist(lat1,long1,lat2,long2,’DM’);
put ’Distance = ’ Distance ’miles’;
datalines;

35.2 -78.1 37.6 -79.8
;
run;

SAS writes the following output to the log:

Distance = 190.72474282 miles

Example 4: Calculating the Geodetic Distance with Input Measured in Radians The
following example uses latitude and longitude values that are expressed in radians to
compute the geodetic distance between two locations. The program converts degrees to
radians before executing the GEODIST function. Both the R and the M options are
specified in this program.

data _null_;
input lat1 long1 lat2 long2;
pi = constant(’pi’);
lat1 = (pi*lat1)/180;
long1 = (pi*long1)/180;
lat2 = (pi*lat2)/180;
long2 = (pi*long2)/180;

Functions and CALL Routines � GEOMEAN Function 773

Distance = geodist(lat1,long1,lat2,long2,’RM’);
put ’Distance= ’ Distance ’miles’;
datalines;

35.2 -78.1 37.6 -79.8
;
run;

SAS writes the following output to the log:

Distance= 190.72474282 miles

References
Vincenty, T. 1975. "Direct and Inverse Solutions of Geodesics on the Ellipsoid with

Application of Nested Equations." Survey Review 22:88–93.

GEOMEAN Function

Returns the geometric mean.

Category: Descriptive Statistics

Syntax
GEOMEAN(argument<,argument,…>)

Arguments

argument
is a non-negative numeric constant, variable, or expression.

Tip: The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MEAN function returns the arithmetic mean (average), and the HARMEAN
function returns the harmonic mean, whereas the GEOMEAN function returns the
geometric mean of the non-missing values. Unlike GEOMEANZ, GEOMEAN fuzzes the
values of the arguments that are approximately zero.

Details
If any argument is negative, then the result is a missing value. A message appears in
the log that the negative argument is invalid, and _ERROR_ is set to 1. If any
argument is zero, then the geometric mean is zero. If all the arguments are missing
values, then the result is a missing value. Otherwise, the result is the geometric mean
of the non-missing values.

Let � be the number of arguments with non-missing values, and let ��� ��� � � � � ��

be the values of those arguments. The geometric mean is the �
�� root of the product of

the values:

774 GEOMEANZ Function � Chapter 4

�

�
��� � �� � � � � � ���

Equivalently, the geometric mean is

���

�
���� ���� 	 ��� ���� 	 � � � 	 ��� ��

���

�

�

Floating-point arithmetic often produces tiny numerical errors. Some computations
that result in zero when exact arithmetic is used might result in a tiny non-zero value
when floating-point arithmetic is used. Therefore, GEOMEAN fuzzes the values of
arguments that are approximately zero. When the value of one argument is extremely
small relative to the largest argument, then the former argument is treated as zero. If
you do not want SAS to fuzz the extremely small values, then use the GEOMEANZ
function.

Examples

SAS Statements Results

x1=geomean(1,2,2,4); 2

x2=geomean(.,2,4,8); 4

x3=geomean(of x1-x2); 2.8284271247

See Also

Function:
“GEOMEANZ Function” on page 774
“HARMEAN Function” on page 783
“HARMEANZ Function” on page 785
“MEAN Function” on page 902

GEOMEANZ Function

Returns the geometric mean, using zero fuzzing.

Category: Descriptive Statistics

Syntax
GEOMEANZ(argument<,argument,…>)

Arguments

Functions and CALL Routines � GEOMEANZ Function 775

argument
is a non-negative numeric constant, variable, or expression.

Tip: The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MEAN function returns the arithmetic mean (average), and the HARMEAN
function returns the harmonic mean, whereas the GEOMEANZ function returns the
geometric mean of the non-missing values. Unlike GEOMEAN, GEOMEANZ does not
fuzz the values of the arguments that are approximately zero.

Details
If any argument is negative, then the result is a missing value. A message appears in
the log that the negative argument is invalid, and _ERROR_ is set to 1. If any
argument is zero, then the geometric mean is zero. If all the arguments are missing
values, then the result is a missing value. Otherwise, the result is the geometric mean
of the non-missing values.

Let � be the number of arguments with non-missing values, and let ��� ��� � � � � ��

be the values of those arguments. The geometric mean is the �
�� root of the product of

the values:

�

�
��� � �� � � � � � ���

Equivalently, the geometric mean is

���

�
���� ���� 	 ��� ���� 	 � � � 	 ��� �����

�

�

Examples

SAS Statements Results

x1=geomeanz(1,2,2,4); 2

x2=geomeanz(.,2,4,8); 4

x3=geomeanz(of x1-x2); 2.8284271247

See Also

Function:

“GEOMEAN Function” on page 773

“HARMEAN Function” on page 783

“HARMEANZ Function” on page 785

“MEAN Function” on page 902

776 GETOPTION Function � Chapter 4

GETOPTION Function

Returns the value of a SAS system or graphics option.

Category: Special

Syntax
GETOPTION(option-name<,reporting-options<,…>>)

Arguments

option-name
is a character constant, variable, or expression that specifies the name of the system
option.

Tip: Do not put an equal sign after the name. For example, write PAGESIZE= as
PAGESIZE.

Tip: SAS options that are passwords, such as EMAILPW and METAPASS, return
the value xxxxxxxx, and not the actual password.

reporting-options
is a character constant, variable, or expression that specifies the reporting options.
You can separate the options with blanks, or you can specify each reporting option as
a separate argument to the GETOPTION function. The following is a list of reporting
options:

IN reports graphic units of measure in inches.

CM reports graphic units of measure in centimeters.

EXPAND |
KEYEXPAND

for options that contain environment variables or keywords,
returns the value of the environment variable or keyword in the
option value.

HOWSET returns a character string that specifies how an option value was
set.

Restriction: HOWSET is valid only for SAS system options. SAS
issues an error message when the HOWSET option is specified
and option-name is a graphics option.

HOWSCOPE returns a character string that specifies the scope of an option.

Restriction: HOWSCOPE is valid only for SAS system options.
SAS issues an error message when the HOWSCOPE option is
specified and option-name is a graphics option.

KEYWORD returns option values in a KEYWORD= format that would be
suitable for direct use in the SAS OPTIONS or GOPTIONS global
statements.

Note: For a system option with a null value, the GETOPTION
function returns a value of ’’(single quotation marks with a blank
space between them), for example EMAILID=’ ’. �

Functions and CALL Routines � GETOPTION Function 777

Examples

Example 1: Using GETOPTION to Save and Restore the YEARCUTOFF Option This
example saves the initial value of the YEARCUTOFF option and then resets the value
to 1920. The DATA step that follows verifies the option setting and performs date
processing. When the DATA step ends, the YEARCUTOFF option is set to its original
value.

%let cutoff=%sysfunc(getoption
(yearcutoff,keyword));

options yearcutoff=1920;
data ages;
if getoption(’yearcutoff’) = ’1920’ then

do;
...more statements...

end;
else put ’Set Option YEARCUTOFF to 1920’;

run;

options &cutoff;

Example 2: Using GETOPTION to Obtain Different Reporting Options This example
defines a macro to illustrate the use of the GETOPTION function to obtain the value of
system and graphics options by using different reporting options.

%macro showopts;
%put MAPS= %sysfunc(

getoption(MAPS));
%put MAPSEXPANDED= %sysfunc(

getoption(MAPS, EXPAND));
%put PAGESIZE= %sysfunc(

getoption(PAGESIZE));
%put PAGESIZESETBY= %sysfunc(

getoption(PAGESIZE, HOWSET));
%put PAGESIZESCOPE= %sysfunc(

getoption(PAGESIZE, HOWSCOPE));
%put PS= %sysfunc(

getoption(PS));
%put LS= %sysfunc(

getoption(LS));
%put PS(keyword form)= %sysfunc(

getoption(PS,keyword));
%put LS(keyword form)= %sysfunc(

getoption(LS,keyword));
%put FORMCHAR= %sysfunc(

getoption(FORMCHAR));
%put HSIZE= %sysfunc(

getoption(HSIZE));
%put VSIZE= %sysfunc(

getoption(VSIZE));
%put HSIZE(in/keyword form)= %sysfunc(

getoption(HSIZE,in,keyword));
%put HSIZE(cm/keyword form)= %sysfunc(

getoption(HSIZE,cm,keyword));
%put VSIZE(in/keyword form)= %sysfunc(

getoption(VSIZE,in,keyword));

778 GETVARC Function � Chapter 4

%put HSIZE(cm/keyword form)= %sysfunc(
getoption(VSIZE,cm,keyword));

%mend;
goptions VSIZE=8.5 in HSIZE=11 in;
options PAGESIZE=67;

%showopts

The following is SAS output from the example.

MAPS= !SASROOT\MAPS
MAPSEXPANDED= (’C:\PROGRAM FILES\SAS\SAS 9.1\MAPS’)
PAGESIZE= 67
PAGESIZESETBY= OPTIONS STATEMENT
PAGESIZESCOPE= DMS PROCESS
PS= 23
LS= 76
PS(keyword form)= PS=23
LS(keyword form)= LS=76
FORMCHAR= |----|+|---+=|-/\<>*
HSIZE= 11.0000 in.
VSIZE= 8.5000 in.
HSIZE(in/keyword form)= HSIZE=11.0000 in.
HSIZE(cm/keyword form)= HSIZE=27.9400 cm.
VSIZE(in/keyword form)= VSIZE=8.5000 in.
HSIZE(cm/keyword form)= VSIZE=21.5900 cm.

Note: The default settings for the PAGESIZE= and the LINESIZE= options depend
on the mode you use to run SAS. �

GETVARC Function

Returns the value of a SAS data set character variable.

Category: SAS File I/O

Syntax
GETVARC(data-set-id,var-num)

Arguments

data-set-id
is a numeric constant, variable, or expression that specifies the data set identifier
that the OPEN function returns.

var-num
is a numeric constant, variable, or expression that specifies the number of the
variable in the Data Set Data Vector (DDV).

Functions and CALL Routines � GETVARN Function 779

Tip: You can obtain this value by using the VARNUM function.
Tip: This value is listed next to the variable when you use the CONTENTS

procedure.

Details
Use VARNUM to obtain the number of a variable in a SAS data set. VARNUM can be
nested or it can be assigned to a variable that can then be passed as the second
argument, as shown in the following examples. GETVARC reads the value of a
character variable from the current observation in the Data Set Data Vector (DDV) into
a macro or DATA step variable.

Examples
� This example opens the SASUSER.HOUSES data set and gets the entire tenth

observation. The data set identifier value for the open data set is stored in the
macro variable MYDATAID. This example nests VARNUM to return the position of
the variable in the DDV, and reads in the value of the character variable STYLE.

%let mydataid=%sysfunc(open
(sasuser.houses,i));

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let style=%sysfunc(getvarc(&mydataid,

%sysfunc(varnum
(&mydataid,STYLE))));

%let rc=%sysfunc(close(&mydataid));

� This example assigns VARNUM to a variable that can then be passed as the
second argument. This example fetches data from observation 10.

%let namenum=%sysfunc(varnum(&mydataid,NAME));
%let rc=%sysfunc(fetchobs(&mydataid,10));
%let user=%sysfunc(getvarc

(&mydataid,&namenum));

See Also

Functions:
“FETCH Function” on page 674
“FETCHOBS Function” on page 675
“GETVARN Function” on page 779
“VARNUM Function” on page 1150

GETVARN Function

Returns the value of a SAS data set numeric variable.

Category: SAS File I/O

Syntax
GETVARN(data-set-id,var-num)

780 GETVARN Function � Chapter 4

Arguments

data-set-id
is a numeric constant, variable, or expression that specifies the data set identifier
that the OPEN function returns.

var-num
is a numeric constant, variable, or expression that specifies the number of the
variable in the Data Set Data Vector (DDV).

Tip: You can obtain this value by using the VARNUM function.

Tip: This value is listed next to the variable when you use the CONTENTS
procedure.

Details

Use VARNUM to obtain the number of a variable in a SAS data set. You can nest
VARNUM or you can assign it to a variable that can then be passed as the second
argument, as shown in the "Examples" section. GETVARN reads the value of a numeric
variable from the current observation in the Data Set Data Vector (DDV) into a macro
variable or DATA step variable.

Examples

� This example obtains the entire tenth observation from a SAS data set. The data
set must have been previously opened using OPEN. The data set identifier value
for the open data set is stored in the variable MYDATAID. This example nests
VARNUM, and reads in the value of the numeric variable PRICE from the tenth
observation of an open SAS data set.

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let price=%sysfunc(getvarn(&mydataid,

%sysfunc(varnum
(&mydataid,price))));

� This example assigns VARNUM to a variable that can then be passed as the
second argument. This example fetches data from observation 10.

%let pricenum=%sysfunc(varnum
(&mydataid,price));

%let rc=%sysfunc(fetchobs(&mydataid,10));
%let price=%sysfunc(getvarn

(&mydataid,&pricenum));

See Also

Functions:

“FETCH Function” on page 674

“FETCHOBS Function” on page 675

“GETVARC Function” on page 778

“VARNUM Function” on page 1150

Functions and CALL Routines � GRAYCODE Function 781

GRAYCODE Function

Generates all subsets of n items in a minimal change order.

Category: Combinatorial
Restriction: The GRAYCODE function cannot be executed when you use the %SYSFUNC
macro.

Syntax
GRAYCODE(k, numeric-variable-1, ..., numeric-variable-n)

GRAYCODE(k, character-variable <, n <, in-out>>)

Arguments

k
specifies a numeric variable. Initialize k to either of the following values before
executing the GRAYCODE function:

� a negative number to cause GRAYCODE to initialize the subset to be empty
� the number of items in the initial set indicated by numeric-variable-1 through

numeric-variable-n, or character-variable, which must be an integer value
between 0 and n inclusive

The value of k is updated when GRAYCODE is executed. The value that is
returned is the number of items in the subset.

numeric-variable
specifies numeric variables that have values of 0 or 1 which are updated when
GRAYCODE is executed. A value of 1 for numeric-variable-j indicates that the jth

item is in the subset. A value of 0 for numeric-variable-j indicates that the jth item is
not in the subset.

If you assign a negative value to k before you execute GRAYCODE, then you do
not need to initialize numeric-variable-1 through numeric-variable-n before executing
GRAYCODE unless you want to suppress the note about uninitialized variables.

If you assign a value between 0 and n inclusive to k before you execute
GRAYCODE, then you must initialize numeric-variable-1 through numeric-variable-n
to k values of 1 and n-k values of 0.

character-variable
specifies a character variable that has a length of at least n characters. The first n
characters indicate which items are in the subset. By default, an "I" in the jth position
indicates that the jth item is in the subset, and an "O" in the jth position indicates that
the jth item is out of the subset. You can change the two characters by specifying the
in-out argument.

If you assign a negative value to k before you execute GRAYCODE, then you do
not need to initialize character-variable before executing GRAYCODE unless you
want to suppress the note about an uninitialized variable.

If you assign a value between 0 and n inclusive to k before you execute
GRAYCODE, then you must initialize character-variable to k characters that indicate
an item is in the subset, and n-k characters that indicate an item is out of the subset.

n

782 GRAYCODE Function � Chapter 4

specifies a numeric constant, variable, or expression. By default, n is the length of
character-variable.

in-out
specifies a character constant, variable, or expression. The default value is "IO." The
first character is used to indicate that an item is in the subset. The second character
is used to indicate that an item is out of the subset.

Details
When you execute GRAYCODE with a negative value of k, the subset is initialized to be
empty. The GRAYCODE function returns zero.

When you execute GRAYCODE with an integer value of k between 0 and n inclusive,
one item is either added to the subset or removed from the subset, and the value of k is
updated to equal the number of items in the subset. If the jth item is added to the
subset or removed from the subset, the GRAYCODE function returns j.

To generate all subsets of n items, you can initialize k to a negative value and
execute GRAYCODE in a loop that iterates 2**n times. If you want to start with a
non-empty subset, then initialize k to be the number of items in the subset, initialize
the other arguments to specify the desired initial subset, and execute GRAYCODE in a
loop that iterates 2**n-1 times. The sequence of subsets that are generated by
GRAYCODE is cyclical, so you can begin with any subset you want.

Examples

Example 1: Using n=4 Numeric Variables and Negative Initial k The following program
uses numeric variables to generate subsets in a minimal change order.

data _null_;
array x[4];
n=dim(x);
k=-1;
nsubs=2**n;
do i=1 to nsubs;

rc=graycode(k, of x[*]);
put i 5. +3 k= ’ x=’ x[*] +3 rc=;

end;
run;

SAS writes the following output to the log:

1 k=0 x=0 0 0 0 rc=0
2 k=1 x=1 0 0 0 rc=1
3 k=2 x=1 1 0 0 rc=2
4 k=1 x=0 1 0 0 rc=1
5 k=2 x=0 1 1 0 rc=3
6 k=3 x=1 1 1 0 rc=1
7 k=2 x=1 0 1 0 rc=2
8 k=1 x=0 0 1 0 rc=1
9 k=2 x=0 0 1 1 rc=4
10 k=3 x=1 0 1 1 rc=1
11 k=4 x=1 1 1 1 rc=2
12 k=3 x=0 1 1 1 rc=1
13 k=2 x=0 1 0 1 rc=3
14 k=3 x=1 1 0 1 rc=1
15 k=2 x=1 0 0 1 rc=2

Functions and CALL Routines � HARMEAN Function 783

16 k=1 x=0 0 0 1 rc=1

Example 2: Using a Character Variable and Positive Initial k The following example
uses a character variable to generate subsets in a minimal change order.

data _null_;
x=’++++’;
n=length(x);
k=countc(x, ’+’);
put ’ 1’ +3 k= +2 x=;
nsubs=2**n;
do i=2 to nsubs;

rc=graycode(k, x, n, ’+-’);
put i 5. +3 k= +2 x= +3 rc=;

end;
run;

SAS writes the following output to the log:

1 k=4 x=++++
2 k=3 x=-+++ rc=1
3 k=2 x=-+-+ rc=3
4 k=3 x=++-+ rc=1
5 k=2 x=+--+ rc=2
6 k=1 x=---+ rc=1
7 k=0 x=---- rc=4
8 k=1 x=+--- rc=1
9 k=2 x=++-- rc=2
10 k=1 x=-+-- rc=1
11 k=2 x=-++- rc=3
12 k=3 x=+++- rc=1
13 k=2 x=+-+- rc=2
14 k=1 x=--+- rc=1
15 k=2 x=--++ rc=4
16 k=3 x=+-++ rc=1

See Also

Functions and CALL Routines:

“CALL GRAYCODE Routine” on page 447

HARMEAN Function

Returns the harmonic mean.

Category: Descriptive Statistics

Syntax
HARMEAN(argument<,argument,…>)

784 HARMEAN Function � Chapter 4

Arguments

argument
is a non-negative numeric constant, variable, or expression.
Tip: The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MEAN function returns the arithmetic mean (average), and the GEOMEAN
function returns the geometric mean, whereas the HARMEAN function returns the
harmonic mean of the non-missing values. Unlike HARMEANZ, HARMEAN fuzzes the
values of the arguments that are approximately zero.

Details
If any argument is negative, then the result is a missing value. A message appears in
the log that the negative argument is invalid, and _ERROR_ is set to 1. If all the
arguments are missing values, then the result is a missing value. Otherwise, the result
is the harmonic mean of the non-missing values.

If any argument is zero, then the harmonic mean is zero. Otherwise, the harmonic
mean is the reciprocal of the arithmetic mean of the reciprocals of the values.

Let � be the number of arguments with non-missing values, and let ��� ��� � � � � ��be
the values of those arguments. The harmonic mean is

�

�

��

�
�

��

� � � � �
�

��

Floating-point arithmetic often produces tiny numerical errors. Some computations
that result in zero when exact arithmetic is used might result in a tiny non-zero value
when floating-point arithmetic is used. Therefore, HARMEAN fuzzes the values of
arguments that are approximately zero. When the value of one argument is extremely
small relative to the largest argument, then the former argument is treated as zero. If
you do not want SAS to fuzz the extremely small values, then use the HARMEANZ
function.

Examples

SAS Statements Results

x1=harmean(1,2,4,4); 2

x2=harmean(.,4,12,24); 8

x3=harmean(of x1-x2); 3.2

See Also

Function:
“GEOMEAN Function” on page 773

Functions and CALL Routines � HARMEANZ Function 785

“GEOMEANZ Function” on page 774
“HARMEANZ Function” on page 785
“MEAN Function” on page 902

HARMEANZ Function

Returns the harmonic mean, using zero fuzzing.

Category: Descriptive Statistics

Syntax
HARMEANZ(argument<,argument,…>)

Arguments

argument
is a non-negative numeric constant, variable, or expression.
Tip: The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MEAN function returns the arithmetic mean (average), and the GEOMEAN
function returns the geometric mean, whereas the HARMEANZ function returns the
harmonic mean of the non-missing values. Unlike HARMEAN, HARMEANZ does not
fuzz the values of the arguments that are approximately zero.

Details
If any argument is negative, then the result is a missing value. A message appears in
the log that the negative argument is invalid, and _ERROR_ is set to 1. If all the
arguments are missing values, then the result is a missing value. Otherwise, the result
is the harmonic mean of the non-missing values.

If any argument is zero, then the harmonic mean is zero. Otherwise, the harmonic
mean is the reciprocal of the arithmetic mean of the reciprocals of the values.

Let � be the number of arguments with non-missing values, and let ��� ��� � � � � ��be
the values of those arguments. The harmonic mean is

�

�

��

�
�

��

� � � � �
�

��

786 HBOUND Function � Chapter 4

Examples

SAS Statements Results

x1=harmeanz(1,2,4,4); 2

x2=harmeanz(.,4,12,24); 8

x3=harmeanz(of x1-x2); 3.2

See Also

Function:
“GEOMEAN Function” on page 773
“GEOMEANZ Function” on page 774
“HARMEAN Function” on page 783
“MEAN Function” on page 902

HBOUND Function

Returns the upper bound of an array.

Category: Array

Syntax
HBOUND<n>(array-name)

HBOUND(array-name,bound-n)

Arguments

n
is an integer constant that specifies the dimension for which you want to know the
upper bound. If no n value is specified, the HBOUND function returns the upper
bound of the first dimension of the array.

array-name
is the name of an array that was defined previously in the same DATA step.

bound-n
is a numeric constant, variable, or expression that specifies the dimension for which
you want to know the upper bound. Use bound-n only if n is not specified.

Details
The HBOUND function returns the upper bound of a one-dimensional array or the
upper bound of a specified dimension of a multidimensional array. Use HBOUND in

Functions and CALL Routines � HMS Function 787

array processing to avoid changing the upper bound of an iterative DO group each time
you change the bounds of the array. HBOUND and LBOUND can be used together to
return the values of the upper and lower bounds of an array dimension.

Comparisons
� HBOUND returns the literal value of the upper bound of an array dimension.
� DIM always returns a total count of the number of elements in an array dimension.

Note: This distinction is important when the lower bound of an array
dimension has a value other than 1 and the upper bound has a value other than
the total number of elements in the array dimension. �

Examples

Example 1: One-dimensional Array In this example, HBOUND returns the upper
bound of the dimension, a value of 5. Therefore, SAS repeats the statements in the DO
loop five times.

array big{5} weight sex height state city;
do i=1 to hbound(big5);

more SAS statements;
end;

Example 2: Multidimensional Array This example shows two ways of specifying the
HBOUND function for multidimensional arrays. Both methods return the same value
for HBOUND, as shown in the table that follows the SAS code example.

array mult{2:6,4:13,2} mult1-mult100;

Syntax Alternative Syntax Value

HBOUND(MULT) HBOUND(MULT,1) 6

HBOUND2(MULT) HBOUND(MULT,2) 13

HBOUND3(MULT) HBOUND(MULT,3) 2

See Also

Functions:
“DIM Function” on page 646
“LBOUND Function” on page 859

Statements:
“ARRAY Statement” on page 1395
“Array Reference Statement” on page 1400

“Array Processing” in SAS Language Reference: Concepts

HMS Function

Returns a SAS time value from hour, minute, and second values.

788 HOLIDAY Function � Chapter 4

Category: Date and Time

Syntax
HMS(hour,minute,second)

Arguments

hour
is numeric.

minute
is numeric.

second
is numeric.

Details
The HMS function returns a positive numeric value that represents a SAS time value.

Examples

The following SAS statements produce these results:

SAS Statements Results

hrid=hms(12,45,10);
put hrid
/ hrid time.;

45910
12:45:10

See Also

Functions:

“DHMS Function” on page 643

“HOUR Function” on page 791

“MINUTE Function” on page 905
“SECOND Function” on page 1087

HOLIDAY Function

Returns a SAS date value of a specified holiday for a specified year.

Category: Date and Time

Functions and CALL Routines � HOLIDAY Function 789

Syntax
HOLIDAY(’holiday’, year)

Arguments

’holiday’
is a character constant, variable, or expression that specifies one of the values listed
in the following table.

Values for holiday can be in uppercase or lowercase.

Table 4.5 Holidays Recognized By SAS

Holiday Value Description Date Celebrated

BOXING Boxing Day December 26

CANADA Canadian Independence Day July 1

CANADAOBSERVED Canadian Independence Day
observed

July 1, or July 2 if July 1 is
a Sunday

CHRISTMAS Christmas December 25

COLUMBUS Columbus Day 2nd Monday in October

EASTER Easter Sunday date varies

FATHERS Father’s Day 3rd Sunday in June

HALLOWEEN Halloween October 31

LABOR Labor Day 1st Monday in September

MLK Martin Luther King, Jr. ’s
birthday

3rd Monday in January
beginning in 1986

MEMORIAL Memorial Day last Monday in May (since
1971)

MOTHERS Mother’s Day 2nd Sunday in May

NEWYEAR New Year’s Day January 1

THANKSGIVING U.S. Thanksgiving Day 4th Thursday in November

THANKSGIVINGCANADA Canadian Thanksgiving Day 2nd Monday in October

USINDEPENDENCE U.S. Independence Day July 4

USPRESIDENTS Abraham Lincoln’s and George
Washington’s birthdays
observed

3rd Monday in February
(since 1971)

VALENTINES Valentine’s Day February 14

VETERANS Veterans Day November 11

VETERANSUSG Veterans Day - U.S.
government-observed

U.S. government-observed
date for Monday–Friday
schedule

790 HOLIDAY Function � Chapter 4

Holiday Value Description Date Celebrated

VETERANSUSPS Veterans Day - U.S. post office
observed

U.S. government-observed
date for Monday–Saturday
schedule (U.S. Post Office)

VICTORIA Victoria Day Monday on or preceding
May 24

year
is a numeric constant, variable, or expression that specifies a four-digit year. If you
use a two-digit year, then you must specify the YEARCUTOFF= system option.

Details
The HOLIDAY function computes the date on which a specific holiday occurs in a
specified year. Only certain common U.S. and Canadian holidays are defined for use
with this function. (See Table 4.5 on page 789 for a list of valid holidays.)

The HOLIDAY function returns a SAS date value. To convert the SAS date value to
a calendar date, use any valid SAS date format, such as the DATE9. format.

Comparisons
In some cases, the HOLIDAY function and the NWKDOM function return the same
result. For example, the statement HOLIDAY(’THANKSGIVING’, 2007); returns the
same value as NWKDOM(4, 5, 11, 2007);.

In other cases, the HOLIDAY function and the MDY function return the same result.
For example, the statement HOLIDAY(’CHRISTMAS’, 2007); returns the same value as
MDY(12, 25, 2007);.

Examples

The following examples give these results:

SAS Statements Results

thanks = holiday(’thanksgiving’, 2007);
format thanks date9.;
put thanks; 22NOV2007

boxing = holiday(’boxing’, 2007);
format boxing date9.;
put boxing; 26DEC2007

easter = holiday(’easter’, 2007);
format easter date9.;
put easter; 08APR2007

canada = holiday(’canada’, 2007);
format canada date9.;
put canada; 01JUL2007

fathers = holiday(’fathers’, 2007);
format fathers date9.;
put fathers; 17JUN2007

Functions and CALL Routines � HOUR Function 791

SAS Statements Results

valentines = holiday(’valentines’, 2007);
format valentines date9.;
put valentines; 14FEB2007

victoria = holiday(’victoria’, 2007);
format victoria date9.;
put victoria; 21MAY2007

See Also

Functions:

“NWKDOM Function” on page 953

“MDY Function” on page 901

HOUR Function

Returns the hour from a SAS time or datetime value.

Category: Date and Time

Syntax
HOUR(<time | datetime>)

Arguments

time
is a numeric constant, variable, or expression that specifies a SAS time value.

datetime
is a numeric constant, variable, or expression that specifies a SAS datetime value.

Details
The HOUR function returns a numeric value that represents the hour from a SAS time
or datetime value. Numeric values can range from 0 through 23. HOUR always returns
a positive number.

Examples

The following SAS statements produce these results:

792 HTMLDECODE Function � Chapter 4

SAS Statements Results

now=’1:30’t;
h=hour(now);
put h; 1

See Also

Functions:
“MINUTE Function” on page 905
“SECOND Function” on page 1087

HTMLDECODE Function

Decodes a string that contains HTML numeric character references or HTML character entity
references, and returns the decoded string.

Category: Web Tools
Restriction: “I18N Level 2” on page 313

Syntax
HTMLDECODE(expression)

Arguments

expression
specifies a character constant, variable, or expression.

Details
The HTMLDECODE function recognizes the following character entity references:

Character entity reference decoded character

& &

< <

> >

" "

' ’

Unrecognized entities (&<name>;) are left unmodified in the output string.

Functions and CALL Routines � HTMLENCODE Function 793

The HTMLDECODE function recognizes numeric entity references that are of the
form

&#nnn; where nnn specifies a decimal number that contains one or more
digits.

&#Xnnn; where nnn specifies a hexadecimal number that contains one or
more digits.

Operating Environment Information: Numeric character references that cannot be
represented in the current SAS session encoding will not be decoded. The reference will
be copied unchanged to the output string. �

Examples

SAS Statements Results

x1=htmldecode(’not a <tag>’); not a <tag>

x2=htmldecode(’&’); ’&’

x3=htmldecode (’ABC’); ’ABC’

See Also

Function:
“HTMLENCODE Function” on page 793

HTMLENCODE Function

Encodes characters using HTML character entity references, and returns the encoded string.

Category: Web Tools
Restriction: “I18N Level 2” on page 313

Syntax
HTMLENCODE(expression, <options>)

Arguments

expression
specifies a character constant, variable, or expression. By default, any greater-than
(>), less-than (<), and ampersand (&) characters are encoded as >, <, and
&, respectively. In SAS 9 only, this behavior can be modified with the options
argument.

794 HTMLENCODE Function � Chapter 4

Note: The encoded string can be longer than the output string. You should take
the additional length into consideration when you define your output variable. If the
encoded string exceeds the maximum length that is defined, the output string might
be truncated. �

options
is a character constant, variable, or expression that specifies the type of characters to
encode. If you use more than one option, separate the options by spaces. The
following options are available:

Option Character Character
Entity
Reference

Description

amp & &

gt > >

lt < <

The HTMLENCODE function encodes these
characters by default. If you need to encode
these characters only, then you do not need
to specify the options argument. However, if
you specify any value for the options
argument, then the defaults are overridden,
and you must explicitly specify the options
for all of the characters you want to encode.

apos ’ ' Use this option to encode the apostrophe (’)
character in text that is used in an HTML
or XML tag attribute.

quot " " Use this option to encode the double
quotation mark (") character in text that is
used in an HTML or XML tag attribute.

7bit any character that
is not represented
in 7-bit ASCII
encoding

&#xnnn;
(Unicode)

nnn is a one or more digit hexadecimal
number. Encode these characters to create
HTML or XML that is easily transferred
through communication paths that might
support only 7-bit ASCII encodings (for
example, ftp or e-mail).

Examples

SAS Statements Results

htmlencode("John’s test <tag>") John’s test <tag>

htmlencode("John’s test <tag>",’apos’) John's test <tag>

htmlencode(’John "Jon" Smith <tag>’,’quot’) John "Jon" Smith <tag>

Functions and CALL Routines � IBESSEL Function 795

SAS Statements Results

htmlencode("’A&B&C’",’amp lt gt apos’) 'A&B&C'

htmlencode(’80’x, ’7bit’)
(’80’x is the euro symbol in Western European locales.)

€
(20AC is the Unicode code point for
the euro symbol.)

See Also

Function:

“HTMLDECODE Function” on page 792

IBESSEL Function

Returns the value of the modified Bessel function.

Category: Mathematical

Syntax
IBESSEL(nu,x,kode)

Arguments

nu
specifies a numeric constant, variable, or expression.

Range: nu ≥ 0

x
specifies a numeric constant, variable, or expression.

Range: x ≥ 0

kode
is a numeric constant, variable, or expression that specifies a nonnegative integer.

Details
The IBESSEL function returns the value of the modified Bessel function of order nu
evaluated at x (Abramowitz, Stegun 1964; Amos, Daniel, Weston 1977). When kode
equals 0, the Bessel function is returned. Otherwise, the value of the following function
is returned:

�
��

��� ���

796 IFC Function � Chapter 4

Examples

SAS Statements Results

x=ibessel(2,2,0); 0.6889484477

x=ibessel(2,2,1); 0.0932390333

IFC Function

Returns a character value based on whether an expression is true, false, or missing.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
IFC(logical-expression, value-returned-when-true, value-returned-when-false

<,value-returned-when-missing>)

Arguments

logical-expression
specifies a numeric constant, variable, or expression.

value-returned-when-true
specifies a character constant, variable, or expression that is returned when the
value of logical-expression is true.

value-returned-when-false
specifies a character constant, variable, or expression that is returned when the
value of logical-expression is false.

value-returned-when-missing
specifies a character constant, variable, or expression that is returned when the
value of logical-expression is missing.

Details

Length of Returned Variable In a DATA step, if the IFC function returns a value to a
variable that has not previously been assigned a length, then that variable is given a
length of 200 bytes.

The Basics The IFC function uses conditional logic that enables you to select among
several values based on the value of a logical expression.

IFC evaluates the first argument, logical-expression. If logical-expression is true (that
is, not zero and not missing), then IFC returns the value in the second argument. If
logical-expression is a missing value, and you have a fourth argument, then IFC returns

Functions and CALL Routines � IFC Function 797

the value in the fourth argument. Otherwise, if logical-expression is false, IFC returns
the value in the third argument.

The IFC function is useful in DATA step expressions, and even more useful in
WHERE clauses and other expressions where it is not convenient or possible to use an
IF/THEN/ELSE construct.

Comparisons

The IFC function is similar to the IFN function except that IFC returns a character
value while IFN returns a numeric value.

Examples

In the following example, IFC evaluates the expression grade>80 to implement the
logic that determines the performance of several members on a team. The results are
written to the SAS log.

data _null_;
input name $ grade;
performance = ifc(grade>80, ’Pass ’, ’Needs Improvement’);
put name= performance=;
datalines;

John 74
Kareem 89
Kati 100
Maria 92
;

run;

Output 4.49 Partial SAS Log: IFC Function

name=John performance=Needs Improvement
name=Kareem performance=Pass
name=Kati performance=Pass
name=Maria performance=Pass

This example uses an IF/THEN/ELSE construct to generate the same output that is
generated by the IFC function. The results are written to the SAS log.

data _null_;
input name $ grade;
if grade>80 then performance=’Pass ’;

else performance = ’Needs Improvement’;
put name= performance=;
datalines;

John 74
Sam 89
Kati 100
Maria 92
;

run;

798 IFN Function � Chapter 4

Output 4.50 Partial SAS Log: IF/THEN/ELSE Construct

name=John performance=Needs Improvement
name=Sam performance=Pass
name=Kati performance=Pass
name=Maria performance=Pass

See Also

Functions:
“IFN Function” on page 798

IFN Function

Returns a numeric value based on whether an expression is true, false, or missing.

Category: Numeric
Restriction: “I18N Level 2” on page 313

Syntax
IFN(logical-expression, value-returned-when-true, value-returned-when-false

<,value-returned-when-missing>)

Arguments

logical-expression
specifies a numeric constant, variable, or expression.

value-returned-when-true
specifies a numeric constant, variable, or expression that is returned when the value
of logical-expression is true.

value-returned-when-false
specifies a numeric constant, variable, or expression that is returned when the value
of logical-expression is false.

value-returned-when-missing
specifies a numeric constant, variable or expression that is returned when the value
of logical-expression is missing.

Details
The IFN function uses conditional logic that enables you to select among several values
based on the value of a logical expression.

IFN evaluates the first argument, then logical-expression. If logical-expression is true
(that is, not zero and not missing), then IFN returns the value in the second argument.
If logical-expression is a missing value, and you have a fourth argument, then IFN

Functions and CALL Routines � IFN Function 799

returns the value in the fourth argument. Otherwise, if logical-expression is false, IFN
returns the value in the third argument.

The IFN function, an IF/THEN/ELSE construct, or a WHERE statement can produce
the same results. (See “Examples” on page 799.) However, the IFN function is useful in
DATA step expressions when it is not convenient or possible to use an IF/THEN/ELSE
construct or a WHERE statement.

Comparisons
The IFN function is similar to the IFC function, except that IFN returns a numeric
value whereas IFC returns a character value.

Examples

Example 1: Calculating Sales Commission The following examples show how to
calculate sales commission using the IFN function, an IF/THEN/ELSE construct, and a
WHERE statement. In each of the examples, the commission that is calculated is the
same.

Calculating Commission Using the IFN Function In the following example, IFN
evaluates the expression TotalSales > 10000. If total sales exceeds $10,000, then the
sales commission is 5% of the total sales. If total sales is less than $10,000, then the
sales commission is 2% of the total sales.

data _null_;
input TotalSales;
commission=ifn(TotalSales > 10000, TotalSales*.05, TotalSales*.02);
put commission=;
datalines;

25000
10000
500
10300
;

run;

SAS writes the following output to the log:

commission=1250
commission=200
commission=10
commission=515

Calculating Commission Using an IF/THEN/ELSE Construct In the following example,
an IF/THEN/ELSE construct evaluates the expression TotalSales > 10000. If total
sales exceeds $10,000, then the sales commission is 5% of the total sales. If total sales
is less than $10,000, then the sales commission is 2% of the total sales.

data _null_;
input TotalSales;
if TotalSales > 10000 then commission = .05 * TotalSales;

else commission = .02 * TotalSales;
put commission=;
datalines;

25000

800 IFN Function � Chapter 4

10000
500
10300
;

run;

SAS writes the following output to the log:

commission=1250
commission=200
commission=10
commission=515

Calculating Commission Using a WHERE Statement In the following example, a
WHERE statement evaluates the expression TotalSales > 10000. If total sales
exceeds $10,000, then the sales commission is 5% of the total sales. If total sales is less
than $10,000, then the sales commission is 2% of the total sales. The output shows only
those salespeople whose total sales exceed $10,000.

options pageno=1 nodate ls=80 ps=64;

data sales;
input SalesPerson $ TotalSales;
datalines;

Michaels 25000
Janowski 10000
Chen 500
Gupta 10300
;

data commission;
set sales;
where TotalSales > 10000;
commission = TotalSales * .05;

run;

proc print data=commission;
title ’Commission for Total Sales > 1000’;

run;

Output 4.51 Output from a WHERE Statement

Commission for Total Sales > 1000 1

Sales Total
Obs Person Sales commission

1 Michaels 25000 1250
2 Gupta 10300 515

See Also

Functions:

Functions and CALL Routines � INDEX Function 801

“IFC Function” on page 796

INDEX Function

Searches a character expression for a string of characters, and returns the position of the string’s
first character for the first occurrence of the string.

Category: Character

Restriction: “I18N Level 0” on page 312

Tip: DBCS equivalent function is KINDEX in SAS National Language Support (NLS):
Reference Guide. See “DBCS Compatibility” on page 801.

Syntax

INDEX(source,excerpt)

Arguments

source
specifies a character constant, variable, or expression to search.

excerpt
is a character constant, variable, or expression that specifies the string of characters
to search for in source.

Tip: Enclose a literal string of characters in quotation marks.

Tip: Both leading and trailing spaces are considered part of the excerpt argument.
To remove trailing spaces, include the TRIM function with the excerpt variable
inside the INDEX function.

Details

The Basics The INDEX function searches source, from left to right, for the first
occurrence of the string specified in excerpt, and returns the position in source of the
string’s first character. If the string is not found in source, INDEX returns a value of 0.
If there are multiple occurrences of the string, INDEX returns only the position of the
first occurrence.

DBCS Compatibility
The DBCS equivalent function is KINDEX, which is documented in SAS National
Language Support (NLS): Reference Guide. However, there is a minor difference in the
way trailing blanks are handled. In KINDEX, multiple blanks in the second argument
match a single blank in the first argument. The following example shows the
differences between the two functions:

index(’ABC,DE F(X=Y)’,’ ’) => 0
kindex(’ABC,DE F(X=Y)’,’ ’) => 7

802 INDEXC Function � Chapter 4

Examples

Example 1: Finding the Position of a Variable in the Source String The following
example finds the first position of the excerpt argument in source.

data _null_;
a = ’ABC.DEF(X=Y)’;
b = ’X=Y’;
x = index(a,b);
put x=;

run;

SAS writes the following output to the log:

x=9

Example 2: Removing Trailing Spaces When You Use the INDEX Function with the TRIM
Function The following example shows the results when you use the INDEX function
with and without the TRIM function. If you use INDEX without the TRIM function,
leading and trailing spaces are considered part of the excerpt argument. If you use
INDEX with the TRIM function, TRIM removes trailing spaces from the excerpt
argument as you can see in this example. Note that the TRIM function is used inside
the INDEX function.

options nodate nostimer ls=78 ps=60;

data _null_;
length a b $14;
a=’ABC.DEF (X=Y)’;
b=’X=Y’;
q=index(a,b);
w=index(a,trim(b));
put q= w=;

run;

SAS writes the following output to the log:

q=0 w=10

See Also

Functions:
“FIND Function” on page 721
“INDEXC Function” on page 802
“INDEXW Function” on page 804

INDEXC Function

Searches a character expression for any of the specified characters, and returns the position of
that character.

Category: Character
Restriction: “I18N Level 0” on page 312

Functions and CALL Routines � INDEXC Function 803

Tip: DBCS equivalent function is KINDEXC in SAS National Language Support (NLS):
Reference Guide.

Syntax
INDEXC(source,excerpt-1<,… excerpt-n>)

Arguments

source
specifies a character constant, variable, or expression to search.

excerpt
specifies the character constant, variable, or expression to search for in source.

Tip: If you specify more than one excerpt, separate them with a comma.

Details
The INDEXC function searches source, from left to right, for the first occurrence of any
character present in the excerpts and returns the position in source of that character. If
none of the characters in excerpt-1 through excerpt-n in source are found, INDEXC
returns a value of 0.

Comparisons
The INDEXC function searches for the first occurrence of any individual character that
is present within the character string, whereas the INDEX function searches for the
first occurrence of the character string as a substring. The FINDC function provides
more options.

Examples

SAS Statements Results

a=’ABC.DEP (X2=Y1)’;
x=indexc(a,’0123’,’;()=.’);
put x; 4

b=’have a good day’;
x=indexc(b,’pleasant’,’very’);
put x; 2

See Also

Functions:

“FINDC Function” on page 723

“INDEX Function” on page 801

“INDEXW Function” on page 804

804 INDEXW Function � Chapter 4

INDEXW Function

Searches a character expression for a string that is specified as a word, and returns the position
of the first character in the word.

Category: Character

Restriction: “I18N Level 0” on page 312

Syntax
INDEXW(source, excerpt<,delimiters>)

Arguments

source
specifies a character constant, variable, or expression to search.

excerpt
specifies a character constant, variable, or expression to search for in source. SAS
removes leading and trailing delimiters from excerpt.

delimiter
specifies a character constant, variable, or expression containing the characters that
you want INDEXW to use as delimiters in the character string. The default delimiter
is the blank character.

Details
The INDEXW function searches source, from left to right, for the first occurrence of
excerpt and returns the position in source of the substring’s first character. If the
substring is not found in source, then INDEXW returns a value of 0. If there are
multiple occurrences of the string, then INDEXW returns only the position of the first
occurrence.

The substring pattern must begin and end on a word boundary. For INDEXW, word
boundaries are delimiters, the beginning of source, and the end of source. If you use an
alternate delimiter, then INDEXW does not recognize the end of the text as the end
data.

INDEXW has the following behavior when the second argument contains blank
spaces or has a length of 0:

� If both source and excerpt contain only blank spaces or have a length of 0, then
INDEXW returns a value of 1.

� If excerpt contains only blank spaces or has a length of 0, and source contains
character or numeric data, then INDEXW returns a value of 0.

Comparisons
The INDEXW function searches for strings that are words, whereas the INDEX
function searches for patterns as separate words or as parts of other words. INDEXC
searches for any characters that are present in the excerpts. The FINDW function
provides more options.

Functions and CALL Routines � INDEXW Function 805

Examples

Example 1: Table of SAS Examples The following SAS statements give these results.

SAS Statements Results

s=’asdf adog dog’;
p=’dog ’;
x=indexw(s,p);
put x; 11

s=’abcdef x=y’;
p=’def’;
x=indexw(s,p);
put x; 0

x="abc,def@ xyz";
abc=indexw(x, " abc ", "@");
put abc; 0

x="abc,def@ xyz";
comma=indexw(x, ",", "@");
put comma; 0

x=’abc,def% xyz’;
def=indexw(x, ’def’, ’%,’);
put def; 5

x="abc,def@ xyz";
at=indexw(x, "@", "@");
put at; 0

x="abc,def@ xyz";
xyz=indexw(x, " xyz", "@");
put xyz; 9

c=indexw(trimn(’ ’), ’ ’); 1

g=indexw(’ x y ’, trimn(’ ’)); 0

Example 2: Using a Semicolon (;) As the Delimiter
The following example shows how to use the semicolon delimiter in a SAS program that
also calls the CATX function. A semicolon delimeter must be in place after each call to
CATX, and the second argument in the INDEXW function must be trimmed or searches
will not be successful.

data temp;
infile datalines;
input name $12.;
datalines;

abcdef
abcdef
;
run;

data temp2;
set temp;
format name_list $1024.;
retain name_list ’ ’;
exists=indexw(name_list, trim(name), ’;’);
if exists=0 then do

806 INDEXW Function � Chapter 4

name_list=catx(’;’, name_list, name)||’;’ ;
name_count +1;

put ’-------------------------------’;
put exists= ;
put name_list= ;
put name_count= ;

end;
run;

Output 4.52 Output from Using a Semicolon As the Delimiter

exists=0
name_list=abcdef;
name_count=1

In this example, the first time that CATX is called name_list is blank and the value
of name is ’abcdef’. CATX returns ’abcdef’ with no semicolon appended. However, when
INDEXW is called the second time, the value of name_list is ’abcdef’ followed by 1018
(1024–6) blanks, and the value of name is ’abcdef’ followed by six blanks. Because the
third argument in INDEXW is a semicolon (;), the blanks are significant and do not
denote a word boundary. Therefore, the second argument cannot be found in the first
argument.

If the example has no blanks, the behavior of INDEXW is easier to understand. In
the following example, we expect the value of x to be 0 because the complete word
ABCDE was not found in the first argument:

x = indexw(’ABCDEF;XYZ’, ’ABCDE’, ’;’);

The only values for the second argument that would return a nonzero result are
ABCDEF and XYZ.

Example 3: Using a Space As the Delimiter
The following example uses a space as a delimiter:

data temp;
infile datalines;
input name $12.;
datalines;

abcdef
abcdef
;
run;

data temp2;
set temp;
format name_list $1024.;
retain name_list ’ ’;
exists=indexw(name_list, name, ’ ’);
if exists=0 then do

name_list=catx(’ ’, name_list, name) ;
name_count +1;

put ’-------------------------------’;
put exists= ;
put name_list= ;

Functions and CALL Routines � INPUT Function 807

put name_count= ;
end;

run;

Output 4.53 Output from Using a Space as the Delimiter

exists=0
name_list=abcdef
name_count=1

See Also

Functions:

“FINDW Function” on page 729

“INDEX Function” on page 801

“INDEXC Function” on page 802

INPUT Function

Returns the value that is produced when SAS converts an expression using the specified informat.

Category: Special

Syntax
INPUT(source, <? | ??>informat.)

Arguments

source
specifies a character constant, variable, or expression to which you want to apply a
specific informat.

? or ??
specifies the optional question mark (?) and double question mark (??) modifiers that
suppress the printing of both the error messages and the input lines when invalid
data values are read. The ? modifier suppresses the invalid data message. The ??
modifier also suppresses the invalid data message and, in addition, prevents the
automatic variable _ERROR_ from being set to 1 when invalid data are read.

informat.
is the SAS informat that you want to apply to the source. This argument must be the
name of an informat followed by a period, and cannot be a character constant,
variable, or expression.

808 INPUT Function � Chapter 4

Details
If the INPUT function returns a character value to a variable that has not yet been
assigned a length, by default the variable length is determined by the width of the
informat.

The INPUT function enables you to convert the value of source by using a specified
informat. The informat determines whether the result is numeric or character. Use
INPUT to convert character values to numeric values or other character values.

Comparisons
The INPUT function returns the value produced when a SAS expression is converted
using a specified informat. You must use an assignment statement to store that value
in a variable. The INPUT statement uses an informat to read a data value. Storing
that value in a variable is optional.

The INPUT function requires the informat to be specified as a name followed by a
period and optional decimal specification. The INPUTC and INPUTN functions allow
the informat to be specified as a character constant, variable, or expression.

Examples

Example 1: Converting Character Values to Numeric Values This example uses the
INPUT function to convert a character value to a numeric value and store it in another
variable. The COMMA9. informat reads the value of the SALE variable, stripping the
commas. The resulting value, 2115353, is stored in FMTSALE.

data testin;
input sale $9.;
fmtsale=input(sale,comma9.);
datalines;

2,115,353
;

Example 2: Using PUT and INPUT Functions In this example, PUT returns a numeric
value as a character string. The value 122591 is assigned to the CHARDATE variable.
INPUT returns the value of the character string as a SAS date value using a SAS date
informat. The value 11681 is stored in the SASDATE variable.

numdate=122591;
chardate=put(numdate,z6.);
sasdate=input(chardate,mmddyy6.);

Example 3: Suppressing Error Messages In this example, the question mark (?)
modifier tells SAS not to print the invalid data error message if it finds data errors. The
automatic variable _ERROR_ is set to 1 and input data lines are written to the SAS log.

y=input(x,? 3.1);

Because the double question mark (??) modifier suppresses printing of error
messages and input lines and prevents the automatic variable _ERROR_ from being set
to 1 when invalid data are read, the following two examples produce the same result:

� y=input(x,?? 2.);

� y=input(x,? 2.); _error_=0;

See Also

Functions and CALL Routines � INPUTC Function 809

Functions:
“INPUTC Function” on page 809
“INPUTN Function” on page 811
“PUT Function” on page 1026
“PUTC Function” on page 1028
“PUTN Function” on page 1030

Statements:
“INPUT Statement” on page 1569

INPUTC Function

Enables you to specify a character informat at run time.

Category: Special

Syntax
INPUTC(source, informat<,w>)

Arguments

source
specifies a character constant, variable, or expression to which you want to apply the
informat.

informat
is a character constant, variable, or expression that contains the character informat
you want to apply to source.

w
is a numeric constant, variable, or expression that specifies a width to apply to the
informat.
Interaction: If you specify a width here, it overrides any width specification in the

informat.

Details
If the INPUTC function returns a value to a variable that has not yet been assigned a
length, by default the variable length is determined by the length of the first argument.

Comparisons
The INPUTN function enables you to specify a numeric informat at run time. Using the
INPUT function is faster because you specify the informat at compile time.

Examples

Example 1: Specifying Character Informats The PROC FORMAT step in this example
creates a format, TYPEFMT., that formats the variable values 1, 2, and 3 with the

810 INPUTC Function � Chapter 4

name of one of the three informats that this step also creates. The informats store
responses of "positive," "negative," and "neutral" as different words, depending on the
type of question. After PROC FORMAT creates the format and informats, the DATA
step creates a SAS data set from raw data consisting of a number identifying the type
of question and a response. After reading a record, the DATA step uses the value of
TYPE to create a variable, RESPINF, that contains the value of the appropriate
informat for the current type of question. The DATA step also creates another variable,
WORD, whose value is the appropriate word for a response. The INPUTC function
assigns the value of WORD based on the type of question and the appropriate informat.

proc format;
value typefmt 1=’$groupx’

2=’$groupy’
3=’$groupz’;

invalue $groupx ’positive’=’agree’
’negative’=’disagree’
’neutral’=’notsure’;

invalue $groupy ’positive’=’accept’
’negative’=’reject’
’neutral’=’possible’;

invalue $groupz ’positive’=’pass’
’negative’=’fail’
’neutral’=’retest’;

run;

data answers;
input type response $;
respinformat = put(type, typefmt.);
word = inputc(response, respinformat);
datalines;

1 positive
1 negative
1 neutral
2 positive
2 negative
2 neutral
3 positive
3 negative
3 neutral
;

The value of WORD for the first observation is agree. The value of WORD for the
last observation is retest.

See Also

Functions:

“INPUT Function” on page 807

“INPUTN Function” on page 811

“PUT Function” on page 1026

“PUTC Function” on page 1028

“PUTN Function” on page 1030

Functions and CALL Routines � INPUTN Function 811

INPUTN Function

Enables you to specify a numeric informat at run time.

Category: Special

Syntax
INPUTN(source, informat<,w<,d>>)

Arguments

source
specifies a character constant, variable, or expression to which you want to apply the
informat.

informat
is a character constant, variable or expression that contains the numeric informat
you want to apply to source.

w
is a numeric constant, variable, or expression that specifies a width to apply to the
informat.
Interaction: If you specify a width here, it overrides any width specification in the

informat.

d
is a numeric constant, variable, or expression that specifies the number of decimal
places to use.
Interaction: If you specify a number here, it overrides any decimal-place

specification in the informat.

Comparisons
The INPUTC function enables you to specify a character informat at run time. Using
the INPUT function is faster because you specify the informat at compile time.

Examples

Example 1: Specifying Numeric Informats The PROC FORMAT step in this example
creates a format, READDATE., that formats the variable values 1 and 2 with the name
of a SAS date informat. The DATA step creates a SAS data set from raw data originally
from two different sources (indicated by the value of the variable SOURCE). Each
source specified dates differently. After reading a record, the DATA step uses the value
of SOURCE to create a variable, DATEINF, that contains the value of the appropriate
informat for reading the date. The DATA step also creates a new variable, NEWDATE,
whose value is a SAS date. The INPUTN function assigns the value of NEWDATE
based on the source of the observation and the appropriate informat.

proc format;
value readdate 1=’date7.’

2=’mmddyy8.’;

812 INT Function � Chapter 4

run;

options yearcutoff=1920;

data fixdates (drop=start dateinformat);
length jobdesc $12;
input source id lname $ jobdesc $ start $;
dateinformat=put(source, readdate.);
newdate = inputn(start, dateinformat);
datalines;

1 1604 Ziminski writer 09aug90
1 2010 Clavell editor 26jan95
2 1833 Rivera writer 10/25/92
2 2222 Barnes proofreader 3/26/98
;

See Also

Functions:
“INPUT Function” on page 807
“INPUTC Function” on page 809
“PUT Function” on page 1026
“PUTC Function” on page 1028
“PUTN Function” on page 1030

INT Function

Returns the integer value, fuzzed to avoid unexpected floating-point results.

Category: Truncation

Syntax
INT(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The INT function returns the integer portion of the argument (truncates the decimal
portion). If the argument’s value is within 1E-12 of an integer, the function results in
that integer. If the value of argument is positive, the INT function has the same result
as the FLOOR function. If the value of argument is negative, the INT function has the
same result as the CEIL function.

Functions and CALL Routines � INTCINDEX Function 813

Comparisons
Unlike the INTZ function, the INT function fuzzes the result. If the argument is within
1E-12 of an integer, the INT function fuzzes the result to be equal to that integer. The
INTZ function does not fuzz the result. Therefore, with the INTZ function you might
get unexpected results.

Examples

The following SAS statements produce these results.

SAS Statements Results

var1=2.1;
x=int(var1);
put x; 2

var2=-2.4;
y=int(var2);
put y; -2

a=int(1+1.e-11);
put a; 1

b=int(-1.6);
put b; -1

See Also

Functions:

“CEIL Function” on page 568

“FLOOR Function” on page 742

“INTZ Function” on page 843

INTCINDEX Function

Returns the cycle index when a date, time, or datetime interval and value are specified.

Category: Date and Time

Syntax
INTCINDEX(interval<<multiple.<shift-index>>>, date-time-value)

Arguments

interval

814 INTCINDEX Function � Chapter 4

specifies a character constant, a variable, or an expression that contains an interval
name such as WEEK, MONTH, or QTR. Interval can appear in uppercase or
lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.
Tip: If interval is a character constant, then enclose the value in quotation marks.
Requirement: Valid values for interval depend on whether date-time-value is a

date, time, or datetime value.
Multipliers and shift indexes can be used with the basic interval names to

construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.
See: “Incrementing Dates and Times by Using Multipliers and by Shifting

Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.
Restriction: The shift index cannot be greater than the number of subperiods

in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval, then only
multiperiod intervals can be shifted with the optional shift index. For
example, because MONTH intervals shift by MONTH periods by default,
monthly intervals cannot be shifted with the shift index. However, bimonthly
intervals can be shifted with the shift index, because there are two MONTH
intervals in each MONTH2 interval. For example, the interval name
MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

date-time-value
specifies a date, time, or datetime value that represents a time period of a specified
interval.

Details
The INTCINDEX function returns the index of the seasonal cycle when you specify an
interval and a SAS date, time, or datetime value. For example, if the interval is
MONTH, each observation in the data corresponds to a particular month. Monthly data
is considered to be periodic for a one-year period. A year contains 12 months, so the
number of intervals (months) in a seasonal cycle (year) is 12. WEEK is the seasonal
cycle for an interval that is equal to DAY. Therefore, intcindex(’day’,’01SEP78’d);

Functions and CALL Routines � INTCINDEX Function 815

returns a value of 35 because September 1, 1978, is the sixth day of the 35th week of
the year. For more information about working with date and time intervals, see “Date
and Time Intervals” on page 326.

The INTCINDEX function can also be used with calendar intervals from the retail
industry. These intervals are ISO 8601 compliant. For a list of these intervals, see
“Retail Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Comparisons
The INTCINDEX function returns the cycle index, whereas the INTINDEX function
returns the seasonal index.

In the example cycle_index = intcindex(’day’,’04APR2005’d);, the
INTCINDEX function returns the week of the year. In the example index =
intindex(’day’,’04APR2005’d);, the INTINDEX function returns the day of the
week.

In the example cycle_index = intcindex(’minute’,’01Sep78:00:00:00’dt);,
the INTCINDEX function returns the hour of the day. In the example index =
intindex(’minute’,’01Sep78:00:00:00’dt);, the INTINDEX function returns the
minute of the hour.

In the example intseas(intcycle(’interval’));, the INTSEAS function returns
the maximum number that could be returned by intcindex(’interval’,date);.

Examples

The following SAS statements produce these results:

SAS Statements Results

cycle_index1 = intcindex(’day’, ’01SEP05’d);
put cycle_index1; 35

cycle_index2 = intcindex(’dtqtr’, ’23MAY2005:05:03:01’dt);
put cycle_index2; 1

cycle_index3 = intcindex(’tenday’, ’13DEC2005’ d);
put cycle_index3; 1

cycle_index4 = intcindex(’minute’, ’23:13:02’t);
put cycle_index4;

24

var1 = ’semimonth’;
cycle_index5 = intcindex(var1, ’05MAY2005:10:54:03’dt);
put cycle_index5; 1

See Also

Functions:

“INTINDEX Function” on page 828

“INTCYCLE Function” on page 819

816 INTCK Function � Chapter 4

“INTSEAS Function” on page 838

INTCK Function

Returns the count of the number of interval boundaries between two dates, two times, or two
datetime values.

Category: Date and Time

Syntax
INTCK(interval<multiple><.shift-index>, start-from, increment, <’alignment’>)

INTCK(custom-interval, start-from, increment, <’alignment’>)

Arguments

interval
specifies a character constant, a variable, or an expression that contains an interval
name. Interval can appear in uppercase or lowercase. The possible values of interval
are listed in the “Intervals Used with Date and Time Functions” table in SAS
Language Reference: Concepts.
Requirement: The type of interval (date, datetime, or time) must match the type of

value in from.
Multipliers and shift indexes can be used with the basic interval names to

construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
The three parts of the interval name are

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.
See: “Incrementing Dates and Times by Using Multipliers and by Shifting

Intervals” on page 327for more information.

custom-interval
specifies a user-defined interval that is defined by a SAS data set. Each
observation contains two variables, begin and end.
See: “Details” on page 817 for more information about custom intervals.
Requirement: You must use the INTERVALDS system option if you use the

custom-interval variable.

shift-index

Functions and CALL Routines � INTCK Function 817

specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.
Restriction: The shift index cannot be greater than the number of subperiods

in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, MONTH type intervals shift by MONTH subperiods by default.
Thus, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index, because there are two
MONTH intervals in each MONTH2 interval. For example, the interval
name MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327for more information.

start-from
specifies a SAS expression that represents the starting SAS date, time, or datetime
value.

increment
specifies a SAS expression that represents the ending SAS date, time, or datetime
value.

’alignment’
controls the position of SAS dates within the interval. You must enclose alignment in
quotation marks. Alignment can be one of these values:

CONTINUOUS
specifies that continuous time is measured (the interval is shifted based on the
starting date).
Alias: C or CONT

DISCRETE
specifies that discrete time is measured.
Alias: D or DISC

Details

Time Series Analysis: The Basics Times series analysis uses time intervals to analyze
events. All values within the interval are interpreted as being equivalent. This means
that the dates of January 1, 2005 and January 15, 2005 are equivalent when you specify
a monthly interval. Both of these dates represent the interval that begins on January
1, 2005 and ends on January 31, 2005. You can use the date for the beginning of the
interval (January 1, 2005) or the date for the end of the interval (January 31, 2005) to
identify the interval. These dates represent all of the dates within the monthly interval.

In the example intck(’qtr’,’14JAN2005’d,’02SEP2005’d);, the start-from
argument (’14JAN2005’d) is equivalent to the first quarter of 2005. The increment
argument (’02SEP2005’d) is equivalent to the third quarter of 2005. The interval count,
that is, the number of times the beginning of an interval is reached in moving from the
start-from argument to the increment argument is 2.

WEEK intervals are determined by the number of Sundays that occur between the
start-from argument and the increment argument, and not by how many seven-day
periods fall between the start-from argument and the increment argument.

818 INTCK Function � Chapter 4

Both the multiple and the shift-index arguments are optional and default to 1. For
example, YEAR, YEAR1, YEAR.1, and YEAR1.1 are all equivalent ways of specifying
ordinary calendar years.

For more information about working with date and time intervals, see “Date and
Time Intervals” on page 326.

Custom Intervals
A custom interval is defined by a SAS data set. The data set must contain two
variables, begin and end. Each observation represents one interval with the begin
variable containing the start of the interval, and the end variable containing the end of
the interval. The intervals must be listed in ascending order. You cannot have gaps
between intervals, and intervals cannot overlap.

The SAS system option INTERVALDS is used to define custom intervals and
associate interval data sets with new interval names. The following example shows how
to specify the INTERVALDS system option:

options intervalds=(interval=libref.dataset-name);

where

interval
specifies the name of an interval. The value of interval is the data set that is
named in libref.dataset-name.

libref.dataset-name
specifies the libref and data set name of the file that contains user-supplied
holidays.

Retail Calendar Intervals
The retail industry often accounts for its data by dividing the yearly calendar into four
13-week periods, based on one of the following formats: 4-4-5, 4-5-4, or 5-4-4. The first,
second, and third numbers specify the number of weeks in the first, second, and third
month of each period, respectively. For more information, see “Retail Calendar
Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

The following SAS statements produce these results:

SAS Statements Results

qtr=intck(’qtr’,’10jan95’d,’01jul95’d);
put qtr; 2

year=intck(’year’,’31dec94’d,
’01jan95’d);

put year; 1

year=intck(’year’,’01jan94’d,
’31dec94’d);

put year; 0

semi=intck(’semiyear’,’01jan95’d,
’01jan98’d);

put semi; 6

weekvar=intck(’week2.2’,’01jan97’d,
’31mar97’d);

put weekvar; 7

Functions and CALL Routines � INTCYCLE Function 819

SAS Statements Results

wdvar=intck(’weekday7w’,’01jan97’d,
’01feb97’d);

put wdvar; 26

y=’year’;
date1=’1sep1991’d;
date2=’1sep2001’d;
newyears=intck(y,date1,date2);
put newyears; 10

y=trim(’year ’);
date1=’1sep1991’d + 300;
date2=’1sep2001’d - 300;
newyears=intck(y,date1,date2);
put newyears; 8

In the second example, INTCK returns a value of 1 even though only one day has
elapsed. This result is because the interval from December 31, 1994, to January 1,
1995, contains the starting point for the YEAR interval. However, in the third example,
a value of 0 is returned even though 364 days have elapsed. This result is because the
period between January 1, 1994, and December 31, 1994, does not contain the starting
point for the interval.

In the fourth example, SAS returns a value of 6 because January 1, 1995, through
January 1, 1998, contains six semiyearly intervals. (Note that if the ending date were
December 31, 1997, SAS would count five intervals.) In the fifth example, SAS returns
a value of 6 because there are six two-week intervals beginning on a first Monday
during the period of January 1, 1997, through March 31, 1997. In the sixth example,
SAS returns the value 26. That indicates that beginning with January 1, 1997, and
counting only Saturdays as weekend days through February 1, 1997, the period
contains 26 weekdays.

In the seventh example, the use of variables for the arguments is illustrated. The
use of expressions for the arguments is illustrated in the last example.

See Also

Functions:
“INTNX Function” on page 831

System Options:
“INTERVALDS= System Option” on page 1872

INTCYCLE Function

Returns the date, time, or datetime interval at the next higher seasonal cycle when a date, time,
or datetime interval is specified.

Category: Date and Time

820 INTCYCLE Function � Chapter 4

Syntax
INTCYCLE(interval <<multiple.<shift-index>>>)

Arguments

interval
specifies a character constant, a variable, or an expression that contains an interval
name such as WEEK, MONTH, or QTR. Interval can appear in uppercase or
lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.

Multipliers and shift indexes can be used with the basic interval names to construct
more complex interval specifications. The general form of an interval name is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies yearly
intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted to
start on the first of March of each calendar year and to end in February of the
following year.

Restriction: The shift index cannot be greater than the number of subperiods in
the whole interval. For example, you could use YEAR2.24, but YEAR2.25 would
be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then only
multiperiod intervals can be shifted with the optional shift index. For example,
because MONTH type intervals shift by MONTH subperiods by default, monthly
intervals cannot be shifted with the shift index. However, bimonthly intervals
can be shifted with the shift index, because there are two MONTH intervals in
each MONTH2 interval. For example, the interval name MONTH2.2 specifies
bimonthly periods starting on the first day of even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

Details
The INTCYCLE function returns the interval of the seasonal cycle, depending on a
date, time, or datetime interval. For example, INTCYCLE(’MONTH’); returns the value
YEAR because the months from January through December constitute a yearly cycle.
INTCYCLE(’DAY’); returns the value WEEK because the days from Sunday through
Saturday constitute a weekly cycle.

Functions and CALL Routines � INTFIT Function 821

See “Incrementing Dates and Times by Using Multipliers and by Shifting Intervals”
on page 327 for information about multipliers and shift indexes. See “Commonly Used
Time Intervals” on page 327 for information about how intervals are calculated.

For more information about working with date and time intervals, see “Date and
Time Intervals” on page 326.

The INTCYCLE function can also be used with calendar intervals from the retail
industry. These intervals are ISO 8601 compliant. For more information, see “Retail
Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

The following examples produce these results:

SAS Statements Results

cycle_year = intcycle(’year’);
put cycle_year; YEAR

cycle_quarter = intcycle(’qtr’);
put cycle_quarter; YEAR

cycle_month = intcycle(’month’);
put cycle_month; YEAR

cycle_day = intcycle(’day’);
put cycle_day;

WEEK

var1 = ’second’;
cycle_second = intcycle(var1);
put cycle_second; DTMINUTE

See Also

Functions:
“INTSEAS Function” on page 838
“INTINDEX Function” on page 828
“INTCINDEX Function” on page 813

INTFIT Function
Returns a time interval that is aligned between two dates.

Category: Date and Time

Syntax
INTFIT(argument-1, argument-2, ’type’)

Arguments

822 INTFIT Function � Chapter 4

argument
specifies a SAS expression that represents a SAS date or datetime value, or an
observation.
Tip: Observation numbers are more likely to be used as arguments if date or

datetime values are not available.

’type’
specifies whether the arguments are SAS date values, datetime values, or
observations.

The following values for type are valid:

d specifies that argument-1 and argument-2 are date values.

dt specifies that argument-1 and argument-2 are datetime values.

obs specifies that argument-1 and argument-2 are observations.

Details
The INTFIT function returns the most likely time interval based on two dates, datetime
values, or observations that have been aligned within an interval. INTFIT assumes
that the alignment value is SAME, which specifies that the date is aligned to the same
calendar date with the corresponding interval increment. For more information about
the alignment argument, see “INTNX Function” on page 831.

If the arguments that are used with INTFIT are observations, you can determine the
cycle of an occurrence by using observation numbers. In the following example, the first
two arguments of INTFIT are observation numbers, and the type argument is obs. If
Jason used the gym the first time and the 25th time that a researcher recorded data,
you could determine the interval by using the following statement:
interval=intfit(1,25,’obs’);. In this case, the value of interval is OBS24.2.

For information about time series, see the SAS/ETS User’s Guide.

The INTFIT function can also be used with calendar intervals from the retail industry.
These intervals are ISO 8601 compliant. For more information, see “Retail Calendar
Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

Example 1: Finding Intervals That Are Aligned between Two Dates The following
example shows the intervals that are aligned between two dates. The type argument in
this example identifies the input as date values.

options pageno=1 nodate ls=80 ps=64;

data a;
length interval $20;
date1=’01jan06’d;
do i=1 to 25;

date2=intnx(’day’, date1, i);
interval=intfit(date1, date2, ’d’);
output;

end;
format date1 date2 date.;

run;

proc print data=a;
run;

Functions and CALL Routines � INTFIT Function 823

Output 4.54 Interval Output from the INTFIT Function

The SAS System 1

Obs interval date1 i date2

1 DAY 01JAN06 1 02JAN06
2 DAY2 01JAN06 2 03JAN06
3 DAY3.3 01JAN06 3 04JAN06
4 DAY4.3 01JAN06 4 05JAN06
5 DAY5.3 01JAN06 5 06JAN06
6 DAY6.3 01JAN06 6 07JAN06
7 WEEK 01JAN06 7 08JAN06
8 DAY8.3 01JAN06 8 09JAN06
9 DAY9.9 01JAN06 9 10JAN06
10 TENDAY 01JAN06 10 11JAN06
11 DAY11.6 01JAN06 11 12JAN06
12 DAY12.3 01JAN06 12 13JAN06
13 DAY13.7 01JAN06 13 14JAN06
14 WEEK2.8 01JAN06 14 15JAN06
15 SEMIMON 01JAN06 15 16JAN06
16 DAY16.3 01JAN06 16 17JAN06
17 DAY17.7 01JAN06 17 18JAN06
18 DAY18.9 01JAN06 18 19JAN06
19 DAY19.7 01JAN06 19 20JAN06
20 TENDAY2 01JAN06 20 21JAN06
21 WEEK3.8 01JAN06 21 22JAN06
22 DAY22.17 01JAN06 22 23JAN06
23 DAY23.13 01JAN06 23 24JAN06
24 DAY24.3 01JAN06 24 25JAN06
25 DAY25.3 01JAN06 25 26JAN06

The output shows that if the increment value is one day, then the result of the
INTFIT function is DAY. If the increment value is two days, then the result of the
INTFIT function is DAY2. If the increment value is three days, then the result is
DAY3.3, with a shift index of 3. (If the two input dates are a Friday and a Monday, then
the result is WEEKDAY.) If the increment value is seven days, then the result is WEEK.

Example 2: Finding Intervals That Are Aligned between Two Dates When the Dates Are
Identified As Observations The following example shows the intervals that are
aligned between two dates. The type argument in this example identifies the input as
observations.

options pageno=1 nodate ls=80 ps=64;

data a;
length interval $20;
date1=’01jan06’d;
do i=1 to 25;

date2=intnx(’day’, date1, i);
interval=intfit(date1, date2, ’obs’);
output;

end;
format date1 date2 date.;

run;

proc print data=a;
run;

824 INTFMT Function � Chapter 4

Output 4.55 Interval Output from the INTFIT Function When Dates Are Identified as Observations

The SAS System 1

Obs interval date1 i date2

1 OBS 01JAN06 1 02JAN06
2 OBS2 01JAN06 2 03JAN06
3 OBS3.3 01JAN06 3 04JAN06
4 OBS4.3 01JAN06 4 05JAN06
5 OBS5.3 01JAN06 5 06JAN06
6 OBS6.3 01JAN06 6 07JAN06
7 OBS7.3 01JAN06 7 08JAN06
8 OBS8.3 01JAN06 8 09JAN06
9 OBS9.9 01JAN06 9 10JAN06
10 OBS10.3 01JAN06 10 11JAN06
11 OBS11.6 01JAN06 11 12JAN06
12 OBS12.3 01JAN06 12 13JAN06
13 OBS13.7 01JAN06 13 14JAN06
14 OBS14.3 01JAN06 14 15JAN06
15 OBS15.3 01JAN06 15 16JAN06
16 OBS16.3 01JAN06 16 17JAN06
17 OBS17.7 01JAN06 17 18JAN06
18 OBS18.9 01JAN06 18 19JAN06
19 OBS19.7 01JAN06 19 20JAN06
20 OBS20.3 01JAN06 20 21JAN06
21 OBS21.3 01JAN06 21 22JAN06
22 OBS22.17 01JAN06 22 23JAN06
23 OBS23.13 01JAN06 23 24JAN06
24 OBS24.3 01JAN06 24 25JAN06
25 OBS25.3 01JAN06 25 26JAN06

See Also

Functions:
“INTNX Function” on page 831
“INTCK Function” on page 816

INTFMT Function

Returns a recommended SAS format when a date, time, or datetime interval is specified.

Category: Date and Time

Syntax
INTFMT(interval<<multiple.<.shift-index>>>, ’size’)

Arguments

interval
specifies a character constant, a variable, or an expression that contains an interval
name such as WEEK, MONTH, or QTR. Interval can appear in uppercase or

Functions and CALL Routines � INTFMT Function 825

lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.

Multipliers and shift indexes can be used with the basic interval names to
construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.

Restriction: The shift index cannot be greater than the number of subperiods
in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, because MONTH type intervals shift by MONTH subperiods by
default, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index, because there are two
MONTH intervals in each MONTH2 interval. For example, the interval
name MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

’size’
specifies either LONG or SHORT. When a format includes a year value, LONG or L
specifies a format that uses a four-digit year. SHORT or S specifies a format that
uses a two-digit year.

Details
The INTFMT function returns a recommended format depending on a date, time, or
datetime interval for displaying the time ID values that are associated with a time
series of a given interval. The valid values of SIZE (LONG, L, SHORT, or S) specify
whether to use a two-digit or a four-digit year when the format refers to a SAS date
value. For more information about working with date and time intervals, see “Date and
Time Intervals” on page 326.

The INTFMT function can also be used with calendar intervals from the retail industry.
These intervals are ISO 8601 compliant. For a list of these intervals, see “Retail
Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

826 INTGET Function � Chapter 4

Examples

The following SAS statements produce these results:

SAS Statements Results

fmt1 = intfmt(’qtr’, ’s’);
put fmt1; YYQC4.

fmt2 = intfmt(’qtr’, ’l’);
put fmt2; YYQC6.

fmt3 = intfmt(’month’, ’l’);
put fmt3; MONYY7.

fmt4 = intfmt(’week’, ’short’);
put fmt4; WEEKDATX15.

fmt5 = intfmt(’week3.2’, ’l’);
put fmt5; WEEKDATX17.

fmt6 = intfmt(’day’, ’long’);
put fmt6; DATE9.

var1 = ’month2’;
fmt7 = intfmt(var1, ’long’);
put fmt7; MONYY7.

INTGET Function

Returns a time interval based on three date or datetime values.

Category: Date and Time

Syntax
INTGET(date-1, date-2, date-3)

Arguments

date
specifies a SAS date or datetime value.

Details

INTGET Function Intervals The INTGET function returns a time interval based on
three date or datetime values. The function first determines all possible intervals
between the first two dates, and then determines all possible intervals between the
second and third dates. If the intervals are the same, INTGET returns that interval. If
the intervals for the first and second dates differ, and the intervals for the second and
third dates differ, INTGET compares the intervals. If one interval is a multiple of the
other, then INTGET returns the smaller of the two intervals. Otherwise, INTGET

Functions and CALL Routines � INTGET Function 827

returns a missing value. INTGET works best with dates generated by the INTNX
function whose alignment value is BEGIN.

In the following example, INTGET returns the interval DAY2:

interval=intget(’01mar00’d, ’03mar00’d, ’09mar00’d);

The interval between the first and second dates is DAY2, because the number of days
between March 1, 2000, and March 3, 2000, is two. The interval between the second
and third dates is DAY6, because the number of days between March 3, 2000, and
March 9, 2000, is six. DAY6 is a multiple of DAY2. INTGET returns the smaller of the
two intervals.

In the following example, INTGET returns the interval MONTH4:

interval=intget(’01jan00’d, ’01may00’d, ’01may01’d);

The interval between the first two dates is MONTH4, because the number of months
between January 1, 2000, and May 1, 2000, is four. The interval between the second and
third dates is YEAR. INTGET determines that YEAR is a multiple of MONTH4 (there
are three MONTH4 intervals in YEAR), and returns the smaller of the two intervals.

In the following example, INTGET returns a missing value:

interval=intget(’01Jan2006’d, ’01Apr2006’d, ’01Dec2006’d);

The interval between the first two dates is MONTH3, and the interval between the
second and third dates is MONTH8. INTGET determines that MONTH8 is not a
multiple of MONTH3, and returns a missing value.

The intervals that are returned are valid SAS intervals, including multiples of the
intervals and shift intervals. Valid SAS intervals are listed in the “Intervals Used with
Date and Time Functions” table in SAS Language Reference: Concepts.

Note: If INTGET cannot determine a matching interval, then the function returns a
missing value. No message is written to the SAS log. �

Retail Calendar Intervals
The INTGET function can also be used with calendar intervals from the retail industry.
These intervals are ISO 8601 compliant. For more information, see “Retail Calendar
Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples
The following examples produce these results:

SAS Statements Results

interval=intget(’01jan00’d,’01jan01’d,’01may01’d);
put interval; MONTH4

interval=intget(’29feb80’d,’28feb82’d,’29feb84’d);
put interval; YEAR2.2

interval=intget(’01feb80’d,’16feb80’d,’01mar80’d);
put interval; SEMIMONTH

interval=intget(’2jan09’d,’2feb10’d,’2mar11’d);
put interval; MONTH13.4

828 INTINDEX Function � Chapter 4

SAS Statements Results

interval=intget(’10feb80’d,’19feb80’d,’28feb80’d);
put interval; DAY9.2

interval=intget(’01apr2006:00:01:02’dt,
’01apr2006:00:02:02’dt,
’01apr2006:00:03:02’dt);
put interval; MINUTE

See Also

Functions:
“INTFIT Function” on page 821
“INTNX Function” on page 831

INTINDEX Function

Returns the seasonal index when a date, time, or datetime interval and value are specified.

Category: Date and Time

Syntax
INTINDEX(interval<<multiple.<shift-index>>>, date-value)

Arguments

interval
specifies a character constant, a variable, or an expression that contains an interval
name such as WEEK, MONTH, or QTR. Interval can appear in uppercase or
lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.
Tip: If interval is a character constant, then enclose the value in quotation marks.
Requirement: Valid values for interval depend on whether date-value is a date,

time, or datetime value. For more information, see “Commonly Used Time
Intervals” on page 327.
Multipliers and shift indexes can be used with the basic interval names to

construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

Functions and CALL Routines � INTINDEX Function 829

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.

Restriction: The shift index cannot be greater than the number of subperiods
in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, because MONTH type intervals shift by MONTH subperiods by
default, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index, because there are two
MONTH intervals in each MONTH2 interval. For example, the interval
name MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

date-value
specifies a date, time, or datetime value that represents a time period of the given
interval.

Details

INTINDEX Function Intervals The INTINDEX function returns the seasonal index
when you supply an interval and an appropriate date, time, or datetime value. The
seasonal index is a number that represents the position of the date, time, or datetime
value in the seasonal cycle of the specified interval. For example, intindex(’month’,
’01DEC2000’d); returns a value of 12 because there are 12 months in a yearly cycle
and December is the 12th month of the year. In the following examples, INTINDEX
returns the same value because both statements have values that occur in the first
quarter of the year 2000: intindex(’qtr’, ’01JAN2000’d); and intindex(’qtr’,
’31MAR2000’d);. The statement intindex(’day’, ’01DEC2000’d); returns a value
of 6 because daily data is weekly periodic and December 1, 2000, is a Friday, the sixth
day of the week.

How Interval and Date-Time-Value Are Related To correctly identify the seasonal
index, the interval should agree with the date, time, or datetime value. For example,
intindex(’month’, ’01DEC2000’d); returns a value of 12 because there are 12
months in a yearly interval and December is the 12th month of the year. The MONTH
interval requires a SAS date value. In the following example, intindex(’day’,
’01DEC2000’d); returns a value of 6 because there are seven days in a weekly interval
and December 1, 2000, is a Friday, the sixth day of the week. The DAY interval
requires a SAS date value.

The example intindex(’qtr’, ’01JAN2000:00:00:00’dt); results in an error
because the QTR interval expects the date to be a SAS date value rather than a

830 INTINDEX Function � Chapter 4

datetime value. The example intindex(’dtmonth’, ’01DEC2000:00:00:00’dt);
returns a value of 12. The DTMONTH interval requires a datetime value.

For more information about working with date and time intervals, see “Date and
Time Intervals” on page 326.

Retail Calendar Intervals
The INTINDEX function can also be used with calendar intervals from the retail
industry. These intervals are ISO 8601 compliant. For more information, see “Retail
Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Comparisons
The INTINDEX function returns the seasonal index whereas the INTCINDEX function
returns the cycle index.

In the example index = intindex(’day’, ’04APR2005’d);, the INTINDEX
function returns the day of the week. In the example cycle_index =
intcindex(’day’, ’04APR2005’d);, the INTCINDEX function returns the week of
the year.

In the example index = intindex(’minute’,’01Sep78:00:00:00’dt);, the
INTINDEX function returns the minute of the hour. In the example cycle_index =
intcindex(’minute’,’01Sep78:00:00:00’dt);, the INTCINDEX function returns
the hour of the day.

In the example intseas(’interval’);, INTSEAS returns the maximum number
that could be returned by intindex(’interval’, date);.

Examples

The following SAS statements produce these results:

SAS Statements Results

interval1 = intindex(’qtr’, ’14AUG2005’d);
put interval1; 3

interval2 = intindex(’dtqtr’,’23DEC2005:15:09:19’dt);
put interval2; 4

interval3 = intindex(’hour’, ’09:05:15’t);
put interval3; 10

interval4 = intindex(’month’, ’26FEB2005’d);
put interval4; 2

interval5 = intindex(’dtmonth’, ’28MAY2005:05:15:00’dt);
put interval5; 5

interval6 = intindex(’week’, ’09SEP2005’d);
put interval6; 36

interval7 = intindex(’tenday’, ’16APR2005’d);
put interval7; 11

See Also

Function:
“INTCINDEX Function” on page 813

Functions and CALL Routines � INTNX Function 831

INTNX Function

Increments a date, time, or datetime value by a given time interval, and returns a date, time, or
datetime value.

Category: Date and Time

Syntax
INTNX(interval<multiple>< .shift-index>, start-from, increment<, ’alignment’>)

INTNX(custom-interval, start-from, increment <, ’alignment’>)

Arguments

interval
specifies a character constant, variable, or expression that contains a time interval
such as WEEK, SEMIYEAR, QTR, or HOUR. Interval can appear in uppercase or
lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.

Requirement: The type of interval (date, datetime, or time) must match the type of
value in start-from and increment.

See: “Commonly Used Time Intervals” on page 327 for a list of commonly used time
intervals.

Multipliers and shift indexes can be used with the basic interval names to
construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
Here are the three parts of the interval name:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.

Restriction: The shift index cannot be greater than the number of subperiods
in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

832 INTNX Function � Chapter 4

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, MONTH type intervals shift by MONTH subperiods by default;
thus, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index because there are two
MONTH intervals in each MONTH2 interval. The interval name MONTH2.2,
for example, specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

start-from
specifies a SAS expression that represents a SAS date, time, or datetime value that
identifies a starting point.

increment
specifies a negative, positive, or zero integer that represents the number of date,
time, or datetime intervals. Increment is the number of intervals to shift the value of
start-from.

’alignment’
controls the position of SAS dates within the interval. You must enclose alignment in
quotation marks. Alignment can be one of these values:

BEGINNING
specifies that the returned date or datetime value is aligned to the beginning of
the interval.
Alias: B

MIDDLE
specifies that the returned date or datetime value is aligned to the midpoint of the
interval, which is the average of the beginning and ending alignment values.
Alias: M

END
specifies that the returned date or datetime value is aligned to the end of the
interval.
Alias: E

SAME
specifies that the date that is returned has the same alignment as the input date.
Alias: S
Alias: SAMEDAY
See: “SAME Alignment” on page 833 for more information.

Default: BEGINNING
See: “Aligning SAS Date Output within Its Intervals” on page 833 for more

information.

Details

The Basics The INTNX function increments a date, time, or datetime value by
intervals such as DAY, WEEK, QTR, and MINUTE, or a custom interval that you
define. The increment is based on a starting date, time, or datetime value, and on the
number of time intervals that you specify.

The INTNX function returns the SAS date value for the beginning date, time, or
datetime value of the interval that you specify in the start–from argument. (To convert

Functions and CALL Routines � INTNX Function 833

the SAS date value to a calendar date, use any valid SAS date format, such as the
DATE9. format.) The following example shows how to determine the date of the start of
the week that is six weeks from the week of October 17, 2003.

x=intnx(’week’, ’17oct03’d, 6);
put x date9.;

INTNX returns the value 23NOV2003.
For more information about working with date and time intervals, see “Date and

Time Intervals” on page 326.

Aligning SAS Date Output within Its Intervals
SAS date values are typically aligned with the beginning of the time interval that is

specified with the interval argument.
You can use the optional alignment argument to specify the alignment of the date

that is returned. The values BEGINNING, MIDDLE, or END align the date to the
beginning, middle, or end of the interval, respectively.

SAME Alignment If you use the SAME value of the alignment argument, then INTNX
returns the same calendar date after computing the interval increment that you
specified. The same calendar date is aligned based on the interval’s shift period, not the
interval. To view the valid shift periods, see the “Intervals Used with Date and Time
Functions” table in SAS Language Reference: Concepts.

Most of the values of the shift period are equal to their corresponding intervals. The
exceptions are the intervals WEEK, WEEKDAY, QTR, SEMIYEAR, YEAR, and their
DT counterparts. WEEK and WEEKDAY intervals have a shift period of DAYS; and
QTR, SEMIYEAR, and YEAR intervals have a shift period of MONTH. When you use
SAME alignment with YEAR, for example, the result is same-day alignment based on
MONTH, the interval’s shift period. The result is not aligned to the same day of the
YEAR interval. If you specify a multiple interval, then the default shift interval is
based on the interval, and not on the multiple interval.

When you use SAME alignment for QTR, SEMIYEAR, and YEAR intervals, the
computed date is the same number of months from the beginning of the interval as the
input date. The day of the month matches as closely as possible. Because not all months
have the same number of days, it is not always possible to match the day of the month.

For more information about shift periods, see the “Intervals Used with Date and
Time Functions” table in SAS Language Reference: Concepts.

Alignment Intervals Use the SAME value of the alignment argument if you want to
base the alignment of the computed date on the alignment of the input date:

intnx(’week’, ’15mar2000’d, 1, ’same’); returns 22MAR2000
intnx(’dtweek’, ’15mar2000:8:45’dt, 1, ’same’); returns 22MAR00:08:45:00
intnx(’year’, ’15mar2000’d, 5, ’same’); returns 15MAR2005

Adjusting Dates The INTNX function automatically adjusts for the date if the date in
the interval that is incremented does not exist. Here is an example:

intnx(’month’, ’15mar2000’d, 5, ’same’); returns 15AUG2000
intnx(’year’, ’29feb2000’d, 2, ’same’); returns 28FEB2002
intnx(’month’, ’31aug2001’d, 1, ’same’); returns 30SEP2001
intnx(’year’, ’01mar1999’d, 1, ’same’); returns 01MAR2000

(the first day of the
third month of the year)

intnx(’year’, ’01mar1999’d, 1, ’same’); returns 29FEB2000 (the 60th day

834 INTNX Function � Chapter 4

of the year)

In the example intnx(’year’, ’29feb2000’d, 2);, the INTNX function returns
the value 01JAN2002, which is the beginning of the year two years from the starting
date (2000).

In the example intnx(’year’, ’29feb2000’d, 2, ’same’);, the INTNX function
returns the value 28FEB2002. In this case, the starting date begins in the year 2000,
the year is two years later (2002), the month is the same (February), and the date is the
28th, because that is the closest date to the 29th in February 2002.

Retail Calendar Intervals
The retail industry often accounts for its data by dividing the yearly calendar into four
13-week periods, based on one of the following formats: 4-4-5, 4-5-4, or 5-4-4. The first,
second, and third numbers specify the number of weeks in the first, second, and third
month of each period, respectively. For more information, see “Retail Calendar
Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

Example 1: Examples of Using Intervals with the INTNX Function The following SAS
statements produce these results.

SAS Statements Results

yr=intnx(’year’,’05feb94’d,3);
put yr / yr date7.;

13515
01JAN97

x=intnx(’month’,’05jan95’d,0);
put x / x date7.;

12784
01JAN95

next=intnx(’semiyear’,’01jan97’d,1);
put next / next date7.;

13696
01JUL97

past=intnx(’month2’,’01aug96’d,-1);
put past / past date7.;

13270
01MAY96

sm=intnx(’semimonth2.2’,’01apr97’d,4);
put sm / sm date7.;

13711
16JUL97

x=’month’;
date=’1jun1990’d;
nextmon=intnx(x,date,1);
put nextmon / nextmon date7.;

11139
01JUL90

x1=’month ’;
x2=trim(x1);
date=’1jun1990’d - 100;
nextmonth=intnx(x2,date,1);
put nextmonth / nextmonth date7.;

11017
01MAR90

The following examples show the results of advancing a date by using the optional
alignment argument.

Functions and CALL Routines � INTNX Function 835

SAS Statements Results

date1=intnx(’month’,’01jan95’d,5,’beginning’);
put date1 / date1 date7.;

12935
01JUN95

date2=intnx(’month’,’01jan95’d,5,’middle’);
put date2 / date2 date7.;

12949
15JUN95

date3=intnx(’month’,’01jan95’d,5,’end’);
put date3 / date3 date7.;

12964
30JUN95

date4=intnx(’month’,’01jan95’d,5,’sameday’);
put date4 / date4 date7.;

12935
01JUN95

date5=intnx(’month’,’15mar2000’d,5,’same’);
put date5 / date5 date9.;

14837
15AUG2000

interval=’month’;
date=’1sep2001’d;
align=’m’;
date4=intnx(interval,date,2,align);
put date4 / date4 date7.;

15294
15NOV01

x1=’month ’;
x2=trim(x1);
date=’1sep2001’d + 90;
date5=intnx(x2,date,2,’m’);
put date5 / date5 date7.;

15356
16JAN02

Example 2: Example of Using Custom Intervals
The following example uses the custom-interval form of the INTNX function to
increment a date, time, or datetime value by a given time interval.

options intervalds=(weekdaycust=dstest);

data dstest;
format begin end date9.;
begin=’01jan2008’d; end=’01jan2008’d; output;
begin=’02jan2008’d; end=’02jan2008’d; output;
begin=’03jan2008’d; end=’03jan2008’d; output;
begin=’04jan2008’d; end=’06jan2008’d; output;
begin=’07jan2008’d; end=’07jan2008’d; output;
begin=’08jan2008’d; end=’08jan2008’d; output;
begin=’09jan2008’d; end=’09jan2008’d; output;
begin=’10jan2008’d; end=’10jan2008’d; output;
begin=’11jan2008’d; end=’13jan2008’d; output;
begin=’14jan2008’d; end=’14jan2008’d; output;
begin=’15jan2008’d; end=’15jan2008’d; output;

run;

data _null_;
format start date9. endcustom date9.;
start=’01jan2008’d;
do i=0 to 9;

endcustom=intnx(’weekdaycust’, start, i);

836 INTRR Function � Chapter 4

put endcustom;
end;

run;

SAS writes the following output to the log:

01JAN2008
02JAN2008
03JAN2008
04JAN2008
07JAN2008
08JAN2008
09JAN2008
10JAN2008
11JAN2008
14JAN2008

See Also

Functions:

“INTCK Function” on page 816

“INTSHIFT Function” on page 840

System Options:

“INTERVALDS= System Option” on page 1872

INTRR Function

Returns the internal rate of return as a fraction.

Category: Financial

Syntax
INTRR(freq,c0, c1,..., cn)

Arguments

freq
is numeric, the number of payments over a specified base period of time that is
associated with the desired internal rate of return.

Range: freq > 0

Tip: The case freq = 0 is a flag to allow continuous compounding.

c0,c1, ... ,cn
are numeric, the optional cash payments.

Functions and CALL Routines � INTRR Function 837

Details
The INTRR function returns the internal rate of return over a specified base period of
time for the set of cash payments c0, c1,..., cn. The time intervals between any two
consecutive payments are assumed to be equal. The argument freq > 0 describes the
number of payments that occur over the specified base period of time. The number of
notes issued from each instance is limited.

The internal rate of return is the interest rate such that the sequence of payments
has a 0 net present value. (See the NETPV function.) It is given by

� �

�
�

�
���� � � ���� � �
����� ��� ���� � �

where x is the real root of the polynomial.

��
���

	��
� � �

In the case of multiple roots, one real root is returned and a warning is issued
concerning the non-uniqueness of the returned internal rate of return. Depending on
the value of payments, a root for the equation does not always exist. In that case, a
missing value is returned.

Missing values in the payments are treated as 0 values. When freq > 0, the
computed rate of return is the effective rate over the specified base period. To compute
a quarterly internal rate of return (the base period is three months) with monthly
payments, set freq to 3.

If freq is 0, continuous compounding is assumed and the base period is the time
interval between two consecutive payments. The computed internal rate of return is the
nominal rate of return over the base period. To compute with continuous compounding
and monthly payments, set freq to 0. The computed internal rate of return will be a
monthly rate.

Comparisons
The IRR function is identical to INTRR, except for in the IRR function, the internal rate
of return is a percentage.

Examples

For an initial outlay of $400 and expected payments of $100, $200, and $300 over the
following three years, the annual internal rate of return can be expressed as

rate=intrr(1,-400,100,200,300);

The value returned is 0.19438.

See Also

Functions:
“IRR Function” on page 847

838 INTSEAS Function � Chapter 4

INTSEAS Function

Returns the length of the seasonal cycle when a date, time, or datetime interval is specified.

Category: Date and Time

Syntax
INTSEAS(interval<<multiple.<shift-index>>>)

Arguments

interval
specifies a character constant, a variable, or an expression that contains an interval
name such as WEEK, MONTH, or QTR. Interval can appear in uppercase or
lowercase. The possible values of interval are listed in the “Intervals Used with Date
and Time Functions” table in SAS Language Reference: Concepts.

Multipliers and shift indexes can be used with the basic interval names to
construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.
See: “Incrementing Dates and Times by Using Multipliers and by Shifting

Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted
to start on the first of March of each calendar year and to end in February of
the following year.
Restriction: The shift index cannot be greater than the number of subperiods

in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
would be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, because MONTH type intervals shift by MONTH subperiods by
default, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index, because there are two
MONTH intervals in each MONTH2 interval. For example, the interval
name MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

Functions and CALL Routines � INTSEAS Function 839

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

Details

The Basics The INTSEAS function returns the number of intervals in a seasonal
cycle. For example, when the interval for a time series is described as monthly, then
many procedures use the option INTERVAL=MONTH. Each observation in the data
then corresponds to a particular month. Monthly data is considered to be periodic for a
one-year period. A year contains 12 months, so the number of intervals (months) in a
seasonal cycle (year) is 12.

Quarterly data is also considered to be periodic for a one-year period. A year contains
four quarters, so the number of intervals in a seasonal cycle is four.

The periodicity is not always one year. For example, INTERVAL=DAY is considered
to have a period of one week. Because there are seven days in a week, the number of
intervals in the seasonal cycle is seven.

For more information about working with date and time intervals, see “Date and
Time Intervals” on page 326.

Retail Calendar Intervals
The retail industry often accounts for its data by dividing the yearly calendar into four
13-week periods, based on one of the following formats: 4-4-5, 4-5-4, or 5-4-4. The first,
second, and third numbers specify the number of weeks in the first, second, and third
month of each period, respectively. For more information, see “Retail Calendar
Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

The following SAS statements produce these results:

SAS Statements Results

cycle_years = intseas(’year’);
put cycle_years; 1

cycle_smiyears = intseas(’semiyear’);
put cycle_smiyears; 2

cycle_quarters = intseas(’quarter’);
put cycle_quarters; 4

cycle_months = intseas(’month’);
put cycle_months; 12

cycle_smimonths = intseas(’semimonth’);
put cycle_smimonths; 24

cycle_tendays = intseas(’tenday’);
put cycle_tendays; 36

cycle_weeks = intseas(’week’);
put cycle_weeks; 52

cycle_wkdays = intseas(’weekday’);
put cycle_wkdays; 5

cycle_hours = intseas(’hour’);
put cycle_hours; 24

cycle_minutes = intseas(’minute’);
put cycle_minutes; 60

840 INTSHIFT Function � Chapter 4

SAS Statements Results

cycle_month2 = intseas(’month2.2’);
put cycle_month2; 6

cycle_week2 = intseas(’week2’);
put cycle_week2; 26

var1 = ’month4.3’;
cycle_var1 = intseas(var1);
put cycle_var1; 3

cycle_day1 = intseas(’day1’);
put cycle_day1; 7

See Also

Function:
“INTCYCLE Function” on page 819

INTSHIFT Function

Returns the shift interval that corresponds to the base interval.

Category: Date and Time

Syntax
INTSHIFT(interval <<multiple.<shift-index>>>)

Arguments

interval
specifies a character constant, a variable, or an expression that contains a time
interval such as WEEK, SEMIYEAR, QTR, or HOUR. Interval can appear in
uppercase or lowercase. The possible values of interval are listed in the “Intervals
Used with Date and Time Functions” table in SAS Language Reference: Concepts.

Multipliers and shift indexes can be used with the basic interval names to construct
more complex interval specifications. The general form of an interval name is as follows:

interval<multiple.shift-index>
The three parts of the interval name are as follows:

interval
specifies the name of the basic interval type. For example, YEAR specifies yearly
intervals.

Functions and CALL Routines � INTSHIFT Function 841

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, the interval YEAR2 consists of
two-year, or biennial, periods.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods shifted to
start on the first of March of each calendar year and to end in February of the
following year.

Restriction: The shift index cannot be greater than the number of subperiods in
the whole interval. For example, you could use YEAR2.24, but YEAR2.25 would
be an error because there is no 25th month in a two-year interval.

Restriction: If the default shift period is the same as the interval type, then only
multiperiod intervals can be shifted with the optional shift index. For example,
because MONTH type intervals shift by MONTH subperiods by default, monthly
intervals cannot be shifted with the shift index. However, bimonthly intervals
can be shifted with the shift index, because there are two MONTH intervals in
each MONTH2 interval. For example, the interval name MONTH2.2 specifies
bimonthly periods starting on the first day of even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

Details
The INTSHIFT function returns the shift interval that corresponds to the base interval.
For custom intervals, the value that is returned is the base custom interval name.
INTSHIFT ignores multiples of the interval and interval shifts.

The INTSHIFT function can also be used with calendar intervals from the retail
industry. These intervals are ISO 8601 compliant. For more information, see “Retail
Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

The following examples produce these results:

SAS Statements Results

shift1 = intshift(’year’);
put shift1;

MONTH

shift2 = intshift(’dtyear’);
put shift2;

DTMONTH

shift3 = intshift(’minute’);
put shift3;

DTMINUTE

interval = ’weekdays’;
shift4 = intshift(interval);
put shift4;

WEEKDAY

shift5 = intshift(’weekday5.4’);
put shift5;

WEEKDAY

842 INTTEST Function � Chapter 4

SAS Statements Results

shift6 = intshift(’qtr’);
put shift6;

MONTH

shift7 = intshift(’dttenday’);
put shift7;

DTTENDAY

INTTEST Function
Returns 1 if a time interval is valid, and returns 0 if a time interval is invalid.

Category: Date and Time

Syntax
INTTEST(interval<<multiple.<shift-index>>>)

Arguments

interval
specifies a character constant, variable, or expression that contains an interval name,
such as WEEK, MONTH, or QTR. Interval can appear in uppercase or lowercase.
The possible values of interval are listed in the “Intervals Used with Date and Time
Functions” table in SAS Language Reference: Concepts.

Multipliers and shift indexes can be used with the basic interval names to
construct more complex interval specifications. The general form of an interval name
is as follows:

interval<multiple.shift-index>
Here are the three parts of the interval name:

interval
specifies the name of the basic interval type. For example, YEAR specifies
yearly intervals.

multiple
specifies an optional multiplier that sets the interval equal to a multiple of the
period of the basic interval type. For example, YEAR2 consists of two-year, or
biennial, periods.
See: “Incrementing Dates and Times by Using Multipliers and by Shifting

Intervals” on page 327 for more information.

shift-index
specifies an optional shift index that shifts the interval to start at a specified
subperiod starting point. For example, YEAR.3 specifies yearly periods that are
shifted to start on the first of March of each calendar year and to end in
February of the following year.
Restriction: The shift index cannot be greater than the number of subperiods

in the whole interval. For example, you could use YEAR2.24, but YEAR2.25
is invalid because there is no 25th month in a two-year interval.

Functions and CALL Routines � INTZ Function 843

Restriction: If the default shift period is the same as the interval type, then
only multiperiod intervals can be shifted with the optional shift index. For
example, because MONTH type intervals shift by MONTH subperiods by
default, monthly intervals cannot be shifted with the shift index. However,
bimonthly intervals can be shifted with the shift index, because there are two
MONTH intervals in each MONTH2 interval. For example, the interval
name MONTH2.2 specifies bimonthly periods starting on the first day of
even-numbered months.

See: “Incrementing Dates and Times by Using Multipliers and by Shifting
Intervals” on page 327 for more information.

Details
The INTTEST function checks for a valid interval name. This function is useful when
checking for valid values of multiple and shift-index. For more information about
multipliers and shift indexes, see “Multiunit Intervals” in SAS Language Reference:
Concepts.

The INTTEST function can also be used with calendar intervals from the retail
industry. These intervals are ISO 8601 compliant. For more information, see “Retail
Calendar Intervals: ISO 8601 Compliant” in SAS Language Reference: Concepts.

Examples

In the following examples, SAS returns a value of 1 if the interval argument is valid,
and 0 if the interval argument is invalid.

SAS Statements Results

test1 = inttest(’month’);
put test1; 1

test2 = inttest(’week6.13’);
put test2;

1

test3 = inttest(’tenday’);
put test3; 1

test4 = inttest(’twoweeks’);
put test4; 0

var1 = ’hour2.2’;
test5 = inttest(var1);
put test5; 1

INTZ Function

Returns the integer portion of the argument, using zero fuzzing.

Category: Truncation

844 INTZ Function � Chapter 4

Syntax
INTZ (argument)

Arguments

argument
is a numeric constant, variable, or expression.

Details
The following rules apply:

� If the value of the argument is an exact integer, INTZ returns that integer.
� If the argument is positive and not an integer, INTZ returns the largest integer

that is less than the argument.
� If the argument is negative and not an integer, INTZ returns the smallest integer

that is greater than the argument.

Comparisons
Unlike the INT function, the INTZ function uses zero fuzzing. If the argument is within
1E-12 of an integer, the INT function fuzzes the result to be equal to that integer. The
INTZ function does not fuzz the result. Therefore, with the INTZ function you might
get unexpected results.

Examples

The following SAS statements produce these results.

SAS Statements Results

var1=2.1;
a=intz(var1);
put a; 2

var2=-2.4;
b=intz(var2);
put b; -2

var3=1+1.e-11;
c=intz(var3);
put c; 1

f=intz(-1.6);
put f; -1

See Also

Functions and CALL Routines � IORCMSG Function 845

Functions:
“CEIL Function” on page 568
“CEILZ Function” on page 569

“FLOOR Function” on page 742
“FLOORZ Function” on page 743
“INT Function” on page 812

“ROUND Function” on page 1065
“ROUNDZ Function” on page 1073

IORCMSG Function

Returns a formatted error message for _IORC_.

Category: SAS File I/O

Syntax
IORCMSG()

Details
If the IORCMSG function returns a value to a variable that has not yet been assigned a
length, then by default the variable is assigned a length of 200.

The IORCMSG function returns the formatted error message that is associated with
the current value of the automatic variable _IORC_. The _IORC_ variable is created
when you use the MODIFY statement, or when you use the SET statement with the
KEY= option. The value of the _IORC_ variable is internal and is meant to be read in
conjunction with the SYSRC autocall macro. If you try to set _IORC_ to a specific value,
you might get unexpected results.

Examples

In the following program, observations are either rewritten or added to the updated
master file that contains bank accounts and current bank balance. The program queries
the _IORC_ variable and returns a formatted error message if the _IORC_ value is
unexpected.

libname bank ’SAS-library’;

data bank.master(index=(AccountNum));
infile ’external-file-1’;
format balance dollar8.;
input @ 1 AccountNum $ 1--3 @ 5 balance 5--9;

run;

data bank.trans(index=(AccountNum));

846 IQR Function � Chapter 4

infile ’external-file-2’;
format deposit dollar8.;
input @ 1 AccountNum $ 1--3 @ 5 deposit 5--9;

run;

data bank.master;
set bank.trans;
modify bank.master key=AccountNum;
if (_IORC_ EQ %sysrc(_SOK)) then

do;
balance=balance+deposit;
replace;

end;
else

if (_IORC_ = %sysrc(_DSENOM)) then
do;

balance=deposit;
output;
error=0;

end;
else

do;
errmsg=IORCMSG();
put ’Unknown error condition:’
errmsg;

end;
run;

IQR Function

Returns the interquartile range.

Category: Descriptive Statistics

Syntax
IQR(value-1 <, value-2...>)

Arguments

value
specifies a numeric constant, variable, or expression for which the interquartile range
is to be computed.

Details
If all arguments have missing values, the result is a missing value. Otherwise, the
result is the interquartile range of the non-missing values. The formula for the

Functions and CALL Routines � IRR Function 847

interquartile range is the same as the one that is used in the UNIVARIATE procedure.
For more information, see Base SAS Procedures Guide.

Examples

SAS Statements Results

iqr=iqr(2,4,1,3,999999);
put iqr; 2

See Also

Functions:

“MAD Function” on page 894

“PCTL Function” on page 960

IRR Function

Returns the internal rate of return as a percentage.

Category: Financial

Syntax
IRR(freq,c0,c1,…,cn)

Arguments

freq
is numeric, the number of payments over a specified base period of time that is
associated with the desired internal rate of return.

Range: freq > 0.

Tip: The case freq = 0 is a flag to allow continuous compounding.

c0,c1,…,cn
are numeric, the optional cash payments.

Details
The IRR function returns the internal rate of return over a specified base period of time
for the set of cash payments c0, c1,…,cn. The time intervals between any two
consecutive payments are assumed to be equal. The argument freq > 0 describes the
number of payments that occur over the specified base period of time. The number of
notes issued from each instance is limited.

848 JBESSEL Function � Chapter 4

Comparisons
The IRR function is identical to INTRR, except for in the IRR function, the internal rate
of return is a percentage.

See Also

Functions:
“INTRR Function” on page 836

JBESSEL Function
Returns the value of the Bessel function.

Category: Mathematical

Syntax
JBESSEL(nu,x)

Arguments

nu
specifies a numeric constant, variable, or expression.
Range: nu ≥ 0

x
specifies a numeric constant, variable, or expression.
Range: x ≥ 0

Details
The JBESSEL function returns the value of the Bessel function of order nu evaluated
at x (For more information, see Abramowitz and Stegun 1964; Amos, Daniel, and
Weston 1977).

Examples

SAS Statements Results

x=jbessel(2,2); 0.3528340286

JULDATE Function
Returns the Julian date from a SAS date value.

Functions and CALL Routines � JULDATE Function 849

Category: Date and Time

Syntax
JULDATE(date)

Arguments

date
specifies a SAS date value.

Details
A SAS date value is a number that represents the number of days from January 1,
1960 to a specific date. The JULDATE function converts a SAS date value to a Julian
date. If date falls within the 100-year span defined by the system option
YEARCUTOFF=, the result has three, four, or five digits. In a five digit result, the first
two digits represent the year, and the next three digits represent the day of the year (1
to 365, or 1 to 366 for leap years). Because leading zeros are dropped from the result,
the year portion of a Julian date might be omitted (for years ending in 00), or it might
have only one digit (for years ending 01–09). Otherwise, the result has seven digits: the
first four digits represent the year, and the next three digits represent the day of the
year. For example, if YEARCUTOFF=1920, JULDATE would return 97001 for January
1, 1997, and return 1878365 for December 31, 1878.

Comparisons
The function JULDATE7 is similar to JULDATE except that JULDATE7 always
returns a four digit year. Thus JULDATE7 is year 2000 compliant because it eliminates
the need to consider the implications of a two digit year.

Examples

The following SAS statements produce these results:

SAS Statements Results

julian=juldate(’31dec99’d); 99365

julian=juldate(’01jan2099’d); 2099001

See Also

Function:
“DATEJUL Function” on page 628
“JULDATE7 Function” on page 850

System Option:
“YEARCUTOFF= System Option” on page 1996

850 JULDATE7 Function � Chapter 4

JULDATE7 Function

Returns a seven-digit Julian date from a SAS date value.

Category: Date and Time

Syntax
JULDATE7(date)

Arguments

date
specifies a SAS date value.

Details
The JULDATE7 function returns a seven digit Julian date from a SAS date value. The
first four digits represent the year, and the next three digits represent the day of the
year.

Comparisons
The function JULDATE7 is similar to JULDATE except that JULDATE7 always
returns a four digit year. Thus JULDATE7 is year 2000 compliant because it eliminates
the need to consider the implications of a two digit year.

Examples

The following SAS statements produce these results:

SAS Statements Results

julian=juldate7(’31dec96’d); 1996366

julian=juldate7(’01jan2099’d); 2099001

See Also

Function:
“JULDATE Function” on page 848

KURTOSIS Function

Returns the kurtosis.

Functions and CALL Routines � LAG Function 851

Category: Descriptive Statistics

Syntax
KURTOSIS(argument-1,argument-2,argument-3,argument-4<,…,argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
At least four non-missing arguments are required. Otherwise, the function returns a
missing value. If all non-missing arguments have equal values, the kurtosis is
mathematically undefined. The KURTOSIS function returns a missing value and sets
ERROR equal to 1.

The argument list can consist of a variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=kurtosis(5,9,3,6); 0.928

x2=kurtosis(5,8,9,6,.); -3.3

x3=kurtosis(8,9,6,1); 1.5

x4=kurtosis(8,1,6,1); -4.483379501

x5=kurtosis(of x1-x4); -5.065692754

LAG Function

Returns values from a queue.

Category: Special

Syntax
LAG<n>(argument)

Arguments

n

852 LAG Function � Chapter 4

specifies the number of lagged values.

argument
specifies a numeric or character constant, variable, or expression.

Details

The Basics If the LAG function returns a value to a character variable that has not
yet been assigned a length, by default the variable is assigned a length of 200.

The LAG functions, LAG1, LAG2, ..., LAGn return values from a queue. LAG1 can
also be written as LAG. A LAGn function stores a value in a queue and returns a value
stored previously in that queue. Each occurrence of a LAGn function in a program
generates its own queue of values.

The queue for each occurrence of LAGn is initialized with n missing values, where n
is the length of the queue (for example, a LAG2 queue is initialized with two missing
values). When an occurrence of LAGn is executed, the value at the top of its queue is
removed and returned, the remaining values are shifted upwards, and the new value of
the argument is placed at the bottom of the queue. Hence, missing values are returned
for the first n executions of each occurrence of LAGn, after which the lagged values of
the argument begin to appear.

Note: Storing values at the bottom of the queue and returning values from the top
of the queue occurs only when the function is executed. An occurrence of the LAGn
function that is executed conditionally will store and return values only from the
observations for which the condition is satisfied. �

If the argument of LAGn is an array name, a separate queue is maintained for each
variable in the array.

Memory Limit for the LAG Function When the LAG function is compiled, SAS
allocates memory in a queue to hold the values of the variable that is listed in the LAG
function. For example, if the variable in function LAG100(x) is numeric with a length of
8 bytes, then the memory that is needed is 8 times 100, or 800 bytes. Therefore, the
memory limit for the LAG function is based on the memory that SAS allocates, which
varies with different operating environments.

Examples

Example 1: Generating Two Lagged Values The following program generates two
lagged values for each observation.

options pagesize= linesize= pageno=1 nodate;

data one;
input x @@;
y=lag1(x);
z=lag2(x);
datalines;

1 2 3 4 5 6
;

proc print data=one;
title ’LAG Output’;

run;

Functions and CALL Routines � LAG Function 853

Output 4.56 Output from Generating Two Lagged Values

LAG Output 1

Obs x y z

1 1 . .
2 2 1 .
3 3 2 1
4 4 3 2
5 5 4 3
6 6 5 4

LAG1 returns one missing value and the values of X (lagged once). LAG2 returns
two missing values and the values of X(lagged twice).

Example 2: Generating Multiple Lagged Values in BY-Groups The following example
shows how to generate up to three lagged values within each BY group.

/***/
/* This program generates up to three lagged values. By increasing the */
/* size of the array and the number of assignment statements that use */
/* the LAGn functions, you can generate as many lagged values as needed. */
/***/
options pageno=1 ls=80 ps=64 nodate;

/* Create starting data. */

data old;
input start end;

datalines;
1 1
1 2
1 3
1 4
1 5
1 6
1 7
2 1
2 2
3 1
3 2
3 3
3 4
3 5
;

data new(drop=i count);
set old;
by start;

/* Create and assign values to three new variables. Use ENDLAG1- */
/* ENDLAG3 to store lagged values of END, from the most recent to the */
/* third preceding value. */
array x(*) endlag1-endlag3;

854 LAG Function � Chapter 4

endlag1=lag1(end);
endlag2=lag2(end);
endlag3=lag3(end);

/* Reset COUNT at the start of each new BY-Group */
if first.start then count=1;

/* On each iteration, set to missing array elements */
/* that have not yet received a lagged value for the */
/* current BY-Group. Increase count by 1. */
do i=count to dim(x);
x(i)=.;

end;
count + 1;

run;

proc print;
run;

Output 4.57 Output from Generating Three Lagged Values

The SAS System 1

Obs start end endlag1 endlag2 endlag3

1 1 1 . . .
2 1 2 1 . .
3 1 3 2 1 .
4 1 4 3 2 1
5 1 5 4 3 2
6 1 6 5 4 3
7 1 7 6 5 4
8 2 1 . . .
9 2 2 1 . .
10 3 1 . . .
11 3 2 1 . .
12 3 3 2 1 .
13 3 4 3 2 1
14 3 5 4 3 2

Example 3: Computing the Moving Average of a Variable The following is an example
that computes the moving average of a variable in a data set.

/* Title: Compute the moving average of a variable
Goal: Compute the moving average of a variable through the entire data set,

of the last n observations and of the last n observations within a
BY-group.

Input:
*/
options pageno=1 ls=80 ps=64 fullstimer nodate;

data x;
do x=1 to 10;

output;

Functions and CALL Routines � LAG Function 855

end;
run;
/* Compute the moving average of the entire data set. */
data avg;
retain s 0;
set x;
s=s+x;
a=s/_n_;
run;
proc print;
run;
/* Compute the moving average of the last 5 observations. */
%let n = 5;
data avg (drop=s);
retain s;
set x;
s = sum (s, x, -lag&n(x)) ;
a = s / min(_n_, &n);
run;
proc print;
run;
/* Compute the moving average within a BY-group of last n observations.
For the first n-1 observations within the BY-group, the moving average
is set to missing. */

data ds1;
do patient=’A’,’B’,’C’;
do month=1 to 7;
num=int(ranuni(0)*10);
output;
end;
end;
run;
proc sort;
by patient;
%let n = 4;
data ds2;
set ds1;
by patient;
retain num_sum 0;
if first.patient then do;
count=0;
num_sum=0;

end;
count+1;
last&n=lag&n(num);
if count gt &n then num_sum=sum(num_sum,num,-last&n);
else num_sum=sum(num_sum,num);
if count ge &n then mov_aver=num_sum/&n;
else mov_aver=.;
run;

proc print;
run;

856 LAG Function � Chapter 4

Output 4.58 Output from Computing the Moving Average of a Variable

The SAS System 1

Obs s x a

1 1 1 1.0
2 3 2 1.5
3 6 3 2.0
4 10 4 2.5
5 15 5 3.0
6 21 6 3.5
7 28 7 4.0
8 36 8 4.5
9 45 9 5.0

10 55 10 5.5

The SAS System 2

Obs x a

1 1 1.0
2 2 1.5
3 3 2.0
4 4 2.5
5 5 3.0
6 6 4.0
7 7 5.0
8 8 6.0
9 9 7.0
10 10 8.0

The SAS System 3

Obs patient month num num_sum count last4 mov_aver

1 A 1 4 4 1 . .
2 A 2 9 13 2 . .
3 A 3 2 15 3 . .
4 A 4 9 24 4 . 6.00
5 A 5 3 23 5 4 5.75
6 A 6 6 20 6 9 5.00
7 A 7 8 26 7 2 6.50
8 B 1 7 7 1 9 .
9 B 2 5 12 2 3 .

10 B 3 5 17 3 6 .
11 B 4 0 17 4 8 4.25
12 B 5 5 15 5 7 3.75
13 B 6 9 19 6 5 4.75
14 B 7 0 14 7 5 3.50
15 C 1 4 4 1 0 .
16 C 2 2 6 2 5 .
17 C 3 0 6 3 9 .
18 C 4 1 7 4 0 1.75
19 C 5 2 5 5 4 1.25
20 C 6 9 12 6 2 3.00
21 C 7 5 17 7 0 4.25

Example 4: Generating a Fibonacci Sequence of Numbers The following example
generates a Fibonacci sequence of numbers. You start with 0 and 1, and then add the
two previous Fibonacci numbers to generate the next Fibonacci number.

Functions and CALL Routines � LAG Function 857

data _null_;
put ’Fibonacci Sequence’;
n=1;
f=1;
put n= f=;
do n=2 to 10;

f=sum(f,lag(f));
put n= f=;

end;
run;

SAS writes the following output to the log:

Fibonacci Sequence
n=1 f=1
n=2 f=1
n=3 f=2
n=4 f=3
n=5 f=5
n=6 f=8
n=7 f=13
n=8 f=21
n=9 f=34
n=10 f=55

Example 5: Using Expressions for the LAG Function Argument The following program
uses an expression for the value of argument and creates a data set that contains the
values for X, Y, and Z. LAG dequeues the previous values of the expression and
enqueues the current value.

options nodate pageno=1 ls=80 ps=85;

data one;
input X @@;
Y=lag1(x+10);
Z=lag2(x);
datalines;

1 2 3 4 5 6
;
proc print;

title ’Lag Output: Using an Expression’;
run;

Output 4.59 Output from the LAG Function: Using an Expression

Lag Output: Using an Expression 1

Obs X Y Z

1 1 . .
2 2 11 .
3 3 12 1
4 4 13 2
5 5 14 3
6 6 15 4

858 LARGEST Function � Chapter 4

See Also

Function:
“DIF Function” on page 644

LARGEST Function

Returns the kth largest non-missing value.

Category: Descriptive Statistics

Syntax
LARGEST (k, value-1<, value-2 ...>)

Arguments

k
is a numeric constant, variable, or expression that specifies which value to return.

value
specifies the value of a numeric constant, variable, or expression to be processed.

Details
If k is missing, less than zero, or greater than the number of values, the result is a
missing value and _ERROR_ is set to 1. Otherwise, if k is greater than the number of
non-missing values, the result is a missing value but _ERROR_ is not set to 1.

Examples

The following SAS statements produce these results.

SAS Statements Results

k=1;
largest1=largest(k, 456, 789, .Q, 123);
put largest1; 789

k=2;
largest2=largest(k, 456, 789, .Q, 123);
put largest2; 456

k=3;
largest3=largest(k, 456, 789, .Q, 123);
put largest3; 123

k=4;
largest4=largest(k, 456, 789, .Q, 123);
put largest4; .

Functions and CALL Routines � LBOUND Function 859

See Also

Functions:
“ORDINAL Function” on page 957
“PCTL Function” on page 960
“SMALLEST Function” on page 1092

LBOUND Function

Returns the lower bound of an array.

Category: Array

Syntax
LBOUND<n>(array-name)

LBOUND(array-name,bound-n)

Arguments

n
is an integer constant that specifies the dimension for which you want to know the
lower bound. If no n value is specified, the LBOUND function returns the lower
bound of the first dimension of the array.

array-name
is the name of an array that was defined previously in the same DATA step.

bound-n
is a numeric constant, variable, or expression that specifies the dimension for which
you want to know the lower bound. Use bound-n only if n is not specified.

Details
The LBOUND function returns the lower bound of a one-dimensional array or the lower
bound of a specified dimension of a multidimensional array. Use LBOUND in array
processing to avoid changing the lower bound of an iterative DO group each time you
change the bounds of the array. LBOUND and HBOUND can be used together to
return the values of the lower and upper bounds of an array dimension.

Examples

Example 1: One-dimensional Array In this example, LBOUND returns the lower
bound of the dimension, a value of 2. SAS repeats the statements in the DO loop five
times.

array big{2:6} weight sex height state city;
do i=lbound(big) to hbound(big);

860 LCM Function � Chapter 4

...more SAS statements...;
end;

Example 2: Multidimensional Array This example shows two ways of specifying the
LBOUND function for multidimensional arrays. Both methods return the same value
for LBOUND, as shown in the table that follows the SAS code example.

array mult{2:6,4:13,2} mult1-mult100;

Syntax Alternative Syntax Value

LBOUND(MULT) LBOUND(MULT,1) 2

LBOUND2(MULT) LBOUND(MULT,2) 4

LBOUND3(MULT) LBOUND(MULT,3) 1

See Also

Functions:
“DIM Function” on page 646
“HBOUND Function” on page 786

Statements:
“ARRAY Statement” on page 1395
“Array Reference Statement” on page 1400

“Array Processing” in SAS Language Reference: Concepts

LCM Function

Returns the least common multiple.

Category: Mathematical

Syntax
LCM(x1, x2, x3, …, xn)

Arguments

x
specifies a numeric constant, variable, or expression that has an integer value.

Details
The LCM (least common multiple) function returns the smallest multiple that is exactly
divisible by every member of a set of numbers. For example, the least common multiple
of 12 and 18 is 36.

Functions and CALL Routines � LCOMB Function 861

If any of the arguments are missing, then the returned value is a missing value.

Examples

The following example returns the smallest multiple that is exactly divisible by the
integers 10 and 15.

data _null_;
x=lcm(10,15);
put x=;

run;

SAS writes the following output to the log:

x=30

See Also

Functions:
“GCD Function” on page 770

LCOMB Function

Computes the logarithm of the COMB function, which is the logarithm of the number of
combinations of n objects taken r at a time.

Category: Combinatorial

Syntax
LCOMB(n,r)

Arguments

n
is a non-negative integer that represents the total number of elements from which
the sample is chosen.

r
is a non-negative integer that represents the number of chosen elements.
Restriction: r ≤ n

Comparisons
The LCOMB function computes the logarithm of the COMB function.

Examples

The following statements produce these results:

862 LEFT Function � Chapter 4

SAS Statements Results

x=lcomb(5000,500);

put x; 1621.4411361

y=lcomb(100,10);

put y; 30.482323362

See Also

Functions:

“COMB Function” on page 584

LEFT Function

Left-aligns a character string.

Category: Character

Restriction: “I18N Level 0” on page 312

Tip: DBCS equivalent function is KLEFT in SAS National Language Support (NLS):
Reference Guide. See “DBCS Compatibility” on page 862.

Syntax
LEFT(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

The Basics In a DATA step, if the LEFT function returns a value to a variable that
has not previously been assigned a length, then that variable is given the length of the
argument.

LEFT returns an argument with leading blanks moved to the end of the value. The
argument’s length does not change.

DBCS Compatibility The LEFT function left-aligns a character string. You can use the
LEFT function in most cases. If an application can be executed in an ASCII
environment, or if the application does not manipulate character strings, then using the
LEFT function rather than the KLEFT function.

Functions and CALL Routines � LENGTH Function 863

Examples

SAS Statements Results

----+----1----+

a=’ DUE DATE’;
b=left(a);
put b; DUE DATE

See Also

Functions:
“COMPRESS Function” on page 598
“RIGHT Function” on page 1063
“STRIP Function” on page 1102
“TRIM Function” on page 1135

LENGTH Function

Returns the length of a non-blank character string, excluding trailing blanks, and returns 1 for a
blank character string.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KLENGTH in SAS National Language Support
(NLS): Reference Guide.
Tip: The LENGTH function returns a length in bytes, while the KLENGTH function
returns a length in a character based unit.

Syntax
LENGTH(string)

Arguments

string
specifies a character constant, variable, or expression.

Details
The LENGTH function returns an integer that represents the position of the rightmost
non-blank character in string. If the value of string is blank, LENGTH returns a value
of 1. If string is a numeric constant, variable, or expression (either initialized or
uninitialized), SAS automatically converts the numeric value to a right-justified

864 LENGTHC Function � Chapter 4

character string by using the BEST12. format. In this case, LENGTH returns a value
of 12 and writes a note in the SAS log stating that the numeric values have been
converted to character values.

Comparisons
� The LENGTH and LENGTHN functions return the same value for non-blank

character strings. LENGTH returns a value of 1 for blank character strings,
whereas LENGTHN returns a value of 0.

� The LENGTH function returns the length of a character string, excluding trailing
blanks, whereas the LENGTHC function returns the length of a character string,
including trailing blanks.

� The LENGTH function returns the length of a character string, excluding trailing
blanks, whereas the LENGTHM function returns the amount of memory in bytes
that is allocated for a character string.

Examples

SAS Statements Results

len=length(’ABCDEF’);
put len;

len2=length(’ ’);
put len2;

6

1

See Also

Functions:
“LENGTHC Function” on page 864

“LENGTHM Function” on page 865
“LENGTHN Function” on page 867

LENGTHC Function

Returns the length of a character string, including trailing blanks.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
LENGTHC(string)

Arguments

Functions and CALL Routines � LENGTHM Function 865

string
specifies a character constant, variable, or expression.

Details
The LENGTHC function returns the number of characters, both blanks and non-blanks,
in string. If string is a numeric constant, variable or expression (either initialized or
uninitialized), SAS automatically converts the numeric value to a right-justified
character string by using the BEST12. format. In this case, LENGTHC returns a value
of 12 and writes a note in the SAS log stating that the numeric values have been
converted to character values.

Comparisons
� The LENGTHC function returns the length of a character string, including

trailing blanks, whereas the LENGTH and LENGTHN functions return the length
of a character string, excluding trailing blanks. LENGTHC always returns a value
that is greater than or equal to the value of LENGTHN.

� The LENGTHC function returns the length of a character string, including
trailing blanks, whereas the LENGTHM function returns the amount of memory
in bytes that is allocated for a character string. For fixed-length character strings,
LENGTHC and LENGTHM always return the same value. For varying-length
character strings, LENGTHC always returns a value that is less than or equal to
the value returned by LENGTHM.

Examples

The following SAS statements produce these results:

SAS Statements Results

x=lengthc(’variable with trailing blanks ’);
put x; 32

length fixed $35;
fixed=’variable with trailing blanks ’;
x=lengthc(fixed);
put x; 35

See Also

Functions:
“LENGTH Function” on page 863
“LENGTHM Function” on page 865
“LENGTHN Function” on page 867

LENGTHM Function

Returns the amount of memory (in bytes) that is allocated for a character string.

866 LENGTHM Function � Chapter 4

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
LENGTHM(string)

Arguments

string
specifies a character constant, variable, or expression.

Details
The LENGTHM function returns an integer that represents the amount of memory in
bytes that is allocated for string. If string is a numeric constant, variable, or expression
(either initialized or uninitialized), SAS automatically converts the numeric value to a
right-justified character string by using the BEST12. format. In this case, LENGTHM
returns a value of 12 and writes a note in the SAS log stating that the numeric values
have been converted to character values.

Comparisons
The LENGTHM function returns the amount of memory in bytes that is allocated for a
character string, whereas the LENGTH, LENGTHC, and LENGTHN functions return
the length of a character string. LENGTHM always returns a value that is greater than
or equal to the values that are returned by LENGTH, LENGTHC, and LENGTHN.

Examples

Example 1: Determining the Amount of Allocated Memory for a Character
Expression This example determines the amount of memory (in bytes) that is
allocated for a buffer that stores intermediate results in a character expression.
Because SAS does not know how long the value of the expression CAT(x,y) will be, SAS
allocates memory for values up to 32767 bytes long.

data _null_;
x=’x’;
y=’y’;
lc=lengthc(cat(x,y));
lm=lengthm(cat(x,y));
put lc= lm=;

run;

SAS writes the following output to the log:

lc=2 lm=32767

Example 2: Determining the Amount of Allocated Memory for a Variable from an External
File This example determines the amount of memory (in bytes) that is allocated to a
variable that is input into a SAS file from an external file.

data _null_;
file ’test.txt’;

Functions and CALL Routines � LENGTHN Function 867

put ’trailing blanks ’;
run;

data test;
infile ’test.txt’;
input;
x=lengthm(_infile_);
put x;

run;

The following line is written to the SAS log:

256

See Also

Functions:

“LENGTH Function” on page 863

“LENGTHC Function” on page 864

“LENGTHN Function” on page 867

LENGTHN Function

Returns the length of a character string, excluding trailing blanks.

Category: Character

Restriction: “I18N Level 0” on page 312

Syntax
LENGTHN(string)

Arguments

string
specifies a character constant, variable, or expression.

Details
The LENGTHN function returns an integer that represents the position of the
rightmost non-blank character in string. If the value of string is blank, LENGTHN
returns a value of 0. If string is a numeric constant, variable, or expression (either
initialized or uninitialized), SAS automatically converts the numeric value to a
right-justified character string by using the BEST12. format. In this case, LENGTHN
returns a value of 12 and writes a note in the SAS log stating that the numeric values
have been converted to character values.

868 LEXCOMB Function � Chapter 4

Comparisons
� The LENGTHN and LENGTH functions return the same value for non-blank

character strings. LENGTHN returns a value of 0 for blank character strings,
whereas LENGTH returns a value of 1.

� The LENGTHN function returns the length of a character string, excluding
trailing blanks, whereas the LENGTHC function returns the length of a character
string, including trailing blanks. LENGTHN always returns a value that is less
than or equal to the value returned by LENGTHC.

� The LENGTHN function returns the length of a character string, excluding
trailing blanks, whereas the LENGTHM function returns the amount of memory
in bytes that is allocated for a character string. LENGTHN always returns a value
that is less than or equal to the value returned by LENGTHM.

Examples

SAS Statements Results

len=lengthn(’ABCDEF’);
put len;

len2=lengthn(’ ’);
put len2;

6

0

See Also

Functions:
“LENGTH Function” on page 863
“LENGTHC Function” on page 864
“LENGTHM Function” on page 865

LEXCOMB Function

Generates all distinct combinations of the non-missing values of n variables taken k at a time in
lexicographic order.

Category: Combinatorial
Restriction: The LEXCOMB function cannot be executed when you use the %SYSFUNC
macro.

Syntax
LEXCOMB(count, k, variable-1, …, variable-n)

Arguments

count

Functions and CALL Routines � LEXCOMB Function 869

specifies an integer variable that is assigned values ffrom 1 to the number of
combinations in a loop.

k
is a constant, variable, or expression between 1 and n, inclusive, that specifies the
number of items in each combination.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you execute the LEXCOMB function.

Tip: After executing the LEXCOMB function, the first k variables contain the
values in one combination.

Details

The Basics Use the LEXCOMB function in a loop where the first argument to
LEXCOMB takes each integral value from 1 to the number of distinct combinations of
the non-missing values of the variables. In each execution of LEXCOMB within this
loop, k should have the same value.

Number of Combinations When all of the variables have non-missing, unequal values,
then the number of combinations is COMB(n,k). If the number of variables that have
missing values is m, and all the non-missing values are unequal, then LEXCOMB
produces COMB(n-m,k) combinations because the missing values are omitted from the
combinations.

When some of the variables have equal values, the exact number of combinations is
difficult to compute, but COMB(n,k) provides an upper bound. You do not need to
compute the exact number of combinations, provided that your program leaves the loop
when LEXCOMB returns a value that is less than zero.

LEXCOMB Processing On the first execution of the LEXCOMB function, the following
actions occur:

� The argument types and lengths are checked for consistency.
� The m missing values are assigned to the last m arguments.

� The n-m non-missing values are assigned in ascending order to the first n-m
arguments following count.

� LEXCOMB returns 1.

On subsequent executions, up to and including the last combination, the following
actions occur:

� The next distinct combination of the non-missing values is generated in
lexicographic order.

� If variable-1 through variable-i did not change, but variable-j did change, where
j=i+1, then LEXCOMB returns j.

If you execute the LEXCOMB function after generating all the distinct combinations,
then LEXCOMB returns –1.

If you execute the LEXCOMB function with the first argument out of sequence, then
the results are not useful. In particular, if you initialize the variables and then
immediately execute the LEXCOMB function with a first argument of j, you will not get
the jth combination (except when j is 1). To get the jth combination, you must execute the
LEXCOMB function j times, with the first argument taking values from 1 through j in
that exact order.

870 LEXCOMB Function � Chapter 4

Comparisons
The LEXCOMB function generates all distinct combinations of the non-missing values
of n variables taken k at a time in lexicographic order. The ALLCOMB function
generates all combinations of the values of k variables taken k at a time in a minimum
change order.

Examples

Example 1: Generating Distinct Combinations in Lexicographic Order The following
example uses the LEXCOMB function to generate distinct combinations in
lexicographic order.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
n=dim(x);
k=3;
ncomb=comb(n,k);
do j=1 to ncomb+1;

rc=lexcomb(j, k, of x[*]);
put j 5. +3 x1-x3 +3 rc=;
if rc<0 then leave;

end;
run;

SAS writes the following output to the log:

1 ant bee cat rc=1
2 ant bee dog rc=3
3 ant bee ewe rc=3
4 ant cat dog rc=2
5 ant cat ewe rc=3
6 ant dog ewe rc=2
7 bee cat dog rc=1
8 bee cat ewe rc=3
9 bee dog ewe rc=2
10 cat dog ewe rc=1
11 cat dog ewe rc=-1

Example 2: Generating Distinct Combinations in Lexicographic Order: Another
Example The following is another example of using the LEXCOMB function.

data _null_;
array x[5] $3 (’X’ ’Y’ ’Z’ ’Z’ ’Y’);
n=dim(x);
k=3;
ncomb=comb(n,k);
do j=1 to ncomb+1;

rc=lexcomb(j, k, of x[*]);
put j 5. +3 x1-x3 +3 rc=;
if rc<0 then leave;

end;
run;

SAS writes the following output to the log:

1 X Y Y rc=1
2 X Y Z rc=3

Functions and CALL Routines � LEXCOMBI Function 871

3 X Z Z rc=2
4 Y Y Z rc=1
5 Y Z Z rc=2
6 Y Z Z rc=-1

See Also

Functions and CALL Routines:
“CALL LEXCOMB Routine” on page 455
“ALLCOMB Function” on page 371

LEXCOMBI Function

Generates all combinations of the indices of n objects taken k at a time in lexicographic order.

Category: Combinatorial
Restriction: The LEXCOMBI function cannot be executed when you use the %SYSFUNC
macro.

Syntax
LEXCOMBI(n, k, index-1, …, k)

Arguments

n
is a numeric constant, variable, or expression that specifies the total number of
objects.

K
is a numeric constant, variable, or expression that specifies the number of objects in
each combination.

index
is a numeric variable that contains indices of the objects in the combination that is
returned. Indices are integers between 1 and n inclusive.
Tip: If index-1 is missing or zero, then the LEXCOMBI function initializes the

indices to index-1=1 through index-k=k. Otherwise, LEXCOMBI creates a new
combination by removing one index from the combination and adding another
index.

Details
Before the first execution of the LEXCOMBI function, complete one of the following
tasks:

� Set index-1 equal to zero or to a missing value.
� Initialize index-1 through index-k to distinct integers between 1 and n inclusive.

872 LEXCOMBI Function � Chapter 4

The number of combinations of n objects taken k at a time can be computed as
COMB(n,k). To generate all combinations of n objects taken k at a time, execute the
LEXCOMBI function in a loop that executes COMB(n,k) times.

In the LEXCOMBI function, the returned value indicates which, if any, indices
changed. If index-1 through index-i did not change, but index-j did change, wherej=i+1,
then LEXCOMBI returnsi. If LEXCOMBI is called after the last combinations in
lexicographic order have been generated, then LEXCOMBI returns –1.

Comparisons
The LEXCOMBI function generates all combinations of the indices of n objects taken k
at a time in lexicographic order. The ALLCOMBI function generates all combinations of
the indices of n objects taken k at a time in a minimum change order.

Examples

The following example uses the LEXCOMBI function to generate combinations of
indices in lexicographic order.

data _null_;
array x[5] $3 (’ant’ ’bee’ ’cat’ ’dog’ ’ewe’);
array c[3] $3;
array i[3];
n=dim(x);
k=dim(i);
i[1]=0;
ncomb=comb(n,k);
do j=1 to ncomb+1;

rc=lexcombi(n, k, of i[*]);
do h=1 to k;

c[h]=x[i[h]];
end;
put @4 j= @10 ’i= ’ i[*] +3 ’c= ’ c[*] +3 rc=;

end;
run;

SAS writes the following output to the log:

j=1 i= 1 2 3 c= ant bee cat rc=1
j=2 i= 1 2 4 c= ant bee dog rc=3
j=3 i= 1 2 5 c= ant bee ewe rc=3
j=4 i= 1 3 4 c= ant cat dog rc=2
j=5 i= 1 3 5 c= ant cat ewe rc=3
j=6 i= 1 4 5 c= ant dog ewe rc=2
j=7 i= 2 3 4 c= bee cat dog rc=1
j=8 i= 2 3 5 c= bee cat ewe rc=3
j=9 i= 2 4 5 c= bee dog ewe rc=2
j=10 i= 3 4 5 c= cat dog ewe rc=1
j=11 i= 3 4 5 c= cat dog ewe rc=-1

See Also

Functions and CALL Routines:
“CALL LEXCOMBI Routine” on page 459

Functions and CALL Routines � LEXPERK Function 873

“CALL ALLCOMBI Routine” on page 431

LEXPERK Function

Generates all distinct permutations of the non-missing values of n variables taken k at a time in
lexicographic order.

Category: Combinatorial
Restriction: The LEXPERK function cannot be executed when you use the %SYSFUNC
macro.

Syntax
LEXPERK(count, k, variable-1, …, variable-n)

Arguments

count
specifies an integer variable that ranges from 1 to the number of permutations.

k
is a numeric constant, variable, or expression with an integer value between 1 and n
inclusive.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted.
Requirement: Initialize these variables before you execute the LEXPERK function.
Tip: After executing LEXPERK, the first k variables contain the values in one

permutation.

Details

The Basics Use the LEXPERK function in a loop where the first argument to
LEXPERK takes each integral value from 1 to the number of distinct permutations of k
non-missing values of the variables. In each execution of LEXPERK within this loop, k
should have the same value.

Number of Permutations When all of the variables have non-missing, unequal values,
the number of permutations is PERM(n,k). If the number of variables that have
missing values is m, and all the non-missing values are unequal, the LEXPERK
function produces PERM(n-m,k) permutations because the missing values are omitted
from the permutations. When some of the variables have equal values, the exact
number of permutations is difficult to compute, but PERM(n,k) provides an upper
bound. You do not need to compute the exact number of permutations, provided you
exit the loop when the LEXPERK function returns a value that is less than zero.

LEXPERK Processing On the first execution of the LEXPERK function, the following
actions occur:

874 LEXPERK Function � Chapter 4

� The argument types and lengths are checked for consistency.
� The m missing values are assigned to the last m arguments.

� The n-m non-missing values are assigned in ascending order to the first n-m
arguments following count.

� LEXPERK returns 1.

On subsequent executions, up to and including the last permutation, the following
actions occur:

� The next distinct permutation of k non-missing values is generated in
lexicographic order.

� If variable-1 through variable-i did not change, but variable-i did change, where
j=i+1, then LEXPERK returns j.

If you execute the LEXPERK function after generating all the distinct permutations,
then LEXPERK returns –1.

If you execute the LEXPERK function with the first argument out of sequence, then
the results are not useful. In particular, if you initialize the variables and then
immediately execute the LEXPERK function with a first argument of j, you will not get
the jth permutation (except when j is 1). To get the jth permutation, you must execute the
LEXPERK function j times, with the first argument taking values from 1 through j in
that exact order.

Comparisons
The LEXPERK function generates all distinct permutations of the non-missing values
of n variables taken k at a time in lexicographic order. The LEXPERM function
generates all distinct permutations of the non-missing values of n variables in
lexicographic order. The ALLPERM function generates all permutations of the values of
several variables in a minimal change order.

Examples

The following is an example of the LEXPERK function.

data _null_;
array x[5] $3 (’X’ ’Y’ ’Z’ ’Z’ ’Y’);
n=dim(x);
k=3;
nperm=perm(n,k);
do j=1 to nperm+1;

rc=lexperk(j, k, of x[*]);
put j 5. +3 x1-x3 +3 rc=;
if rc<0 then leave;

end;
run;

SAS writes the following output to the log:

1 X Y Y rc=1
2 X Y Z rc=3
3 X Z Y rc=2
4 X Z Z rc=3
5 Y X Y rc=1
6 Y X Z rc=3
7 Y Y X rc=2

Functions and CALL Routines � LEXPERM Function 875

8 Y Y Z rc=3
9 Y Z X rc=2
10 Y Z Y rc=3
11 Y Z Z rc=3
12 Z X Y rc=1
13 Z X Z rc=3
14 Z Y X rc=2
15 Z Y Y rc=3
16 Z Y Z rc=3
17 Z Z X rc=2
18 Z Z Y rc=3
19 Z Z Y rc=-1

See Also

Functions and CALL Routines:

“ALLPERM Function” on page 373

“LEXPERM Function” on page 875

“CALL RANPERK Routine” on page 500
“CALL RANPERM Routine” on page 502

LEXPERM Function

Generates all distinct permutations of the non-missing values of several variables in lexicographic
order.

Category: Combinatorial

Syntax
LEXPERM(count, variable-1 <, …, variable-N>)

Arguments

count
specifies an integer variable that ranges from 1 to the number of permutations.

variable
specifies either all numeric variables, or all character variables that have the same
length. The values of these variables are permuted by LEXPERM.
Requirement: Initialize these variables before you execute the LEXPERM function.

Details

Determine the Number of Distinct Permutations The following variables are defined
for use in the equation that follows:

876 LEXPERM Function � Chapter 4

N specifies the number of variables that are being permuted—that is,
the number of arguments minus one.

M specifies the number of missing values among the variables that are
being permuted.

d specifies the number of distinct non-missing values among the
arguments.

Ni for i=1, through i=d, Ni specifies the number of instances of the ith
distinct value.

The number of distinct permutations of non-missing values of the arguments is
expressed as follows:

� �
��� ��� � ��������

������������
�� � �

Note: The LEXPERM function cannot be executed with the %SYSFUNC macro. �

LEXPERM Processing Use the LEXPERM function in a loop where the argument
count takes each integral value from 1 to P. You do not need to compute P provided you
exit the loop when LEXPERM returns a value that is less than zero.

For 1=count<P, the following actions occur:
� The argument types and lengths are checked for consistency.
� The M missing values are assigned to the last M arguments.
� The N-M non-missing values are assigned in ascending order to the first N-M

arguments following count.
� LEXPERM returns 1.

For 1<count<=P, the following actions occur:
� The next distinct permutation of the non-missing values is generated in

lexicographic order.
� If variable-1 through variable-I did not change, but variable-J did change, where

J=I+1, then LEXPERM returns J.

For count>P, LEXPERM returns –1.
If the LEXPERM function is executed with the first argument out of sequence, the

results might not be useful. In particular, if you initialize the variables and then
immediately execute LEXPERM with a first argument of K, you will not get the Kth
permutation (except when K is 1). To get the Kth permutation, you must execute
LEXPERM K times, with the first argument accepting values from 1 through K in that
exact order.

Comparisons
SAS provides three functions or CALL routines for generating all permutations:

� ALLPERM generates all possible permutations of the values, missing or
non-missing, of several variables. Each permutation is formed from the previous
permutation by interchanging two consecutive values.

� LEXPERM generates all distinct permutations of the non-missing values of
several variables. The permutations are generated in lexicographic order.

� LEXPERK generates all distinct permutations of K of the non-missing values of N
variables. The permutations are generated in lexicographic order.

Functions and CALL Routines � LEXPERM Function 877

ALLPERM is the fastest of these functions and CALL routines. LEXPERK is the
slowest.

Examples

The following is an example of the LEXPERM function.

data _null_;
array x[6] $1 (’X’ ’Y’ ’Z’ ’ ’ ’Z’ ’Y’);
nfact=fact(dim(x));
put +3 nfact=;
do i=1 to nfact;

rc=lexperm(i, of x[*]);
put i 5. +2 rc= +2 x[*];
if rc<0 then leave;

end;
run;

SAS writes the following output to the log:

nfact=720
1 rc=1 X Y Y Z Z
2 rc=3 X Y Z Y Z
3 rc=4 X Y Z Z Y
4 rc=2 X Z Y Y Z
5 rc=4 X Z Y Z Y
6 rc=3 X Z Z Y Y
7 rc=1 Y X Y Z Z
8 rc=3 Y X Z Y Z
9 rc=4 Y X Z Z Y
10 rc=2 Y Y X Z Z
11 rc=3 Y Y Z X Z
12 rc=4 Y Y Z Z X
13 rc=2 Y Z X Y Z
14 rc=4 Y Z X Z Y
15 rc=3 Y Z Y X Z
16 rc=4 Y Z Y Z X
17 rc=3 Y Z Z X Y
18 rc=4 Y Z Z Y X
19 rc=1 Z X Y Y Z
20 rc=4 Z X Y Z Y
21 rc=3 Z X Z Y Y
22 rc=2 Z Y X Y Z
23 rc=4 Z Y X Z Y
24 rc=3 Z Y Y X Z
25 rc=4 Z Y Y Z X
26 rc=3 Z Y Z X Y
27 rc=4 Z Y Z Y X
28 rc=2 Z Z X Y Y
29 rc=3 Z Z Y X Y
30 rc=4 Z Z Y Y X
31 rc=-1 Z Z Y Y X

See Also

878 LFACT Function � Chapter 4

Functions and CALL Routines:

“CALL ALLPERM Routine” on page 434

“ALLPERM Function” on page 373

“CALL RANPERK Routine” on page 500

“CALL RANPERM Routine” on page 502

LFACT Function

Computes the logarithm of the FACT (factorial) function.

Category: Combinatorial

Syntax
LFACT(n)

Arguments

n
is an integer that represents the total number of elements from which the sample is
chosen.

Comparisons
The LFACT function computes the logarithm of the FACT function.

Examples

The following statements produce these results:

SAS Statements Results

x=lfact(5000);

put x; 37591.143509

y=lfact(100);

put y; 363.73937556

See Also

Functions:

“FACT Function” on page 668

Functions and CALL Routines � LIBNAME Function 879

LGAMMA Function

Returns the natural logarithm of the Gamma function.

Category: Mathematical

Syntax
LGAMMA(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.
Range: must be positive.

Examples

SAS Statements Results

x=lgamma(2); 0

x=lgamma(1.5); -0.120782238

LIBNAME Function

Assigns or deassigns a libref for a SAS library.

Category: SAS File I/O
See: LIBNAME Function in the documentation for your operating environment.

Syntax
LIBNAME(libref<,SAS-library<,engine<,options>>>)

Arguments

libref
is a character constant, variable, or expression that specifies the libref that is
assigned to a SAS library.
Tip: The maximum length of libref is eight characters.

SAS-library

880 LIBNAME Function � Chapter 4

is a character constant, variable, or expression that specifies the physical name of the
SAS library that is associated with the libref. Specify this name as required by the
host operating environment. This argument can be null.

engine
is a character constant, variable, or expression that specifies the engine that is used
to access SAS files opened in the data library. If you are specifying a SAS/SHARE
server, then the value of engine should be REMOTE. This argument can be null.

options
is a character constant, variable, or expression that specifies one or more valid
options for the specified engine, delimited with blanks. This argument can be null.

Details

Basic Information about Return Codes
The LIBNAME function assigns or deassigns a libref from a SAS library. When you use
the LIBNAME function with two or more arguments, SAS attempts to assign the libref.
When you use one argument, SAS attempts to deassign the libref. Return codes are
generated depending on the value of the arguments that are used in the LIBNAME
function and whether the libref is assigned.

When assigning a libref, the return code will be 0 if the libref is successfully
assigned. If the return code is nonzero and the SYSMSG function returns a warning
message or a note, then the assignment was successful. If the SYSMSG function
returns an error, then the assignment was unsuccessful.

If a library is already assigned, and you attempt to assign a different name to the
library, the libref is assigned, the LIBNAME function returns a nonzero return code,
and the SYSMSG function returns a note.

When LIBNAME Has One Argument When LIBNAME has one argument, the following
rules apply:

� If the libref is not assigned, a nonzero return code is returned and the SYSMSG
function returns a warning message.

� If the libref is successfully assigned, a 0 return code is returned and the SYSMSG
function returns a blank value.

When LIBNAME Has Two Arguments When LIBNAME has two arguments, the
following rules apply:

� If the second argument is NULL, all blanks, or zero length, SAS attempts to
deassign the libref.

� If the second argument is not NULL, not all blanks, and not zero length, SAS
attempts to assign the specified path (the second argument) to the libref.

� If the libref is not assigned, a nonzero return code is returned and the SYSMSG
function returns an error message.

� If the libref is successfully assigned, a 0 return code is returned and the SYSMSG
function returns a blank value.

When LIBNAME Has Three or Four Arguments
� If the second argument is NULL, all blanks, or zero length, the results depend on

your operating environment.
� If the second argument is NULL and the libref is not already assigned, then a

nonzero return code is returned and the SYSMSG function returns an error
message.

� If the second argument is NULL and the libref has already been assigned, then
LIBNAME returns a value of 0 and the SYSMSG function returns a blank value.

Functions and CALL Routines � LIBNAME Function 881

� If at least one of the previous conditions is not met, then SAS attempts to assign
the specified path (second argument) to the libref.

Note: In the DATA step, a character constant that consists of two consecutive
quotation marks without any intervening spaces is interpreted as a single space, not as
a string with a length of 0. To specify a string with a length of 0, use the “TRIMN
Function” on page 1137. �

Operating Environment Information: Some systems allow a SAS-library value of ’ ’(a
space between the single quotation marks) to assign a libref to the current directory.
Other systems disassociate the libref from the SAS library when the SAS-library value
contains only blanks. The behavior of LIBNAME when a single space is specified for
SAS-library is dependent on your operating environment.

Under some operating environments, you can assign librefs by using system
commands that are outside the SAS session. �

Examples

Example 1: Assigning a Libref

This example attempts to assign the libref NEW to the SAS library MYLIB. If an
error or warning occurs, the message is written to the SAS log. Note that in a macro
statement you do not enclose character strings in quotation marks.

%if (%sysfunc(libname(new,MYLIB))) %then
%put %sysfunc(sysmsg());

Example 2: Deassigning a Libref This example deassigns the libref NEW that was
previously associated with the data library MYLIB in the preceding example. If an
error or warning occurs, the message is written to the SAS log. In a macro statement,
you do not enclose character strings in quotation marks.

%if (%sysfunc(libname(new))) %then
%put %sysfunc(sysmsg());

Example 3: Compressing a Library This example assigns the libref NEW to the
MYLIB data library and uses the COMPRESS option to compress the library. This
example uses the default SAS engine. In a DATA step, you enclose character strings in
quotation marks.

data test;
rc=libname(’new’,’MYLIB’,,’compress=yes’);

run;

See Also

Functions:
“LIBREF Function” on page 882
“SYSMSG Function” on page 1117

882 LIBREF Function � Chapter 4

LIBREF Function

Verifies that a libref has been assigned.

Category: SAS File I/O

See: LIBREF Functionin the documentation for your operating environment.

Syntax
LIBREF(libref)

Arguments

libref
specifies the libref to be verified. In a DATA step, libref can be a character
expression, a string enclosed in quotation marks, or a DATA step variable whose
value contains the libref. In a macro, libref can be any expression.

Range: 1 to 8 characters

Details
The LIBREF function returns 0 if the libref has been assigned, or returns a nonzero
value if the libref has not been assigned.

Examples

This example verifies a libref. If an error or warning occurs, the message is written
to the log. Under some operating environments, the user can assign librefs by using
system commands outside the SAS session.

%if (%sysfunc(libref(sashelp))) %then
%put %sysfunc(sysmsg());

See Also

Function:

“LIBNAME Function” on page 879

LOG Function

Returns the natural (base e) logarithm.

Category: Mathematical

Functions and CALL Routines � LOG1PX Function 883

Syntax
LOG(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.
Range: must be positive.

Examples

SAS Statements Results

x=log(1.0); 0

x=log(10.0); 2.302585093

LOG1PX Function
Returns the log of 1 plus the argument.

Category: Mathematical

Syntax
LOG1PX(x)

Arguments

x
specifies a numeric variable, constant, or expression.

Details
The LOG1PX function computes the log of 1 plus the argument. The LOG1PX function
is mathematically defined by the following equation, where –1 < x:

������ ��� � ��� �� � ��

When x is close to 0, LOG1PX(x) can be more accurate than LOG(1+x).

Examples

Example 1: Computing the Log with the LOG1PX Function The following example
computes the log of 1 plus the value 0.5.

884 LOG10 Function � Chapter 4

data _null_;
x=log1px(0.5);
put x=;

run;

SAS writes the following output to the Log:

x=0.4054651081

Example 2: Comparing the LOG1PX Function with the LOG Function In the following
example, the value of X is computed by using the LOG1PX function. The value of Y is
computed by using the LOG function.

data _null_;
x=log1px(1.e-5);
put x= hex16.;

y=log(1+1.e-5);
put y= hex16.;

run;

SAS writes the following output to the Log:

x=3EE4F8AEA9AE7317
y=3EE4F8AEA9AF0A25

See Also

Functions:

“LOG Function” on page 882

LOG10 Function

Returns the logarithm to the base 10.

Category: Mathematical

Syntax

LOG10(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Range: must be positive.

Functions and CALL Routines � LOGBETA Function 885

Examples

SAS Statements Results

x=log10(1.0); 0

x=log10(10.0); 1

x=log10(100.0); 2

LOG2 Function

Returns the logarithm to the base 2.

Category: Mathematical

Syntax
LOG2(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.
Range: must be positive.

Examples

SAS Statements Results

x=log2(2.0); 1

x=log2(0.5); -1

LOGBETA Function

Returns the logarithm of the beta function.

Category: Mathematical

Syntax
LOGBETA(a,b)

886 LOGCDF Function � Chapter 4

Arguments

a
is the first shape parameter, where a>0.

b
is the second shape parameter, where b>0.

Details
The LOGBETA function is mathematically given by the equation

��� �� ��� ��� � ��� �� ���� � ��� �� ����� ��� �� ��� ���

where � ��� is the gamma function.
If the expression cannot be computed, LOGBETA returns a missing value.

Examples

SAS Statements Results

LOGBETA(5,3); -4.653960350

See Also
Function:
“BETA Function” on page 413

LOGCDF Function

Returns the logarithm of a left cumulative distribution function.

Category: Probability
See: “CDF Function” on page 554

Syntax
LOGCDF(’dist’,quantile< ,parm-1,...,parm-k>)

Arguments

’dist’

Functions and CALL Routines � LOGCDF Function 887

is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli ’BERNOULLI’

Beta ’BETA’

Binomial ’BINOMIAL’

Cauchy ’CAUCHY’

Chi-Square ’CHISQUARE’

Exponential ’EXPONENTIAL’

F ’F’

Gamma ’GAMMA’

Geometric ’GEOMETRIC’

Hypergeometric ’HYPERGEOMETRIC’

Laplace ’LAPLACE’

Logistic ’LOGISTIC’

Lognormal ’LOGNORMAL’

Negative binomial ’NEGBINOMIAL’

Normal ’NORMAL’|’GAUSS’

Normal mixture ’NORMALMIX’

Pareto ’PARETO’

Poisson ’POISSON’

T ’T’

Uniform ’UNIFORM’

Wald (inverse Gaussian) ’WALD’|’IGAUSS’

Weibull ’WEIBULL’

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric variable, constant, or expression that specifies the value of a random
variable.

parm-1,...,parm-k
are optional shape, location, or scale parameters appropriate for the specific
distribution.

The LOGCDF function computes the logarithm of a left cumulative distribution
function (logarithm of the left side) from various continuous and discrete distributions.
For more information, see the “CDF Function” on page 554.

See Also

888 LOGPDF Function � Chapter 4

Functions:
“CDF Function” on page 554
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085
“QUANTILE Function” on page 1033

LOGPDF Function

Returns the logarithm of a probability density (mass) function.

Category: Probability
Alias: LOGPMF
See: “PDF Function” on page 961

Syntax
LOGPDF(’dist’,quantile,parm-1,...,parm-k)

Arguments

’dist’
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli ’BERNOULLI’

Beta ’BETA’

Binomial ’BINOMIAL’

Cauchy ’CAUCHY’

Chi-Square ’CHISQUARE’

Exponential ’EXPONENTIAL’

F ’F’

Gamma ’GAMMA’

Geometric ’GEOMETRIC’

Hypergeometric ’HYPERGEOMETRIC’

Laplace ’LAPLACE’

Logistic ’LOGISTIC’

Lognormal ’LOGNORMAL’

Negative binomial ’NEGBINOMIAL’

Functions and CALL Routines � LOGSDF Function 889

Distribution Argument

Normal ’NORMAL’|’GAUSS’

Normal mixture ’NORMALMIX’

Pareto ’PARETO’

Poisson ’POISSON’

T ’T’

Uniform ’UNIFORM’

Wald (inverse Gaussian) ’WALD’|’IGAUSS’

Weibull ’WEIBULL’

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric constant, variable, or expression that specifies the value of a random
variable.

parm-1,...,parm-k
are optional shape, location, or scale parameters appropriate for the specific
distribution.

The LOGPDF function computes the logarithm of the probability density (mass)
function from various continuous and discrete distributions. For more information, see
the “PDF Function” on page 961.

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085
“QUANTILE Function” on page 1033

LOGSDF Function
Returns the logarithm of a survival function.

Category: Probability
See: “SDF Function” on page 1085

Syntax
LOGSDF(’dist’,quantile,parm-1,...,parm-k)

890 LOGSDF Function � Chapter 4

Arguments

’dist’
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli ’BERNOULLI’

Beta ’BETA’

Binomial ’BINOMIAL’

Cauchy ’CAUCHY’

Chi-Square ’CHISQUARE’

Exponential ’EXPONENTIAL’

F ’F’

Gamma ’GAMMA’

Geometric ’GEOMETRIC’

Hypergeometric ’HYPERGEOMETRIC’

Laplace ’LAPLACE’

Logistic ’LOGISTIC’

Lognormal ’LOGNORMAL’

Negative binomial ’NEGBINOMIAL’

Normal ’NORMAL’|’GAUSS’

Normal mixture ’NORMALMIX’

Pareto ’PARETO’

Poisson ’POISSON’

T ’T’

Uniform ’UNIFORM’

Wald (inverse Gaussian) ’WALD’|’IGAUSS’

Weibull ’WEIBULL’

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric constant, variable, or expression that specifies the value of a random
variable.

parm-1,...,parm-k
are optional shape, location, or scale parameters appropriate for the specific
distribution.

The LOGSDF function computes the logarithm of the survival function from various
continuous and discrete distributions. For more information, see the “SDF Function” on
page 1085.

Functions and CALL Routines � LOWCASE Function 891

See Also

Functions:
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“CDF Function” on page 554
“PDF Function” on page 961
“SDF Function” on page 1085
“QUANTILE Function” on page 1033

LOWCASE Function

Converts all letters in an argument to lowercase.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
LOWCASE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details
In a DATA step, if the LOWCASE function returns a value to a variable that has not
previously been assigned a length, then that variable is given the length of the
argument.

The LOWCASE function copies the character argument, converts all uppercase
letters to lowercase letters, and returns the altered value as a result.

The results of the LOWCASE function depend directly on the translation table that
is in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

Examples

SAS Statements Results

x=’INTRODUCTION’;
y=lowcase(x);
put y; introduction

892 LPERM Function � Chapter 4

See Also

Functions:
“UPCASE Function” on page 1139
“PROPCASE Function” on page 1008

LPERM Function

Computes the logarithm of the PERM function, which is the logarithm of the number of
permutations of n objects, with the option of including r number of elements.

Category: Combinatorial

Syntax
LPERM(n<,r>)

Arguments

n
is an integer that represents the total number of elements from which the sample is
chosen.

r
is an optional integer value that represents the number of chosen elements. If r is
omitted, the function returns the factorial of n.
Restriction: r ≤ n

Comparisons
The LPERM function computes the logarithm of the PERM function.

Examples

The following statements produce these results:

SAS Statements Results

x=lperm(5000,500);

put x; 4232.7715946

y=lperm(100,10);

put y; 45.586735935

See Also

Functions and CALL Routines � LPNORM Function 893

Functions:
“PERM Function” on page 980

LPNORM Function

Returns the Lp norm of the second argument and subsequent non-missing arguments.

Category: Descriptive Statistics

Syntax
LPNORM(p, value-1 <,value-2 …>)

Arguments

p
specifies a numeric constant, variable, or expression that is greater than or equal to
1, which is used as the power for computing the Lp norm.

value
specifies a numeric constant, variable, or expression.

Details
If all arguments have missing values, then the result is a missing value. Otherwise, the
result is the Lp norm of the non-missing values of the second and subsequent arguments.

In the following example, p is the value of the first argument, and ��� ��� ���� �� are
the values of the other non-missing arguments.

�����	 �
� ��� ��� ���� ��� �
�
�� ����

�
� ��� ����

�
� ���� ��� ����

�����

Examples

Example 1: Calculating the Lp Norm The following example returns the Lp norm of
the second and subsequent non-missing arguments.

data _null_;
x1 = lpnorm(1, ., 3, 0, .q, -4);
x2 = lpnorm(2, ., 3, 0, .q, -4);
x3 = lpnorm(3, ., 3, 0, .q, -4);
x999 = lpnorm(999, ., 3, 0, .q, -4);
put x1= / x2= / x3= / x999=;

run;

SAS writes the following output to the log:

x1=7
x2=5

894 MAD Function � Chapter 4

x3=4.4979414453
x999=4

Example 2: Calculating the Lp Norm When You Use a Variable List The following
example uses a variable list and returns the Lp norm.

data _null_;
x1 = 1;
x2 = 3;
x3 = 4;
x4 = 3;
x5 = 1;
x = lpnorm(of x1-x5);
put x=;

run;

SAS writes the following output to the log:

x=11

See Also

Functions:
“SUMABS Function” on page 1112 (L1 norm)
“EUCLID Function” on page 663 (L2 norm)
“MAX Function” on page 899 (Linfinity norm)

MAD Function

Returns the median absolute deviation from the median.

Category: Descriptive Statistics

Syntax
MAD(value-1 <, value-2...>)

Arguments

value
specifies a numeric constant, variable, or expression of which the median absolute
deviation from the median is to be computed.

Details
If all arguments have missing values, the result is a missing value. Otherwise, the
result is the median absolute deviation from the median of the non-missing values. The
formula for the median is the same as the one that is used in the UNIVARIATE
procedure. For more information, see Base SAS Procedures Guide.

Functions and CALL Routines � MARGRCLPRC Function 895

Examples

SAS Statements Results

mad=mad(2,4,1,3,5,999999);
put mad; 1.5

See Also

Functions:
“IQR Function” on page 846
“MEDIAN Function” on page 903
“PCTL Function” on page 960

MARGRCLPRC Function

Calculates call prices for European options on stocks, based on the Margrabe model.

Category: Financial

Syntax
MARGRCLPRC(X1, t, X2, sigma1, sigma2, rho12)

Arguments

X1

is a non-missing, positive value that specifies the price of the first asset.
Requirement: Specify X1 and X2 in the same units.

t
is a non-missing value that specifies the time to expiration.

X2

is a non-missing, positive value that specifies the price of the second asset.
Requirement: Specify X2 and X1 in the same units.

sigma1
is a non-missing, positive fraction that specifies the volatility of the first asset.
Requirement: sigma1 must be for the same time period as the unit of t.

sigma2
is a non-missing, positive fraction that specifies the volatility of the second asset.
Requirement: Specify a value for sigma2 for the same time period as the unit of t.

rho12
specifies the correlation between the first and second assets, ����� .

896 MARGRCLPRC Function � Chapter 4

Range: between –1 and 1

Details
The MARGRCLPRC function calculates the call price for European options on stocks,
based on the Margrabe model. The function is based on the following relationship:

���� � ��� �������� ����

where

X1 specifies the price of the first asset.

X2 specifies the price of the second asset.

N specifies the cumulative normal density function.

�� �

�
��
�
��

��

�
�
�
�
�

�

�
�
�

�
�
�

�� � �� � �
�
�

�� � ���� � ���� � �������������

where

t specifies the time to expiration.

��
��

specifies the variance of the first asset.

��
��

specifies the variance of the second asset.

��� specifies the volatility of the first asset.

��� specifies the volatility of the second asset.

������ specifies the correlation between the first and second assets.

For the special case of t=0, the following equation is true:

���� � ��� ���� ���� � ��

Note: This function assumes that there are no dividends from the two assets. �

For information about the basics of pricing, see “Using Pricing Functions” on page
310.

Comparisons
The MARGRCLPRC function calculates the call price for European options on stocks,
based on the Margrabe model. The MARGRPTPRC function calculates the put price for
European options on stocks, based on the Margrabe model. These functions return a
scalar value.

Functions and CALL Routines � MARGRPTPRC Function 897

Examples

SAS Statements Results

----+----1----+-----2--

a=margrclprc(500, .5, 950, 4, 5, 1);
put a; 46.441283642

b=margrclprc(850, 1.2, 125, 5, 3, 1);
put b; 777.67008185

c=margrclprc(7500, .9, 950, 3, 2, 1);
put c; 6562.0354886

d=margrclprc(5000, -.5, 237, 3, 3, 1);
put d; 0

See Also

Functions:
“MARGRPTPRC Function” on page 897

MARGRPTPRC Function

Calculates put prices for European options on stocks, based on the Margrabe model.

Category: Financial

Syntax
MARGRPTPRC(X1, t, X2, sigma1, sigma2, rho12)

Arguments

X1

is a non-missing, positive value that specifies the price of the first asset.
Requirement: Specify X1 and X2 in the same units.

t
is a non-missing value that specifies the time to expiration.

X2

is a non-missing, positive value that specifies the price of the second asset.
Requirement: Specify X2 and X1 in the same units.

sigma1
is a non-missing, positive fraction that specifies the volatility of the first asset.
Requirement: sigma1 must be for the same time period as the unit of t.

898 MARGRPTPRC Function � Chapter 4

sigma2
is a non-missing, positive fraction that specifies the volatility of the second asset.
Requirement: Specify a value for sigma2 for the same time period as the unit of t.

rho12
specifies the correlation between the first and second assets, ����� .
Range: between –1 and 1

Details
The MARGRPTPRC function calculates the put price for European options on stocks,
based on the Margrabe model. The function is based on the following relationship:

��� � ��� ��������� �����

where

X1 specifies the price of the first asset.

X2 specifies the price of the second asset.

N specifies the cumulative normal density function.

��� �

�
��
�
��

��

�
�
�
�
�

�

�
�
�

�
�
�

��� � ��� � �
�
�

�� � ��

��
� ��

��
� �������������

where

t is a non-missing value that specifies the time to expiration.

��

��
specifies the variance of the first asset.

��
��

specifies the variance of the second asset.

��� specifies the volatility of the first asset.

��� specifies the volatility of the second asset.

������ specifies the correlation between the first and second assets.

To view the corresponding CALL relationship, see the “MARGRCLPRC Function” on
page 895.

For the special case of t=0, the following equation is true:

��� � ��� ���� ���� � ��

Note: This function assumes that there are no dividends from the two assets. �

For basic information about pricing, see “Using Pricing Functions” on page 310.

Comparisons
The MARGRPTPRC function calculates the put price for European options on stocks,
based on the Margrabe model. The MARGRCLPRC function calculates the call price for

Functions and CALL Routines � MAX Function 899

European options on stocks, based on the Margrabe model. These functions return a
scalar value.

Examples

SAS Statements Results

----+----1----+-----2--

a=margrptprc(500, .5, 950, 4, 5, 1);
put a; 496.44128364

b=margrptprc(850, 1.2, 125, 5, 3, 1);
put b; 52.670081846

c=margrptprc(7500, .9, 950, 3, 2, 1);
put c; 12.035488581

d=margrptprc(5000, -.5, 237, 3, 3, 1);
put d; 0

See Also

Functions:
“MARGRCLPRC Function” on page 895

MAX Function

Returns the largest value.

Category: Descriptive Statistics

Syntax
MAX(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two arguments are
required. The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MAX function returns a missing value (.) only if all arguments are missing.

The MAX operator (<>) returns a missing value only if both operands are missing. In
this case, it returns the value of the operand that is higher in the sort order for missing
values.

900 MD5 Function � Chapter 4

Examples

SAS Statements Results

x=max(8,3); 8

x1=max(2,6,.); 6

x2=max(2,-3,1,-1); 2

x3=max(3,.,-3); 3

x4=max(of x1-x3); 6

MD5 Function

Returns the result of the message digest of a specified string.

Category: Character

Syntax
MD5(string)

Arguments

string
specifies a character constant, variable, or expression.
Tip: Enclose a literal string of characters in quotation marks.

Details

Length of Returned Variable In a DATA step, if the MD5 function returns a value to a
variable that has not previously been assigned a length, then that variable is given a
length of 200 bytes.

The Basics The MD5 function converts a string, based on the MD5 algorithm, into a
128-bit hash value. This hash value is referred to as a message digest (digital
signature), which is nearly unique for each string that is passed to the function.

The MD5 function does not format its own output. You must specify a valid format
(such as hex32. or binary128.) to view readable results.

Operating Environment Information: In the z/OS operating environment, the MD5
function produces output in EBCDIC rather than in ASCII. Therefore, the output will
differ. �

The Message Digest Algorithm A message digest results from manipulating and
compacting an arbitrarily long stream of binary data. An ideal message digest
algorithm never generates the same result for two different sets of input. However,

Functions and CALL Routines � MDY Function 901

generating such a unique result would require a message digest as long as the input
itself. Therefore, MD5 generates a message digest of modest size (16 bytes), created
with an algorithm that is designed to make a nearly unique result.

Using the MD5 Function You can use the MD5 function to track changes in your data
sets. The MD5 function can generate a digest of a set of column values in a record in a
table. This digest could be treated as the signature of the record, and be used to keep
track of changes that are made to the record. If the digest from the new record matches
the existing digest of a record in a table, then the two records are the same. If the
digest is different, then a column value in the record has changed. The new changed
record could then be added to the table along with a new surrogate key because it
represents a change to an existing keyed value.

The MD5 function can be useful when developing shell scripts or Perl programs for
software installation, for file comparison, and for detection of file corruption and
tampering.

You can also use the MD5 function to create a unique identifier for observations to be
used as the key of a hash object. For information about hash objects, see “Introduction
to DATA Step Component Objects” in SAS Language Reference: Concepts.

Examples

The following is an example of how to generate results that are returned by the MD5
function.

data _null_;
y = md5(’abc’);
z = md5(’access method’);
put y= / y = hex32.;
put z= / z = hex32.;

run;

The output from this program contains unprintable characters.

MDY Function

Returns a SAS date value from month, day, and year values.

Category: Date and Time

Syntax
MDY(month,day,year)

Arguments

month
specifies a numeric constant, variable, or expression that represents an integer from
1 through 12.

day

902 MEAN Function � Chapter 4

specifies a numeric constant, variable, or expression that represents an integer from
1 through 31.

year
specifies a numeric constant, variable, or expression with a value of a two-digit or
four-digit integer that represents the year. The YEARCUTOFF= system option
defines the year value for two-digit dates.

Examples

SAS Statements Results

birthday=mdy(8,27,90);
put birthday;
put birthday= worddate.;

11196
birthday=August 27, 1990

anniversary=mdy(7,11,2001);
put anniversary;
put anniversary=date9.;

15167
anniversary=11JUL2001

See Also

Functions:
“DAY Function” on page 630
“MONTH Function” on page 913
“YEAR Function” on page 1192

MEAN Function
Returns the arithmetic mean (average).

Category: Descriptive Statistics

Syntax
MEAN(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one non-missing
argument is required. Otherwise, the function returns a missing value.
Tip: The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The GEOMEAN function returns the geometric mean, the HARMEAN function returns
the harmonic mean, and the MEDIAN function returns the median of the non-missing
values, whereas the MEAN function returns the arithmetic mean (average).

Functions and CALL Routines � MEDIAN Function 903

Examples

SAS Statements Results

x1=mean(2,.,.,6); 4

x2=mean(1,2,3,2); 2

x3=mean(of x1-x2); 3

See Also

Function:
“GEOMEAN Function” on page 773
“GEOMEANZ Function” on page 774
“HARMEAN Function” on page 783
“HARMEANZ Function” on page 785
“MEDIAN Function” on page 903

MEDIAN Function

Returns the median value.

Category: Descriptive Statistics

Syntax
MEDIAN(value1<, value2, ...>)

Arguments

value
is a numeric constant, variable, or expression.

Details
The MEDIAN function returns the median of the nonmissing values. If all arguments
have missing values, the result is a missing value.

Note: The formula that is used in the MEDIAN function is the same as the formula
that is used in PROC UNIVARIATE. For more information, see “SAS Elementary
Statistics Procedures” in Base SAS Procedures Guide. �

Comparisons
The MEDIAN function returns the median of nonmissing values, whereas the MEAN
function returns the arithmetic mean (average).

904 MIN Function � Chapter 4

Examples

SAS Statements Results

x=median(2,4,1,3); 2.5

y=median(5,8,0,3,4); 4

See Also

Function:

“MEAN Function” on page 902

MIN Function

Returns the smallest value.

Category: Descriptive Statistics

Syntax
MIN(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two arguments are
required. The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The MIN function returns a missing value (.) only if all arguments are missing.

The MIN operator (><) returns a missing value if either operand is missing. In this
case, it returns the value of the operand that is lower in the sort order for missing
values.

Examples

SAS Statements Results

x=min(7,4); 4

x1=min(2,.,6); 2

x2=min(2,-3,1,-1); -3

Functions and CALL Routines � MINUTE Function 905

SAS Statements Results

x3=min(0,4); 0

x4=min(of x1-x3); -3

MINUTE Function

Returns the minute from a SAS time or datetime value.

Category: Date and Time

Syntax
MINUTE(time | datetime)

Arguments

time
is a numeric constant, variable, or expression that specifies a SAS time value.

datetime
is a numeric constant, variable, or expression that specifies a SAS datetime value.

Details
The MINUTE function returns an integer that represents a specific minute of the hour.
MINUTE always returns a positive number in the range of 0 through 59.

Examples

SAS Statements Results

time=’3:19:24’t;
m=minute(time);
put m; 19

See Also

Functions:

“HOUR Function” on page 791

“SECOND Function” on page 1087

906 MISSING Function � Chapter 4

MISSING Function

Returns a numeric result that indicates whether the argument contains a missing value.

Category: Descriptive Statistics
Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
MISSING(numeric-expression | character-expression)

Arguments

numeric-expression
specifies a numeric constant, variable, or expression.

character-expression
specifies a character constant, variable, or expression.

Details
� The MISSING function checks a numeric or character expression for a missing

value, and returns a numeric result. If the argument does not contain a missing
value, SAS returns a value of 0. If the argument contains a missing value, SAS
returns a value of 1.

� A numeric expression is considered missing if it evaluates to a numeric missing
value: ., ._, .A, ..., .Z.

� A character expression is considered missing if it evaluates to a string that
contains all blanks or has a length of zero.

Comparisons
The MISSING function can have only one argument. The CMISS function can have
multiple arguments and returns a count of the missing values. The NMISS function
requires numeric arguments and returns the number of missing values in the list of
arguments.

Examples

This example uses the MISSING function to check whether the input variables
contain missing values.

data values;
input @1 var1 3. @5 var2 3.;
if missing(var1) then

do;
put ’Variable 1 is Missing.’;

end;
else if missing(var2) then

do;

Functions and CALL Routines � MOD Function 907

put ’Variable 2 is Missing.’;
end;

datalines;
127
988 195
;

run;

SAS writes the following output to the log:

Variable 2 is Missing.

See Also

Functions and CALL Routines:
“CMISS Function” on page 578
“NMISS Function” on page 924
“CALL MISSING Routine” on page 470

MOD Function

Returns the remainder from the division of the first argument by the second argument, fuzzed to
avoid most unexpected floating-point results.

Category: Mathematical

Syntax
MOD (argument-1, argument-2)

Arguments

argument-1
is a numeric constant, variable, or expression that specifies the dividend.

argument-2
is a numeric constant, variable, or expression that specifies the divisor.
Restriction: cannot be 0

Details
The MOD function returns the remainder from the division of argument-1 by
argument-2. When the result is non-zero, the result has the same sign as the first
argument. The sign of the second argument is ignored.

The computation that is performed by the MOD function is exact if both of the
following conditions are true:

� Both arguments are exact integers.

908 MOD Function � Chapter 4

� All integers that are less than either argument have exact 8-byte floating-point
representations.

To determine the largest integer for which the computation is exact, execute the
following DATA step:

data _null_;
exactint = constant(’exactint’);
put exactint=;

run;

Operating Environment Information: You can also refer to the SAS documentation
for your operating environment for information about the largest integer. �

If either of the above conditions is not true, a small amount of numerical error can
occur in the floating-point computation. In this case

� MOD returns zero if the remainder is very close to zero or very close to the value
of the second argument.

� MOD returns a missing value if the remainder cannot be computed to a precision
of approximately three digits or more. In this case, SAS also writes an error
message to the log.

Note: Before SAS 9, the MOD function did not perform the adjustments to the
remainder that were described in the previous paragraph. For this reason, the results
of the MOD function in SAS 9 might differ from previous versions. �

Comparisons

Here are some comparisons between the MOD and MODZ functions:

� The MOD function performs extra computations, called fuzzing, to return an exact
zero when the result would otherwise differ from zero because of numerical error.

� The MODZ function performs no fuzzing.

� Both the MOD and MODZ functions return a missing value if the remainder
cannot be computed to a precision of approximately three digits or more.

Examples

The following SAS statements produce results for MOD and MODZ.

SAS Statements Results

x1=mod(10,3);
put x1 9.4; 1.0000

xa=modz(10,3);
put xa 9.4; 1.0000

x2=mod(.3,-.1);
put x2 9.4; 0.0000

xb=modz(.3,-.1);
put xb 9.4; 0.1000

x3=mod(1.7,.1);
put x3 9.4; 0.0000

xc=modz(1.7,.1);
put xc 9.4; 0.0000

Functions and CALL Routines � MODEXIST Function 909

SAS Statements Results

x4=mod(.9,.3);
put x4 24.20; 0.00000000000000000000

xd=modz(.9,.3);
put xd 24.20; 0.00000000000000005551

See Also

Functions:
“INT Function” on page 812
“INTZ Function” on page 843
“MODZ Function” on page 911

MODEXIST Function

Determines whether a software image exists in the version of SAS that you have installed.

Category: Numeric

Syntax
MODEXIST(’product-name’)

Arguments

’product-name’
specifies a character constant, variable, or expression that is the name of the product
image you are checking.

Details
The MODEXIST function determines whether a software image exists in the version of
SAS that you have installed. If an image exists, then MODEXIST returns a value of 1.
If an image does not exist, then MODEXIST returns a value of 0.

Comparisons
The MODEXIST function determines whether a software image exists in the version of
SAS that you have installed. The SYSPROD function determines whether a product is
licensed.

Examples

Example 1: Determining Whether a Product Is Licensed and the Image Is
Installed This example returns a value of 1 if a SAS/GRAPH image is installed in

910 MODULEC Function � Chapter 4

your version of SAS, and returns a value of 0 if the image is not installed. The
SYSPROD function determines whether the product is licensed.

data _null_;
rc1 = sysprod(’graph’);
rc2 = modexist(’sasgplot’);
put rc1= rc2=;

run;

Output 4.60 Output from MODEXIST

rc1=1 rc2=1

MODULEC Function

Calls an external routine and returns a character value.

Category: External Routines
See: “CALL MODULE Routine” on page 472

Syntax
MODULEC(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Details
For details on the MODULEC function, see “CALL MODULE Routine” on page 472.

See Also

Functions and CALL Routines:
“CALL MODULE Routine” on page 472
“MODULEN Function” on page 910

MODULEN Function

Calls an external routine and returns a numeric value.

Category: External Routines
See: “CALL MODULE Routine” on page 472

Syntax
MODULEN(<cntl-string,>module-name<,argument-1, ..., argument-n>)

Functions and CALL Routines � MODZ Function 911

Details
For details about the MODULEN function, see “CALL MODULE Routine” on page 472.

See Also

Functions and CALL Routines:
“CALL MODULE Routine” on page 472
“MODULEC Function” on page 910

MODZ Function

Returns the remainder from the division of the first argument by the second argument, using zero
fuzzing.

Category: Mathematical

Syntax
MODZ (argument-1, argument-2)

Arguments

argument-1
is a numeric constant, variable, or expression that specifies the dividend.

argument-2
is a non-zero numeric constant, variable, or expression that specifies the divisor.

Details
The MODZ function returns the remainder from the division of argument-1 by
argument-2. When the result is non-zero, the result has the same sign as the first
argument. The sign of the second argument is ignored.

The computation that is performed by the MODZ function is exact if both of the
following conditions are true:

� Both arguments are exact integers.
� All integers that are less than either argument have exact 8-byte floating-point

representation.
To determine the largest integer for which the computation is exact, execute the

following DATA step:

data _null_;
exactint = constant(’exactint’);
put exactint=;

run;

912 MODZ Function � Chapter 4

Operating Environment Information: You can also refer to the SAS documentation
for your operating environment for information about the largest integer. �

If either of the above conditions is not true, a small amount of numerical error can
occur in the floating-point computation. For example, when you use exact arithmetic
and the result is zero, MODZ might return a very small positive value or a value
slightly less than the second argument.

Comparisons

Here are some comparisons between the MODZ and MOD functions:

� The MODZ function performs no fuzzing.

� The MOD function performs extra computations, called fuzzing, to return an exact
zero when the result would otherwise differ from zero because of numerical error.

� Both the MODZ and MOD functions return a missing value if the remainder
cannot be computed to a precision of approximately three digits or more.

Examples

The following SAS statements produce results for MOD and MODZ.

SAS Statements Results

x1=mod(10,3);
put x1 9.4; 1.0000

xa=modz(10,3);
put xa 9.4; 1.0000

x2=mod(.3,-.1);
put x2 9.4; 0.0000

xb=modz(.3,-.1);
put xb 9.4; 0.1000

x3=mod(1.7,.1);
put x3 9.4; 0.0000

xc=modz(1.7,.1);
put xc 9.4; 0.0000

x4=mod(.9,.3);
put x4 24.20; 0.00000000000000000000

xd=modz(.9,.3);
put xd 24.20; 0.00000000000000005551

See Also

Functions:

“INT Function” on page 812

“INTZ Function” on page 843

“MOD Function” on page 907

Functions and CALL Routines � MOPEN Function 913

MONTH Function

Returns the month from a SAS date value.

Category: Date and Time

Syntax
MONTH(date)

Arguments

date
specifies a numeric constant, variable, or expression that represents a SAS date value.

Details
The MONTH function returns a numeric value that represents the month from a SAS
date value. Numeric values can range from 1 through 12.

Examples

SAS Statements Results

date=’25jan94’d;
m=month(date);
put m; 1

See Also

Functions:
“DAY Function” on page 630
“YEAR Function” on page 1192

MOPEN Function

Opens a file by directory ID and member name, and returns either the file identifier or a 0.

Category: External Files
See: MOPEN Function in the documentation for your operating environment.

Syntax
MOPEN(directory-id,member-name< ,open-mode<,record-length<,record-format>>>)

914 MOPEN Function � Chapter 4

Arguments

directory-id
is a numeric variable that specifies the identifier that was assigned when the
directory was opened, generally by the DOPEN function.

member-name
is a character constant, variable, or expression that specifies the member name in
the directory.

open-mode
is a character constant, variable, or expression that specifies the type of access to the
file:

A APPEND mode allows writing new records after the current end
of the file.

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the
operating environment option in the FILENAME statement or
function. If no operating environment option is specified, it allows
writing new records at the beginning of the file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.

W Sequential update mode is used for pipes and other sequential
devices such as ports.

Default: I

record-length
is a numeric variable, constant, or expression that specifies a new logical record
length for the file. To use the existing record length for the file, specify a length of 0,
or do not provide a value here.

record-format
is a character constant, variable, or expression that specifies a new record format for
the file. To use the existing record format, do not specify a value here. The following
values are valid:

B specifies that data is to be interpreted as binary data.

D specifies the default record format.

E specifies the record format that you can edit.

F specifies that the file contains fixed-length records.

P specifies that the file contains printer carriage control in
operating environment-dependent record format.

V specifies that the file contains variable-length records.

Note: If an argument is invalid, then MOPEN returns 0. You can obtain the text of
the corresponding error message from the SYSMSG function. Invalid arguments do not
produce a message in the SAS log and do not set the _ERROR_ automatic variable. �

Functions and CALL Routines � MOPEN Function 915

Details
MOPEN returns the identifier for the file, or 0 if the file could not be opened. You can
use a file-id that is returned by the MOPEN function as you would use a file-id
returned by the FOPEN function.

CAUTION:
Use OUTPUT mode with care. Opening an existing file for output might overwrite the
current contents of the file without warning. �

The member is identified by directory-id and member-name instead of by a fileref.
You can also open a directory member by using FILENAME to assign a fileref to the
member, followed by a call to FOPEN. However, when you use MOPEN, you do not
have to use a separate fileref for each member.

If the file already exists, the output and update modes default to the operating
environment option (append or replace) specified with the FILENAME statement or
function. For example,

%let rc=%sysfunc(filename(file,physical-name,,mod));
%let did=%sysfunc(dopen(&file));
%let fid=%sysfunc(mopen(&did,member-name,o,0,d));
%let rc=%sysfunc(fput(&fid,This is a test.));
%let rc=%sysfunc(fwrite(&fid));
%let rc=%sysfunc(fclose(&fid));

If ’file’ already exists, FWRITE appends the new record instead of writing it at
the beginning of the file. However, if no operating environment option is specified with
the FILENAME function, the output mode implies that the record be replaced.

If the open fails, use SYSMSG to retrieve the message text.

Operating Environment Information: The term directory in this description refers to
an aggregate grouping of files that are managed by the operating environment.
Different host operating environments identify such groupings with different names,
such as directory, subdirectory, folder, MACLIB, or partitioned data set. For details, see
the SAS documentation for your operating environment.

Opening a directory member for output or append is not possible in some operating
environments. �

Examples

This example assigns the fileref MYDIR to a directory. Then it opens the directory,
determines the number of members, retrieves the name of the first member, and opens
that member. The last three arguments to MOPEN are the defaults. Note that in a
macro statement you do not enclose character strings in quotation marks.

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf,physical-name));
%let did=%sysfunc(dopen(&filrf));
%let frstname=’ ’;
%let memcount=%sysfunc(dnum(&did));
%if (&memcount > 0) %then

%do;
%let frstname =

%sysfunc(dread(&did,1));
%let fid =

%sysfunc(mopen(&did,&frstname,i,0,d));
macro statements to process the member

916 MORT Function � Chapter 4

%let rc=%sysfunc(fclose(&fid));
%end;

%else
%put %sysfunc(sysmsg());

%let rc=%sysfunc(dclose(&did));

See Also

Functions:

“DCLOSE Function” on page 630

“DNUM Function” on page 651

“DOPEN Function” on page 652

“DREAD Function” on page 656

“FCLOSE Function” on page 670

“FILENAME Function” on page 680

“FOPEN Function” on page 747

“FPUT Function” on page 756

“FWRITE Function” on page 763

“SYSMSG Function” on page 1117

MORT Function

Returns amortization parameters.

Category: Financial

Syntax
MORT(a,p,r,n)

Arguments

a
is numeric, and specifies the initial amount.

p
is numeric, and specifies the periodic payment.

r
is numeric, and specifies the periodic interest rate that is expressed as a fraction.

n
is an integer, and specifies the number of compounding periods.

Range: n ≥ 0

Functions and CALL Routines � MSPLINT Function 917

Details

Calculating Results The MORT function returns the missing argument in the list of
four arguments from an amortization calculation with a fixed interest rate that is
compounded each period. The arguments are related by the following equation:

� �
�� �� � ���

�� � ��� � �

One missing argument must be provided. The value is then calculated from the
remaining three. No adjustment is made to convert the results to round numbers.

Restrictions in Calculating Results The MORT function returns an invalid argument
note to the SAS log and sets _ERROR_ to 1 if one of the following argument
combinations is true:

� rate < –1 or n < 0
� principal <= 0 or payment <= 0 or n <= 0
� principal <= 0 or payment <= 0 or rate <= –1
� principal * rate > payment
� principal > payment * n

Examples

In the following statement, an amount of $50,000 is borrowed for 30 years at an
annual interest rate of 10 percent compounded monthly. The monthly payment can be
expressed as follows:

payment=mort(50000, . , .10/12,30*12);

The value that is returned is 438.79 (rounded). The second argument has been set to
missing, which indicates that the periodic payment is to be calculated. The 10 percent
nominal annual rate has been converted to a monthly rate of 0.10/12. The rate is the
fractional (not the percentage) interest rate per compounding period. The 30 years are
converted to 360 months.

MSPLINT Function

Returns the ordinate of a monotonicity-preserving interpolating spline.

Category: Mathematical

Syntax
MSPLINT(X, n, X1 <, X2, …, Xn>, Y1 <,Y2, …, Yn> <, D1, Dn>)

Arguments

X

918 MSPLINT Function � Chapter 4

is a numeric constant, variable, or expression that specifies the abscissa for which
the ordinate of the spline is to be computed.

n
is a numeric constant, variable, or expression that specifies the number of knots. N
must be a positive integer.

X1, …, Xn

are numeric constants, variables, or expressions that specify the abscissas of the
knots. These values must be non-missing and listed in nondecreasing order.
Otherwise, the result is undefined. MSPLINT does not check the order of the X1

through Xn arguments.

Y1, ..., Yn

are numeric constants, variables, or expressions that specify the ordinates of the
knots. The number of Y1 through Yn arguments must be the same as the number of
X1 throughXn arguments.

D1, Dn

are optional numeric constants, variables, or expressions that specify the derivatives
of the spline at X1 and Xn. These derivatives affect only abscissas that are less than
X2 or greater than ����.

Details
The MSPLINT function returns the ordinate of a monotonicity-preserving cubic
interpolating spline for a single abscissa, X.

An interpolating spline is a function that passes through each point that is specified
by the ordered pairs (X1, Y1), (X2, Y2), …, (Xn, Yn). These points are called knots.

A spline preserves monotonicity if both of the following conditions are true:
� For any two or more consecutive knots with nondecreasing ordinates, all

interpolated values within that interval are also nondecreasing.
� For any two or more consecutive knots with nonincreasing ordinates, all

interpolated values within that interval are also nonincreasing.

However, if you specify values of D1 or Dn with the wrong sign, monotonicity will not
be preserved for values that are less than X2 or greater than ����.

If the arguments D1 and Dn are omitted or missing, then the following actions occur:
� For n=1, MSPLINT returns Y1.
� For n=2, MSPLINT uses linear interpolation or extrapolation.

If the arguments D1 and Dn have non-missing values, or if n >= 3, then the following
actions occur:

� If X < X1 or X > Xn, MSPLINT uses linear extrapolation.
� If X1 <= X <= Xn, MSPLINT uses cubic spline interpolation.

If two knots have equal abscissas but different ordinates, then the spline will be
discontinuous at that abscissa. If two knots have equal abscissas and equal ordinates,
then the spline will be continuous at that abscissa, but the first derivative will usually
be discontinuous at that abscissa. Otherwise, the spline is continuous and has a
continuous first derivative.

If X is missing, or if any other arguments required to compute the result are missing,
then MSPLINT returns a missing value. MSPLINT does not check all of the arguments
for missing values. Because the arguments D1 and Dn are optional, and they are not
required to compute the result, if one or both are missing and no errors occur, then
MSPLINT returns a non-missing result.

Functions and CALL Routines � MSPLINT Function 919

Examples

The following is an example of the MSPLINT function.

data msplint;
do x=0 to 100 by .1;

msplint=msplint(x, 9,
10, 20, 25, 50, 55, 70, 70, 80, 90,
20, 30, 30, 40, 70, 60, 50, 40, 40);

output;
end;

run;

data knots;
input x y;
datalines;

10 20
20 30
25 30
50 40
55 70
70 60
70 50
80 40
90 40
;

data plot;
merge knots msplint;
by x;

run;

title "Comparison of Splines";
title2 "Non-monotonicity-preserving and Monotonicity-preserving

Splines";
legend1 value=(’Non-monotonicity-preserving spline’

’Monotonicity-preserving spline’) label=none;
symbol1 value=dot interpol=spline color=black width=5;
symbol2 value=none interpol=join color=red;
proc gplot data=plot;

plot y*x=1 msplint*x=2/overlay legend=legend1;
run;
quit;

920 N Function � Chapter 4

Display 4.8 Results of Using the MSPLINT Function

Reference
Fritsch, F. N., and J. Butland. 1984. "A method for constructing local monotone
piecewise cubic interpolants." Siam Journal of Scientific and Statistical Computing 5:2,
300-304.

N Function

Returns the number of non-missing numeric values.

Category: Descriptive Statistics

Syntax
N(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one argument is
required. The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The N function counts nonmissing values, whereas the NMISS and the CMISS
functions count missing values. N requires numeric arguments, whereas CMISS works
with both numeric and character values.

Functions and CALL Routines � NETPV Function 921

Examples

SAS Statements Results

x1=n(1,0,.,2,5,.); 4

x2=n(1,2); 2

x3=n(of x1-x2); 2

NETPV Function

Returns the net present value as a fraction.

Category: Financial

Syntax
NETPV(r,freq,c0,c1,...,cn)

r
is numeric, the interest rate over a specified base period of time expressed as a
fraction.
Range: r >= 0

freq
is numeric, the number of payments during the base period of time that is specified
with the rate r.
Range: freq > 0
Exception: The case freq = 0 is a flag to allow continuous discounting.

c0,c1,...,cn
are numeric cash flows that represent cash outlays (payments) or cash inflows
(income) occurring at times 0, 1, ...n. These cash flows are assumed to be equally
spaced, beginning-of-period values. Negative values represent payments, positive
values represent income, and values of 0 represent no cash flow at a given time. The
c0 argument and the c1 argument are required.

Details
The NETPV function returns the net present value at time 0 for the set of cash
payments c0,c1, ...,cn, with a rate r over a specified base period of time. The argument
freq>0 describes the number of payments that occur over the specified base period of
time.

The net present value is given by

����� ��� ����� ��� ��� ���� ��� �

��

���

���
�

922 NLITERAL Function � Chapter 4

where

� �

�
�

�������������
���� � �

��� ���� � �

Missing values in the payments are treated as 0 values. When freq>0, the rate r is
the effective rate over the specified base period. To compute with a quarterly rate (the
base period is three months) of 4 percent with monthly cash payments, set freq to 3 and
set r to .04.

If freq is 0, continuous discounting is assumed. The base period is the time interval
between two consecutive payments, and the rate r is a nominal rate.

To compute with a nominal annual interest rate of 11 percent discounted
continuously with monthly payments, set freq to 0 and set r to .11/12.

Examples

For an initial investment of $500 that returns biannual payments of $200, $300, and
$400 over the succeeding 6 years and an annual discount rate of 10 percent, the net
present value of the investment can be expressed as follows:

value=netpv(.10,.5,-500,200,300,400);

The value returned is 95.98.

NLITERAL Function
Converts a character string that you specify to a SAS name literal.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NLITERAL(string)

Arguments

string
specifies a character constant, variable, or expression that is to be converted to a SAS
name literal.
Tip: Enclose a literal string of characters in quotation marks.
Restriction: If the string is a valid SAS variable name, it is not changed.

Details

Length of Returned Variable In a DATA step, if the NLITERAL function returns a
value to a variable that has not previously been assigned a length, then the variable is
given a length of 200 bytes.

Functions and CALL Routines � NLITERAL Function 923

The Basics String will be converted to a name literal, unless it qualifies under the
default rules for a SAS variable name. These default rules are in effect when the SAS
system option VALIDVARNAME=V7:

� It begins with an English letter or an underscore.
� All subsequent characters are English letters, underscores, or digits.
� The length is 32 or fewer alphanumeric characters.

String qualifies as a SAS variable name, when all of these rules are true.
The NLITERAL function encloses the value of string in single or double quotation

marks, based on the contents of string.

Value in string Result

an ampersand (&) enclosed in single quotation marks

a percent sign (%) enclosed in single quotation marks

more double quotation marks than single quotation
marks enclosed in single quotation marks

none of the above enclosed in double quotation marks

If insufficient space is available for the resulting n-literal, NLITERAL returns a
blank string, prints an error message, and sets _ERROR_ to 1.

Examples

This example demonstrates multiple uses of NLITERAL.

data test;
input string $32.;
length result $ 67;
result = nliteral(string);
datalines;

abc_123
This and That
cats & dogs
Company’s profits (%)
"Double Quotes"
’Single Quotes’
;

proc print;
title ’Strings Converted to N-Literals or Returned Unchanged’;
run;

924 NMISS Function � Chapter 4

Output 4.61 Converting Strings to Name Literals with NLITERAL

Strings Converted to N-Literals or Returned Unchanged 1

Obs string result

1 abc_123 abc_123
2 This and That "This and That"N
3 cats & dogs ’cats & dogs’N
4 Company’s profits (%) ’Company’’s profits (%)’N
5 "Double Quotes" ’"Double Quotes"’N
6 ’Single Quotes’ "’Single Quotes’"N

See Also

Functions:
“COMPARE Function” on page 585
“DEQUOTE Function” on page 638
“NVALID Function” on page 950

System Option:
“VALIDVARNAME= System Option” on page 1988

“Rules for Words and Names in the SAS Language” in SAS Language Reference:
Concepts

NMISS Function

Returns the number of missing numeric values.

Category: Descriptive Statistics

Syntax
NMISS(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one argument is
required. The argument list can consist of a variable list, which is preceded by OF.

Comparisons
The NMISS function returns the number of missing values, whereas the N function
returns the number of nonmissing values. NMISS requires numeric values, whereas
CMISS works with both numeric and character values. NMISS works with multiple
numeric values, whereas MISSING works with only one value that can be either
numeric or character.

Functions and CALL Routines � NOTALNUM Function 925

Examples

SAS Statements Results

x1=nmiss(1,0,.,2,5,.); 2

x2=nmiss(1,0); 0

x3=nmiss(of x1-x2); 0

NORMAL Function
Returns a random variate from a normal, or Gaussian, distribution.

Category: Random Number
Alias: RANNOR
See: “RANNOR Function” on page 1053

NOTALNUM Function
Searches a character string for a non-alphanumeric character, and returns the first position at
which the character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTALNUM(string <,start>)

Arguments

string
specifies a character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTALNUM function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System

926 NOTALNUM Function � Chapter 4

Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTALNUM function searches a string for the first occurrence of any character
that is not a digit or an uppercase or lowercase letter. If such a character is found,
NOTALNUM returns the position in the string of that character. If no such character is
found, NOTALNUM returns a value of 0.

If you use only one argument, NOTALNUM begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTALNUM returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The NOTALNUM function searches a character string for a non-alphanumeric character.
The ANYALNUM function searches a character string for an alphanumeric character.

Examples

The following example uses the NOTALNUM function to search a string from left to
right for non-alphanumeric characters.

data _null_;
string=’Next = Last + 1;’;
j=0;
do until(j=0);

j=notalnum(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=5 c=
j=6 c==
j=7 c=
j=12 c=
j=13 c=+
j=14 c=
j=16 c=;
That’s all

See Also

Functions and CALL Routines � NOTALPHA Function 927

Function:
“ANYALNUM Function” on page 376

NOTALPHA Function

Searches a character string for a nonalphabetic character, and returns the first position at which
the character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTALPHA(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTALPHA function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in the SAS National Language Support
(NLS): Reference Guide.

The NOTALPHA function searches a string for the first occurrence of any character
that is not an uppercase or lowercase letter. If such a character is found, NOTALPHA
returns the position in the string of that character. If no such character is found,
NOTALPHA returns a value of 0.

If you use only one argument, NOTALPHA begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTALPHA returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

928 NOTALPHA Function � Chapter 4

Comparisons
The NOTALPHA function searches a character string for a nonalphabetic character.
The ANYALPHA function searches a character string for an alphabetic character.

Examples

Example 1: Searching a String for Nonalphabetic Characters The following example
uses the NOTALPHA function to search a string from left to right for nonalphabetic
characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notalpha(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=5 c=
j=6 c==
j=7 c=
j=8 c=_
j=10 c=_
j=11 c=
j=12 c=+
j=13 c=
j=14 c=1
j=15 c=2
j=17 c=3
j=18 c=;
That’s all

Example 2: Identifying Control Characters by Using the NOTALPHA Function You can
execute the following program to show the control characters that are identified by the
NOTALPHA function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notalpha=notalpha(byte);
output;

end;

proc print data=test;
run;

Functions and CALL Routines � NOTCNTRL Function 929

See Also

Function:
“ANYALPHA Function” on page 378

NOTCNTRL Function

Searches a character string for a character that is not a control character, and returns the first
position at which that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTCNTRL(string<,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTCNTRL function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in the SAS National Language Support
(NLS): Reference Guide.

The NOTCNTRL function searches a string for the first occurrence of a character
that is not a control character. If such a character is found, NOTCNTRL returns the
position in the string of that character. If no such character is found, NOTCNTRL
returns a value of 0.

If you use only one argument, NOTCNTRL begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTCNTRL returns a value of zero when one of the following is true:
� The character that you are searching for is not found.

930 NOTDIGIT Function � Chapter 4

� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTCNTRL function searches a character string for a character that is not a
control character. The ANYCNTRL function searches a character string for a control
character.

Examples
You can execute the following program to show the control characters that are identified
by the NOTCNTRL function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notcntrl=notcntrl(byte);
output;

end;

proc print data=test;
run;

See Also

Function:

“ANYCNTRL Function” on page 380

NOTDIGIT Function

Searches a character string for any character that is not a digit, and returns the first position at
which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
NOTDIGIT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start

Functions and CALL Routines � NOTDIGIT Function 931

is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTDIGIT function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in the SAS National Language Support
(NLS): Reference Guide.

The NOTDIGIT function searches a string for the first occurrence of any character
that is not a digit. If such a character is found, NOTDIGIT returns the position in the
string of that character. If no such character is found, NOTDIGIT returns a value of 0.

If you use only one argument, NOTDIGIT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

NOTDIGIT returns a value of zero when one of the following is true:

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTDIGIT function searches a character string for any character that is not a
digit. The ANYDIGIT function searches a character string for a digit.

Examples

The following example uses the NOTDIGIT function to search for a character that is
not a digit.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notdigit(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x

932 NOTE Function � Chapter 4

j=4 c=t
j=5 c=
j=6 c==
j=7 c=
j=8 c=_
j=9 c=n
j=10 c=_
j=11 c=
j=12 c=+
j=13 c=
j=16 c=E
j=18 c=;
That’s all

See Also

Function:
“ANYDIGIT Function” on page 381

NOTE Function

Returns an observation ID for the current observation of a SAS data set.

Category: SAS File I/O

Syntax
NOTE(data-set-id)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that the OPEN function
returns.

Details
You can use the observation ID value to return to the current observation by using
POINT. Observations can be marked by using NOTE and then returned to later by
using POINT. Each observation ID is a unique numeric value.

To free the memory that is associated with an observation ID, use DROPNOTE.

Examples

This example calls CUROBS to display the observation number, calls NOTE to mark
the observation, and calls POINT to point to the observation that corresponds to
NOTEID.

Functions and CALL Routines � NOTE Function 933

%let dsid=%sysfunc(open(sasuser.fitness,i));
/* Go to observation 10 in data set */

%let rc=%sysfunc(fetchobs(&dsid,10));
%if %sysfunc(abs(&rc)) %then
%put FETCHOBS FAILED;

%else
%do;

/* Display observation number */
/* in the Log */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;
/* Mark observation 10 using NOTE */

%let noteid=%sysfunc(note(&dsid));
/* Rewind pointer to beginning */
/* of data */
/* set using REWIND */

%let rc=%sysfunc(rewind(&dsid));
/* FETCH first observation into DDV */

%let rc=%sysfunc(fetch(&dsid));
/* Display first observation number */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;
/* POINT to observation 10 marked */
/* earlier by NOTE */

%let rc=%sysfunc(point(&dsid,¬eid));
/* FETCH observation into DDV */

%let rc=%sysfunc(fetch(&dsid));
/* Display observation number 10 */
/* marked by NOTE */

%let cur=%sysfunc(curobs(&dsid));
%put CUROBS=&cur;

%end;
%if (&dsid > 0) %then
%let rc=%sysfunc(close(&dsid));

The output produced by this program is:

CUROBS=10
CUROBS=1
CUROBS=10

See Also

Functions:
“DROPNOTE Function” on page 657
“OPEN Function” on page 955
“POINT Function” on page 982
“REWIND Function” on page 1062

934 NOTFIRST Function � Chapter 4

NOTFIRST Function

Searches a character string for an invalid first character in a SAS variable name under
VALIDVARNAME=V7, and returns the first position at which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
NOTFIRST(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The NOTFIRST function does not depend on the TRANTAB, ENCODING, or LOCALE
options.

The NOTFIRST function searches a string for the first occurrence of any character
that is not valid as the first character in a SAS variable name under
VALIDVARNAME=V7. These characters are any except the underscore (_) and
uppercase or lowercase English letters. If such a character is found, NOTFIRST returns
the position in the string of that character. If no such character is found, NOTFIRST
returns a value of 0.

If you use only one argument, NOTFIRST begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

NOTFIRST returns a value of zero when one of the following is true:

� The character that you are searching for is not found.

� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTFIRST function searches a string for the first occurrence of any character that
is not valid as the first character in a SAS variable name under VALIDVARNAME=V7.

Functions and CALL Routines � NOTGRAPH Function 935

The ANYFIRST function searches a string for the first occurrence of any character that
is valid as the first character in a SAS variable name under VALIDVARNAME=V7.

Examples

The following example uses the NOTFIRST function to search a string for any
character that is not valid as the first character in a SAS variable name under
VALIDVARNAME=V7.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notfirst(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=5 c=
j=6 c==
j=7 c=
j=11 c=
j=12 c=+
j=13 c=
j=14 c=1
j=15 c=2
j=17 c=3
j=18 c=;
That’s all

See Also

Function:
“ANYFIRST Function” on page 383

NOTGRAPH Function
Searches a character string for a non-graphical character, and returns the first position at which
that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTGRAPH(string <,start>)

936 NOTGRAPH Function � Chapter 4

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTGRAPH function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTGRAPH function searches a string for the first occurrence of a non-graphical
character. A graphical character is defined as any printable character other than white
space. If such a character is found, NOTGRAPH returns the position in the string of
that character. If no such character is found, NOTGRAPH returns a value of 0.

If you use only one argument, NOTGRAPH begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTGRAPH returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The NOTGRAPH function searches a character string for a non-graphical character.
The ANYGRAPH function searches a character string for a graphical character.

Examples

Example 1: Searching a String for Non-Graphical Characters The following example
uses the NOTGRAPH function to search a string for a non-graphical character.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notgraph(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;

Functions and CALL Routines � NOTLOWER Function 937

end;
run;

The following lines are written to the SAS log:

j=5 c=
j=7 c=
j=11 c=
j=13 c=
That’s all

Example 2: Identifying Control Characters by Using the NOTGRAPH Function You can
execute the following program to show the control characters that are identified by the
NOTGRAPH function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notgraph=notgraph(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“ANYGRAPH Function” on page 385

NOTLOWER Function

Searches a character string for a character that is not a lowercase letter, and returns the first
position at which that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTLOWER(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start

938 NOTLOWER Function � Chapter 4

is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTLOWER function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTLOWER function searches a string for the first occurrence of any character
that is not a lowercase letter. If such a character is found, NOTLOWER returns the
position in the string of that character. If no such character is found, NOTLOWER
returns a value of 0.

If you use only one argument, NOTLOWER begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTLOWER returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The NOTLOWER function searches a character string for a character that is not a
lowercase letter. The ANYLOWER function searches a character string for a lowercase
letter.

Examples

The following example uses the NOTLOWER function to search a string for any
character that is not a lowercase letter.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notlower(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=5 c=

Functions and CALL Routines � NOTNAME Function 939

j=6 c==
j=7 c=
j=8 c=_
j=10 c=_
j=11 c=
j=12 c=+
j=13 c=
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
j=18 c=;
That’s all

See Also

Function:
“ANYLOWER Function” on page 387

NOTNAME Function

Searches a character string for an invalid character in a SAS variable name under
VALIDVARNAME=V7, and returns the first position at which that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTNAME(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The NOTNAME function does not depend on the TRANTAB, ENCODING, or LOCALE
options.

The NOTNAME function searches a string for the first occurrence of any character
that is not valid in a SAS variable name under VALIDVARNAME=V7. These characters
are any except underscore (_), digits, and uppercase or lowercase English letters. If

940 NOTNAME Function � Chapter 4

such a character is found, NOTNAME returns the position in the string of that
character. If no such character is found, NOTNAME returns a value of 0.

If you use only one argument, NOTNAME begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

NOTNAME returns a value of zero when one of the following is true:

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTNAME function searches a string for the first occurrence of any character that
is not valid in a SAS variable name under VALIDVARNAME=V7. The ANYNAME
function searches a string for the first occurrence of any character that is valid in a SAS
variable name under VALIDVARNAME=V7.

Examples

The following example uses the NOTNAME function to search a string for any
character that is not valid in a SAS variable name under VALIDVARNAME=V7.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notname(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=5 c=
j=6 c==
j=7 c=
j=11 c=
j=12 c=+
j=13 c=
j=18 c=;
That’s all

See Also

Functions and CALL Routines � NOTPRINT Function 941

Function:

“ANYNAME Function” on page 389

NOTPRINT Function

Searches a character string for a nonprintable character, and returns the first position at which
that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
NOTPRINT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTPRINT function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTPRINT function searches a string for the first occurrence of a non-printable
character. If such a character is found, NOTPRINT returns the position in the string of
that character. If no such character is found, NOTPRINT returns a value of 0.

If you use only one argument, NOTPRINT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.

� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

NOTPRINT returns a value of zero when one of the following is true:

� The character that you are searching for is not found.

� The value of start is greater than the length of the string.

� The value of start = 0.

942 NOTPUNCT Function � Chapter 4

Comparisons
The NOTPRINT function searches a character string for a non-printable character. The
ANYPRINT function searches a character string for a printable character.

Examples
You can execute the following program to show the control characters that are identified
by the NOTPRINT function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notprint=notprint(byte);
output;

end;

proc print data=test;
run;

See Also

Function:

“ANYPRINT Function” on page 391

NOTPUNCT Function

Searches a character string for a character that is not a punctuation character, and returns the first
position at which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax
NOTPUNCT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Functions and CALL Routines � NOTPUNCT Function 943

Details
The results of the NOTPUNCT function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTPUNCT function searches a string for the first occurrence of a character
that is not a punctuation character. If such a character is found, NOTPUNCT returns
the position in the string of that character. If no such character is found, NOTPUNCT
returns a value of 0.

If you use only one argument, NOTPUNCT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTPUNCT returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTPUNCT function searches a character string for a character that is not a
punctuation character. The ANYPUNCT function searches a character string for a
punctuation character.

Examples

Example 1: Searching a String for Characters That Are Not Punctuation
Characters The following example uses the NOTPUNCT function to search a string
for characters that are not punctuation characters.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notpunct(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=5 c=

944 NOTSPACE Function � Chapter 4

j=7 c=
j=9 c=n
j=11 c=
j=13 c=
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
That’s all

Example 2: Identifying Control Characters by Using the NOTPUNCT Function You can
execute the following program to show the control characters that are identified by the
NOTPUNCT function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notpunct=notpunct(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“ANYPUNCT Function” on page 393

NOTSPACE Function

Searches a character string for a character that is not a white-space character (blank, horizontal
and vertical tab, carriage return, line feed, and form feed), and returns the first position at which
that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTSPACE(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start

Functions and CALL Routines � NOTSPACE Function 945

is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTSPACE function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTSPACE function searches a string for the first occurrence of a character that
is not a blank, horizontal tab, vertical tab, carriage return, line feed, or form feed. If
such a character is found, NOTSPACE returns the position in the string of that
character. If no such character is found, NOTSPACE returns a value of 0.

If you use only one argument, NOTSPACE begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTSPACE returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The NOTSPACE function searches a character string for the first occurrence of a
character that is not a blank, horizontal tab, vertical tab, carriage return, line feed, or
form feed. The ANYSPACE function searches a character string for the first occurrence
of a character that is a blank, horizontal tab, vertical tab, carriage return, line feed, or
form feed.

Examples

Example 1: Searching a String for a Character That Is Not a White-Space
Character The following example uses the NOTSPACE function to search a string for
a character that is not a white-space character.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notspace(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

946 NOTUPPER Function � Chapter 4

j=1 c=N
j=2 c=e
j=3 c=x
j=4 c=t
j=6 c==
j=8 c=_
j=9 c=n
j=10 c=_
j=12 c=+
j=14 c=1
j=15 c=2
j=16 c=E
j=17 c=3
j=18 c=;
That’s all

Example 2: Identifying Control Characters by Using the NOTSPACE Function You can
execute the following program to show the control characters that are identified by the
NOTSPACE function.

data test;
do dec=0 to 255;

byte=byte(dec);
hex=put(dec,hex2.);
notspace=notspace(byte);
output;

end;

proc print data=test;
run;

See Also

Function:
“ANYSPACE Function” on page 394

NOTUPPER Function
Searches a character string for a character that is not an uppercase letter, and returns the first
position at which that character is found.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
NOTUPPER(string <,start>)

Arguments

Functions and CALL Routines � NOTUPPER Function 947

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Details
The results of the NOTUPPER function depend directly on the translation table that is
in effect (see “TRANTAB System Option”) and indirectly on the “ENCODING System
Option” and the “LOCALE System Option” in SAS National Language Support (NLS):
Reference Guide.

The NOTUPPER function searches a string for the first occurrence of a character
that is not an uppercase letter. If such a character is found, NOTUPPER returns the
position in the string of that character. If no such character is found, NOTUPPER
returns a value of 0.

If you use only one argument, NOTUPPER begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.

� If the value of start is less than the negative length of the string, the search begins
at the end of the string.

NOTUPPER returns a value of zero when one of the following is true:

� The character that you are searching for is not found.
� The value of start is greater than the length of the string.

� The value of start = 0.

Comparisons
The NOTUPPER function searches a character string for a character that is not an
uppercase letter. The ANYUPPER function searches a character string for an
uppercase letter.

Examples

The following example uses the NOTUPPER function to search a string for any
character that is not an uppercase letter.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notupper(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

948 NOTXDIGIT Function � Chapter 4

The following lines are written to the SAS log:

j=2 c=e
j=3 c=x
j=4 c=t
j=5 c=
j=6 c==
j=7 c=
j=8 c=_
j=9 c=n
j=10 c=_
j=11 c=
j=12 c=+
j=13 c=
j=14 c=1
j=15 c=2
j=17 c=3
j=18 c=;
That’s all

See Also

Function:

“ANYUPPER Function” on page 396

NOTXDIGIT Function

Searches a character string for a character that is not a hexadecimal character, and returns the
first position at which that character is found.

Category: Character

Restriction: “I18N Level 2” on page 313

Syntax

NOTXDIGIT(string <,start>)

Arguments

string
is the character constant, variable, or expression to search.

start
is an optional numeric constant, variable, or expression with an integer value that
specifies the position at which the search should start and the direction in which to
search.

Functions and CALL Routines � NOTXDIGIT Function 949

Details
The NOTXDIGIT function searches a string for the first occurrence of any character
that is not a digit or an uppercase or lowercase A, B, C, D, E, or F. If such a character is
found, NOTXDIGIT returns the position in the string of that character. If no such
character is found, NOTXDIGIT returns a value of 0.

If you use only one argument, NOTXDIGIT begins the search at the beginning of the
string. If you use two arguments, the absolute value of the second argument, start,
specifies the position at which to begin the search. The direction in which to search is
determined in the following way:

� If the value of start is positive, the search proceeds to the right.
� If the value of start is negative, the search proceeds to the left.
� If the value of start is less than the negative length of the string, the search begins

at the end of the string.

NOTXDIGIT returns a value of zero when one of the following is true:
� The character that you are searching for is not found.
� The value of start is greater than the length of the string.
� The value of start = 0.

Comparisons
The NOTXDIGIT function searches a character string for a character that is not a
hexadecimal character. The ANYXDIGIT function searches a character string for a
character that is a hexadecimal character.

Examples

The following example uses the NOTXDIGIT function to search a string for a
character that is not a hexadecimal character.

data _null_;
string=’Next = _n_ + 12E3;’;
j=0;
do until(j=0);

j=notxdigit(string,j+1);
if j=0 then put +3 "That’s all";
else do;

c=substr(string,j,1);
put +3 j= c=;

end;
end;

run;

The following lines are written to the SAS log:

j=1 c=N
j=3 c=x
j=4 c=t
j=5 c=
j=6 c==
j=7 c=
j=8 c=_
j=9 c=n
j=10 c=_
j=11 c=

950 NPV Function � Chapter 4

j=12 c=+
j=13 c=
j=18 c=;
That’s all

See Also

Function:
“ANYXDIGIT Function” on page 398

NPV Function
Returns the net present value with the rate expressed as a percentage.

Category: Financial

Syntax
NPV(r,freq,c0,c1,...,cn)

Arguments

r
is numeric, the interest rate over a specified base period of time expressed as a
percentage.

freq
is numeric, the number of payments during the base period of time specified with the
rate r.
Range: freq > 0
Exception: The case freq = 0 is a flag to allow continuous discounting.

c0,c1,...,cn
are numeric cash flows that represent cash outlays (payments) or cash inflows
(income) occurring at times 0, 1, ...n. These cash flows are assumed to be equally
spaced, beginning-of-period values. Negative values represent payments, positive
values represent income, and values of 0 represent no cash flow at a given time. The
c0 argument and the c1 argument are required.

Comparisons
The NPV function is identical to NETPV, except that the r argument is provided as a
percentage.

NVALID Function
Checks the validity of a character string for use as a SAS variable name.

Functions and CALL Routines � NVALID Function 951

Category: Character

Restriction: “I18N Level 0” on page 312

Syntax
NVALID(string< ,validvarname>)

Arguments

string
specifies a character constant, variable, or expression which will be checked to
determine whether its value can be used as a SAS variable name.

Note: Trailing blanks are ignored. �

Tip: Enclose a literal string of characters in quotation marks.

validvarname
is a character constant, variable, or expression that specifies one of the following
values:

V7 determines that string is a valid SAS variable name when all
three of the following are true:

� It begins with an English letter or an underscore.

� All subsequent characters are English letters, underscores,
or digits.

� The length is 32 or fewer alphanumeric characters.

ANY determines that string is a valid SAS variable name if it contains
32 or fewer characters of any type, including blanks.

NLITERAL determines that string is a valid SAS variable name if it is in the
form of a SAS name literal (’name’N) or if it is a valid SAS
variable name when VALIDVARNAME=V7.

See: V7 above in this same list.

Default: If no value is specified, the NVALID function determines that string is a
valid SAS variable name based on the value of the SAS system option
VALIDVARNAME=.

Details
The NVALID function checks the value of string to determine whether it can be used as
a SAS variable name.

The NVALID function returns a value of 1 or 0.

Condition Returned Value

string can be used as a SAS variable name 1

string cannot be used as a SAS variable name 0

952 NVALID Function � Chapter 4

Examples

This example determines the validity of specified strings as SAS variable names. The
value that is returned by the NVALID function varies with the validvarname argument.
The value of 1 is returned when the string is determined to be a valid SAS variable
name under the rules for the specified validvarname argument. Otherwise, the value of
0 is returned.

options validvarname=v7 ls=64;
data string;

input string $char40.;
v7=nvalid(string,’v7’);
any=nvalid(string,’any’);
nliteral=nvalid(string,’nliteral’);
default=nvalid(string);
datalines;

Tooooooooooooooooooooooooooo Long

OK
Very_Long_But_Still_OK_for_V7
1st_char_is_a_digit
Embedded blank
!@#$%^&*
"Very Loooong N-Literal with """N
’No closing quotation mark
;

proc print noobs;
title1 ’NLITERAL and Validvarname Arguments Determine’;
title2 ’Invalid (0) and Valid (1) SAS Variable Names’;
run;

Output 4.62 Determining the Validity of SAS Variable Names with NLITERAL

NLITERAL and Validvarname Arguments Determine 1
Invalid (0) and Valid (1) SAS Variable Names

string v7 any nliteral default

Tooooooooooooooooooooooooooo Long 0 0 0 0
0 0 0 0

OK 1 1 1 1
Very_Long_But_Still_OK_for_V7 1 1 1 1
1st_char_is_a_digit 0 1 1 0
Embedded blank 0 1 1 0
!@#$%^&* 0 1 1 0
"Very Loooong N-Literal with """N 0 0 1 0
’No closing quotation mark 0 1 0 0

See Also

Functions:
“COMPARE Function” on page 585
“NLITERAL Function” on page 922

System Option:

Functions and CALL Routines � NWKDOM Function 953

“VALIDVARNAME= System Option” on page 1988
“Rules for Words and Names in the SAS Language” in SAS Language Reference:

Concepts

NWKDOM Function

Returns the date for the nth occurrence of a weekday for the specified month and year.

Category: Date and Time

Syntax
NWKDOM(n, weekday, month, year)

Arguments

n
specifies the numeric week of the month that contains the specified day.
Range: 1–5
Tip: N=5 indicates that the specified day occurs in the last week of that month.

Sometimes n=4 and n=5 produce the same results.

weekday
specifies the number that corresponds to the day of the week.
Range: 1–7
Tip: Sunday is considered the first day of the week and has a weekday value of 1.

month
specifies the number that corresponds to the month of the year.
Range: 1–12

year
specifies a four-digit calendar year.

Details
The NWKDOM function returns a SAS date value for the nth weekday of the month
and year that you specify. Use any valid SAS date format, such as the DATE9. format,
to display a calendar date. You can specify n=5 for the last occurrence of a particular
weekday in the month.

Sometimes n=5 and n=4 produce the same result. These results occur when there are
only four occurrences of the requested weekday in the month. For example, if the
month of January begins on a Sunday, there will be five occurrences of Sunday, Monday,
and Tuesday, but only four occurrences of Wednesday, Thursday, Friday, and Saturday.
In this case, specifying n=5 or n=4 for Wednesday, Thursday, Friday, or Saturday will
produce the same result.

If February is not a leap year, the month has 28 days and there are four occurrences
of each day of the week. In this case, n=5 and n=4 produce the same results for every
day.

954 NWKDOM Function � Chapter 4

Comparisons
In the NWKDOM function, the value for weekday corresponds to the numeric day of the
week beginning on Sunday. This value is the same value that is used in the WEEKDAY
function, where Sunday =1, and so on. The value for month corresponds to the numeric
month of the year beginning in January. This value is the same value that is used in
the MONTH function, where January =1, and so on.

You can use the NWKDOM function to calculate events that are not defined by the
HOLIDAY function. For example, if a university always schedules graduation on the
first Saturday in June, then you can use the following statement to calculate the date:
UnivGrad = nwkdom(1, 7, 6, year);

Examples

Example 1: Returning Date Values The following example uses the NWKDOM
function and returns the date for specific occurrences of a weekday for a specified
month and year.

data _null_;
/* Return the date of the third Monday in May 2000. */

a=nwkdom(3, 2, 5, 2000);
/* Return the date of the fourth Wednesday in November 2007. */

b=nwkdom(4, 4, 11, 2007);
/* Return the date of the fourth Saturday in November 2007. */

c=nwkdom(4, 7, 11, 2007);
/* Return the date of the first Sunday in January 2007. */

d=nwkdom(1, 1, 1, 2007);
/* Return the date of the second Tuesday in September 2007. */

e=nwkdom(2, 3, 9, 2007);
/* Return the date of the fifth Thursday in December 2007. */

f=nwkdom(5, 5, 12, 2007);
put a= weekdatx.;
put b= weekdatx.;
put c= weekdatx.;
put d= weekdatx.;
put e= weekdatx.;
put f= weekdatx.;

run;

Output 4.63 Output from Returning Date Values

a=Monday, 15 May 2000
b=Wednesday, 28 November 2007
c=Saturday, 24 November 2007
d=Sunday, 7 January 2007
e=Tuesday, 11 September 2007
f=Thursday, 27 December 2007

Example 2: Returning the Date of the Last Monday in May The following example
returns the date that corresponds to the last Monday in the month of May in the year
2007.

data _null_;
/* The last Monday in May. */

Functions and CALL Routines � OPEN Function 955

x=nwkdom(5,2,5,2007);
put x date9.;

run;

Output 4.64 Output from Calculating the Date of the Last Monday in May

28MAY2007

See Also

Functions:
“HOLIDAY Function” on page 788
“INTNX Function” on page 831
“MONTH Function” on page 913
“WEEKDAY Function” on page 1189

OPEN Function

Opens a SAS data set.

Category: SAS File I/O

Syntax
OPEN(<data-set-name <,mode < ,generation-number < ,type>>>>)

Arguments

data-set-name
is a character constant, variable, or expression that specifies the name of the SAS
data set or SAS SQL view to be opened. The value of this character string should be
of the form

<libref.>member-name<(data-set-options)>

Default: The default value for data-set-name is _LAST_.
Restriction: If you specify the FIRSTOBS= and OBS= data set options, they are

ignored. All other data set options are valid.

mode
is a character constant, variable, or expression that specifies the type of access to the
data set:

I opens the data set in INPUT mode (default). Values can be read
but not modified. ’I’ uses the strongest access mode available in
the engine. That is, if the engine supports random access, OPEN
defaults to random access. Otherwise, the file is opened in ’IN’

956 OPEN Function � Chapter 4

mode automatically. Files are opened with sequential access and
a system level warning is set.

IN opens the data set in INPUT mode. Observations are read
sequentially, and you are allowed to revisit an observation.

IS opens the data set in INPUT mode. Observations are read
sequentially, but you are not allowed to revisit an observation.

Default: I

generation-number
specifies a consistently increasing number that identifies one of the historical
versions in a generation group.

Tip: The generation-number argument is ignored if type = F.

type
is a character constant and can be one of the following values:

D specifies that the first argument, data-set-name, is a one-level or
two-level data set name.

The following example shows how the D type value can be used:

rc = open(’lib.mydata’, , , ’D’);

Tip: D is the default if there is no fourth argument.

F specifies that the first argument, data-set-name, is a filename, a
physical path to a file.

The following examples show how the F type value can be used:

rc = open(’c:\data\mydata.sas7bdat’, , , ’F’);
rc = open(’c:\data\mydata’, , , ’F’);

Tip: If you use the F value, then the third argument,
generation-number, is ignored.

Note: If an argument is invalid, OPEN returns 0. You can obtain the text of the
corresponding error message from the SYSMSG function. Invalid arguments do not
produce a message in the SAS log and do not set the _ERROR_ automatic variable. �

Details
The OPEN function opens a SAS data set, DATA step, or a SAS SQL view and returns
a unique numeric data set identifier, which is used in most other data set access
functions. OPEN returns 0 if the data set could not be opened.

If you call the OPEN function from a macro, then the result of the call is valid only
when the result is passed to functions in a macro. If you call the OPEN function from
the DATA step, then the result is valid only when the result is passed to functions in
the same DATA step.

By default, a SAS data set is opened with a control level of RECORD. For details, see
the “CNTLLEV= Data Set Option” on page 18 . An open SAS data set should be closed
when it is no longer needed. If you open a data set within a DATA step, it will be closed
automatically when the DATA step ends.

OPEN defaults to the strongest access mode available in the engine. That is, if the
engine supports random access, OPEN defaults to random access. Otherwise, data sets
are opened with sequential access, and a system-level warning is set.

Functions and CALL Routines � ORDINAL Function 957

Examples

� This example opens the data set PRICES in the library MASTER using INPUT
mode. Note that in a macro statement you do not enclose character strings in
quotation marks.

%let dsid=%sysfunc(open(master.prices,i));
%if (&dsid = 0) %then

%put %sysfunc(sysmsg());
%else

%put PRICES data set has been opened;

� This example passes values from macro or DATA step variables to be used on data
set options. It opens the data set SASUSER.HOUSES, and uses the WHERE=
data set option to apply a permanent WHERE clause. Note that in a macro
statement you do not enclose character strings in quotation marks.

%let choice = style="RANCH";
%let dsid=%sysfunc(open(sasuser.houses

(where=(&choice)),i));

� This example shows how to check the returned value for errors and to write an
error message from the SYSMSG function.

data _null_;
d=open(’bad’,’?’);
if not d then do;

m=sysmsg();
put m;
abort;

end;
... more SAS statements ...;

run;

See Also

Functions:
“CLOSE Function” on page 577
“SYSMSG Function” on page 1117

ORDINAL Function
Returns the kth smallest of the missing and nonmissing values.

Category: Descriptive Statistics

Syntax
ORDINAL(k,argument-1,argument-2<,...argument-n>)

Arguments

958 PATHNAME Function � Chapter 4

k
is a numeric constant, variable, or expression with an integer value that is less than
or equal to the number of subsequent elements in the list of arguments.

argument
specifies a numeric constant, variable, or expression. At least two arguments are
required. An argument can consist of a variable list, preceded by OF.

Details
The ORDINAL function returns the kth smallest value, either missing or nonmissing,
among the second through the last arguments.

Comparisons
The ORDINAL function counts both missing and nonmissing values, whereas the
SMALLEST function counts only nonmissing values.

Examples

SAS Statements Results

x1=ordinal(4,1,2,3,-4,5,6,7); 3

PATHNAME Function

Returns the physical name of an external file or a SAS library, or returns a blank.

Category: SAS File I/O

Category: External Files
See: PATHNAME Function in the documentation for your operating environment.

Syntax
PATHNAME((fileref | libref) <,search-ref>)

Arguments

fileref
is a character constant, variable, or expression that specifies the fileref that is
assigned to an external file.

libref
is a character constant, variable, or expression that specifies the libref that is
assigned to a SAS library.

search-ref

Functions and CALL Routines � PATHNAME Function 959

is a character constant, variable, or expression that specifies whether to search for a
fileref or a libref.

F specifies a search for a fileref.

L specifies a search for a libref.

Details
PATHNAME returns the physical name of an external file or SAS library, or blank if
fileref or libref is invalid.

If the name of a fileref is identical to the name of a libref, you can use the search-ref
argument to choose which reference you want to search. If you specify a value of F, SAS
searches for a fileref. If you specify a value of L, SAS searches for a libref.

If you do not specify a search-ref argument, and the name of a fileref is identical to
the name of a libref, PATHNAME searches first for a fileref. If a fileref does not exist,
PATHNAME then searches for a libref.

The default length of the target variable in the DATA step is 200 characters.
You can assign a fileref to an external file by using the FILENAME statement or the

FILENAME function.
You can assign a libref to a SAS library using the LIBNAME statement or the

LIBNAME function. Some operating environments allow you to assign a libref using
system commands.

Operating Environment Information: Under some operating environments, filerefs can
also be assigned by using system commands. For details, see the SAS documentation
for your operating environment. �

Examples

This example uses the FILEREF function to verify that the fileref MYFILE is
associated with an external file. Then it uses PATHNAME to retrieve the actual name
of the external file:

data _null_;
length fname $ 100;
rc=fileref(’myfile’);
if (rc=0) then
do;

fname=pathname(’myfile’);
put fname=;

end;
run;

See Also

Functions:
“FEXIST Function” on page 676
“FILEEXIST Function” on page 679
“FILENAME Function” on page 680
“FILEREF Function” on page 682

Statements:
“LIBNAME Statement” on page 1607
“FILENAME Statement” on page 1473

960 PCTL Function � Chapter 4

PCTL Function

Returns the percentile that corresponds to the percentage.

Category: Descriptive Statistics

Syntax
PCTL<n>(percentage, value1<, value2, ...>)

Arguments

n
is a digit from 1 to 5 which specifies the definition of the percentile to be computed.

Default: definition 5

percentage
is a numeric constant, variable, or expression that specifies the percentile to be
computed.

Requirement: is numeric where, 0 �percentage �100.

value
is a numeric variable, constant, or expression.

Details
The PCTL function returns the percentile of the nonmissing values corresponding to the
percentage. If percentage is missing, less than zero, or greater than 100, the PCTL
function generates an error message.

Note: The formula that is used in the PCTL function is the same formula that used
in PROC UNIVARIATE. For more information, see “SAS Elementary Statistics
Procedures” in Base SAS Procedures Guide. �

Examples

SAS Statements Results

lower_quartile=PCTL(25,2,4,1,3);
put lower_quartile; 1.5

percentile_def2=PCTL2(25,2,4,1,3);
put percentile_def2; 1

lower_tertile=PCTL(100/3,2,4,1,3);
put lower_tertile; 2

percentile_def3=PCTL3(100/3,2,4,1,3);
put percentile_def3; 2

median=PCTL(50,2,4,1,3);
put median; 2.5

Functions and CALL Routines � PDF Function 961

SAS Statements Results

upper_tertile=PCTL(200/3,2,4,1,3);
put upper_tertile; 3

upper_quartile=PCTL(75,2,4,1,3);
put upper_quartile; 3.5

PDF Function

Returns a value from a probability density (mass) distribution.

Category: Probability
Alias: PMF

Syntax
PDF (dist,quantile< ,parm-1, ... ,parm-k>)

Arguments

dist
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli BERNOULLI

Beta BETA

Binomial BINOMIAL

Cauchy CAUCHY

Chi-Square CHISQUARE

Exponential EXPONENTIAL

F F

Gamma GAMMA

Geometric GEOMETRIC

Hypergeometric HYPERGEOMETRIC

Laplace LAPLACE

Logistic LOGISTIC

Lognormal LOGNORMAL

Negative binomial NEGBINOMIAL

Normal NORMAL|GAUSS

962 PDF Function � Chapter 4

Distribution Argument

Normal mixture NORMALMIX

Pareto PARETO

Poisson POISSON

T T

Uniform UNIFORM

Wald (inverse Gaussian) WALD|IGAUSS

Weibull WEIBULL

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric constant, variable, or expression that specifies the value of the random
variable.

parm-1,...,parm-k
are optional numeric constants, variables, or expressions that specify the values of
shape, location, or scale parameters that are appropriate for the specific distribution.
See: “Details” on page 962 for complete information about these parameters

Details

Bernoulli Distribution

PDF(’BERNOULLI’,x,p)

where

x
is a numeric random variable.

p
is a numeric probability of success.

Range: 0 ≤ p ≤ 1

The PDF function for the Bernoulli distribution returns the probability density
function of a Bernoulli distribution, with probability of success equal to p. The PDF
function is evaluated at the value x. The equation follows:

���
�

����� �� �� 	
�
�

����
���

� � � �

� � � � � �

� � � � � �

� � � �

� � � �

Note: There are no location or scale parameters for this distribution. �

Beta Distribution

PDF(’BETA’,x,a,b<,l,r>)

Functions and CALL Routines � PDF Function 963

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

l
is the numeric left location parameter.
Default: 0

r
is the right location parameter.
Default: 0
Range: r > l

The PDF function for the beta distribution returns the probability density function of
a beta distribution, with shape parameters a and b. The PDF function is evaluated at
the value x. The equation follows:

���
�

������� �� 	�
� �� �
�
�

��
�

� � �
�

������
����������������

����������
� � � � �

� � � �

Note: The quantity ���
���

is forced to be � � ���
���

� �� ��. �

Binomial Distribution

PDF(’BINOMIAL’,m,p,n)

where

m
is an integer random variable that counts the number of successes.
Range: m = 0, 1, ...

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of independent Bernoulli trials.
Range: n = 0, 1, ...

The PDF function for the binomial distribution returns the probability density
function of a binomial distribution, with parameters p and n, which is evaluated at the
value m. The equation follows:

���
�

������ ��	�
� �
�
�

��
�

� 	 � ��
�
	

�

� ���
���� � � 	 � �

� 	 �

964 PDF Function � Chapter 4

Note: There are no location or scale parameters for the binomial distribution. �

Cauchy Distribution

PDF(’CAUCHY’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter.
Default: 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The PDF function for the Cauchy distribution returns the probability density
function of a Cauchy distribution, with the location parameter � and the scale
parameter �. The PDF function is evaluated at the value x. The equation follows:

���
�

������	 �
 �
 �
 �
�
�

�

�

�
�

�� � ��� ���

�

Chi-Square Distribution

PDF(’CHISQUARE’,x,df <,nc>)

where

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric non-centrality parameter.
Range: nc ≥ 0

The PDF function for the chi-square distribution returns the probability density
function of a chi-square distribution, with df degrees of freedom and non-centrality
parameter nc. The PDF function is evaluated at the value x. This function accepts
non-integer degrees of freedom. If nc is omitted or equal to zero, the value returned is
from the central chi-square distribution. The following equation describes the PDF
function of the chi–square distribution,

���
�

������
 �
 �
 �
�
�

� � � � �
��
���

�
�

�

�

��
�
�
�

��
�� ��� � � ��� � � �

where pc(.,.) denotes the density from the central chi-square distribution:

Functions and CALL Routines � PDF Function 965

�� ��� �� �
�

�
��

��
�
�
�

�

�

and where pg(y,b) is the density from the gamma distribution, which is given by

�� ��� �� �
�

� ���
�������

Exponential Distribution

PDF(’EXPONENTIAL’,x <,�>)

where

x
is a numeric random variable.

�

is a scale parameter.
Default: 1
Range: � > 0

The PDF function for the exponential distribution returns the probability density
function of an exponential distribution, with the scale parameter �. The PDF function
is evaluated at the value x. The equation follows:

�	

�

������ �� �
�
�
�
� � � �
�

�
���

�
�

�

�

�
� � �

F Distribution

PDF(’F’,x,ndf,ddf<,nc>)

where

x
is a numeric random variable.

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is a numeric non-centrality parameter.
Range: nc ≥ 0

The PDF function for the F distribution returns the probability density function of an
F distribution, with ndf numerator degrees of freedom, ddf denominator degrees of
freedom, and non-centrality parameter nc. The PDF function is evaluated at the value
x. This PDF function accepts non-integer degrees of freedom for ndf and ddf. If nc is
omitted or equal to zero, the value returned is from a central F distribution. In the
following equation, let ν_1 = ndf, let ν_2 = ddf, and let λ = nc. The
following equation describes the PDF function of the F distribution.

966 PDF Function � Chapter 4

���
�

�� �� �� ��� ��� �
�
�

� � � � �
��
���

��
�

�

��
�
�
�

��
	� �
� �� � ��� ��� � � �

where pf(f,u1,u2) is the density from the central F distribution with

	� �
� ��� ��� � 	�

�
��

�
 � ��
�
��

�
�
��

�

�
����

��� � ��
 �
�

and where pB(x,a,b) is the density from the standard beta distribution.

Note: There are no location or scale parameters for the F distribution. �

Gamma Distribution

PDF(’GAMMA’,x,a<,�>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The PDF function for the gamma distribution returns the probability density
function of a gamma distribution, with the shape parameter a and the scale parameter
�. The PDF function is evaluated at the value x. The equation follows:

���
�

�������� �� �� 	
�
�

�
� �
 �

�

�������
������

�
�

�

�

�
� � �

Geometric Distribution

PDF(’GEOMETRIC’,m,p)

where

m
is a numeric random variable that denotes the number of failures before the first
success.
Range: m ≥ 0

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

The PDF function for the geometric distribution returns the probability density
function of a geometric distribution, with parameter p. The PDF function is evaluated
at the value m. The equation follows:

Functions and CALL Routines � PDF Function 967

���
�

����� ���� 	
�
�

�
� �
 �
	 ��� 	�� � � �

Note: There are no location or scale parameters for this distribution. �

Hypergeometric Distribution

PDF(’HYPER’,x,N,R,n<,o>)

where

x
is an integer random variable.

N
is an integer population size parameter.
Range: N = 1, 2, ...

R
is an integer number of items in the category of interest.
Range: R = 0, 1, ..., N

n
is an integer sample size parameter.
Range: n = 1, 2, ..., N

o
is an optional numeric odds ratio parameter.
Range: o > 0

The PDF function for the hypergeometric distribution returns the probability density
function of an extended hypergeometric distribution, with population size N, number of
items R, sample size n, and odds ratio o. The PDF function is evaluated at the value x.
If o is omitted or equal to 1, the value returned is from the usual hypergeometric
distribution. The equation follows:

���
�

��� ���� ����� �� �
�
���������

�������

� �
 ��� ��� � � �� ��

�

��
� �
�� �

�
�
�

���������

��������������

�
�
�

��
� ��
�� �

�
�
�

��� ��� �� ���� � � � ��� �����

� � 	 ��� �����

Laplace Distribution

PDF(’LAPLACE’,x<,
,�>)

where

x
is a numeric random variable.

is a numeric location parameter.
Default: 0

968 PDF Function � Chapter 4

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The PDF function for the Laplace distribution returns the probability density
function of the Laplace distribution, with the location parameter � and the scale
parameter �. The PDF function is evaluated at the value x. The equation follows:

���
�

�������� �	
	 �	 �
�
�

�

��
�
�

�
�

�
� ��

�

�

Logistic Distribution

PDF(’LOGISTIC’,x<,�,�>)

where

x
is a numeric random variable.

�

is a numeric location parameter.
Default: 0

�

is a numeric scale parameter.
Default: 1
Range: � > 0

The PDF function for the logistic distribution returns the probability density function
of a logistic distribution, with the location parameter � and the scale parameter �. The
PDF function is evaluated at the value x. The equation follows:

���
�

�������� �	
	 �	 �
�
�

�
�
�
���

�

�
�
�
� � �
�

�
���

�

���

Lognormal Distribution

PDF(’LOGNORMAL’,x<,�,�>)

where

x
is a numeric random variable.

�

specifies a numeric log scale parameter. (exp(�) is a scale parameter.)
Default: 0

�

specifies a numeric shape parameter.
Default: 1
Range: � > 0

Functions and CALL Routines � PDF Function 969

The PDF function for the lognormal distribution returns the probability density
function of a lognormal distribution, with the log scale parameter � and the shape
parameter �. The PDF function is evaluated at the value x. The equation follows:

���
�

����� �	
	 �	 �
�
�

�
�
 � �

�

��
�
��

�
�
�
�

�����������
���

�

 �

Negative Binomial Distribution

PDF(’NEGBINOMIAL’,m,p,n)

where

m
is a positive integer random variable that counts the number of failures.
Range: m= 0, 1, ...

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

n
is a numeric value that counts the number of successes.
Range: n > 0

The PDF function for the negative binomial distribution returns the probability
density function of a negative binomial distribution, with probability of success p and
number of successes n. The PDF function is evaluated at the value m. The equation
follows:

���
�

����� ���� 	�

�
�

�
� � � ��

��� �

� �

�
	� �� � 	�� � � �

Note: There are no location or scale parameters for the negative binomial
distribution. �

Normal Distribution

PDF(’NORMAL’,x<,�,>)

where

x
is a numeric random variable.

�

is a numeric location parameter.
Default: 0

is a numeric scale parameter.
Default: 1
Range: > 0

The PDF function for the normal distribution returns the probability density function
of a normal distribution, with the location parameter � and the scale parameter . The
PDF function is evaluated at the value x. The equation follows:

970 PDF Function � Chapter 4

���
�

��������	
	 �	 �
�
�

�

�
�
�

�
�

�
�
�
� ���

���

�

Normal Mixture Distribution

PDF(’NORMALMIX’,x,n,p,m,s)

where

x
is a numeric random variable.

n
is the integer number of mixtures.
Range: n = 1, 2, ...

p

is the n proportions, ��	 ��	 � � � 	 ��, where
����
���

�� � �.

Range: p = 0, 1, ...

m
is the n means ��	��	 � � � 	��.

s
is the n standard deviations ��	 ��	 � � � 	 ��.
Range: s > 0

The PDF function for the normal mixture distribution returns the probability that an
observation from a mixture of normal distribution is less than or equal to x. The
equation follows:

���
�

���������� �	
	 �	 �	�	 �
�
�

����
���

�� ���
�

��������	
	��	 ��
�

Note: There are no location or scale parameters for the normal mixture
distribution. �

Pareto Distribution

PDF(’PARETO’,x,a<,k>)

where

x
is a numeric random variable.

a
is a numeric shape parameter.
Range: a > 0

k
is a numeric scale parameter.
Default: 1
Range: k > 0

Functions and CALL Routines � PDF Function 971

The PDF function for the Pareto distribution returns the probability density function
of a Pareto distribution, with the shape parameter a and the scale parameter k. The
PDF function is evaluated at the value x. The equation follows:

���
�

��������� 	�
� �
�
�

�
� 	 � �
�

�

�
�

�

����
	 � �

Poisson Distribution

PDF(’POISSON’,n,m)

where

n
is an integer random variable.

Range: n= 0, 1, ...

m
is a numeric mean parameter.

Range: m > 0
The PDF function for the Poisson distribution returns the probability density

function of a Poisson distribution, with mean m. The PDF function is evaluated at the
value n. The equation follows:

���
�

������� �� ���
�
�

�
� � � �

����
�

��
� � �

Note: There are no location or scale parameters for the Poisson distribution. �

T Distribution

PDF(’T’,t,df<,nc>)

where

t
is a numeric random variable.

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric non-centrality parameter.

The PDF function for the T distribution returns the probability density function of a
T distribution, with degrees of freedom df and non-centrality parameter nc. The PDF
function is evaluated at the value x. This PDF function accepts non-integer degrees of
freedom. If nc is omitted or equal to zero, the value returned is from the central T
distribution. In the following equation, let ν = df and let δ = nc.

���
�

�� �� �� �� �
�
�

�

��
�

�
�����

�
�

�
�
�
��

�

����	�
�

�
�
� �
�
�

	�
�

�
� ��
�
�
���

� �
�
�
��

972 PDF Function � Chapter 4

Note: There are no location or scale parameters for the T distribution. �

Uniform Distribution

PDF(’UNIFORM’,x<,l,r>)

where

x
is a numeric random variable.

l
is the numeric left location parameter.
Default: 0

r
is the numeric right location parameter.
Default: 1
Range: r > l

The PDF function for the uniform distribution returns the probability density
function of a uniform distribution, with the left location parameter l and the right
location parameter r. The PDF function is evaluated at the value x. The equation
follows:

���
�

�������� �	
	 �	 �
�
�

�
�
 �
�

���
� �
 � �

�
 � �

Wald (Inverse Gaussian) Distribution

PDF(’WALD’,x,d)

PDF(’IGAUSS’,x,d)

where

x
is a numeric random variable.

d
is a numeric shape parameter.
Range: d > 0

The PDF function for the Wald distribution returns the probability density function
of a Wald distribution, with shape parameter d, which is evaluated at the value x. The
equation follows:

���
�
������	
	 �

�
�

�
�
 � ��

�

����
���

�
�

�

�
�� �� �

��

�
� � �

Note: There are no location or scale parameters for the Wald distribution. �

Weibull Distribution

PDF(’WEIBULL’,x,a<,�>)

where

Functions and CALL Routines � PDF Function 973

x
is a numeric random variable.

a
is a numeric shape parameter.

Range: a > 0

�

is a numeric scale parameter.

Default: 1

Range: � > 0

The PDF function for the Weibull distribution returns the probability density
function of a Weibull distribution, with the shape parameter a and the scale parameter
�. The PDF function is evaluated at the value x. The equation follows:

���
�

���������	
	 �	�
�
�

�
�
 �

�
�
�
�

�
�

�

��� �

�

�
�

�

����

 � �

Examples

SAS Statements Results

y=pdf(’BERN’,0,.25); 0.75

y=pdf(’BERN’,1,.25); 0.25

y=pdf(’BETA’,0.2,3,4); 1.2288

y=pdf(’BINOM’,4,.5,10); 0.20508

y=pdf(’CAUCHY’,2); 0.063662

y=pdf(’CHISQ’,11.264,11); 0.081686

y=pdf(’EXPO’,1); 0.36788

y=pdf(’F’,3.32,2,3); 0.054027

y=pdf(’GAMMA’,1,3); 0.18394

y=pdf(’HYPER’,2,200,50,10); 0.28685

y=pdf(’LAPLACE’,1); 0.18394

y=pdf(’LOGISTIC’,1); 0.19661

y=pdf(’LOGNORMAL’,1); 0.39894

y=pdf(’NEGB’,1,.5,2); 0.25

y=pdf(’NORMAL’,1.96); 0.058441

y=pdf(’NORMALMIX’,2.3,3,.33,.33,.34,
.5,1.5,2.5,.79,1.6,4.3); 0.1166

y=pdf(’PARETO’,1,1); 1

y=pdf(’POISSON’,2,1); 0.18394

y=pdf(’T’,.9,5); 0.24194

y=pdf(’UNIFORM’,0.25); 1

974 PEEK Function � Chapter 4

SAS Statements Results

y=pdf(’WALD’,1,2); 0.56419

y=pdf(’WEIBULL’,1,2); 0.73576

See Also

Functions:
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“CDF Function” on page 554
“SDF Function” on page 1085
“QUANTILE Function” on page 1033

PEEK Function

Stores the contents of a memory address in a numeric variable on a 32–bit platform.

Category: Special
Restriction: Use on 32–bit platforms only.

Syntax
PEEK(address<,length>)

Arguments

address
is a numeric constant, variable, or expression that specifies the memory address.

length
is a numeric constant, variable, or expression that specifies the data length.
Default: a 4-byte address pointer
Range: 2 to 8

Details
If you do not have access to the memory storage location that you are requesting, the
PEEK function returns an "Invalid argument" error.

You cannot use the PEEK function on 64-bit platforms. If you attempt to use it, SAS
writes a message to the log stating that this restriction applies. If you have legacy
applications that use PEEK, change the applications and use PEEKLONG instead. You
can use PEEKLONG on both 32–bit and 64–bit platforms.

Functions and CALL Routines � PEEKC Function 975

Comparisons
The PEEK function stores the contents of a memory address into a numeric variable.
The PEEKC function stores the contents of a memory address into a character variable.

Note: SAS recommends that you use PEEKLONG instead of PEEK because
PEEKLONG can be used on both 32–bit and 64–bit platforms. �

Examples

The following example, specific to the z/OS operating environment, returns a numeric
value that represents the address of the Communication Vector Table (CVT).

data _null_;
/* 16 is the location of the CVT address */

y=16;
x=peek(y);
put ’x= ’ x hex8.;

run;

See Also

Functions:
“ADDR Function” on page 368
“PEEKC Function” on page 975

CALL Routine:
“CALL POKE Routine” on page 474

PEEKC Function

Stores the contents of a memory address in a character variable on a 32–bit platform.

Category: Special
Restriction: Use on 32–bit platforms only.

Syntax
PEEKC(address<,length>)

Arguments

address
is a numeric constant, variable, or expression that specifies the memory address.

length
is a numeric constant, variable, or expression that specifies the data length.
Default: 8, unless the variable length has already been set (by the LENGTH

statement, for example)

976 PEEKC Function � Chapter 4

Range: 1 to 32,767

Details
If you do not have access to the memory storage location that you are requesting, the
PEEKC function returns an "Invalid argument" error.

You cannot use the PEEKC function on 64-bit platforms. If you attempt to use it,
SAS writes a message to the log stating that this restriction applies. If you have legacy
applications that use PEEKC, change the applications and use PEEKCLONG instead.
You can use PEEKCLONG on both 32–bit and 64–bit platforms.

Comparisons
The PEEKC function stores the contents of a memory address into a character variable.
The PEEK function stores the contents of a memory address into a numeric variable.

Note: SAS recommends that you use PEEKCLONG instead of PEEKC because
PEEKCLONG can be used on both 32–bit and 64–bit platforms. �

Examples

Example 1: Listing ASCB Bytes The following example, specific to the z/OS operating
environment, uses both PEEK and PEEKC, and prints the first four bytes of the
Address Space Control Block (ASCB).

data _null_;
length y $4;

/* 220x is the location of the ASCB pointer */
x=220x;
y=peekc(peek(x));
put ’y= ’ y;

run;

Example 2: Creating a DATA Step View This example, specific to the z/OS operating
environment, also uses both the PEEK and PEEKC functions. It creates a DATA step
view that accesses the entries in the Task Input Output Table (TIOT). The PRINT
procedure is then used to print the entries. Entries in the TIOT include the three
components outlined in the following list. In this example, TIOT represents the starting
address of the TIOT entry.

TIOT+4 is the ddname. This component takes up 8 bytes.

TIOT+12 is a 3-byte pointer to the Job File Control Block (JFCB).

TIOT+134 is the volume serial number (volser) of the data set. This component
takes up 6 bytes.

Here is the program:

/* Create a DATA step view of the contents */
/* of the TIOT. The code steps through each */
/* TIOT entry to extract the ddname, JFCB, */
/* and volser of each ddname that has been */
/* allocated for the current task. The data */
/* set name is also extracted from the JFCB. */

data save.tiot/view=save.tiot;

Functions and CALL Routines � PEEKC Function 977

length ddname $8 volser $6 dsname $44;
/* Get the TCB (Task Control Block)address */
/* from the PSATOLD variable in the PSA */
/* (Prefixed Save Area). The address of */
/* the PSA is 21CX. Add 12 to the address */
/* of the TCB to get the address of the */
/* TIOT. Add 24 to bypass the 24-byte */
/* header, so that TIOTVAR represents the */
/* start of the TIOT entries. */

tiotvar=peek(peek(021CX)+12)+24;

/* Loop through all TIOT entries until the */
/* TIOT entry length (indicated by the */
/* value of the first byte) is 0. */

do while(peek(tiotvar,1));

/* Check to see whether the current TIOT */
/* entry is a freed TIOT entry (indicated */
/* by the high order bit of the second */
/* byte of the TIOT entry). If it is not */
/* freed, then proceed. */

if peek(tiotvar+1,1)NE’l.......’B then do;
ddname=peekc(tiotvar+4);
jfcb=peek(tiotvar+12,3);
volser=peekc(jfcb+134);

/* Add 16 to the JFCB value to get */
/* the data set name. The data set */
/* name is 44 bytes. */

dsname=peekc(jfcb+16);
output;
end;

/* Increment the TIOTVAR value to point */
/* to the next TIOT entry. This is done */
/* by adding the length of the current */
/* TIOT entry (indicated by first byte */
/* of the entry) to the current value */
/* of TIOTVAR. */

tiotvar+peek(tiotvar,1);
end;

/* The final DATA step view does not */
/* contain the TIOTVAR and JFCB variables. */

keep ddname volser dsname;
run;

/* Print the TIOT entries. */
proc print data=save.tiot uniform width=minimum;

978 PEEKCLONG Function � Chapter 4

run;

In the PROC PRINT statement, the UNIFORM option ensures that each page of the
output is formatted exactly the same way. WIDTH=MINIMUM causes the PRINT
procedure to use the minimum column width for each variable on the page. The column
width is defined by the longest data value in that column.

See Also

CALL Routine:
“CALL POKE Routine” on page 474

Functions:
“ADDR Function” on page 368
“PEEK Function” on page 974

PEEKCLONG Function

Stores the contents of a memory address in a character variable on 32-bit and 64-bit platforms.

Category: Special
See: PEEKCLONG Function in the documentation for your operating environment.

Syntax
PEEKCLONG(address<,length>)

Arguments

address
specifies a character constant, variable, or expression that contains the binary
pointer address.

length
is a numeric constant, variable, or expression that specifies the length of the
character data.
Default: 8
Range: 1 to 32,767

Details
If you do not have access to the memory storage location that you are requesting, the
PEEKCLONG function returns an “Invalid argument” error.

Comparisons
The PEEKCLONG function stores the contents of a memory address in a character
variable.

Functions and CALL Routines � PEEKLONG Function 979

The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

Examples

Example 1: Example for a 32-bit Platform The following example returns the pointer
address for the character variable Z.

data _null_;
x=’ABCDE’;
y=addrlong(x);
z=peekclong(y,2);
put z=;

run;

The output from the SAS log is: z=AB

Example 2: Example for a 64-bit Platform The following example, specific to the z/OS
operating environment, returns the pointer address for the character variable Y.

data _null_;
length y $4;
x220addr=put(220x,pib4.);
ascb=peeklong(x220addr);
ascbaddr=put(ascb,pib4.);
y=peekclong(ascbaddr);

run;

The output from the SAS log is: y=’ASCB’

See Also

Function:
“PEEKLONG Function” on page 979

PEEKLONG Function

Stores the contents of a memory address in a numeric variable on 32-bit and 64-bit platforms.

Category: Special
See: PEEKLONG Function in the documentation for your operating environment

Syntax
PEEKLONG(address<,length>)

Arguments

address

980 PERM Function � Chapter 4

specifies a character constant, variable, or expression that contains the binary
pointer address.

length
is a numeric constant, variable, or expression that specifies the length of the
character data.
Default: 4 on 32-bit computers; 8 on 64-bit computers.
Range: 1-4 on 32-bit computers; 1-8 on 64-bit computers.

Details
If you do not have access to the memory storage location that you are requesting, the
PEEKLONG function returns an “Invalid argument” error.

Comparisons
The PEEKLONG function stores the contents of a memory address in a numeric
variable. It assumes that the input address refers to an integer in memory.

The PEEKCLONG function stores the contents of a memory address in a character
variable. It assumes that the input address refers to character data.

Examples

Example 1: Example for a 32-bit Platform The following example returns the pointer
address for the numeric variable Z.

data _null_;
length y $4;
y=put(1,IB4.);
addry=addrlong(y);
z=peeklong(addry,4);
put z=;

run;

The output from the SAS log is: z=1

Example 2: Example for a 64-bit Platform The following example, specific to the z/OS
operating environment, returns the pointer address for the numeric variable X.

data _null_;
x=peeklong(put(16,pib4.));
put x=hex8.;

run;

The output from the SAS log is: x=00FCFCB0

See Also

Function:
“PEEKCLONG Function” on page 978

PERM Function
Computes the number of permutations of n items that are taken r at a time.

Functions and CALL Routines � PERM Function 981

Category: Combinatorial

Syntax
PERM(n<,r>)

Arguments

n
is an integer that represents the total number of elements from which the sample is
chosen.

r
is an integer value that represents the number of chosen elements. If r is omitted,
the function returns the factorial of n.

Restriction: r ≤ n

Details
The mathematical representation of the PERM function is given by the following
equation:

���� ��� �� �
��

�� � ���

with n ≥ 0, r ≥ 0, and n≥ r.
If the expression cannot be computed, a missing value is returned. For moderately

large values, it is sometimes not possible to compute the PERM function.

Examples

SAS Statements Results

x=perm(5,1); 5

x=perm(5); 120

x=perm(5,2) 20

See Also

Functions:

“COMB Function” on page 584

“FACT Function” on page 668

“LPERM Function” on page 892

982 POINT Function � Chapter 4

POINT Function

Locates an observation that is identified by the NOTE function.

Category: SAS File I/O

Syntax
POINT(data-set-id,note-id)

Arguments

data-set-id
is a numeric variable that specifies the data set identifier that the OPEN function
returns.

note-id
is a numeric variable that specifies the identifier assigned to the observation by the
NOTE function.

Details
POINT returns 0 if the operation was successful, ≠0 if it was not successful. POINT
prepares the program to read from the SAS data set. The Data Set Data Vector is not
updated until a read is done using FETCH or FETCHOBS.

Examples

This example calls NOTE to obtain an observation ID for the most recently read
observation of the SAS data set MYDATA. It calls POINT to point to that observation,
and calls FETCH to return the observation marked by the pointer.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetch(&dsid));
%let noteid=%sysfunc(note(&dsid));

...more macro statements...
%let rc=%sysfunc(point(&dsid,¬eid));
%let rc=%sysfunc(fetch(&dsid));

...more macro statements...
%let rc=%sysfunc(close(&dsid));

See Also

Functions:

“DROPNOTE Function” on page 657

“NOTE Function” on page 932

“OPEN Function” on page 955

Functions and CALL Routines � POISSON Function 983

POISSON Function

Returns the probability from a Poisson distribution.

Category: Probability

See: “CDF Function” on page 554

Syntax
POISSON(m,n)

Arguments

m
is a numeric mean parameter.

Range: m ≥ 0

n
is an integer random variable.

Range: n ≥ 0

Details
The POISSON function returns the probability that an observation from a Poisson
distribution, with mean m, is less than or equal to n. To compute the probability that
an observation is equal to a given value, n, compute the difference of two probabilities
from the Poisson distribution for n and n−1.

Examples

SAS Statements Results

x=poisson(1,2); 0.9196986029

See Also

Functions:

“CDF Function” on page 554

“LOGCDF Function” on page 886

“LOGPDF Function” on page 888

“LOGSDF Function” on page 889

“PDF Function” on page 961

“SDF Function” on page 1085

984 PROBBETA Function � Chapter 4

PROBBETA Function

Returns the probability from a beta distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBBETA(x,a,b)

Arguments

x
is a numeric random variable.
Range: 0 ≤ x ≤ 1

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

Details
The PROBBETA function returns the probability that an observation from a beta
distribution, with shape parameters a and b, is less than or equal to x.

Examples

SAS Statements Results

x=probbeta(.2,3,4); 0.09888

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

Functions and CALL Routines � PROBBNML Function 985

PROBBNML Function

Returns the probability from a binomial distribution.

Category: Probability
See: “CDF Function” on page 554, “PDF Function” on page 961

Syntax
PROBBNML(p,n,m)

Arguments

p
is a numeric probability of success parameter.
RANGE: 0 ≤ p ≤ 1

n
is an integer number of independent Bernoulli trials parameter.
RANGE: n > 0

m
is an integer number of successes random variable.
RANGE: 0 ≤ m ≤ n

Details
The PROBBNML function returns the probability that an observation from a binomial
distribution, with probability of success p, number of trials n, and number of successes
m, is less than or equal to m. To compute the probability that an observation is equal to
a given value m, compute the difference of two probabilities from the binomial
distribution for m and m−1 successes.

Examples

SAS Statements Results

x=probbnml(0.5,10,4); 0.376953125

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889

986 PROBBNRM Function � Chapter 4

“PDF Function” on page 961

“SDF Function” on page 1085

PROBBNRM Function

Returns a probability from a bivariate normal distribution.

Category: Probability

Syntax
PROBBNRM(x, y, r)

Arguments

x
specifies a numeric constant, variable, or expression.

y
specifies a numeric constant, variable, or expression.

r
is a numeric correlation coefficient.

Range: -1 ≤ r ≤ 1

Details
The PROBBNRM function returns the probability that an observation (X, Y) from a
standardized bivariate normal distribution with mean 0, variance 1, and a correlation
coefficient r, is less than or equal to (x, y). That is, it returns the probability that X≤x
and Y≤y. The following equation describes the PROBBNRM function, where u and v
represent the random variables x and y, respectively:

����������� �� ���
	

�
�
	� ��

��

��

��

��

���

�
�

�
�
� ���� � �

�

� ��� ���

�
�� ��

Examples

SAS Statements Result

p=probbnrm(.4, -.3, .2);
put p; 0.2783183345

Functions and CALL Routines � PROBCHI Function 987

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROBCHI Function
Returns the probability from a chi-square distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBCHI(x,df<,nc>)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

Details
The PROBCHI function returns the probability that an observation from a chi-square
distribution, with degrees of freedom df and noncentrality parameter nc, is less than or
equal to x. This function accepts a noninteger degrees of freedom parameter df. If the
optional parameter nc is not specified or has the value 0, the value returned is from the
central chi-square distribution.

Examples

SAS Statements Results

x=probchi(11.264,11); 0.5785813293

988 PROBF Function � Chapter 4

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROBF Function

Returns the probability from an F distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBF(x,ndf,ddf<,nc>)

Arguments

x
is a numeric random variable.
Range: x ≥ 0

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

nc
is an optional numeric noncentrality parameter.
Range: nc ≥ 0

Details
The PROBF function returns the probability that an observation from an F distribution,
with numerator degrees of freedom ndf, denominator degrees of freedom ddf, and
noncentrality parameter nc, is less than or equal to x. The PROBF function accepts
noninteger degrees of freedom parameters ndf and ddf. If the optional parameter nc is
not specified or has the value 0, the value returned is from the central F distribution.

The significance level for an F test statistic is given by

Functions and CALL Routines � PROBGAM Function 989

p=1-probf(x,ndf,ddf);

Examples

SAS Statements Results

x=probf(3.32,2,3); 0.8263933602

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888

“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROBGAM Function

Returns the probability from a gamma distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBGAM(x,a)

Arguments

x
is a numeric random variable.

Range: x ≥ 0

a
is a numeric shape parameter.
Range: a > 0

Details
The PROBGAM function returns the probability that an observation from a gamma
distribution, with shape parameter a, is less than or equal to x.

990 PROBHYPR Function � Chapter 4

Examples

SAS Statements Results

x=probgam(1,3); 0.0803013971

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888

“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROBHYPR Function

Returns the probability from a hypergeometric distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBHYPR(N,K,n,x<,r>)

Arguments

N
is an integer population size parameter, with N ≥ 1.
Range:

K
is an integer number of items in the category of interest parameter.
Range: 0 ≤ K ≤ N

n
is an integer sample size parameter.

Range: 0 ≤ n ≤ N

x
is an integer random variable.
Range: max(0, K + n−N) ≤ x ≤ min(K,n)

Functions and CALL Routines � PROBIT Function 991

r
is an optional numeric odds ratio parameter.

Range: r ≥ 0

Details
The PROBHYPR function returns the probability that an observation from an extended
hypergeometric distribution, with population size N, number of items K, sample size n,
and odds ratio r, is less than or equal to x. If the optional parameter r is not specified
or is set to 1, the value returned is from the usual hypergeometric distribution.

Examples

SAS Statements Results

x=probhypr(200,50,10,2); 0.5236734081

See Also

Functions:

“CDF Function” on page 554

“LOGCDF Function” on page 886

“LOGPDF Function” on page 888

“LOGSDF Function” on page 889

“PDF Function” on page 961

“SDF Function” on page 1085

PROBIT Function

Returns a quantile from the standard normal distribution.

Category: Quantile

Syntax
PROBIT(p)

Arguments

p
is a numeric probability.

Range: 0 < p < 1

992 PROBMC Function � Chapter 4

Details
The PROBIT function returns the pth quantile from the standard normal distribution.
The probability that an observation from the standard normal distribution is less than
or equal to the returned quantile is p.

CAUTION:
The result could be truncated to lie between -8.222 and 7.941. �

Note: PROBIT is the inverse of the PROBNORM function. �

Examples

SAS Statements Results

x=probit(.025); -1.959963985

x=probit(1.e-7); -5.199337582

See Also

Functions:

“CDF Function” on page 554

“LOGCDF Function” on page 886

“LOGPDF Function” on page 888

“LOGSDF Function” on page 889

“PDF Function” on page 961

“SDF Function” on page 1085

PROBMC Function

Returns a probability or a quantile from various distributions for multiple comparisons of means.

Category: Probability

Syntax
PROBMC(distribution, q, prob, df, nparms<, parameters>)

Arguments

distribution
is a character constant, variable, or expression that identifies the distribution. The
following are valid distributions:

Functions and CALL Routines � PROBMC Function 993

Distribution Argument

Analysis of Means ANOM

One-sided Dunnett DUNNETT1

Two-sided Dunnett DUNNETT2

Maximum Modulus MAXMOD

Partitioned Range PARTRANGE

Studentized Range RANGE

Williams WILLIAMS

q
is the quantile from the distribution.
Restriction: Either q or prob can be specified, but not both.

prob
is the left probability from the distribution.
Restriction: Either prob or q can be specified, but not both.

df
is the degrees of freedom.

Note: A missing value is interpreted as an infinite value. �

nparms
is the number of treatments.

Note: For DUNNETT1 and DUNNETT2, the control group is not counted. �

parameters
is an optional set of nparms parameters that must be specified to handle the case of
unequal sample sizes. The meaning of parameters depends on the value of
distribution. If parameters is not specified, equal sample sizes are assumed, which is
usually the case for a null hypothesis.

Details
The PROBMC function returns the probability or the quantile from various
distributions with finite and infinite degrees of freedom for the variance estimate.

The prob argument is the probability that the random variable is less than q.
Therefore, p-values can be computed as 1– prob. For example, to compute the critical
value for a 5% significance level, set prob= 0.95. The precision of the computed
probability is O(10—8) (absolute error); the precision of computed quantile is O(10—5).

Note: The studentized range is not computed for finite degrees of freedom and
unequal sample sizes. �

Note: Williams’ test is computed only for equal sample sizes. �

Formulas and Parameters The equations listed here define expressions used in
equations that relate the probability, prob, and the quantile, q, for different
distributions and different situations within each distribution. For these equations, let
� be the degrees of freedom, df.

994 PROBMC Function � Chapter 4

��� ��� �
�

�

�

�
�
�
�

�
�
�

�
��

������
��

�

� ��

� ��� �
�
�
��

��
�
�

�

���� �

��
��

� ��� ��

Computing the Analysis of Means Analysis of Means (ANOM) applies to data that is
organized as k (Gaussian) samples, the ith sample being of size ni. Let � �

���. The
distribution function [1, 2, 3, 4, 5] is the CDF for the maximum absolute of a
k-dimensional multivariate � vector, with � degrees of freedom, and an associated
correlation matrix 	�� � �
�
� . This equation can be written as

��� � �� ����� � �� ���� � �� ���� ���� � ��

�

��

�

��
�
��

�

����
���

� ���� ����� � �����

��
� ��� ���

where

� ���� �� ��� � �

�
���� ����	

� � ���

�
� �

�
����� ����	

� � ���

�

where � �	�, � �	�, and � �	�, are the gamma function, the density, and the CDF from
the standard normal distribution, respectively.

For
 ��, the distribution reduces to:

�� ����� �� ���� �� 			� ���� �� �

��

�

����
���

� ��� �� ��� � ��� ��

where

� ��� �� ��� � �

�
��� ����	

� � ���

�� �

�
���� ����	

� � ���

�

For the balanced case, the distribution reduces to:

Functions and CALL Routines � PROBMC Function 995

�� ����� � �� ���� � �� ���� ���� � �� �

��

�

� ��� �� ��� 	 ���
�

where

� ��� �� �� � �

�
�� ��

�
��

� � �

�
� �

���� ��
�
��

� � �

�

and � � �

���

The syntax for this distribution is:

x=probmc(’anom’, q,p,nu,n,<alpha1 ,..., alphan>);

where

x is a numeric value with the returned result.

q is a numeric value denoting the quantile.

p is a numeric value denoting the probability. One of p and q must be
missing.

nu is a numeric value denoting the degrees of freedom.

n is a numeric value denoting the number of samples.

alphai, i=1,...,k are optional numeric values denoting the alpha values from the first
equation of this distribution (see “Computing the Analysis of Means”
on page 994.

Many-One t-Statistics: Dunnett’s One-Sided Test
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to �. The equation follows:

���� �

��

�

��

��

� ���
��

���

�

�
���� � �	�

�� ��
�

�
�
�
�� �	�

� This case relates the probability, prob, and the quantile, q, for the equal case with

finite degrees of freedom. No parameters are passed

�
� �

�
�

�

�
, the value of

nparms is set to k, and the value of df is set to �. The equation follows:

���� �

��
�

��
��

� ���
	
�

� �

�
��	
��

�
�� �	�

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

996 PROBMC Function � Chapter 4

���� �

��

��

� ���

��
���

�

�
� ��� � ��

� � ��
�

�
� ��

� This case relates the probability, prob, and the quantile, q, for the equal case with

infinite degrees of freedom. No parameters are passed

�
� �

�
�

�

�
, the value of

nparms is set to k, and the value of df is set to missing. The equation follows:

���� �

��
��

� ���
	
�

� �

�
��
��

��

Many-One t-Statistics: Dunnett’s Two-sided Test
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to �. The equation follows:

���� �

��

�

��

��

� ���
��

���

�
��

�
���� � �	�

�� ��
�

�
�
� �

�
���� � �	�

�� ��
�

�
�
�
	
�
�� �	�

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to �. The equation follows:

���� �

�

�

�

��

� ���
�
�
�
� �

��	
�
� �

�
� �

��	
���

�
�� �	�

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

���� �

�

��

� ���
��

���

�
��
�
� ��� � ��

� � ��
�

�
�
� �

�
� ��� � ��

�� ��
�

�
�
�
	
�

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

���� �

�

��

� ���
�
�
�
� �

��
�
� �

�
� �

��
���

�

Functions and CALL Routines � PROBMC Function 997

Computing the Partitioned Range RANGE applies to the distribution of the
studentized range for n group means. PARTRANGE applies to the distribution of the
partitioned studentized range. Let the n groups be partitioned into k subsets of size n1+
...+ nk= n. Then the partitioned range is the maximum of the studentized ranges in the
respective subsets, with the studentization factor being the same in all cases.

���� �

��

�

����
���

�
�
��

��

�� ��� �� ����� �� � ������� ��

�
�

��

�	� ���

The syntax for this distribution is:

x=probmc(’partrange’, q,p,nu,k,n1,...,nk);

where

x is a numeric value with the returned result (either the probability or
the quantile).

q is a numeric value denoting the quantile.

p is a numeric value denoting the probability. One of p and q must be
missing.

nu is a numeric value denoting the degrees of freedom.

k is a numeric value denoting the number of groups.

ni i=1,...,k are optional numeric values denoting the n values from the equation
in this distribution (see “Computing the Partitioned Range” on page
997.

The Studentized Range

Note: The studentized range is not computed for finite degrees of freedom and
unequal sample sizes. �

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to �. The equation follows:

���� �

��

�

��

��

�� ��� �� ���� ��� � ������� 	� 	
� ���

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

���� �

��

��

��
���

�
��

���

�
�

�
�

��

�
� �

�
� � �

��

���
�

�
�

��

�
�

��
	�

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

998 PROBMC Function � Chapter 4

���� �

��

��

�� ��� �� ���� ��� � ���
���

��

The Studentized Maximum Modulus
� This case relates the probability, prob, and the quantile, q, for the unequal case

with finite degrees of freedom. The parameters are �1, ..., �k, the value of nparms is
set to k, and the value of df is set to 	. The equation follows:

��� �

��

�

��
���

�
��

�
��

��

�
� �

�
��� ���

� This case relates the probability, prob, and the quantile, q, for the equal case with
finite degrees of freedom. No parameters are passed, the value of nparms is set to
k, and the value of df is set to 	. The equation follows:

��� �

��
�

��� ����� ��� ��� ���

� This case relates the probability, prob, and the quantile, q, for the unequal case
with infinite degrees of freedom. The parameters are �1, ..., �k, the value of nparms
is set to k, and the value of df is set to missing. The equation follows:

��� �
��

���

�
��

�
�

��

�
� �

�

� This case relates the probability, prob, and the quantile, q, for the equal case with
infinite degrees of freedom. No parameters are passed, the value of nparms is set
to k, and the value of df is set to missing. The equation follows:

��� � ��� ���� ���

Williams’ Test PROBMC computes the probabilities or quantiles from the
distribution defined in Williams (1971, 1972) (See “References” on page 1213). It arises
when you compare the dose treatment means with a control mean to determine the
lowest effective dose of treatment.

Note: Williams’ Test is computed only for equal sample sizes. �

Let X1, X2, ..., Xk be identical independent N(0,1) random variables. Let Yk denote
their average given by

�� �
�� ��� � ������

�

Functions and CALL Routines � PROBMC Function 999

It is required to compute the distribution of

��� � �� ��

where

Yk is as defined previously

Z is an N(0,1) independent random variable

S is such that �

�
�S2 is a �

2 variable with � degrees of freedom.

As described in Williams (1971) (See “References” on page 1213), the full computation
is extremely lengthy and is carried out in three stages.

1 Compute the distribution of Yk. It is the fundamental (expensive) part of this
operation and it can be used to find both the density and the probability of Yk. Let
Ui be defined as

�� �
�� ��� � ������

	

 	 � �
 �
 ���
 �

You can write a recursive expression for the probability of Yk > d, with d being
any real number.

�� ��� � � � �� ��� � �

� �� ��� �
�� � �

� �� ��� �
�� �
�� � �

� � � �

� �� ��� �
���� �
 � � �
 �� � �

� �� ����� � � � �� ��� � �� � ������ � ��

To compute this probability, start from an N(0,1) density function

� ��� � �� � � ���

and recursively compute the convolution

� ��� � �
���� �
 � � �
 �� � � �
��

��

� ����� � �� ���� � �� � � � � �� � �� �� � �� � ���� �� � �� �� ��

From this sequential convolution, it is possible to compute all the elements of
the recursive equation for �� �	� � ��, shown previously.

2 Compute the distribution of Yk – Z. This computation involves another convolution
to compute the probability

1000 PROBMC Function � Chapter 4

�� ���� � �� � �� �

��

��

��
�
�� �

�
�� � �

�
� ��� ��

3 Compute the distribution of (Yk – Z)/S. This computation involves another
convolution to compute the probability

�� ���� � �� � ��� �

��

�

�� ���� � �� � ��� ��� ���

The third stage is not needed when 	 = ∞. Due to the complexity of the operations,
this lengthy algorithm is replaced by a much faster one when k ≤ 15 for both finite and
infinite degrees of freedom 	. For k ≥ 16, the lengthy computation is carried out. It is
extremely expensive and very slow due to the complexity of the algorithm.

Comparisons
The MEANS statement in the GLM Procedure of SAS/STAT Software computes the
following tests:

� Dunnett’s one-sided test
� Dunnett’s two-sided test
� Studentized Range

Examples

Example 1: Computing Probabilities by Using PROBMC This example shows how to
compute probabilities.

data probs;
array par{5};

par{1}=.5;
par{2}=.51;
par{3}=.55;
par{4}=.45;
par{5}=.2;

df=40;
q=1;
do test="dunnett1","dunnett2", "maxmod";

prob=probmc(test, q, ., df, 5, of par1--par5);
put test $10. df q e18.13 prob e18.13;

end;
run;

SAS writes the following results to the log:

Output 4.65 Probabilities from PROBMC

DUNNETT1 40 1.00000000000E+00 4.82992196083E-01
DUNNETT2 40 1.00000000000E+00 1.64023105316E-01
MAXMOD 40 1.00000000000E+00 8.02784203408E-01

Functions and CALL Routines � PROBMC Function 1001

Example 2: Computing the Analysis of Means

data _null_;
q1=probmc(’anom’,.,0.9,.,20); put q1=;
q2=probmc(’anom’,.,0.9,20,5,0.1,0.1,0.1,0.1,0.1); put q2=;
q3=probmc(’anom’,.,0.9,20,5,0.5,0.5,0.5,0.5,0.5); put q3=;
q4=probmc(’anom’,.,0.9,20,5,0.1,0.2,0.3,0.4,0.5); put q4=;

run;

SAS writes the following output to the log:

q1=2.7892895753
q2=2.4549773558
q3=2.4549773558
q4=2.4532130238

Example 3: Comparing Means This example shows how to compare group means to
find where the significant differences lie. The data for this example is taken from a
paper by Duncan (1955) (See “References” on page 1213) and can also be found in
Hochberg and Tamhane (1987) (See “References” on page 1213).

The following values are the group means:
49.6
71.2
67.6
61.5
71.3
58.1
61.0

For this data, the mean square error is s2 = 79.64 (s = 8.924) with � = 30.

data duncan;
array tr{7}$;
array mu{7};
n=7;
do i=1 to n;

input tr{i} $1. mu{i};
end;
input df s alpha;
prob= 1-alpha;

/* compute the interval */
x = probmc("RANGE", ., prob, df, 7);
w = x * s / sqrt(6);

/* compare the means */
do i = 1 to n;

do j = i + 1 to n;
dmean = abs(mu{i} - mu{j});
if dmean >= w then do;

put tr{i} tr{j} dmean;
end;

end;
end;
datalines;

A 49.6
B 71.2
C 67.6

1002 PROBMC Function � Chapter 4

D 61.5
E 71.3
F 58.1
G 61.0
30 8.924 .05
;
run;

SAS writes the following output to the log:

Output 4.66 Group Differences

A B 21.6
A C 18
A E 21.7

Example 4: Computing the Partitioned Range

data _null_;
q1=probmc(’partrange’,.,0.9,.,4,3,4,5,6); put q1=;
q2=probmc(’partrange’,.,0.9,12,4,3,4,5,6); put q2=;

run;

SAS writes the following output to the log:

q1=4.1022395729
q2=4.788862411

Example 5: Computing Confidence Intervals This example shows how to compute
95% one-sided and two-sided confidence intervals of Dunnett’s test. This example and
the data come from Dunnett (1955) (See “References” on page 1213) and can also be
found in Hochberg and Tamhane (1987) (See “References” on page 1213). The data are
blood count measurements on three groups of animals. As shown in the following table,
the third group serves as the control, while the first two groups were treated with
different drugs. The numbers of animals in these three groups are unequal.

Treatment Group: Drug A Drug B Control

9.76 12.80 7.40

8.80 9.68 8.50

7.68 12.16 7.20

9.36 9.20 8.24

10.55 9.84

8.32

Group Mean 8.90 10.88 8.25

n 4 5 6

The mean square error s2 = 1.3805 (s = 1.175) with � = 12.

data a;
array drug{3}$;

Functions and CALL Routines � PROBMC Function 1003

array count{3};
array mu{3};
array lambda{2};
array delta{2};
array left{2};
array right{2};

/* input the table */
do i = 1 to 3;

input drug{i} count{i} mu{i};
end;

/* input the alpha level, */
/* the degrees of freedom, */
/* and the mean square error */

input alpha df s;

/* from the sample size, */
/* compute the lambdas */

do i = 1 to 2;
lambda{i} = sqrt(count{i}/

(count{i} + count{3}));
end;

/* run the one-sided Dunnett’s test */
test="dunnett1";

x = probmc(test, ., 1 - alpha, df,
2, of lambda1-lambda2);

do i = 1 to 2;
delta{i} = x * s *

sqrt(1/count{i} + 1/count{3});
left{i} = mu{i} - mu{3} - delta{i};

end;
put test $10. x left{1} left{2};

/* run the two-sided Dunnett’s test */
test="dunnett2";

x = probmc(test, ., 1 - alpha, df,
2, of lambda1-lambda2);

do i=1 to 2;
delta{i} = x * s *

sqrt(1/count{i} + 1/count{3});
left{i} = mu{i} - mu{3} - delta{i};
right{i} = mu{i} - mu{3} + delta{i};

end;
put test $10. left{1} right{1};
put test $10. left{2} right{2};
datalines;

A 4 8.90
B 5 10.88
C 6 8.25
0.05 12 1.175
;
run;

1004 PROBMC Function � Chapter 4

SAS writes the following output to the log:

Output 4.67 Confidence Intervals

DUNNETT1 2.1210786586 -0.958751705 1.1208571303
DUNNETT2 -1.256411895 2.5564118953
DUNNETT2 0.8416271203 4.4183728797

Example 6: Computing Williams’ Test In the following example, a substance has been
tested at seven levels in a randomized block design of eight blocks. The observed
treatment means are as follows:

Treatment Mean

X0 10.4

X1 9.9

X2 10.0

X3 10.6

X4 11.4

X5 11.9

X6 11.7

The mean square, with (7 – 1)(8 – 1) = 42 degrees of freedom, is s2 = 1.16.
Determine the maximum likelihood estimates Mi through the averaging process.
� Because X0 > X1, form X0,1 = (X0 + X1)/2 = 10.15.
� Because X0,1 > X2, form X0,1,2 = (X0 + X1 + X2)/3 = (2X0,1 + X2)/3 = 10.1.
� X0,1,2 < X3 < X4 < X5

� Because X5 > X6, form X5,6 = (X5 + X6)/2 = 11.8.

Now the order restriction is satisfied.
The maximum likelihood estimates under the alternative hypothesis are:
M0 = M1 = M2 = X0,1,2 = 10.1
M3 = X3 = 10.6
M4 = X4 = 11.4
M5 = M6 = X5,6 = 11.8

Now compute � � ����� � ����� �
�

����� � ����, and the probability that
corresponds to k = 6, � = 42, and t = 2.60 is .9924467341, which shows strong evidence
that there is a response to the substance. You can also compute the quantiles for the
upper 5% and 1% tails, as shown in the following table.

SAS Statements Results

prob=probmc("williams",2.6,.,42,6); 0.99244673

quant5=probmc("williams",.,.95,42,6); 1.80654052

quant1=probmc("williams",.,.99,42,6); 2.49087829

Functions and CALL Routines � PROBNEGB Function 1005

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

References
Guirguis, G. H. and R. D. Tobias. 2004. “On the computation of the distribution for

the analysis of means.” Communications in Statistics: Simulation and
Computation 33: 861–887.

Nelson, P. R. 1981. “Numerical evaluation of an equicorrelated multivariate
non-central t distribution.” Communications in Statistics: Part B - Simulation and
Computation 10: 41–50.

Nelson, P. R. 1982. “Exact critical points for the analysis of means.” Communications
in Statistics: Part A - Theory and Methods 11: 699–709.

Nelson, P. R. 1982a. “An Approximation for the Complex Normal Probability
Integral.” BIT 22(1): 94–100.

Nelson, P. R. 1988. “Application of the analysis of means.” Proceedings of the SAS
Users Group International Conference 13: 225–230.

Nelson, P. R. 1991. “Numerical evaluation of multivariate normal integrals with
correlations ���������

.” The Frontiers of Statistical Scientific Theory and
Industrial Applications 2: 97–114.

Nelson, P. R. 1993. “Additional Uses for the Analysis of Means and Extended Tables
of Critical Values.” Technometrics 35: 61–71.

PROBNEGB Function

Returns the probability from a negative binomial distribution.

Category: Probability
See: “CDF Function” on page 554

Syntax
PROBNEGB(p,n,m)

Arguments

p
is a numeric probability of success parameter.

1006 PROBNORM Function � Chapter 4

Range: 0 ≤ p ≤ 1

n
is an integer number of successes parameter.

Range: n ≥ 1

m
is a positive integer random variable, the number of failures.

Range: m ≥ 0

Details
The PROBNEGB function returns the probability that an observation from a negative
binomial distribution, with probability of success p and number of successes n, is less
than or equal to m.

To compute the probability that an observation is equal to a given value m, compute
the difference of two probabilities from the negative binomial distribution for m and
m−1.

Examples

SAS Statements Results

x=probnegb(0.5,2,1); 0.5

See Also

Functions:

“CDF Function” on page 554

“LOGCDF Function” on page 886

“LOGPDF Function” on page 888

“LOGSDF Function” on page 889

“PDF Function” on page 961

“SDF Function” on page 1085

PROBNORM Function

Returns the probability from the standard normal distribution.

Category: Probability

See: “CDF Function” on page 554

Syntax
PROBNORM(x)

Functions and CALL Routines � PROBT Function 1007

Arguments

x
is a numeric random variable.

Details
The PROBNORM function returns the probability that an observation from the
standard normal distribution is less than or equal to x.

Note: PROBNORM is the inverse of the PROBIT function. �

Examples

SAS Statements Results

x=probnorm(1.96); 0.9750021049

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROBT Function

Returns the probability from a t distribution.

Category: Probability
See: “CDF Function” on page 554, “PDF Function” on page 961

Syntax
PROBT(x,df<,nc>)

Arguments

x
is a numeric random variable.

1008 PROPCASE Function � Chapter 4

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.

Details
The PROBT function returns the probability that an observation from a Student’s t
distribution, with degrees of freedom df and noncentrality parameter nc, is less than or
equal to x. This function accepts a noninteger degree of freedom parameter df. If the
optional parameter, nc, is not specified or has the value 0, the value that is returned is
from the central Student’s t distribution.

The significance level of a two-tailed t test is given by

p=(1-probt(abs(x),df))*2;

Examples

SAS Statements Results

x=probt(0.9,5); 0.7953143998

See Also

Functions:
“CDF Function” on page 554
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085

PROPCASE Function

Converts all words in an argument to proper case.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
PROPCASE(argument <,delimiters>)

Arguments

Functions and CALL Routines � PROPCASE Function 1009

argument
specifies a character constant, variable, or expression.

delimiter
specifies one or more delimiters that are enclosed in quotation marks. The default
delimiters are blank, forward slash, hyphen, open parenthesis, period, and tab.
Tip: If you use this argument, then the default delimiters, including the blank, are

no longer in effect.

Details

Length of Returned Variable In a DATA step, if the PROPCASE function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

The Basics The PROPCASE function copies a character argument and converts all
uppercase letters to lowercase letters. It then converts to uppercase the first character
of a word that is preceded by a blank, forward slash, hyphen, open parenthesis, period,
or tab. PROPCASE returns the value that is altered.

If you use the second argument, then the default delimiters are no longer in effect.
The results of the PROPCASE function depend directly on the translation table that

is in effect (see “TRANTAB System Option”) and indirectly on the "ENCODING System
Option" and the "LOCALE System Option" in SAS National Language Support (NLS):
Reference Guide.

Examples

Example 1: Changing the Case of Words The following example shows how
PROPCASE handles the case of words:

data _null_;
input place $ 1-40;
name=propcase(place);
put name;
datalines;

INTRODUCTION TO THE SCIENCE OF ASTRONOMY
VIRGIN ISLANDS (U.S.)
SAINT KITTS/NEVIS
WINSTON-SALEM, N.C.
;

run;

SAS writes the following output to the log:

Introduction To The Science Of Astronomy
Virgin Islands (U.S.)
Saint Kitts/Nevis
Winston-Salem, N.C.

Example 2: Using PROPCASE with a Second Argument The following example uses a
blank, a hyphen and a single quotation mark as the second argument so that names
such as O’Keeffe and Burne-Jones are written correctly.

options pageno=1 nodate ls=80 ps=64;
data names;

1010 PRXCHANGE Function � Chapter 4

infile datalines dlm=’#’;
input CommonName : $20. CapsName : $20.;
PropcaseName=propcase(capsname, " -’");
datalines;

Delacroix, Eugene# EUGENE DELACROIX
O’Keeffe, Georgia# GEORGIA O’KEEFFE
Rockwell, Norman# NORMAN ROCKWELL
Burne-Jones, Edward# EDWARD BURNE-JONES
;

proc print data=names noobs;
title ’Names of Artists’;

run;

Output 4.68 Output Showing the Results of Using PROPCASE with a Second Argument

Names of Artists 1

CommonName CapsName PropcaseName

Delacroix, Eugene EUGENE DELACROIX Eugene Delacroix
O’Keeffe, Georgia GEORGIA O’KEEFFE Georgia O’Keeffe
Rockwell, Norman NORMAN ROCKWELL Norman Rockwell
Burne-Jones, Edward EDWARD BURNE-JONES Edward Burne-Jones

See Also

Functions:
“UPCASE Function” on page 1139
“LOWCASE Function” on page 891

PRXCHANGE Function

Performs a pattern-matching replacement.

Category: Character String Matching

Syntax
PRXCHANGE(perl-regular-expression | regular-expression-id, times, source)

Arguments

perl-regular-expression
specifies a character constant, variable, or expression with a value that is a Perl
regular expression.

regular-expression-id

Functions and CALL Routines � PRXCHANGE Function 1011

specifies a numeric variable with a value that is a pattern identifier that is returned
from the PRXPARSE function.

Restriction: If you use this argument, you must also use the PRXPARSE function.

times
is a numeric constant, variable, or expression that specifies the number of times to
search for a match and replace a matching pattern.

Tip: If the value of times is –1, then matching patterns continue to be replaced until
the end of source is reached.

source
specifies a character constant, variable, or expression that you want to search.

Details

The Basics If you use regular-expression-id, the PRXCHANGE function searches the
variable source with the regular-expression-id that is returned by PRXPARSE. It
returns the value in source with the changes that were specified by the regular
expression. If there is no match, PRXCHANGE returns the unchanged value in source.

If you use perl-regular-expression, PRXCHANGE searches the variable source with
the perl-regular-expression, and you do not need to call PRXPARSE. You can use
PRXCHANGE with a perl-regular-expression in a WHERE clause and in PROC SQL.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Compiling a Perl Regular Expression If perl-regular-expression is a constant or if it
uses the /o option, then the Perl regular expression is compiled once and each use of
PRXCHANGE reuses the compiled expression. If perl-regular-expression is not a
constant and if it does not use the /o option, then the Perl regular expression is
recompiled for each call to PRXCHANGE.

Note: The compile-once behavior occurs when you use PRXCHANGE in a DATA
step, in a WHERE clause, or in PROC SQL. For all other uses, the
perl-regular-expression is recompiled for each call to PRXCHANGE. �

Performing a Match Perl regular expressions consist of characters and special
characters that are called metacharacters. When performing a match, SAS searches a
source string for a substring that matches the Perl regular expression that you specify.

To view a short list of Perl regular expression metacharacters that you can use when
you build your code, see the table “Tables of Perl Regular Expression (PRX)
Metacharacters” on page 2141. You can find a complete list of metacharacters at http://
www.perldoc.com/perl5.6.1/pod/perlre.html.

Comparisons

The PRXCHANGE function is similar to the CALL PRXCHANGE routine except that
the function returns the value of the pattern-matching replacement as a return
argument instead of as one of its parameters.

The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

1012 PRXCHANGE Function � Chapter 4

Examples

Example 1: Changing the Order of First and Last Names

Changing the Order of First and Last Names by Using the DATA Step The following
example uses the DATA step to change the order of first and last names.

/* Create a data set that contains a list of names. */
data ReversedNames;

input name & $32.;
datalines;

Jones, Fred
Kavich, Kate
Turley, Ron
Dulix, Yolanda
;

/* Reverse last and first names with a DATA step. */
options pageno=1 nodate ls=80 ps=64;
data names;

set ReversedNames;
name = prxchange(’s/(\w+), (\w+)/$2 $1/’, -1, name);

run;

proc print data=names;
run;

Output 4.69 Output from the DATA Step

The SAS System 1

Obs name

1 Fred Jones
2 Kate Kavich
3 Ron Turley
4 Yolanda Dulix

Changing the Order of First and Last Names by Using PROC SQL The following
example uses PROC SQL to change the order of first and last names.

data ReversedNames;
input name & $32.;
datalines;

Jones, Fred
Kavich, Kate
Turley, Ron
Dulix, Yolanda
;

proc sql;
create table names as
select prxchange(’s/(\w+), (\w+)/$2 $1/’, -1, name) as name
from ReversedNames;

quit;

Functions and CALL Routines � PRXCHANGE Function 1013

options pageno=1 nodate ls=80 ps=64;
proc print data=names;
run;

Output 4.70 Output from PROC SQL

The SAS System 1

Obs name

1 Fred Jones
2 Kate Kavich
3 Ron Turley
4 Yolanda Dulix

Example 2: Matching Rows That Have the Same Name The following example
compares the names in two data sets, and writes those names that are common to both
data sets.

data names;
input name & $32.;
datalines;

Ron Turley
Judy Donnelly
Kate Kavich
Tully Sanchez
;

data ReversedNames;
input name & $32.;
datalines;

Jones, Fred
Kavich, Kate
Turley, Ron
Dulix, Yolanda
;

options pageno=1 nodate ls=80 ps=64;
proc sql;

create table NewNames as
select a.name from names as a, ReversedNames as b
where a.name = prxchange(’s/(\w+), (\w+)/$2 $1/’, -1, b.name);

quit;

proc print data=NewNames;
run;

1014 PRXCHANGE Function � Chapter 4

Output 4.71 Output from Matching Rows That Have the Same Names

The SAS System 1

Obs name

1 Ron Turley
2 Kate Kavich

Example 3: Changing Lowercase Text to Uppercase The following example uses the
\U, \L and \E metacharacters to change the case of a string of text. Case modifications
do not nest. In this example, note that “bear” does not convert to uppercase letters
because the \E metacharacter ends all case modifications.

data _null_;
length txt $32;
txt = prxchange (’s/(big)(black)(bear)/\U$1\L$2\E$3/’, 1, ’bigblackbear’);
put txt=;

run;

SAS returns the following output to the log:

txt=BIGblackbear

Example 4: Changing a Matched Pattern to a Fixed Value
This example locates a pattern in a variable and replaces the variable with a predefined
value. The example uses a DATA step to find phone numbers and replace them with an
informational message.

options nodate nostimer ls=78 ps=60;

/* Create data set that contains confidential information. */
data a;

input text $80.;
datalines;

The phone number for Ed is (801)443-9876 but not until tonight.
He can be reached at (910)998-8762 tomorrow for testing purposes.
;
run;

/* Locate confidential phone numbers and replace them with message */
/* indicating that they have been removed. */

data b;
set a;
text = prxchange(’s/\([2-9]\d\d\) ?[2-9]\d\d-\d\d\d\d/*PHONE NUMBER

REMOVED*/’, -1, text);
put text=;

run;

proc print data = b;
run;

Functions and CALL Routines � PRXMATCH Function 1015

Output 4.72 Output from Changing a Matched Pattern to a Fixed Value

The SAS System 1

Obs text

1 The phone number for Ed is *PHONE NUMBER REMOVED* but not until tonight.
2 He can be reached at *PHONE NUMBER REMOVED* tomorrow for testing purposes.

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476
“CALL PRXDEBUG Routine” on page 479
“CALL PRXFREE Routine” on page 481
“CALL PRXNEXT Routine” on page 482
“CALL PRXPOSN Routine” on page 484
“CALL PRXSUBSTR Routine” on page 487
“PRXMATCH Function” on page 1015
“PRXPAREN Function” on page 1019
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

PRXMATCH Function

Searches for a pattern match and returns the position at which the pattern is found.

Category: Character String Matching

Syntax
PRXMATCH (regular-expression-id | perl-regular-expression, source)

Arguments

regular-expression-id
specifies a numeric variable with a value that is a pattern identifier that is returned
from the PRXPARSE function.
Restriction: If you use this argument, you must also use the PRXPARSE function.

perl-regular-expression
specifies a character constant, variable, or expression with a value that is a Perl
regular expression.

1016 PRXMATCH Function � Chapter 4

source
specifies a character constant, variable, or expression that you want to search.

Details

The Basics If you use regular-expression-id, then the PRXMATCH function searches
source with the regular-expression-id that is returned by PRXPARSE, and returns the
position at which the string begins. If there is no match, PRXMATCH returns a zero.

If you use perl-regular-expression, PRXMATCH searches source with the
perl-regular-expression, and you do not need to call PRXPARSE.

You can use PRXMATCH with a Perl regular expression in a WHERE clause and in
PROC SQL. For more information about pattern matching, see “Pattern Matching
Using Perl Regular Expressions (PRX)” on page 331.

Compiling a Perl Regular Expression If perl-regular-expression is a constant or if it
uses the /o option, then the Perl regular expression is compiled once and each use of
PRXMATCH reuses the compiled expression. If perl-regular-expression is not a constant
and if it does not use the /o option, then the Perl regular expression is recompiled for
each call to PRXMATCH.

Note: The compile-once behavior occurs when you use PRXMATCH in a DATA step,
in a WHERE clause, or in PROC SQL. For all other uses, the perl-regular-expression is
recompiled for each call to PRXMATCH. �

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

Example 1: Finding the Position of a Substring in a String

Finding the Position of a Substring by Using PRXPARSE The following example
searches a string for a substring, and returns its position in the string.

data _null_;
/* Use PRXPARSE to compile the Perl regular expression. */

patternID = prxparse(’/world/’);
/* Use PRXMATCH to find the position of the pattern match. */

position=prxmatch(patternID, ’Hello world!’);
put position=;

run;

SAS writes the following line to the log:

position=7

Finding the Position of a Substring by Using a Perl Regular Expression The following
example uses a Perl regular expression to search a string (Hello world) for a substring
(world) and to return the position of the substring in the string.

data _null_;
/* Use PRXMATCH to find the position of the pattern match. */

Functions and CALL Routines � PRXMATCH Function 1017

position=prxmatch(’/world/’, ’Hello world!’);
put position=;

run;

SAS writes the following line to the log:

position=7

Example 2: Finding the Position of a Substring in a String: A Complex Example The
following example uses several Perl regular expression functions and a CALL routine to
find the position of a substring in a string.

data _null_;
if _N_ = 1 then
do;

retain PerlExpression;
pattern = "/(\d+):(\d\d)(?:\.(\d+))?/";
PerlExpression = prxparse(pattern);

end;

array match[3] $ 8;
input minsec $80.;
position = prxmatch(PerlExpression, minsec);
if position ^= 0 then
do;

do i = 1 to prxparen(PerlExpression);
call prxposn(PerlExpression, i, start, length);
if start ^= 0 then

match[i] = substr(minsec, start, length);
end;
put match[1] "minutes, " match[2] "seconds" @;
if ^missing(match[3]) then

put ", " match[3] "milliseconds";
end;
datalines;

14:56.456
45:32
;

run;

The following lines are written to the SAS log:

14 minutes, 56 seconds, 456 milliseconds
45 minutes, 32 seconds

Example 3: Extracting a ZIP Code from a Data Set

Extracting a ZIP Code by Using the DATA Step The following example uses a DATA
step to search each observation in a data set for a nine-digit ZIP code, and writes those
observations to the data set ZipPlus4.

data ZipCodes;
input name: $16. zip:$10.;
datalines;

1018 PRXMATCH Function � Chapter 4

Johnathan 32523-2343
Seth 85030
Kim 39204
Samuel 93849-3843
;

/* Extract ZIP+4 ZIP codes with the DATA step. */
data ZipPlus4;

set ZipCodes;
where prxmatch(’/\d{5}-\d{4}/’, zip);

run;

options nodate pageno=1 ls=80 ps=64;
proc print data=ZipPlus4;
run;

Output 4.73 ZIP Code Output from the DATA Step

The SAS System 1

Obs name zip

1 Johnathan 32523-2343
2 Samuel 93849-3843

Extracting a ZIP Code by Using PROC SQL The following example searches each
observation in a data set for a nine-digit ZIP code, and writes those observations to the
data set ZipPlus4.

data ZipCodes;
input name: $16. zip:$10.;
datalines;

Johnathan 32523-2343
Seth 85030
Kim 39204
Samuel 93849-3843
;

/* Extract ZIP+4 ZIP codes with PROC SQL. */
proc sql;

create table ZipPlus4 as
select * from ZipCodes
where prxmatch(’/\d{5}-\d{4}/’, zip);

run;

options nodate pageno=1 ls=80 ps=64;
proc print data=ZipPlus4;
run;

Functions and CALL Routines � PRXPAREN Function 1019

Output 4.74 ZIP Code Output from PROC SQL

The SAS System 1

Obs name zip

1 Johnathan 32523-2343
2 Samuel 93849-3843

See Also

Functions and CALL routines:
“CALL PRXCHANGE Routine” on page 476
“CALL PRXDEBUG Routine” on page 479
“CALL PRXFREE Routine” on page 481
“CALL PRXNEXT Routine” on page 482
“CALL PRXPOSN Routine” on page 484
“CALL PRXSUBSTR Routine” on page 487
“CALL PRXCHANGE Routine” on page 476
“PRXCHANGE Function” on page 1010
“PRXPAREN Function” on page 1019
“PRXPARSE Function” on page 1021
“PRXPOSN Function” on page 1023

PRXPAREN Function

Returns the last bracket match for which there is a match in a pattern.

Category: Character String Matching
Restriction: Use with the PRXPARSE function.

Syntax
PRXPAREN (regular-expression-id)

Arguments

regular-expression-id
specifies a numeric variable with a value that is an identification number that is
returned by the PRXPARSE function.

Details
The PRXPAREN function is useful in finding the largest capture-buffer number that
can be passed to the CALL PRXPOSN routine, or in identifying which part of a pattern
matched.

1020 PRXPAREN Function � Chapter 4

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

Examples

The following example uses Perl regular expressions and writes the results to the
SAS log.

data _null_;
ExpressionID = prxparse(’/(magazine)|(book)|(newspaper)/’);
position = prxmatch(ExpressionID, ’find book here’);
if position then paren = prxparen(ExpressionID);
put ’Matched paren ’ paren;

position = prxmatch(ExpressionID, ’find magazine here’);
if position then paren = prxparen(ExpressionID);
put ’Matched paren ’ paren;

position = prxmatch(ExpressionID, ’find newspaper here’);
if position then paren = prxparen(ExpressionID);
put ’Matched paren ’ paren;

run;

The following lines are written to the SAS log:

Matched paren 2
Matched paren 1
Matched paren 3

See Also

Functions and CALL routines:

“CALL PRXCHANGE Routine” on page 476

“CALL PRXDEBUG Routine” on page 479

“CALL PRXFREE Routine” on page 481

“CALL PRXNEXT Routine” on page 482

“CALL PRXPOSN Routine” on page 484

“CALL PRXSUBSTR Routine” on page 487

“CALL PRXCHANGE Routine” on page 476

“PRXCHANGE Function” on page 1010

“PRXMATCH Function” on page 1015

“PRXPARSE Function” on page 1021

“PRXPOSN Function” on page 1023

Functions and CALL Routines � PRXPARSE Function 1021

PRXPARSE Function

Compiles a Perl regular expression (PRX) that can be used for pattern matching of a character
value.

Category: Character String Matching
Restriction: Use with other Perl regular expressions.

Syntax
regular-expression-id=PRXPARSE (perl-regular-expression)

Arguments

regular-expression-id
is a numeric pattern identifier that is returned by the PRXPARSE function.

perl-regular-expression
specifies a character value that is a Perl regular expression.

Details

The Basics The PRXPARSE function returns a pattern identifier number that is used
by other Perl functions and CALL routines to match patterns. If an error occurs in
parsing the regular expression, SAS returns a missing value.

PRXPARSE uses metacharacters in constructing a Perl regular expression. To view a
table of common metacharacters, see “Tables of Perl Regular Expression (PRX)
Metacharacters” on page 2141.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Compiling a Perl Regular Expression If perl-regular-expression is a constant or if it
uses the /o option, the Perl regular expression is compiled only once. Successive calls to
PRXPARSE will not cause a recompile, but will return the regular-expression-id for the
regular expression that was already compiled. This behavior simplifies the code because
you do not need to use an initialization block (IF _N_ =1) to initialize Perl regular
expressions.

Note: If you have a Perl regular expression that is a constant, or if the regular
expression uses the /o option, then calling PRXFREE to free the memory allocation
results in the need to recompile the regular expression the next time that it is called by
PRXPARSE.

The compile-once behavior occurs when you use PRXPARSE in a DATA step. For all
other uses, the perl-regular-expression is recompiled for each call to PRXPARSE. �

Comparisons
The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

1022 PRXPARSE Function � Chapter 4

Examples

The following example uses metacharacters and regular characters to construct a
Perl regular expression. The example parses addresses and writes formatted results to
the SAS log.

data _null_;
if _N_ = 1 then
do;

retain patternID;

/* The i option specifies a case insensitive search. */
pattern = "/ave|avenue|dr|drive|rd|road/i";
patternID = prxparse(pattern);

end;

input street $80.;
call prxsubstr(patternID, street, position, length);
if position ^= 0 then
do;

match = substr(street, position, length);
put match:$QUOTE. "found in " street:$QUOTE.;

end;
datalines;

153 First Street
6789 64th Ave
4 Moritz Road
7493 Wilkes Place
;

The following lines are written to the SAS log:

"Ave" found in "6789 64th Ave"
"Road" found in "4 Moritz Road"

See Also

Functions and CALL routines:

“CALL PRXCHANGE Routine” on page 476

“CALL PRXDEBUG Routine” on page 479

“CALL PRXFREE Routine” on page 481

“CALL PRXNEXT Routine” on page 482

“CALL PRXPOSN Routine” on page 484

“CALL PRXSUBSTR Routine” on page 487

“CALL PRXCHANGE Routine” on page 476

“PRXCHANGE Function” on page 1010

“PRXPAREN Function” on page 1019

“PRXMATCH Function” on page 1015

“PRXPOSN Function” on page 1023

Functions and CALL Routines � PRXPOSN Function 1023

PRXPOSN Function

Returns a character string that contains the value for a capture buffer.

Category: Character String Matching

Restriction: Use with the PRXPARSE function.

Syntax
PRXPOSN(regular-expression-id, capture-buffer, source)

Arguments

regular-expression-id
specifies a numeric variable with a value that is a pattern identifier that is returned
by the PRXPARSE function.

capture-buffer
is a numeric constant, variable, or expression that identifies the capture buffer for
which to retrieve a value:

� If the value of capture-buffer is zero, PRXPOSN returns the entire match.

� If the value of capture-buffer is between 1 and the number of open parentheses
in the regular expression, then PRXPOSN returns the value for that capture
buffer.

� If the value of capture-buffer is greater than the number of open parentheses,
then PRXPOSN returns a missing value.

source
specifies the text from which to extract capture buffers.

Details
The PRXPOSN function uses the results of PRXMATCH, PRXSUBSTR, PRXCHANGE,
or PRXNEXT to return a capture buffer. A match must be found by one of these
functions for PRXPOSN to return meaningful information.

A capture buffer is part of a match, enclosed in parentheses, that is specified in a
regular expression. This function simplifies using capture buffers by returning the text
for the capture buffer directly, and by not requiring a call to SUBSTR as in the case of
CALL PRXPOSN.

For more information about pattern matching, see “Pattern Matching Using Perl
Regular Expressions (PRX)” on page 331.

Comparisons
The PRXPOSN function is similar to the CALL PRXPOSN routine, except that it returns
the capture buffer itself rather than the position and length of the capture buffer.

The Perl regular expression (PRX) functions and CALL routines work together to
manipulate strings that match patterns. To see a list and short description of these
functions and CALL routines, see the Character String Matching category in “Functions
and CALL Routines by Category” on page 342.

1024 PRXPOSN Function � Chapter 4

Examples

Example 1: Extracting First and Last Names The following example uses PRXPOSN to
extract first and last names from a data set.

data ReversedNames;
input name & $32.;
datalines;

Jones, Fred
Kavich, Kate
Turley, Ron
Dulix, Yolanda
;

data FirstLastNames;
length first last $ 16;
keep first last;
retain re;
if _N_ = 1 then

re = prxparse(’/(\w+), (\w+)/’);
set ReversedNames;
if prxmatch(re, name) then

do;
last = prxposn(re, 1, name);
first = prxposn(re, 2, name);

end;
run;

options pageno=1 nodate ls=80 ps=64;
proc print data = FirstLastNames;
run;

Output 4.75 Output from PRXPOSN: First and Last Names

The SAS System 1

Obs first last

1 Fred Jones
2 Kate Kavich
3 Ron Turley
4 Yolanda Dulix

Example 2: Extracting Names When Some Names Are Invalid The following example
creates a data set that contains a list of names. Observations that have only a first
name or only a last name are invalid. PRXPOSN extracts the valid names from the
data set, and writes the names to the data set NEW.

data old;
input name $60.;
datalines;

Judith S Reaveley
Ralph F. Morgan
Jess Ennis
Carol Echols

Functions and CALL Routines � PRXPOSN Function 1025

Kelly Hansen Huff
Judith
Nick
Jones
;

data new;
length first middle last $ 40;
keep first middle last;
re = prxparse(’/(\S+)\s+([^\s]+\s+)?(\S+)/o’);
set old;
if prxmatch(re, name) then

do;
first = prxposn(re, 1, name);
middle = prxposn(re, 2, name);
last = prxposn(re, 3, name);
output;

end;
run;

options pageno=1 nodate ls=80 ps=64;
proc print data = new;
run;

Output 4.76 Output of Valid Names

The SAS System 1

Obs first middle last

1 Judith S Reaveley
2 Ralph F. Morgan
3 Jess Ennis
4 Carol Echols
5 Kelly Hansen Huff

See Also

Functions:

“CALL PRXCHANGE Routine” on page 476

“CALL PRXDEBUG Routine” on page 479

“CALL PRXFREE Routine” on page 481

“CALL PRXNEXT Routine” on page 482

“CALL PRXPOSN Routine” on page 484

“CALL PRXSUBSTR Routine” on page 487

“CALL PRXCHANGE Routine” on page 476

“PRXCHANGE Function” on page 1010

“PRXMATCH Function” on page 1015

“PRXPAREN Function” on page 1019

“PRXPARSE Function” on page 1021

1026 PTRLONGADD Function � Chapter 4

PTRLONGADD Function

Returns the pointer address as a character variable on 32-bit and 64-bit platforms.

Category: Special

Syntax
PTRLONGADD(pointer<,amount>)

Arguments

pointer
is a character constant, variable, or expression that specifies the pointer address.

amount
is a numeric constant, variable, or expression that specifies the amount to add to the
address.
Tip: amount can be a negative number.

Details
The PTRLONGADD function performs pointer arithmetic and returns a pointer address
as a character string.

Examples

The following example returns the pointer address for the variable Z.

data _null_;
x=’ABCDE’;
y=ptrlongadd(addrlong(x),2);
z=peekclong(y,1);
put z=;

run;

The output from the SAS log is: z=C

PUT Function

Returns a value using a specified format.

Category: Special

Syntax
PUT(source, format.)

Functions and CALL Routines � PUT Function 1027

Arguments

source
identifies the constant, variable, or expression whose value you want to reformat.
The source argument can be character or numeric.

format.
contains the SAS format that you want applied to the value that is specified in the
source. This argument must be the name of a format with a period and optional
width and decimal specifications, not a character constant, variable, or expression.
By default, if the source is numeric, the resulting string is right aligned, and if the
source is character, the result is left aligned. To override the default alignment, you
can add an alignment specification to a format:

-L left aligns the value.

-C centers the value.

-R right aligns the value.

Restriction: The format. must be of the same type as the source, either character
or numeric. That is, if the source is character, the format name must begin with a
dollar sign, but if the source is numeric, the format name must not begin with a
dollar sign.

Details
If the PUT function returns a value to a variable that has not yet been assigned a
length, by default the variable length is determined by the width of the format.

Use PUT to convert a numeric value to a character value. The PUT function has no
effect on which formats are used in PUT statements or which formats are assigned to
variables in data sets. You cannot use the PUT function to change the type of a variable
in a data set from numeric to character.

Comparisons
The PUT statement and the PUT function are similar. The PUT function returns a
value using a specified format. You must use an assignment statement to store the
value in a variable. The PUT statement writes a value to an external destination
(either the SAS log or a destination you specify).

Examples

Example 1: Converting Numeric Values to Character Value In this example, the first
statement converts the values of CC, a numeric variable, into the four-character
hexadecimal format, and the second writes the same value that the PUT function
returns.

cchex=put(cc,hex4.);
put cc hex4.;

Example 2: Using PUT and INPUT Functions In this example, the PUT function returns
a numeric value as a character string. The value 122591 is assigned to the CHARDATE
variable. The INPUT function returns the value of the character string as a SAS date
value using a SAS date informat. The value 11681 is stored in the SASDATE variable.

1028 PUTC Function � Chapter 4

numdate=122591;
chardate=put(numdate,z6.);
sasdate=input(chardate,mmddyy6.);

See Also

Functions:

“INPUT Function” on page 807

“INPUTC Function” on page 809

“INPUTN Function” on page 811

“PUTC Function” on page 1028,

“PUTN Function” on page 1030

Statement:

“PUT Statement” on page 1657

PUTC Function

Enables you to specify a character format at run time.

Category: Special

Syntax
PUTC(source, format.< ,w>)

Arguments

source
specifies a character constant, variable, or expression to which you want to apply the
format.

format.
is a character constant, variable, or expression with a value that is the character
format you want to apply to source.

w
is a numeric constant, variable, or expression that specifies a width to apply to the
format.

Interaction: If you specify a width here, it overrides any width specification in the
format.

Details
If the PUTC function returns a value to a variable that has not yet been assigned a
length, by default the variable length is determined by the length of the first argument.

Functions and CALL Routines � PUTC Function 1029

Comparisons
The PUTN function enables you to specify a numeric format at run time.

The PUT function is faster than PUTC because PUT lets you specify a format at
compile time rather than at run time.

Examples

The PROC FORMAT step in this example creates a format, TYPEFMT., that formats
the variable values 1, 2, and 3 with the name of one of the three other formats that this
step creates. These three formats output responses of "positive," "negative," and
"neutral" as different words, depending on the type of question. After PROC FORMAT
creates the formats, the DATA step creates a SAS data set from raw data consisting of a
number identifying the type of question and a response. After reading a record, the
DATA step uses the value of TYPE to create a variable, RESPFMT, that contains the
value of the appropriate format for the current type of question. The DATA step also
creates another variable, WORD, whose value is the appropriate word for a response.
The PUTC function assigns the value of WORD based on the type of question and the
appropriate format.

proc format;
value typefmt 1=’$groupx’

2=’$groupy’
3=’$groupz’;

value $groupx ’positive’=’agree’
’negative’=’disagree’
’neutral’=’notsure ’;

value $groupy ’positive’=’accept’
’negative’=’reject’
’neutral’=’possible’;

value $groupz ’positive’=’pass ’
’negative’=’fail’
’neutral’=’retest’;

run;

data answers;
length word $ 8;
input type response $;
respfmt = put(type, typefmt.);
word = putc(response, respfmt);
datalines;

1 positive
1 negative
1 neutral
2 positive
2 negative
2 neutral
3 positive
3 negative
3 neutral
;

The value of the variable WORD is agree for the first observation. The value of the
variable WORD is retest for the last observation.

1030 PUTN Function � Chapter 4

See Also

Functions:
“INPUT Function” on page 807
“INPUTC Function” on page 809
“INPUTN Function” on page 811
“PUT Function” on page 1026,
“PUTN Function” on page 1030

PUTN Function

Enables you to specify a numeric format at run time.

Category: Special

Syntax
PUTN(source, format.< ,w<,d>>)

Arguments

source
specifies a numeric constant, variable, or expression to which you want to apply the
format.

format.
is a character constant, variable, or expression with a value that is the numeric
format you want to apply to source.

w
is a numeric constant, variable, or expression that specifies a width to apply to the
format.
Interaction: If you specify a width here, it overrides any width specification in the

format.

d
is a numeric constant, variable, or expression that specifies the number of decimal
places to use.
Interaction: If you specify a number here, it overrides any decimal-place

specification in the format.

Details
If the PUTN function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

Comparisons
The PUTC function enables you to specify a character format at run time.

Functions and CALL Routines � PVP Function 1031

The PUT function is faster than PUTN because PUT lets you specify a format at
compile time rather than at run time.

Examples

The PROC FORMAT step in this example creates a format, WRITFMT., that formats
the variable values 1 and 2 with the name of a SAS date format. The DATA step
creates a SAS data set from raw data consisting of a number and a key. After reading a
record, the DATA step uses the value of KEY to create a variable, DATEFMT, that
contains the value of the appropriate date format. The DATA step also creates a new
variable, DATE, whose value is the formatted value of the date. PUTN assigns the
value of DATE based on the value of NUMBER and the appropriate format.

proc format;
value writfmt 1=’date9.’

2=’mmddyy10.’;
run;
data dates;

input number key;
datefmt=put(key,writfmt.);
date=putn(number,datefmt);
datalines;

15756 1
14552 2
;

See Also

Functions:
“INPUT Function” on page 807
“INPUTC Function” on page 809
“INPUTN Function” on page 811
“PUT Function” on page 1026
“PUTC Function” on page 1028

PVP Function

Returns the present value for a periodic cash flow stream (such as a bond), with repayment of
principal at maturity.

Category: Financial

Syntax
PVP(A,c,n,K,k0,y)

Arguments

1032 QTR Function � Chapter 4

A
specifies the par value.
Range: � � �

c
specifies the nominal per-year coupon rate, expressed as a fraction.
Range: � � � � �

n
specifies the number of coupons per year.
Range: � � � and is an integer

K
specifies the number of remaining coupons.
Range: � � � and is an integer

k0

specifies the time from the present date to the first coupon date, expressed in terms
of the number of years.
Range: � � �� �

�

�

y
specifies the nominal per-year yield-to-maturity, expressed as a fraction.
Range: � � �

Details
The PVP function is based on the relationship

� �

��

���

� ���
�
� � �

�

���

where
	� � ��� � � � �
� ��� � �

�
�
�� � � � � � � � � �

� ��� �
�
� � �

�

�
�

Examples

data _null_;
p=pvp(1000,.01,4,14,.33/2,.10);
put p;
run;

The value returned is 743.168.

QTR Function

Returns the quarter of the year from a SAS date value.

Functions and CALL Routines � QUANTILE Function 1033

Category: Date and Time

Syntax
QTR(date)

Arguments

date
specifies a numeric constant, variable, or expression that represents a SAS date value.

Details
The QTR function returns a value of 1, 2, 3, or 4 from a SAS date value to indicate the
quarter of the year in which a date value falls.

Examples

The following SAS statements produce these results.

SAS Statements Results

x=’20jan94’d;
y=qtr(x);
put y=; y=1

See Also

Function:
“YYQ Function” on page 1196

QUANTILE Function

Returns the quantile from a distribution that you specify.

Category: Quantile
See: “CDF Function” on page 554

Syntax
QUANTILE(dist, probability, parm-1,…,parm-k)

Arguments

1034 QUANTILE Function � Chapter 4

dist
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli BERNOULLI

Beta BETA

Binomial BINOMIAL

Cauchy CAUCHY

Chi-Square CHISQUARE

Exponential EXPONENTIAL

F F

Gamma GAMMA

Geometric GEOMETRIC

Hypergeometric HYPERGEOMETRIC

Laplace LAPLACE

Logistic LOGISTIC

Lognormal LOGNORMAL

Negative binomial NEGBINOMIAL

Normal NORMAL|GAUSS

Normal mixture NORMALMIX

Pareto PARETO

Poisson POISSON

T T

Uniform UNIFORM

Wald (inverse Gaussian) WALD|IGAUSS

Weibull WEIBULL

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

probability
is a numeric constant, variable, or expression that specifies the value of a random
variable.

parm-1,…,parm-k
are optional shape, location, or scale parameters appropriate for the specific
distribution.

The QUANTILE function computes the probability from various continuous and
discrete distributions. For more information, see the on page 555.

Examples

Functions and CALL Routines � QUOTE Function 1035

SAS Statements Results

y=quantile(’BERN’,.75,.25); 0

y=quantile(’BETA’,0.1,3,4); 0.2009088789

y=quantile(’BINOM’,.4,.5,10); 5

y=quantile(’CAUCHY’,.85); 1.9626105055

y=quantile(’CHISQ’,.6,11); 11.529833841

y=quantile(’EXPO’,.6); 0.9162907319

y=quantile(’F’,.8,2,3); 2.8860266073

y=quantile(’GAMMA’,.4,3); 2.285076904

y=quantile(’HYPER’,.5,200,50,10); 2

y=quantile(’LAPLACE’,.8); 0.9162907319

y=quantile(’LOGISTIC’,.7); 0.8472978604

y=quantile(’LOGNORMAL’,.5); 1

y=quantile(’NEGB’,.5,.5,2); 1

y=quantile(’NORMAL’,.975); 1.9599639845

y=quantile(’PARETO’,.01,1); 1.0101010101

y=quantile(’POISSON’,.9,1); 2

y=quantile(’T’,.8,5); 0.9195437802

y=quantile(’UNIFORM’,0.25); 0.25

y=quantile(’WALD’,.6,2); 0.9526209927

y=quantile(’WEIBULL’,.6,2); 0.9572307621

See Also

Functions:
“LOGCDF Function” on page 886
“LOGPDF Function” on page 888
“LOGSDF Function” on page 889
“PDF Function” on page 961
“SDF Function” on page 1085
“CDF Function” on page 554

QUOTE Function

Adds double quotation marks to a character value.

Category: Character
Restriction: “I18N Level 2” on page 313

1036 RANBIN Function � Chapter 4

Syntax
QUOTE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the QUOTE function returns a value
to a variable that has not previously been assigned a length, then that variable is given
a length of 200 bytes.

The Basics The QUOTE function adds double quotation marks, the default character,
to a character value. If double quotation marks are found within the argument, they
are doubled in the output.

The length of the receiving variable must be long enough to contain the argument
(including trailing blanks), leading and trailing quotation marks, and any embedded
quotation marks that are doubled. For example, if the argument is ABC followed by
three trailing blanks, then the receiving variable must have a length of at least eight to
hold “ABC###”. (The character # represents a blank space.) If the receiving field is not
long enough, the QUOTE function returns a blank string, and writes an invalid
argument note to the log.

Examples

SAS Statements Results

x=’A"B’;
y=quote(x);
put y; "A""B"

x=’A’’B’;
y=quote(x);
put y; "A’B"

x=’Paul’’s’;
y=quote(x);
put y; "Paul’s"

x=’Catering Service Center ’;
y=quote(x);
put y; "Catering Service Center "

x=’Paul’’s Catering Service ’;
y=quote(trim(x));
put y; "Paul’s Catering Service"

RANBIN Function
Returns a random variate from a binomial distribution.

Functions and CALL Routines � RANCAU Function 1037

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANBIN routine instead of the RANBIN function.

Syntax
RANBIN(seed,n,p)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1
See: “Seed Values” on page 313 for more information about seed values

n
is a numeric constant, variable, or expression with an integer value that specifies the
number of independent Bernoulli trials parameter.
Range: n> 0

p
is a numeric constant, variable, or expression that specifies the probability of success.
Range: 0 < p < 1

Details
The RANBIN function returns a variate that is generated from a binomial distribution
with mean np and variance np(1−p). If n ≤ 50, np ≤ 5, or n(1–p) ≤ 5, an inverse
transform method applied to a RANUNI uniform variate is used. If n > 50, np > 5, and
n(1–p) > 5, the normal approximation to the binomial distribution is used. In that case,
the Box-Muller transformation of RANUNI uniform variates is used.

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANBIN routine, an alternative to the RANBIN function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANBIN Routine” on page 489

RANCAU Function
Returns a random variate from a Cauchy distribution.

1038 RAND Function � Chapter 4

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANCAU routine instead of the RANCAU function.

Syntax
RANCAU(seed)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.

Range: seed < 231 −1
See: “Seed Values” on page 313 for more information about seed values

Details
The RANCAU function returns a variate that is generated from a Cauchy distribution
with location parameter 0 and scale parameter 1. An acceptance-rejection procedure
applied to RANUNI uniform variates is used. If u and v are independent uniform (−1/2,
1/2) variables and �� � �� � ���, then u/v is a Cauchy variate. A Cauchy variate X
with location parameter ALPHA and scale parameter BETA can be generated:

x=alpha+beta*rancau(seed);

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANCAU routine, an alternative to the RANCAU function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:

“RAND Function” on page 1038
“CALL RANCAU Routine” on page 491

RAND Function

Generates random numbers from a distribution that you specify.

Category: Random Number

Functions and CALL Routines � RAND Function 1039

Syntax
RAND (dist, parm-1,…,parm-k)

Arguments

dist
is a character constant, variable, or expression that identifies the distribution. Valid
distributions are as follows:

Distribution Argument

Bernoulli BERNOULLI

Beta BETA

Binomial BINOMIAL

Cauchy CAUCHY

Chi-Square CHISQUARE

Erlang ERLANG

Exponential EXPONENTIAL

F F

Gamma GAMMA

Geometric GEOMETRIC

Hypergeometric HYPERGEOMETRIC

Lognormal LOGNORMAL

Negative binomial NEGBINOMIAL

Normal NORMAL|GAUSSIAN

Poisson POISSON

T T

Tabled TABLE

Triangular TRIANGLE

Uniform UNIFORM

Weibull WEIBULL

Note: Except for T and F, you can minimally identify any distribution by its first
four characters. �

parm-1,…,parm-k
are shape, location, or scale parameters appropriate for the specific distribution.
See: “Details” on page 1040 for complete information about these parameters

1040 RAND Function � Chapter 4

Details

Generating Random Numbers The RAND function generates random numbers from
various continuous and discrete distributions. Wherever possible, the simplest form of
the distribution is used.

The RAND function uses the Mersenne-Twister random number generator (RNG)
that was developed by Matsumoto and Nishimura (1998). The random number
generator has a very long period (219937 – 1) and very good statistical properties. The
period is a Mersenne prime, which contributes to the naming of the RNG. The
algorithm is a twisted generalized feedback shift register (TGFSR) that explains the
latter part of the name. The TGFSR gives the RNG a very high order of
equidistribution (623-dimensional with 32-bit accuracy), which means that there is a
very small correlation between successive vectors of 623 pseudo-random numbers.

The RAND function is started with a single seed. However, the state of the process
cannot be captured by a single seed. You cannot stop and restart the generator from its
stopping point.

Reproducing a Random Number Stream
If you want to create reproducible streams of random numbers, then use the CALL

STREAMINIT routine to specify a seed value for random number generation. Use the
CALL STREAMINIT routine once per DATA step before any invocation of the RAND
function. If you omit the call to the CALL STREAMINIT routine (or if you specify a
non-positive seed value in the CALL STREAMINIT routine), then RAND uses a call to
the system clock to seed itself. For more information, see CALL STREAMINIT Example
1 on page 532.

Bernoulli Distribution

x = RAND(’BERNOULLI’,p)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �

�
� � � �� � � �
�� �� � ����� � � � � �� � � �� �
� � � �� � � �

Range: x = 0, 1

p
is a numeric probability of success.

Range: 0 ≤ p ≤ 1

Beta Distribution

x = RAND(’BETA’,a,b)

where

x
is an observation from the distribution with the following probability density
function:

Functions and CALL Routines � RAND Function 1041

� ��� �
� ��� ��

� ��� � ���
���� �� � �����

Range: 0 < x < 1

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric shape parameter.
Range: b > 0

Binomial Distribution

x = RAND(’BINOMIAL’,p,n)

where

x
is an integer observation from the distribution with the following probability
density function:

� ��� �

�
� � � �� � � ��
�

�

�
�� �� � ����� � � � � �� � � �� �����

� � � �� � � �

Range: x = 0, 1, ..., n

p
is a numeric probability of success.
Range: 0 ≤ p ≤ 1

n
is an integer parameter that counts the number of independent Bernoulli trials.
Range: n = 1, 2, ...

Cauchy Distribution

x = RAND(’CAUCHY’)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�

	 �� � ���

Range: –∞ < x < ∞

Chi-Square Distribution

x = RAND(’CHISQUARE’,df)

1042 RAND Function � Chapter 4

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�
���

�

�
�
��
�

�� ��

�
���

��

�

Range: x > 0

df
is a numeric degrees of freedom parameter.
Range: df > 0

Erlang Distribution

x = RAND(’ERLANG’,a)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�

� ���
�������

Range: x > 0

a
is an integer numeric shape parameter.
Range: a = 1, 2, ...

Exponential Distribution

x = RAND(’EXPONENTIAL’)

where

x
is an observation from the distribution with the following probability density
function:

� ��� � ���

Range: x > 0

F Distribution

x = RAND(’F’,ndf, ddf)

where

x

Functions and CALL Routines � RAND Function 1043

is an observation from the distribution with the following probability density
function:

� ��� �
�
�
�������

�

�

�
�
���
�

�
�
�
���
�

� �����������������
���

�
��

���� � ����������������

Range: x > 0

ndf
is a numeric numerator degrees of freedom parameter.
Range: ndf > 0

ddf
is a numeric denominator degrees of freedom parameter.
Range: ddf > 0

Gamma Distribution

x = RAND(’GAMMA’,a)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�

� ���
�������

Range: x > 0

a
is a numeric shape parameter.
Range: a > 0

Geometric Distribution

x = RAND(’GEOMETRIC’,p)

where

x
is an integer count that denotes the number of trials that are needed to obtain one
success. X is an integer observation from the distribution with the following
probability density function:

� ��� �

�
��� ����� � � � � � �� � � �� �� ���
� � � �� � � �

Range: x = 1, 2, …

p
is a numeric probability of success.

1044 RAND Function � Chapter 4

Range: 0 < p ≤ 1

Hypergeometric Distribution

x = RAND(’HYPER’,N,R,n)

where

x
is an integer observation from the distribution with the following probability
density function:

� ��� �

�
�
�

��
���
���

�
�
�
�

�

Range: x = max(0, (n – (N – R))), ..., min(n, R)

N
is an integer population size parameter.
Range: N = 1, 2, ...

R
is an integer number of items in the category of interest.
Range: R = 0, 1, ..., N

n
is an integer sample size parameter.
Range: n = 1, 2, ..., N

The hypergeometric distribution is a mathematical formalization of an experiment in
which you draw n balls from an urn that contains N balls, R of which are red. The
hypergeometric distribution is the distribution of the number of red balls in the sample
of n.

Lognormal Distribution

x = RAND(’LOGNORMAL’)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�� ��������

�
�
��

Range: x > 0

Negative Binomial Distribution

x = RAND(’NEGBINOMIAL’,p,k)

where

x

Functions and CALL Routines � RAND Function 1045

is an integer observation from the distribution with the following probability
density function:

� ��� �

��
�����

���

�
��� ��� �� � � � � �� � � �� �� ���

� � � �� � � �

Range: x = 0, 1, ...

k
is an integer parameter that is the number of successes. However, non-integer k
values are allowed as well.

Range: k = 1, 2, ...

p
is a numeric probability of success.

Range: 0 < p ≤ 1

The negative binomial distribution is the distribution of the number of failures before
k successes occur in sequential independent trials, all with the same probability of
success, p.

Normal Distribution

x = RAND(’NORMAL’,<,�,�>)

where

x
is an observation from the normal distribution with a mean of � and a standard
deviation of �, that has the following probability density function:

� ��� �
�

�
�
��

	��

�
�
��� ��

�

���

�

Range: –∞ < x < ∞

�

is the mean parameter.

Default: 0

�

is the standard deviation parameter.

Default: 1

Range: � > 0

Poisson Distribution

x = RAND(’POISSON’,m)

where

x
is an integer observation from the distribution with the following probability
density function:

1046 RAND Function � Chapter 4

� ��� �
�����

��

Range: x = 0, 1, ...

m
is a numeric mean parameter.
Range: m > 0

T Distribution
x = RAND(’T’,df)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �
�
�
����
�

�
�
����

�
��
�

�
�
� �

��

��

�
�

����

�

Range: –∞ < x < ∞

df
is a numeric degrees of freedom parameter.
Range: df > 0

Tabled Distribution
x = RAND(’TABLE’,p1,p2, ...)

where

x
is an integer observation from one of the following distributions:

If
��

���

����, then x is an observation from this probability density function:

� ��� � ��� � � �� �� � � � � �
���

� ��� �� � ��

��

���

��

If for some index
��

���

����, then x is an observation from this probability density

function:

� ��� � ��� � � �� �� � � � � � � �
���

� ��� � ��

����

���

��

Functions and CALL Routines � RAND Function 1047

p1, p2, ...
are numeric probability values.
Range: 0 ≤ p1, p2, ... ≤ 1
Restriction: The maximum number of probability parameters depends on your

operating environment, but the maximum number of parameters is at least
32,767.

The tabled distribution takes on the values 1, 2, ..., n with specified probabilities.

Note: By using the FORMAT statement, you can map the set {1, 2, ..., n} to any set
of n or fewer elements. �

Triangular Distribution

x = RAND(’TRIANGLE’,h)

where

x
is an observation from the distribution with the following probability density
function:

� ��� �

�
��

�
� � � � �

������
��� � � � � �

where 0 ≤ h ≤ 1.
Range: 0 ≤ x ≤ 1

Note: The distribution can be easily shifted and scaled. �

h
is the horizontal location of the peak of the triangle.
Range: 0 ≤ h ≤ 1

Uniform Distribution

x = RAND(’UNIFORM’)

where

x
is an observation from the distribution with the following probability density
function:

� ��� � �

Range: 0 < x < 1
The uniform random number generator that the RAND function uses is the

Mersenne-Twister (Matsumoto and Nishimura 1998). This generator has a period of
������ � � and 623-dimensional equidistribution up to 32-bit accuracy. This algorithm
underlies the generators for the other available distributions in the RAND function.

Weibull Distribution

x = RAND(’WEIBULL’,a,b)

where

1048 RAND Function � Chapter 4

x
is an observation from the distribution with the following probability density
function:

� ��� �
�

��
�������

�

�
�
�

Range: x ≥ 0

a
is a numeric shape parameter.
Range: a > 0

b
is a numeric scale parameter.
Range: b > 0

Examples

SAS Statements Results

x=rand(’BERN’,.75); 0

x=rand(’BETA’,3,0.1); .99920

x=rand(’BINOM’,10,0.75); 10

x=rand(’CAUCHY’); -1.41525

x=rand(’CHISQ’,22); 25.8526

x=rand(’ERLANG’, 7); 7.67039

x=rand(’EXPO’); 1.48847

x=rand(’F’,12,322); 1.99647

x=rand(’GAMMA’,7.25); 6.59588

x=rand(’GEOM’,0.02); 43

x=rand(’HYPER’,10,3,5); 1

x=rand(’LOGN’); 0.66522

x=rand(’NEGB’,0.8,5); 33

x=rand(’NORMAL’); 1.03507

x=rand(’POISSON’,6.1); 6

x=rand(’T’,4); 2.44646

x=rand(’TABLE’,.2,.5); 2

x=rand(’TRIANGLE’,0.7); .63811

x=rand(’UNIFORM’); .96234

x=rand(’WEIB’,0.25,2.1); 6.55778

See Also

Functions and CALL Routines � RANEXP Function 1049

CALL Routine:

“CALL STREAMINIT Routine” on page 532

References
Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. New

York: Springer-Verlag.

Fushimi, M., and S. Tezuka. 1983. “The k-Distribution of Generalized Feedback Shift
Register Pseudorandom Numbers.” Communications of the ACM 26: 516–523.

Gentle, J. E. 1998. Random Number Generation and Monte Carlo Methods. New
York: Springer-Verlag.

Lewis, T. G., and W. H. Payne. 1973. “Generalized Feedback Shift Register
Pseudorandom Number Algorithm.” Journal of the ACM 20: 456–468.

Matsumoto, M., and Y. Kurita. 1992. “Twisted GFSR Generators.” ACM Transactions
on Modeling and Computer Simulation 2: 179–194.

Matsumoto, M., and Y. Kurita. 1994. “Twisted GFSR Generators II.” ACM
Transactions on Modeling and Computer Simulation 4: 254–266.

Matsumoto, M., and T. Nishimura. 1998. “Mersenne Twister: A 623–Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator.” ACM Transactions
on Modeling and Computer Simulation 8: 3–30.

Ripley, B. D. 1987. Stochastic Simulation. New York: Wiley.

Robert, C. P., and G. Casella. 1999. Monte Carlo Statistical Methods. New York:
Springer-Verlag.

Ross, S. M. 1997. Simulation. San Diego: Academic Press.

RANEXP Function

Returns a random variate from an exponential distribution.

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANEXP routine instead of the RANEXP function.

Syntax
RANEXP(seed)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.

Range: seed < 231−1

See: “Seed Values” on page 313 for more information about seed values

1050 RANGAM Function � Chapter 4

Details
The RANEXP function returns a variate that is generated from an exponential
distribution with parameter 1. An inverse transform method applied to a RANUNI
uniform variate is used.

An exponential variate X with parameter LAMBDA can be generated:

x=ranexp(seed)/lambda;

An extreme value variate X with location parameter ALPHA and scale parameter
BETA can be generated:

x=alpha−beta*log(ranexp(seed));

A geometric variate X with parameter P can be generated as follows:

x=floor(−ranexp(seed)/log(1−p));

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANEXP routine, an alternative to the RANEXP function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANEXP Routine” on page 494

RANGAM Function

Returns a random variate from a gamma distribution.

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANGAM routine instead of the RANGAM function.

Syntax
RANGAM(seed,a)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1

Functions and CALL Routines � RANGE Function 1051

See: “Seed Values” on page 313 for more information about seed values

a
is a numeric constant, variable, or expression that specifies the shape parameter.

Range: a > 0

Details
The RANGAM function returns a variate that is generated from a gamma distribution
with parameter a. For a > 1, an acceptance-rejection method due to Cheng (1977) (See
“References” on page 1213) is used. For a ≤ 1, an acceptance-rejection method due to
Fishman is used (1978, Algorithm G2) (See “References” on page 1213).

A gamma variate X with shape parameter ALPHA and scale BETA can be generated:

x=beta*rangam(seed,alpha);

If 2*ALPHA is an integer, a chi-square variate X with 2*ALPHA degrees of freedom
can be generated:

x=2*rangam(seed,alpha);

If N is a positive integer, an Erlang variate X can be generated:

x=beta*rangam(seed,N);

It has the distribution of the sum of N independent exponential variates whose
means are BETA.

And finally, a beta variate X with parameters ALPHA and BETA can be generated:

y1=rangam(seed,alpha);
y2=rangam(seed,beta);
x=y1/(y1+y2);

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANGAM routine, an alternative to the RANGAM function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:

“RAND Function” on page 1038

“CALL RANGAM Routine” on page 496

RANGE Function

Returns the range of the nonmissing values.

Category: Descriptive Statistics

1052 RANK Function � Chapter 4

Syntax
RANGE(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one nonmissing
argument is required. Otherwise, the function returns a missing value. The
argument list can consist of a variable list, which is preceded by OF.

Details
The RANGE function returns the difference between the largest and the smallest of the
nonmissing arguments.

Examples

SAS Statements Results

x0=range(.,.); .

x1=range(-2,6,3); 8

x2=range(2,6,3,.); 4

x3=range(1,6,3,1); 5

x4=range(of x1-x3); 4

RANK Function

Returns the position of a character in the ASCII or EBCDIC collating sequence.

Category: Character

Restriction: “I18N Level 0” on page 312

See: RANK Function in the documentation for your operating environment.

Syntax
RANK(x)

Arguments

x
specifies a character constant, variable, or expression.

Functions and CALL Routines � RANNOR Function 1053

Details
The RANK function returns an integer that represents the position of the first character
in the character expression. The result depends on your operating environment.

Examples

SAS Statements Results

ASCII EBCDIC

n=rank(’A’);
put n; 65 193

See Also

Functions:
“BYTE Function” on page 428
“COLLATE Function” on page 583

RANNOR Function

Returns a random variate from a normal distribution.

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANNOR routine instead of the RANNOR function.

Syntax
RANNOR(seed)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1
See: “Seed Values” on page 313 for more information about seed values

Details
The RANNOR function returns a variate that is generated from a normal distribution
with mean 0 and variance 1. The Box-Muller transformation of RANUNI uniform
variates is used.

1054 RANPOI Function � Chapter 4

A normal variate X with mean MU and variance S2 can be generated with this code:

x=MU+sqrt(S2)*rannor(seed);

A lognormal variate X with mean exp(MU + S2/2) and variance exp(2*MU + 2*S2)
−exp(2*MU + S2) can be generated with this code:

x=exp(MU+sqrt(S2)*rannor(seed));

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANNOR routine, an alternative to the RANNOR function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:

“RAND Function” on page 1038

“CALL RANNOR Routine” on page 498

RANPOI Function

Returns a random variate from a Poisson distribution.

Category: Random Number

Tip: If you want to change the seed value during execution, you must use the CALL
RANPOI routine instead of the RANPOI function.

Syntax
RANPOI(seed,m)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.

Range: seed < 231−1

See: “Seed Values” on page 313 for more information about seed values

m
is a numeric constant, variable, or expression that specifies the mean of the
distribution.

Range: m ≥ 0

Functions and CALL Routines � RANTBL Function 1055

Details
The RANPOI function returns a variate that is generated from a Poisson distribution
with mean m. For m < 85, an inverse transform method applied to a RANUNI uniform
variate is used (Fishman 1976) (See “References” on page 1213). For m ≥ 85, the normal
approximation of a Poisson random variable is used. To expedite execution, internal
variables are calculated only on initial calls (that is, with each new m).

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANPOI routine, an alternative to the RANPOI function, gives greater
control of the seed and random number streams.

See Also
Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANPOI Routine” on page 505

RANTBL Function
Returns a random variate from a tabled probability distribution.

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANTBL routine instead of the RANTBL function.

Syntax
RANTBL(seed,p1 ,… pi… ,pn)

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1
See: “Seed Values” on page 313 for more information about seed values

pi

is a numeric constant, variable, or expression.
Range: 0 ≤ pi ≤ 1 for 0 <i ≤ n

Details
The RANTBL function returns a variate that is generated from the probability mass
function defined by p1 through pn . An inverse transform method applied to a RANUNI
uniform variate is used. RANTBL returns

1056 RANTRI Function � Chapter 4

� ���� �������	��
 ��

� ���� �������	��
 ��
�

�

�

� ���� �������	��
 ��

� � � ���� �������	��
 ��
��

���

�� �
��

���

�� � �

If, for some index j<n,
��

���

�� � �, RANTBL returns only the indices 1 through j with

the probability of occurrence of the index j equal to � �
����

���

��.

Let n=3 and P1, P2, and P3 be three probabilities with P1+P2+P3=1, and M1, M2,
and M3 be three variables. The variable X in these statements

array m{3} m1-m3;
x=m{rantbl(seed,of p1-p3)};

will be assigned one of the values of M1, M2, or M3 with probabilities of occurrence
P1, P2, and P3, respectively.

For a discussion and example of an effective use of the random number CALL
routines, see “Starting, Stopping, and Restarting a Stream” on page 324.

Comparisons
The CALL RANTBL routine, an alternative to the RANTBL function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANTBL Routine” on page 507

RANTRI Function

Returns a random variate from a triangular distribution.

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANTRI routine instead of the RANTRI function.

Syntax
RANTRI(seed,h)

Functions and CALL Routines � RANUNI Function 1057

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1
See: “Seed Values” on page 313 for more information about seed values

h
is a numeric constant, variable, or expression that specifies the mode of the
distribution.
range: 0 < h < 1

Details
The RANTRI function returns a variate that is generated from the triangular
distribution on the interval (0,1) with parameter h, which is the modal value of the
distribution. An inverse transform method applied to a RANUNI uniform variate is
used.

A triangular distribution X on the interval (A,B) with mode C, where A ≤ C ≤ B, can
be generated:

x=(b-a)*rantri(seed,(c-a)/(b-a))+a;

For a discussion about seeds and streams of data, as well as examples of using the
random-number functions, see “Generating Multiple Variables from One Seed in
Random-Number Functions” on page 322.

Comparisons
The CALL RANTRI routine, an alternative to the RANTRI function, gives greater
control of the seed and random number streams.

See Also

Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANTRI Routine” on page 510

RANUNI Function
Returns a random variate from a uniform distribution.

Category: Random Number
Tip: If you want to change the seed value during execution, you must use the CALL
RANUNI routine instead of the RANUNI function.

Syntax
RANUNI(seed)

1058 RENAME Function � Chapter 4

Arguments

seed
is a numeric constant, variable, or expression with an integer value. If seed ≤ 0, the
time of day is used to initialize the seed stream.
Range: seed < 231−1
See: “Seed Values” on page 313 for more information about seed values

Details
The RANUNI function returns a number that is generated from the uniform distribution
on the interval (0,1) using a prime modulus multiplicative generator with modulus 231−
and multiplier 397204094 (Fishman and Moore 1982) (See “References” on page 1213).

You can use a multiplier to change the length of the interval and an added constant
to move the interval. For example,

random_variate=a*ranuni(seed)+b;

returns a number that is generated from the uniform distribution on the interval
(b,a+b).

Comparisons
The CALL RANUNI routine, an alternative to the RANUNI function, gives greater
control of the seed and random number streams.

See Also
Functions and CALL routines:
“RAND Function” on page 1038
“CALL RANUNI Routine” on page 512

RENAME Function

Renames a member of a SAS library, an entry in a SAS catalog, an external file, or a directory.

Category: External Files
Category: SAS File I/O
See: The RENAME Function in the documentation for your operating environment.

Syntax
RENAME(old-name, new-name <, type<, description <, password <, generation>>>>)

Arguments

old-name

Functions and CALL Routines � RENAME Function 1059

specifies a character constant, variable, or expression that is the current name of a
member of a SAS library, an entry in a SAS catalog, an external file, or an external
directory.

For a data set, old-name can be a one-level or two-level name. For a catalog entry,
old-name can be a one-level, two-level, or four-level name. For an external file or
directory, old-name must be the full pathname of the file or the directory. If the value
for old-name is not specified, then SAS uses the current directory.

new-name
specifies a character constant, variable, or expression that is the new one-level name
for the library member, catalog entry, external file, or directory.

type
is a character constant, variable, or expression that specifies the type of element to
rename. Type can be a null argument, or one of the following values:

ACCESS specifies a SAS/ACCESS descriptor that was created using
SAS/ACCESS software.

CATALOG specifies a SAS catalog or catalog entry.

DATA specifies a SAS data set.

VIEW specifies a SAS data set view.

FILE specifies an external file or directory.

Default: ’DATA’

description
specifies a character constant, variable, or expression that is the description of a
catalog entry. You can specify description only when the value of type is CATALOG.
Description can be a null argument.

password
is a character constant, variable, or expression that specifies the password for the
data set that is being renamed. Password can be a null argument.

generation
is a numeric constant, variable, or expression that specifies the generation number of
the data set that is being renamed. Generation can be a null argument.

Details
You can use the RENAME function to rename members of a SAS library or entries in a
SAS catalog. SAS returns 0 if the operation was successful, and a value other than 0 if
the operation was not successful.

To rename an entry in a catalog, specify the four-level name for old-name and a
one-level name for new-name. You must specify CATALOG for type when you rename
an entry in a catalog.

Operating Environment Information: Use RENAME in directory-based operating
environments only. If you use RENAME in a mainframe operating environment, SAS
generates an error. �

Examples

Example 1: Renaming Data Sets and Catalog Entries The following examples rename
a SAS data set from DATA1 to DATA2, and also rename a catalog entry from A.SCL to
B.SCL.

1060 REPEAT Function � Chapter 4

rc1=rename(’mylib.data1’, ’data2’);
rc2=rename(’mylib.mycat.a.scl’, ’b’, ’catalog’);

Example 2: Renaming an External File The following examples rename external files.

/* Rename a file that is located in another directory. */
rc=rename(’/local/u/testdir/first’,

’/local/u/second’, ’file’);
/* Rename a PC file. */

rc=rename(’d:\temp’, ’d:\testfile’, ’file’);

Example 3: Renaming a Directory The following example renames a directory in the
UNIX operating environment.

rc=rename(’/local/u/testdir/’, ’/local/u/oldtestdir’, ’file’);

Example 4: Renaming a Generation Data Set The following example renames the
generation data set WORK.ONE to WORK.TWO, where the password for
WORK.ONE#003 is my-password.

rc=rename(’work.one’,’two’,,,3,’my-password’);

See Also

Functions:

“FDELETE Function” on page 672
“FILEEXIST Function” on page 679

“EXIST Function” on page 665

REPEAT Function

Returns a character value that consists of the first argument repeated n+1 times.

Category: Character

Restriction: “I18N Level 1” on page 312

Syntax
REPEAT(argument,n)

Arguments

argument
specifies a character constant, variable, or expression.

n
specifies the number of times to repeat argument.
Restriction: n must be greater than or equal to 0.

Functions and CALL Routines � REVERSE Function 1061

Details
In a DATA step, if the REPEAT function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes.

The REPEAT function returns a character value consisting of the first argument
repeated n times. Thus, the first argument appears n+1 times in the result.

Examples

SAS Statements Results

x=repeat(’ONE’,2);
put x; ONEONEONE

RESOLVE Function
Returns the resolved value of the argument after it has been processed by the macro facility.

Category: Macro

Syntax
RESOLVE(argument)

Arguments

argument
is a character constant, variable, or expression with a value that is a macro
expression.

Details
If the RESOLVE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

RESOLVE is fully documented in SAS Macro Language: Reference.

See Also

Function:
“SYMGET Function” on page 1114

REVERSE Function
Reverses a character string.

1062 REWIND Function � Chapter 4

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KREVERSE in SAS National Language Support
(NLS): Reference Guide.

Syntax
REVERSE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details
In a DATA step, if the REVERSE function returns a value to a variable that has not
previously been assigned a length, then that variable is given the length of the first
argument.

The last character in the argument becomes the first character in the result, the
next-to-last character in the argument becomes the second character in the result, and
so on.

Note: Trailing blanks in the argument become leading blanks in the result. �

Examples

SAS Statements Results

----+----1

backward=reverse(’xyz ’);
put backward $5.; zyx

REWIND Function

Positions the data set pointer at the beginning of a SAS data set.

Category: SAS File I/O

Syntax
REWIND(data-set-id)

Arguments

Functions and CALL Routines � RIGHT Function 1063

data-set-id
is a numeric variable that specifies the data set identifier that the OPEN function
returns.
Restriction: The data set cannot be opened in IS mode.

Details
REWIND returns 0 if the operation was successful, ≠0 if it was not successful. After a
call to REWIND, a call to FETCH reads the first observation in the data set.

If there is an active WHERE clause, REWIND moves the data set pointer to the first
observation that satisfies the WHERE condition.

Examples

This example calls FETCHOBS to fetch the tenth observation in the data set
MYDATA. Next, the example calls REWIND to return to the first observation and fetch
the first observation.

%let dsid=%sysfunc(open(mydata,i));
%let rc=%sysfunc(fetchobs(&dsid,10));
%let rc=%sysfunc(rewind(&dsid));
%let rc=%sysfunc(fetch(&dsid));

See Also

Functions:
“FETCH Function” on page 674
“FETCHOBS Function” on page 675
“FREWIND Function” on page 758
“NOTE Function” on page 932
“OPEN Function” on page 955
“POINT Function” on page 982

RIGHT Function

Right aligns a character expression.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KRIGHT in SAS National Language Support (NLS):
Reference Guide.

Syntax
RIGHT(argument)

Arguments

1064 RMS Function � Chapter 4

argument
specifies a character constant, variable, or expression.

Details
In a DATA step, if the RIGHT function returns a value to a variable that has not
previously been assigned a length, then that variable is given the length of the first
argument.

The RIGHT function returns an argument with trailing blanks moved to the start of
the value. The length of the result is the same as the length of the argument.

Examples

SAS Statements Results

----+----1----+

a=’Due Date ’;
b=right(a);
put a $10.;
put b $10.;

Due Date
Due Date

See Also

Functions:

“COMPRESS Function” on page 598

“LEFT Function” on page 862

“TRIM Function” on page 1135

RMS Function

Returns the root mean square of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
RMS(argument<,argument,…>)

Arguments

argument
is a numeric constant, variable, or expression.

Tip: The argument list can consist of a variable list, which is preceded by OF.

Functions and CALL Routines � ROUND Function 1065

Details
The root mean square is the square root of the arithmetic mean of the squares of the
values. If all the arguments are missing values, then the result is a missing value.
Otherwise, the result is the root mean square of the non-missing values.

Let � be the number of arguments with non-missing values, and let ��� ��� � � � � ��

be the values of those arguments. The root mean square is

�
�
�

�
� �

�

�
� � � � � ��

�

�

Examples

SAS Statements Results

x1=rms(1,7); 5

x2=rms(.,1,5,11); 7

x3=rms(of x1-x2); 6.0827625303

ROUND Function

Rounds the first argument to the nearest multiple of the second argument, or to the nearest
integer when the second argument is omitted.

Category: Truncation

Syntax
ROUND (argument <,rounding-unit>)

Arguments

argument
is a numeric constant, variable, or expression to be rounded.

rounding-unit
is a positive, numeric constant, variable, or expression that specifies the rounding
unit.

Details

Basic Concepts The ROUND function rounds the first argument to a value that is
very close to a multiple of the second argument. The result might not be an exact
multiple of the second argument.

1066 ROUND Function � Chapter 4

Differences between Binary and Decimal Arithmetic Computers use binary arithmetic
with finite precision. If you work with numbers that do not have an exact binary
representation, computers often produce results that differ slightly from the results
that are produced with decimal arithmetic.

For example, the decimal values 0.1 and 0.3 do not have exact binary
representations. In decimal arithmetic, 3*0.1 is exactly equal to 0.3, but this equality is
not true in binary arithmetic. As the following example shows, if you write these two
values in SAS, they appear the same. If you compute the difference, however, you can
see that the values are different.

data _null_;
point_three=0.3;
three_times_point_one=3*0.1;
difference=point_three - three_times_point_one;
put point_three= ;
put three_times_point_one= ;
put difference= ;

run;

The following lines are written to the SAS log:

point_three= 0.3
three_times_point_one= 0.3
difference= -5.55112E-17

Operating Environment Information: The example above was executed in a z/OS
environment. If you use other operating environments, the results will be slightly
different. �

The Effects of Rounding Rounding by definition finds an exact multiple of the
rounding unit that is closest to the value to be rounded. For example, 0.33 rounded to
the nearest tenth equals 3*0.1 or 0.3 in decimal arithmetic. In binary arithmetic, 0.33
rounded to the nearest tenth equals 3*0.1, and not 0.3, because 0.3 is not an exact
multiple of one tenth in binary arithmetic.

The ROUND function returns the value that is based on decimal arithmetic, even
though this value is sometimes not the exact, mathematically correct result. In the
example ROUND(0.33,0.1), ROUND returns 0.3 and not 3*0.1.

Expressing Binary Values If the characters "0.3" appear as a constant in a SAS
program, the value is computed by the standard informat as 3/10. To be consistent with
the standard informat, ROUND(0.33,0.1) computes the result as 3/10, and the
following statement produces the results that you would expect.

if round(x,0.1) = 0.3 then
... more SAS statements ...

However, if you use the variable Y instead of the constant 0.3, as the following
statement shows, the results might be unexpected depending on how the variable Y is
computed.

if round(x,0.1) = y then
... more SAS statements ...

If SAS reads Y as the characters "0.3" using the standard informat, the result is the
same as if a constant 0.3 appeared in the IF statement. If SAS reads Y with a different
informat, or if a program other than SAS reads Y, then there is no guarantee that the
characters "0.3" would produce a value of exactly 3/10. Imprecision can also be caused
by computation involving numbers that do not have exact binary representations, or by

Functions and CALL Routines � ROUND Function 1067

porting data sets from one operating environment to another that has a different
floating-point representation.

If you know that Y is a decimal number with one decimal place, but are not certain
that Y has exactly the same value as would be produced by the standard informat, it is
better to use the following statement:

if round(x,0.1) = round(y,0.1) then
... more SAS statements ...

Testing for Approximate Equality You should not use the ROUND function as a
general method to test for approximate equality. Two numbers that differ only in the
least significant bit can round to different values if one number rounds down and the
other number rounds up. Testing for approximate equality depends on how the
numbers have been computed. If both numbers are computed to high relative precision,
you could test for approximate equality by using the ABS and the MAX functions, as
the following example shows.

if abs(x-y) <= 1e-12 * max(abs(x), abs(y)) then
... more SAS statements ...

Producing Expected Results In general, ROUND(argument, rounding-unit)
produces the result that you expect from decimal arithmetic if the result has no more
than nine significant digits and any of the following conditions are true:

� The rounding unit is an integer.
� The rounding unit is a power of 10 greater than or equal to 1e-15. *
� The result that you expect from decimal arithmetic has no more than four decimal

places.

For example:

data rounding;
d1 = round(1234.56789,100) - 1200;
d2 = round(1234.56789,10) - 1230;
d3 = round(1234.56789,1) - 1235;
d4 = round(1234.56789,.1) - 1234.6;
d5 = round(1234.56789,.01) - 1234.57;
d6 = round(1234.56789,.001) - 1234.568;
d7 = round(1234.56789,.0001) - 1234.5679;
d8 = round(1234.56789,.00001) - 1234.56789;
d9 = round(1234.56789,.1111) - 1234.5432;

/* d10 has too many decimal places in the value for */
/* rounding-unit. */

d10 = round(1234.56789,.11111) - 1234.54321;
run;

proc print data=rounding noobs;
run;

The following output shows the results.

* If the rounding unit is less than one, ROUND treats it as a power of 10 if the reciprocal of the rounding unit differs from a
power of 10 in at most the three or four least significant bits.

1068 ROUND Function � Chapter 4

Output 4.77 Results of Rounding Based on the Value of the Rounding Unit

The SAS System 1

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

0 0 0 0 0 0 0 0 0 -2.2737E-13

Operating Environment Information: The example above was executed in a z/OS
environment. If you use other operating environments, the results will be slightly
different. �

When the Rounding Unit Is the Reciprocal of an Integer When the rounding unit is
the reciprocal of an integer *, the ROUND function computes the result by dividing by
the integer. Therefore, you can safely compare the result from ROUND with the ratio of
two integers, but not with a multiple of the rounding unit. For example:

data rounding2;
drop pi unit;
pi = arcos(-1);
unit=1/7;
d1=round(pi,unit) - 22/7;
d2=round(pi, unit) - 22*unit;

run;

proc print data=rounding2 noobs;
run;

The following output shows the results.

Output 4.78 Results of Rounding by the Reciprocal of an Integer

The SAS System 1

d1 d2

0 2.2204E-16

Operating Environment Information: The example above was executed in an z/OS
environment. If you use other operating environments, the results will be slightly
different. �

Computing Results in Special Cases The ROUND function computes the result by
multiplying an integer by the rounding unit when all of the following conditions are
true:

� The rounding unit is not an integer.
� The rounding unit is not a power of 10.
� The rounding unit is not the reciprocal of an integer.

* ROUND treats the rounding unit as a reciprocal of an integer if the reciprocal of the rounding unit differs from an integer in
at most the three or four least significant bits.

Functions and CALL Routines � ROUND Function 1069

� The result that you expect from decimal arithmetic has no more than four decimal
places.

For example:

data _null_;
difference=round(1234.56789,.11111) - 11111*.11111;
put difference=;

run;

The following line is written to the SAS log:

difference=0

Operating Environment Information: The example above was executed in a z/OS
environment. If you use other operating environments, the results might be slightly
different. �

Computing Results When the Value Is Halfway between Multiples of the Rounding
Unit When the value to be rounded is approximately halfway between two multiples
of the rounding unit, the ROUND function rounds up the absolute value and restores
the original sign. For example:

options pageno=1 nodate ls=80 ps=64;

data test;
do i=8 to 17;

value=0.5 - 10**(-i);
round=round(value);
output;

end;
do i=8 to 17;

value=-0.5 + 10**(-i);
round=round(value);
output;

end;
run;

proc print data=test noobs;
format value 19.16;

run;

The following output shows the results.

1070 ROUND Function � Chapter 4

Output 4.79 Results of Rounding When Values Are Halfway between Multiples of the Rounding Unit

The SAS System 1

i value round

8 0.4999999900000000 0
9 0.4999999990000000 0
10 0.4999999999000000 0
11 0.4999999999900000 0
12 0.4999999999990000 0
13 0.4999999999999000 1
14 0.4999999999999900 1
15 0.4999999999999900 1
16 0.5000000000000000 1
17 0.5000000000000000 1
8 -0.4999999900000000 0
9 -0.4999999990000000 0
10 -0.4999999999000000 0
11 -0.4999999999900000 0
12 -0.4999999999990000 0
13 -0.4999999999999000 -1
14 -0.4999999999999900 -1
15 -0.4999999999999900 -1
16 -0.5000000000000000 -1
17 -0.5000000000000000 -1

Operating Environment Information: The example above was executed in a z/OS
environment. If you use other operating environments, the results might be slightly
different. �

The approximation is relative to the size of the value to be rounded, and is computed
in a manner that is shown in the following DATA step. This DATA step code will not
always produce results exactly equivalent to the ROUND function.

data testfile;
do i = 1 to 17;

value = 0.5 - 10**(-i);
epsilon = min(1e-6, value * 1e-12);
temp = value + .5 + epsilon;
fraction = modz(temp, 1);
round = temp - fraction;
output;

end;
run;

Comparisons
The ROUND function is the same as the ROUNDE function except when the first
argument is halfway between the two nearest multiples of the second argument,
ROUNDE returns an even multiple. ROUND returns the multiple with the larger
absolute value.

The ROUNDZ function returns a multiple of the rounding unit without trying to
make the result match the result that is computed with decimal arithmetic.

Functions and CALL Routines � ROUND Function 1071

Examples

The following example compares the results that are returned by the ROUND
function with the results that are returned by the ROUNDE function. The output was
generated from the UNIX operating environment.

options pageno=1 nodate linesize=80 pagesize=60;

data results;
do x=0 to 4 by .25;

Rounde=rounde(x);
Round=round(x);
output;

end;
run;

proc print data=results noobs;
run;

The following output shows the results.

Output 4.80 Results That Are Returned by the ROUND and ROUNDE Functions

The SAS System 1

x Rounde Round

0.00 0 0
0.25 0 0
0.50 0 1
0.75 1 1
1.00 1 1
1.25 1 1
1.50 2 2
1.75 2 2
2.00 2 2
2.25 2 2
2.50 2 3
2.75 3 3
3.00 3 3
3.25 3 3
3.50 4 4
3.75 4 4
4.00 4 4

See Also

Functions:
“CEIL Function” on page 568
“CEILZ Function” on page 569
“FLOOR Function” on page 742
“FLOORZ Function” on page 743
“INT Function” on page 812
“INTZ Function” on page 843
“ROUNDE Function” on page 1072
“ROUNDZ Function” on page 1073

1072 ROUNDE Function � Chapter 4

ROUNDE Function

Rounds the first argument to the nearest multiple of the second argument, and returns an even
multiple when the first argument is halfway between the two nearest multiples.

Category: Truncation

Syntax
ROUNDE (argument <,rounding-unit>)

Arguments

argument
is a numeric constant, variable, or expression to be rounded.

rounding-unit
is a positive, numeric constant, variable, or expression that specifies the rounding
unit.

Details
The ROUNDE function rounds the first argument to the nearest multiple of the second
argument. If you omit the second argument, ROUNDE uses a default value of 1 for
rounding-unit.

Comparisons
The ROUNDE function is the same as the ROUND function except when the first
argument is halfway between the two nearest multiples of the second argument,
ROUNDE returns an even multiple. ROUND returns the multiple with the larger
absolute value.

Examples

The following example compares the results that are returned by the ROUNDE
function with the results that are returned by the ROUND function.

options pageno=1 nodate linesize=80 pagesize=60;

data results;
do x=0 to 4 by .25;

Rounde=rounde(x);
Round=round(x);
output;

end;
run;

proc print data=results noobs;
run;

The following output shows the results.

Functions and CALL Routines � ROUNDZ Function 1073

Output 4.81 Results That are Returned by the ROUNDE and ROUND Functions

The SAS System 1

x Rounde Round

0.00 0 0
0.25 0 0
0.50 0 1
0.75 1 1
1.00 1 1
1.25 1 1
1.50 2 2
1.75 2 2
2.00 2 2
2.25 2 2
2.50 2 3
2.75 3 3
3.00 3 3
3.25 3 3
3.50 4 4
3.75 4 4
4.00 4 4

See Also

Function:
“CEIL Function” on page 568
“CEILZ Function” on page 569
“FLOOR Function” on page 742
“FLOORZ Function” on page 743
“INT Function” on page 812
“INTZ Function” on page 843
“ROUND Function” on page 1065
“ROUNDZ Function” on page 1073

ROUNDZ Function

Rounds the first argument to the nearest multiple of the second argument, using zero fuzzing.

Category: Truncation

Syntax
ROUNDZ (argument <,rounding-unit>)

Arguments

argument
is a numeric constant, variable, or expression to be rounded.

1074 ROUNDZ Function � Chapter 4

rounding-unit
is a positive, numeric constant, variable, or expression that specifies the rounding
unit.

Details
The ROUNDZ function rounds the first argument to the nearest multiple of the second
argument. If you omit the second argument, ROUNDZ uses a default value of 1 for
rounding-unit.

Comparisons
The ROUNDZ function is the same as the ROUND function except that:

� ROUNDZ returns an even multiple when the first argument is exactly halfway
between the two nearest multiples of the second argument. ROUND returns the
multiple with the larger absolute value when the first argument is approximately
halfway between the two nearest multiples.

� When the rounding unit is less than one and not the reciprocal of an integer, the
result that is returned by ROUNDZ might not agree exactly with the result from
decimal arithmetic. ROUNDZ does not fuzz the result. ROUND performs extra
computations, called fuzzing, to try to make the result agree with decimal
arithmetic.

Examples

Example 1: Comparing Results from the ROUNDZ and ROUND Functions The following
example compares the results that are returned by the ROUNDZ and the ROUND
function.

options pageno=1 nodate linesize=60 pagesize=60;

data test;
do i=10 to 17;

Value=2.5 - 10**(-i);
Roundz=roundz(value);
Round=round(value);
output;

end;
do i=16 to 12 by -1;

value=2.5 + 10**(-i);
roundz=roundz(value);
round=round(value);
output;

end;
run;

proc print data=test noobs;
format value 19.16;

run;

The following output shows the results.

Functions and CALL Routines � SAVING Function 1075

Output 4.82 Results That Are Returned by the ROUNDZ and ROUND Functions

The SAS System 1

i Value Roundz Round

10 2.4999999999000000 2 2
11 2.4999999999900000 2 2
12 2.4999999999990000 2 3
13 2.4999999999999000 2 3
14 2.4999999999999900 2 3
15 2.4999999999999900 2 3
16 2.5000000000000000 2 3
17 2.5000000000000000 2 3
16 2.5000000000000000 2 3
15 2.5000000000000000 3 3
14 2.5000000000000100 3 3
13 2.5000000000001000 3 3
12 2.5000000000010000 3 3

Example 2: Sample Output from the ROUNDZ Function

These examples show the results that are returned by ROUNDZ.

SAS Statement Results

var1=223.456;
x=roundz(var1,1);
put x 9.5; 223.00000

var2=223.456;
x=roundz(var2,.01);
put x 9.5; 223.46000

x=roundz(223.456,100);
put x 9.5; 200.00000

x=roundz(223.456);
put x 9.5; 223.00000

x=roundz(223.456,.3);
put x 9.5; 223.50000

See Also

Functions:
“ROUND Function” on page 1065
“ROUNDE Function” on page 1072

SAVING Function

Returns the future value of a periodic saving.

Category: Financial

1076 SCAN Function � Chapter 4

Syntax
SAVING(f,p,r,n)

Arguments

f
is numeric, the future amount (at the end of n periods).
Range: f ≥ 0

p
is numeric, the fixed periodic payment.
Range: p ≥ 0

r
is numeric, the periodic interest rate expressed as a decimal.
Range: r ≥ 0

n
is an integer, the number of compounding periods.
Range: n ≥ 0

Details
The SAVING function returns the missing argument in the list of four arguments from
a periodic saving. The arguments are related by

� �
� �� � ��

�
�� � ��� � �

�

�

One missing argument must be provided. It is then calculated from the remaining
three. No adjustment is made to convert the results to round numbers.

Examples

A savings account pays a 5 percent nominal annual interest rate, compounded
monthly. For a monthly deposit of $100, the number of payments that are needed to
accumulate at least $12,000, can be expressed as

number=saving(12000,100,.05/12,.);

The value returned is 97.18 months. The fourth argument is set to missing, which
indicates that the number of payments is to be calculated. The 5 percent nominal
annual rate is converted to a monthly rate of 0.05/12. The rate is the fractional (not the
percentage) interest rate per compounding period.

SCAN Function
Returns the nth word from a character string.

Functions and CALL Routines � SCAN Function 1077

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KSCAN in SAS National Language Support (NLS):
Reference Guide.

Syntax
SCAN(string, count<,charlist <,modifiers>>)

Arguments

string
specifies a character constant, variable, or expression.

count
is a nonzero numeric constant, variable, or expression that has an integer value that
specifies the number of the word in the character string that you want SCAN to
select. For example, a value of 1 indicates the first word, a value of 2 indicates the
second word, and so on. The following rules apply:

� If count is positive, SCAN counts words from left to right in the character string.
� If count is negative, SCAN counts words from right to left in the character

string.

charlist
specifies an optional character expression that initializes a list of characters. This
list determines which characters are used as the delimiters that separate words. The
following rules apply:

� By default, all characters in charlist are used as delimiters.
� If you specify the K modifier in the modifier argument, then all characters that

are not in charlist are used as delimiters.

Tip: You can add more characters to charlist by using other modifiers.

modifier
specifies a character constant, a variable, or an expression in which each non-blank
character modifies the action of the SCAN function. Blanks are ignored. You can use
the following characters as modifiers:

a or A adds alphabetic characters to the list of characters.

b or B scans backward from right to left instead of from left to right,
regardless of the sign of the count argument.

c or C adds control characters to the list of characters.

d or D adds digits to the list of characters.

f or F adds an underscore and English letters (that is, valid first
characters in a SAS variable name using VALIDVARNAME=V7)
to the list of characters.

g or G adds graphic characters to the list of characters. Graphic
characters are characters that, when printed, produce an image
on paper.

h or H adds a horizontal tab to the list of characters.

1078 SCAN Function � Chapter 4

i or I ignores the case of the characters.

k or K causes all characters that are not in the list of characters to be
treated as delimiters. That is, if K is specified, then characters
that are in the list of characters are kept in the returned value
rather than being omitted because they are delimiters. If K is not
specified, then all characters that are in the list of characters are
treated as delimiters.

l or L adds lowercase letters to the list of characters.

m or M specifies that multiple consecutive delimiters, and delimiters at
the beginning or end of the string argument, refer to words that
have a length of zero. If the M modifier is not specified, then
multiple consecutive delimiters are treated as one delimiter, and
delimiters at the beginning or end of the string argument are
ignored.

n or N adds digits, an underscore, and English letters (that is, the
characters that can appear in a SAS variable name using
VALIDVARNAME=V7) to the list of characters.

o or O processes the charlist and modifier arguments only once, rather
than every time the SCAN function is called.

Tip: Using the O modifier in the DATA step (excluding WHERE
clauses), or in the SQL procedure can make SCAN run faster
when you call it in a loop where the charlist and modifier
arguments do not change. The O modifier applies separately to
each instance of the SCAN function in your SAS code, and does
not cause all instances of the SCAN function to use the same
delimiters and modifiers.

p or P adds punctuation marks to the list of characters.

q or Q ignores delimiters that are inside of substrings that are enclosed
in quotation marks. If the value of the string argument contains
unmatched quotation marks, then scanning from left to right will
produce different words than scanning from right to left.

r or R removes leading and trailing blanks from the word that SCAN
returns.

Tip: If you specify both the Q and R modifiers, then the SCAN
function first removes leading and trailing blanks from the
word. Then, if the word begins with a quotation mark, SCAN
also removes one layer of quotation marks from the word.

s or S adds space characters to the list of characters (blank, horizontal
tab, vertical tab, carriage return, line feed, and form feed).

t or T trims trailing blanks from the string and charlist arguments.

Tip: If you want to remove trailing blanks from only one
character argument instead of both character arguments, then
use the TRIM function instead of the SCAN function with the T
modifier.

u or U adds uppercase letters to the list of characters.

w or W adds printable (writable) characters to the list of characters.

x or X adds hexadecimal characters to the list of characters.

Functions and CALL Routines � SCAN Function 1079

Tip: If the modifier argument is a character constant, then enclose it in quotation
marks. Specify multiple modifiers in a single set of quotation marks. A modifier
argument can also be expressed as a character variable or expression.

Details

Definition of “Delimiter” and “Word” A delimiter is any of several characters that are
used to separate words. You can specify the delimiters in the charlist and modifier
arguments.

If you specify the Q modifier, then delimiters inside of substrings that are enclosed in
quotation marks are ignored.

In the SCAN function, “word” refers to a substring that has all of the following
characteristics:

� is bounded on the left by a delimiter or the beginning of the string

� is bounded on the right by a delimiter or the end of the string

� contains no delimiters

A word can have a length of zero if there are delimiters at the beginning or end of the
string, or if the string contains two or more consecutive delimiters. However, the SCAN
function ignores words that have a length of zero unless you specify the M modifier.

Note: The definition of “word” is the same in both the SCAN and COUNTW
functions. �

Using Default Delimiters in ASCII and EBCDIC Environments If you use the SCAN
function with only two arguments, then the default delimiters depend on whether your
computer uses ASCII or EBCDIC characters.

� If your computer uses ASCII characters, then the default delimiters are as follows:

blank ! $ % & ()* + , - . / ; < ^

In ASCII environments that do not contain the ^ character, the SCAN function
uses the ~ character instead.

� If your computer uses EBCDIC characters, then the default delimiters are as
follows:

blank ! $ % & ()* + , - . / ; < | ¢

If you use the modifier argument without specifying any characters as delimiters,
then the only delimiters that will be used are delimiters that are defined by the
modifier argument. In this case, the lists of default delimiters for ASCII and EBCDIC
environments are not used. In other words, modifiers add to the list of delimiters that
are explicitly specified by the charlist argument. Modifiers do not add to the list of
default modifiers.

The Length of the Result In a DATA step, most variables have a fixed length. If the
word returned by the SCAN function is assigned to a variable that has a fixed length
greater than the length of the returned word, then the value of that variable will be
padded with blanks. Macro variables have varying lengths and are not padded with
blanks.

The maximum length of the word that is returned by the SCAN function depends on
the environment from which it is called:

� In a DATA step, if the SCAN function returns a value to a variable that has not
yet been given a length, then that variable is given a length of 200 characters. If
you need the SCAN function to assign to a variable a word that is longer than 200
characters, then you should explicitly specify the length of that variable.

1080 SCAN Function � Chapter 4

If you use the SCAN function in an expression that contains operators or other
functions, a word that is returned by the SCAN function can have a length of up to
32,767 characters, except in a WHERE clause. In that case, the maximum length
is 200 characters.

� In the SQL procedure, or in a WHERE clause in any procedure, the maximum
length of a word that is returned by the SCAN function is 200 characters.

� In the macro processor, the maximum length of a word that is returned by the
SCAN function is 65,534 characters.

The minimum length of the word that is returned by the SCAN function depends on
whether the M modifier is specified, as described in “Using the SCAN Function with the
M Modifier” on page 1080, and “Using the SCAN Function without the M Modifier” on
page 1080.

Using the SCAN Function with the M Modifier If you specify the M modifier, then the
number of words in a string is defined as one plus the number of delimiters in the
string. However, if you specify the Q modifier, delimiters that are inside quotation
marks are ignored.

If you specify the M modifier, then the SCAN function returns a word with a length
of zero if one of the following conditions is true:

� The string begins with a delimiter and you request the first word.
� The string ends with a delimiter and you request the last word.
� The string contains two consecutive delimiters and you request the word that is

between the two delimiters.

Using the SCAN Function without the M Modifier If you do not specify the M modifier,
then the number of words in a string is defined as the number of maximal substrings of
consecutive non-delimiters. However, if you specify the Q modifier, delimiters that are
inside quotation marks are ignored.

If you do not specify the M modifier, then the SCAN function does the following:
� ignores delimiters at the beginning or end of the string
� treats two or more consecutive delimiters as if they were a single delimiter

If the string contains no characters other than delimiters, or if you specify a count
that is greater in absolute value than the number of words in the string, then the
SCAN function returns one of the following:

� a single blank when you call the SCAN function from a DATA step
� a string with a length of zero when you call the SCAN function from the macro

processor

Using Null Arguments The SCAN function allows character arguments to be null.
Null arguments are treated as character strings with a length of zero. Numeric
arguments cannot be null.

Examples

Example 1: Finding the First and Last Words in a String The following example scans
a string for the first and last words. Note the following:

� A negative count instructs the SCAN function to scan from right to left.
� Leading and trailing delimiters are ignored because the M modifier is not used.
� In the last observation, all characters in the string are delimiters.

options pageno=1 nodate ls=80 ps=64;

Functions and CALL Routines � SCAN Function 1081

data firstlast;
input String $60.;
First_Word = scan(string, 1);
Last_Word = scan(string, -1);
datalines4;

Jack and Jill
& Bob & Carol & Ted & Alice &
Leonardo
! $ % & () * + , - . / ;
;;;;

proc print data=firstlast;
run;

Output 4.83 Results of Finding the First and Last Words in a String

The SAS System 1

First_ Last_
Obs String Word Word

1 Jack and Jill Jack Jill
2 & Bob & Carol & Ted & ALice & Bob Alice
3 Leonardo Leonardo Leonardo
4 ! $ % & () * + , - . / ;

Example 2: Finding All Words in a String without Using the M Modifier The following
example scans a string from left to right until the word that is returned is blank.
Because the M modifier is not used, the SCAN function does not return any words that
have a length of zero. Because blanks are included among the default delimiters, the
SCAN function returns a blank word only when the count exceeds the number of words
in the string. Therefore, the loop can be stopped when SCAN returns a blank word.

options pageno=1 nodate ls=80 ps=64;

data all;
length word $20;
drop string;
string = ’ The quick brown fox jumps over the lazy dog. ’;
do until(word=’ ’);

count+1;
word = scan(string, count);
output;

end;
run;

proc print data=all noobs;
run;

1082 SCAN Function � Chapter 4

Output 4.84 Results of Finding All Words without Using the M Modifier

The SAS System 1

word count

The 1
quick 2
brown 3
fox 4
jumps 5
over 6
the 7
lazy 8
dog 9

10

Example 3: Finding All Words in a String by Using the M and O Modifiers The
following example shows the results of using the M modifier with a comma as a
delimiter. With the M modifier, leading, trailing, and multiple consecutive delimiters
cause the SCAN function to return words that have a length of zero. Therefore, you
should not end the loop by testing for a blank word. Instead, you can use the COUNTW
function with the same modifiers and delimiters to count the words in the string.

The O modifier is used for efficiency because the delimiters and modifiers are the
same in every call to the SCAN and COUNTW functions.

options pageno=1 nodate ls=80 ps=64;

data comma;
keep count word;
length word $30;
string = ’,leading, trailing,and multiple,,delimiters,,’;
delim = ’,’;
modif = ’mo’;
nwords = countw(string, delim, modif);
do count = 1 to nwords;

word = scan(string, count, delim, modif);
output;

end;
run;

proc print data=comma noobs;
run;

Functions and CALL Routines � SCAN Function 1083

Output 4.85 Results of Finding All Words by Using the M and O Modifiers

The SAS System 1

word count

1
leading 2

trailing 3
and multiple 4

5
delimiters 6

7
8

Example 4: Using Comma-Separated Values, Substrings in Quotation Marks, and the O
and R Modifiers The following example uses the SCAN function with the O modifier
and a comma as a delimiter, both with and without the R modifier.

The O modifier is used for efficiency because in each call of the SCAN or COUNTW
function, the delimiters and modifiers do not change. The O modifier applies separately
to each of the two instances of the SCAN function:

� The first instance of the SCAN function uses the same delimiters and modifiers
every time SCAN is called. Consequently, you can use the O modifier for this
instance.

� The second instance of the SCAN function uses the same delimiters and modifiers
every time SCAN is called. Consequently, you can use the O modifier for this
instance.

� The first instance of the SCAN function does not use the same modifiers as the
second instance, but this fact has no bearing on the use of the O modifier.

options pageno=1 nodate ls=80 ps=64;

data test;
keep count word word_r;
length word word_r $30;
string = ’He said, "She said, ""No!""", not "Yes!"’;
delim = ’,’;
modif = ’oq’;
nwords = countw(string, delim, modif);
do count = 1 to nwords;

word = scan(string, count, delim, modif);
word_r = scan(string, count, delim, modif||’r’);
output;

end;
run;

proc print data=test noobs;
run;

1084 SCAN Function � Chapter 4

Output 4.86 Results of Comma-Separated Values and Substrings in Quotation Marks

The SAS System 1

word word_r count

He said He said 1
"She said, ""No!""" She said, "No!" 2
not "Yes!" not "Yes!" 3

Example 5: Finding Substrings of Digits by Using the D and K Modifiers The following
example finds substrings of digits. The charlist argument is null. Consequently, the list
of characters is initially empty. The D modifier adds digits to the list of characters. The
K modifier treats all characters that are not in the list as delimiters. Therefore, all
characters except digits are delimiters.

options pageno=1 nodate ls=80 ps=64;

data digits;
keep count digits;
length digits $20;
string = ’Call (800) 555--1234 now!’;
do until(digits = ’ ’);

count+1;
digits = scan(string, count, , ’dko’);
output;

end;
run;

proc print data=digits noobs;
run;

Output 4.87 Results of Finding Substrings of Digits by Using the D and K Modifiers

The SAS System 1

digits count

800 1
555 2
1234 3

4

See Also

Functions and CALL routines:

“CALL SCAN Routine” on page 513

“COUNTW Function” on page 614

“FINDW Function” on page 729

Functions and CALL Routines � SDF Function 1085

SDF Function

Returns a survival function.

Category: Probability
See: “CDF Function” on page 554

Syntax
SDF(dist, quantile, parm-1,...,parm-k)

Arguments

dist
is a character string that identifies the distribution. Valid distributions are as follows:

Distribution Argument

Bernoulli BERNOULLI

Beta BETA

Binomial BINOMIAL

Cauchy CAUCHY

Chi-Square CHISQUARE

Exponential EXPONENTIAL

F F

Gamma GAMMA

Geometric GEOMETRIC

Hypergeometric HYPERGEOMETRIC

Laplace LAPLACE

Logistic LOGISTIC

Lognormal LOGNORMAL

Negative binomial NEGBINOMIAL

Normal NORMAL|GAUSS

Normal mixture NORMALMIX

Pareto PARETO

Poisson POISSON

T T

Uniform UNIFORM

Wald (inverse Gaussian) WALD|IGAUSS

Weibull WEIBULL

1086 SDF Function � Chapter 4

Note: Except for T, F, and NORMALMIX, you can minimally identify any
distribution by its first four characters. �

quantile
is a numeric constant, variable or expression that specifies the value of a random
variable.

parm-1,...,parm-k
are optional shape, location, or scale parameters appropriate for the specific
distribution.

The SDF function computes the survival function (upper tail) from various
continuous and discrete distributions. For more information, see the on page 555.

Examples

SAS Statements Results

y=sdf(’BERN’,0,.25); 0.25

y=sdf(’BETA’,0.2,3,4); 0.09011

y=sdf(’BINOM’,4,.5,10); 0.62305

y=sdf(’CAUCHY’,2); 0.14758

y=sdf(’CHISQ’,11.264,11); 0.42142

y=sdf(’EXPO’,1); 0.36788

y=sdf(’F’,3.32,2,3); 0.17361

y=sdf(’GAMMA’,1,3); 0.91970

y=sdf(’HYPER’,2,200,50,10); 0.47633

y=sdf(’LAPLACE’,1); 0.18394

y=sdf(’LOGISTIC’,1); 0.26894

y=sdf(’LOGNORMAL’,1); 0.5

y=sdf(’NEGB’,1,.5,2); 0.5

y=sdf(’NORMAL’,1.96); 0.025

y=pdf(’NORMALMIX’,2.3,3,.33,.33,.34,
.5,1.5,2.5,.79,1.6,4.3); 0.2819

y=sdf(’PARETO’,1,1); 1

y=sdf(’POISSON’,2,1); 0.08030

y=sdf(’T’,.9,5); 0.20469

y=sdf(’UNIFORM’,0.25); 0.75

y=sdf(’WALD’,1,2); 0.37230

y=sdf(’WEIBULL’,1,2); 0.36788

See Also

Functions:

Functions and CALL Routines � SECOND Function 1087

“LOGCDF Function” on page 886

“LOGPDF Function” on page 888

“LOGSDF Function” on page 889

“PDF Function” on page 961

“CDF Function” on page 554

“QUANTILE Function” on page 1033

SECOND Function

Returns the second from a SAS time or datetime value.

Category: Date and Time

Syntax
SECOND(time | datetime)

Arguments

time
is a numeric constant, variable, or expression with a value that represents a SAS
time value.

datetime
is a numeric constant, variable, or expression with a value that represents a SAS
datetime value.

Details
The SECOND function produces a numeric value that represents a specific second of
the minute. The result can be any number that is >= 0 and < 60.

Examples

SAS Statements Results

time=’3:19:24’t;
s=second(time);
put s; 24

time=’6:25:65’t;
s=second(time);
put s; 5

time=’3:19:60’t;
s=second(time);
put s; 0

1088 SIGN Function � Chapter 4

See Also

Functions:
“HOUR Function” on page 791
“MINUTE Function” on page 905

SIGN Function

Returns the sign of a value.

Category: Mathematical

Syntax
SIGN(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The SIGN function returns the following values:

-1 if argument < 0

0 if argument = 0

1 if argument > 0.

Examples

SAS Statements Results

x=sign(-5); -1

x=sign(5); 1

x=sign(0); 0

SIN Function

Returns the sine.

Functions and CALL Routines � SINH Function 1089

Category: Trigonometric

Syntax
SIN(argument)

Arguments

argument
specifies a numeric constant, variable, or expression and is expressed in radians. If
the magnitude of argument is so great that mod(argument,pi) is accurate to less
than about three decimal places, SIN returns a missing value.

Examples

SAS Statements Results

x=sin(0.5); 0.4794255386

x=sin(0); 0

x=sin(3.14159/4); .7071063121

SINH Function

Returns the hyperbolic sine.

Category: Hyperbolic

Syntax
SINH(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The SINH function returns the hyperbolic sine of the argument, which is given by

�
�
��������

� �
���������

�
��

1090 SKEWNESS Function � Chapter 4

Examples

SAS Statements Results

x=sinh(0); 0

x=sinh(1); 1.1752011936

x=sinh(-1.0); -1.175201194

SKEWNESS Function

Returns the skewness of the nonmissing arguments.

Category: Descriptive Statistics

Syntax

SKEWNESS(argument-1,argument-2,argument-3<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details

At least three non-missing arguments are required. Otherwise, the function returns a
missing value. If all non-missing arguments have equal values, the skewness is
mathematically undefined. The SKEWNESS function returns a missing value and sets
ERROR equal to 1.

The argument list can consist of a variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=skewness(0,1,1); -1.732050808

x2=skewness(2,4,6,3,1); 0.5901286564

x3=skewness(2,0,0); 1.7320508076

x4=skewness(of x1-x3); -0.953097714

Functions and CALL Routines � SLEEP Function 1091

SLEEP Function

For a specified period of time, suspends the execution of a program that invokes this function.

Category: Special
See: SLEEP Function in the documentation for your operating environment.

Syntax
SLEEP(n<, unit>)

Arguments

n
is a numeric constant, variable, or expression that specifies the number of units of
time for which you want to suspend execution of a program.
Range: n ≥ 0

unit
is a numeric constant, variable, or expression that specifies the unit of time, as a
power of 10, which is applied to n. For example, 1 corresponds to a second, and .001
to a millisecond.
Default: 1 in a Windows PC environment, .001 in other environments

Details
The SLEEP function suspends the execution of a program that invokes this function for
a period of time that you specify. The program can be a DATA step, macro, IML, SCL,
or anything that can invoke a function. The maximum sleep period for the SLEEP
function is 46 days.

Examples

Example 1: Suspending Execution for a Specified Period of Time The following
example tells SAS to delay the execution of the DATA step PAYROLL for 20 seconds:

data payroll;
time_slept=sleep(20,1);
...more SAS statements...

run;

Example 2: Suspending Execution Based on a Calculation of Sleep Time The following
example tells SAS to suspend the execution of the DATA step BUDGET until March 1,
2006, at 3:00 AM. SAS calculates the length of the suspension based on the target date
and the date and time that the DATA step begins to execute.

data budget;
sleeptime=’01mar2006:03:00’dt-datetime();
time_calc=sleep(sleeptime,1);
...more SAS statements...;

run;

1092 SMALLEST Function � Chapter 4

See Also

CALL routine
“CALL SLEEP Routine” on page 523

SMALLEST Function

Returns the kth smallest nonmissing value.

Category: Descriptive Statistics

Syntax
SMALLEST (k, value-1<, value-2 ...>)

Arguments

k
is a numeric constant, variable, or expression that specifies which value to return.

value
specifies a numeric constant, variable, or expression.

Details
If k is missing, less than zero, or greater than the number of values, the result is a
missing value and _ERROR_ is set to 1. Otherwise, if k is greater than the number of
non-missing values, the result is a missing value but _ERROR_ is not set to 1.

Comparisons
The SMALLEST function differs from the ORDINAL function in that the SMALLEST
function ignores missing values, but the ORDINAL function counts missing values.

Examples

This example compares the values that are returned by the SMALLEST function
with values that are returned by the ORDINAL function.

options pageno=1 nodate linesize=80 pagesize=60;

data comparison;
label smallest_num=’SMALLEST Function’ ordinal_num=’ORDINAL Function’;
do k = 1 to 4;

smallest_num = smallest(k, 456, 789, .Q, 123);
ordinal_num = ordinal (k, 456, 789, .Q, 123);
output;

end;
run;

Functions and CALL Routines � SOUNDEX Function 1093

proc print data=comparison label noobs;
var k smallest_num ordinal_num;
title ’Results From the SMALLEST and the ORDINAL Functions’;

run;

Output 4.88 Comparison of Values: The SMALLEST and the ORDINAL Functions

Results From the SMALLEST and the ORDINAL Functions 1

SMALLEST ORDINAL
k Function Function

1 123 Q
2 456 123
3 789 456
4 . 789

See Also

Functions:
“LARGEST Function” on page 858
“ORDINAL Function” on page 957
“PCTL Function” on page 960

SOUNDEX Function

Encodes a string to facilitate searching.

Category: Character
Restriction: SOUNDEX algorithm is English-biased.
Restriction: “I18N Level 0” on page 312

Syntax
SOUNDEX(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the SOUNDEX function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

1094 SPEDIS Function � Chapter 4

The Basics The SOUNDEX function encodes a character string according to an
algorithm that was originally developed by Margaret K. Odell and Robert C. Russel (US
Patents 1261167 (1918) and 1435663 (1922)). The algorithm is described in Knuth, The
Art of Computer Programming, Volume 3. (See “References” on page 1213.) Note that
the SOUNDEX algorithm is English-biased and is less useful for languages other than
English.

The SOUNDEX function returns a copy of the argument that is encoded by using the
following steps:

1 Retain the first letter in the argument and discard the following letters:

A E H I O U W Y

2 Assign the following numbers to these classes of letters:

1: B F P V

2: C G J K Q S X Z

3: D T

4: L

5: M N

6: R

3 If two or more adjacent letters have the same classification from Step 2, then
discard all but the first. (Adjacent refers to the position in the word before
discarding letters.)

The algorithm that is described in Knuth adds trailing zeros and truncates the result
to the length of 4. You can perform these operations with other SAS functions.

Examples

SAS Statements Results

x=soundex(’Paul’);
put x; P4

word=’amnesty’;
x=soundex(word);
put x; A523

SPEDIS Function

Determines the likelihood of two words matching, expressed as the asymmetric spelling distance
between the two words.

Category: Character

Restriction: “I18N Level 0” on page 312

Syntax
SPEDIS(query,keyword)

Functions and CALL Routines � SPEDIS Function 1095

Arguments

query
identifies the word to query for the likelihood of a match. SPEDIS removes trailing
blanks before comparing the value.

keyword
specifies a target word for the query. SPEDIS removes trailing blanks before
comparing the value.

Details

Length of Returned Variable In a DATA step, if the SPEDIS function returns a value
to a variable that has not previously been assigned a length, then that variable is given
a length of 200 bytes.

The Basics SPEDIS returns the distance between the query and a keyword, a
nonnegative value that is usually less than 100 but never greater than 200 with the
default costs.

SPEDIS computes an asymmetric spelling distance between two words as the
normalized cost for converting the keyword to the query word by using a sequence of
operations. SPEDIS(QUERY, KEYWORD) is not the same as SPEDIS(KEYWORD,
QUERY).

Costs for each operation that is required to convert the keyword to the query are
listed in the following table:

Operation Cost Explanation

match 0 no change

singlet 25 delete one of a double letter

doublet 50 double a letter

swap 50 reverse the order of two consecutive letters

truncate 50 delete a letter from the end

append 35 add a letter to the end

delete 50 delete a letter from the middle

insert 100 insert a letter in the middle

replace 100 replace a letter in the middle

firstdel 100 delete the first letter

firstins 200 insert a letter at the beginning

firstrep 200 replace the first letter

The distance is the sum of the costs divided by the length of the query. If this ratio is
greater than one, the result is rounded down to the nearest whole number.

Comparisons
The SPEDIS function is similar to the COMPLEV and COMPGED functions, but
COMPLEV and COMPGED are much faster, especially for long strings.

1096 SPEDIS Function � Chapter 4

Examples

options nodate pageno=1 linesize=64;

data words;
input Operation $ Query $ Keyword $;
Distance = spedis(query,keyword);
Cost = distance * length(query);
datalines;

match fuzzy fuzzy
singlet fuzy fuzzy
doublet fuuzzy fuzzy
swap fzuzy fuzzy
truncate fuzz fuzzy
append fuzzys fuzzy
delete fzzy fuzzy
insert fluzzy fuzzy
replace fizzy fuzzy
firstdel uzzy fuzzy
firstins pfuzzy fuzzy
firstrep wuzzy fuzzy
several floozy fuzzy
;

proc print data = words;
run;

The output from the DATA step is as follows.

Output 4.89 Costs for SPEDIS Operations

The SAS System 1

Obs Operation Query Keyword Distance Cost

1 match fuzzy fuzzy 0 0
2 singlet fuzy fuzzy 6 24
3 doublet fuuzzy fuzzy 8 48
4 swap fzuzy fuzzy 10 50
5 truncate fuzz fuzzy 12 48
6 append fuzzys fuzzy 5 30
7 delete fzzy fuzzy 12 48
8 insert fluzzy fuzzy 16 96
9 replace fizzy fuzzy 20 100
10 firstdel uzzy fuzzy 25 100
11 firstins pfuzzy fuzzy 33 198
12 firstrep wuzzy fuzzy 40 200
13 several floozy fuzzy 50 300

See Also

Functions:

“COMPLEV Function” on page 595

“COMPGED Function” on page 590

Functions and CALL Routines � STD Function 1097

SQRT Function

Returns the square root of a value.

Category: Mathematical

Syntax
SQRT(argument)

Arguments

argument
specifies a numeric constant, variable, or expression. Argument must be nonnegative.

Examples

SAS Statements Results

x=sqrt(36); 6

x=sqrt(25); 5

x=sqrt(4.4); 2.0976176963

STD Function

Returns the standard deviation of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
STD(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two nonmissing
arguments are required. Otherwise, the function returns a missing value. The
argument list can consist of a variable list, which is preceded by OF.

1098 STDERR Function � Chapter 4

Examples

SAS Statements Results

x1=std(2,6); 2.8284271247

x2=std(2,6,.); 2.8284271427

x3=std(2,4,6,3,1); 1.9235384062

x4=std(of x1-x3); 0.5224377453

STDERR Function

Returns the standard error of the mean of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
STDERR(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two nonmissing
arguments are required. Otherwise, the function returns a missing value. The
argument list can consist of a variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=stderr(2,6); 2

x2=stderr(2,6,.); 2

x3=stderr(2,4,6,3,1); 0.8602325267

x4=stderr(of x1-x3); 0.3799224911

STFIPS Function

Converts state postal codes to FIPS state codes.

Functions and CALL Routines � STFIPS Function 1099

Category: State and ZIP Code

Syntax
STFIPS(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
The STFIPS function converts a two-character state postal code (or world-wide GSA
geographic code for U.S. territories) to the corresponding numeric U.S. Federal
Information Processing Standards (FIPS) code.

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing
Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Examples

The examples show the differences when using STFIPS, STNAME, and STNAMEL.

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME Function” on page 737
“FIPNAMEL Function” on page 738
“FIPSTATE Function” on page 739
“STNAME Function” on page 1100,
“STNAMEL Function” on page 1101

1100 STNAME Function � Chapter 4

STNAME Function

Converts state postal codes to uppercase state names.

Category: State and ZIP Code

Syntax
STNAME(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
The STNAME function converts a two-character state postal code (or world-wide GSA
geographic code for U.S. territories) to the corresponding state name in uppercase.

Note: For Version 6, the maximum length of the value that is returned is 200
characters. For Version 7 and beyond, the maximum length is 20 characters. �

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing
Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Examples

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME Function” on page 737

Functions and CALL Routines � STNAMEL Function 1101

“FIPNAMEL Function” on page 738
“FIPSTATE Function” on page 739
“STFIPS Function” on page 1098
“STNAMEL Function” on page 1101

STNAMEL Function

Converts state postal codes to mixed case state names.

Category: State and ZIP Code

Syntax
STNAMEL(postal-code)

Arguments

postal-code
specifies a character expression that contains the two-character standard state postal
code. Characters can be mixed case. The function ignores trailing blanks, but
generates an error if the expression contains leading blanks.

Details
If the STNAMEL function returns a value to a variable that has not yet been assigned
a length, by default the variable is assigned a length of 20.

The STNAMEL function converts a two-character state postal code (or world-wide
GSA geographic code for U.S. territories) to the corresponding state name in mixed case.

Note: For Version 6, the maximum length of the value that is returned is 200
characters. For Version 7 and beyond, the maximum length is 20 characters. �

Comparisons
The STFIPS, STNAME, and STNAMEL functions take the same argument but return
different values. STFIPS returns a numeric U.S. Federal Information Processing
Standards (FIPS) code. STNAME returns an uppercase state name. STNAMEL returns
a mixed case state name.

Examples

The examples show the differences when using STFIPS, STNAME, and STNAMEL.

1102 STRIP Function � Chapter 4

SAS Statements Results

fips=stfips (’NC’);
put fips; 37

state=stname(’NC’);
put state; NORTH CAROLINA

state=stnamel(’NC’);
put state; North Carolina

See Also

Functions:
“FIPNAME Function” on page 737
“FIPNAMEL Function” on page 738
“FIPSTATE Function” on page 739
“STFIPS Function” on page 1098

STRIP Function

Returns a character string with all leading and trailing blanks removed.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
STRIP(string)

Arguments

string
is a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the STRIP function returns a value to
a variable that has not previously been assigned a length, then that variable is given
the length of the argument.

The Basics The STRIP function returns the argument with all leading and trailing
blanks removed. If the argument is blank, STRIP returns a string with a length of zero.

Assigning the results of STRIP to a variable does not affect the length of the
receiving variable. If the value that is trimmed is shorter than the length of the
receiving variable, SAS pads the value with new trailing blanks.

Functions and CALL Routines � STRIP Function 1103

Note: The STRIP function is useful for concatenation because the concatenation
operator does not remove leading or trailing blanks. �

Comparisons
The following list compares the STRIP function with the TRIM and TRIMN functions:

� For strings that are blank, the STRIP and TRIMN functions return a string with a
length of zero, whereas the TRIM function returns a single blank.

� For strings that lack leading blanks, the STRIP and TRIMN functions return the
same value.

� For strings that lack leading blanks but have at least one non-blank character, the
STRIP and TRIM functions return the same value.

Note: STRIP(string) returns the same result as TRIMN(LEFT(string)), but the
STRIP function runs faster. �

Examples

The following example shows the results of using the STRIP function to delete
leading and trailing blanks.

options pageno=1 nodate ls=80 ps=60;

data lengthn;
input string $char8.;
original = ’*’ || string || ’*’;
stripped = ’*’ || strip(string) || ’*’;
datalines;

abcd
abcd

abcd
abcdefgh
x y z
;

proc print data=lengthn;
run;

Output 4.90 Results from the STRIP Function

The SAS System 1

Obs string original stripped

1 abcd *abcd * *abcd*
2 abcd * abcd * *abcd*
3 abcd * abcd* *abcd*
4 abcdefgh *abcdefgh* *abcdefgh*
5 x y z * x y z * *x y z*

See Also

Functions:

1104 SUBPAD Function � Chapter 4

“CAT Function” on page 540
“CATS Function” on page 547
“CATT Function” on page 549

“CATX Function” on page 551
“LEFT Function” on page 862
“TRIM Function” on page 1135

“TRIMN Function” on page 1137

SUBPAD Function

Returns a substring that has a length you specify, using blank padding if necessary.

Category: Character
Restriction: “I18N Level 1” on page 312

Syntax
SUBPAD(string, position <, length>)

Arguments

string
specifies a character constant, variable, or expression.

position
is a positive integer that specifies the position of the first character in the substring.

length
is a non-negative integer that specifies the length of the substring. If you do not
specify length, the SUBPAD function returns the substring that extends from the
position that you specify to the end of the string.

Details
In a DATA step, if the SUBPAD function returns a value to a variable that has not
previously been assigned a length, then that variable is given a length of 200 bytes.

If the substring that you specify extends beyond the length of the string, the result is
padded with blanks.

Comparisons
The SUBPAD function is similar to the SUBSTR function except for the following
differences:

� If the value of length in SUBPAD is zero, SUBPAD returns a zero-length string. If
the value of length in SUBSTR is zero, SUBSTR

� writes a note to the log stating that the third argument is invalid
� sets _ERROR_=1

Functions and CALL Routines � SUBSTR (left of =) Function 1105

� returns the substring that extends from the position that you specified to the
end of the string.

� If the substring that you specify extends past the end of the string, SUBPAD pads
the result with blanks to yield the length that you requested. If the substring that
you specify extends past the end of the string, SUBSTR

� writes a note to the log stating that the third argument is invalid
� sets _ERROR_=1
� returns the substring that extends from the position that you specified to the

end of the string.

See Also

Function:
“SUBSTRN Function” on page 1107

SUBSTR (left of =) Function

Replaces character value contents.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent functions are KSUBSTR and KSUBSTRB in SAS National
Language Support (NLS): Reference Guide.

Syntax
SUBSTR(variable, position<,length>)=characters-to-replace

Arguments

variable
specifies a character variable.

position
specifies a numeric constant, variable, or expression that is the beginning character
position.

length
specifies a numeric constant, variable, or expression that is the length of the
substring that will be replaced.
Restriction: length cannot be larger than the length of the expression that remains

in variable after position.
Tip: If you omit length, SAS uses all of the characters on the right side of the

assignment statement to replace the values of variable.

characters-to-replace
specifies a character constant, variable, or expression that will replace the contents of
variable.

1106 SUBSTR (right of =) Function � Chapter 4

Tip: Enclose a literal string of characters in quotation marks.

Details
If you use an undeclared variable, it will be assigned a default length of 8 when the
SUBSTR function is compiled.

When you use the SUBSTR function on the left side of an assignment statement,
SAS replaces the value of variable with the expression on the right side. SUBSTR
replaces length characters starting at the character that you specify in position.

Examples

SAS Statements Results

a=’KIDNAP’;
substr(a,1,3)=’CAT’;
put a; CATNAP

b=a;
substr(b,4)=’TY’;
put b; CATTY

See Also

Function:
“SUBSTR (right of =) Function” on page 1106

SUBSTR (right of =) Function

Extracts a substring from an argument.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent functions are KSUBSTR and KSUBSTRB in SAS National
Language Support (NLS): Reference Guide.

Syntax
<variable=>SUBSTR(string, position<,length>)

Arguments

variable
specifies a valid SAS variable name.

string

Functions and CALL Routines � SUBSTRN Function 1107

specifies a character constant, variable, or expression.

position
specifies a numeric constant, variable, or expression that is the beginning character
position.

length
specifies a numeric constant, variable, or expression that is the length of the
substring to extract.

Interaction: If length is zero, a negative value, or larger than the length of the
expression that remains in string after position, SAS extracts the remainder of the
expression. SAS also sets _ERROR_ to 1 and prints a note to the log indicating
that the length argument is invalid.

Tip: If you omit length, SAS extracts the remainder of the expression.

Details
In a DATA step, if the SUBSTR (right of =) function returns a value to a variable that
has not previously been assigned a length, then that variable is given the length of the
first argument.

The SUBSTR function returns a portion of an expression that you specify in string.
The portion begins with the character that you specify by position, and is the number of
characters that you specify in length.

Examples

SAS Statements Results

----+----1----+----2

date=’06MAY98’;
month=substr(date,3,3);
year=substr(date,6,2);
put @1 month @5 year; MAY 98

See Also

Functions:

“SUBPAD Function” on page 1104

“SUBSTR (left of =) Function” on page 1105

“SUBSTRN Function” on page 1107

SUBSTRN Function

Returns a substring, allowing a result with a length of zero.

Category: Character

Restriction: “I18N Level 1” on page 312

1108 SUBSTRN Function � Chapter 4

Tip: KSUBSTR in SAS National Language Support (NLS): Reference Guide has the
same functionality.

Syntax

SUBSTRN(string, position <, length>)

Arguments

string
specifies a character or numeric constant, variable, or expression.

If string is numeric, then it is converted to a character value that uses the
BEST32. format. Leading and trailing blanks are removed, and no message is sent
to the SAS log.

position
is an integer that specifies the position of the first character in the substring.

length
is an integer that specifies the length of the substring. If you do not specify length,
the SUBSTRN function returns the substring that extends from the position that you
specify to the end of the string.

Details

Length of Returned Variable In a DATA step, if the SUBSTRN function returns a
value to a variable that has not previously been assigned a length, then that variable is
given the length of the first argument.

The Basics The following information applies to the SUBSTRN function:

� The SUBSTRN function returns a string with a length of zero if either position or
length has a missing value.

� If the position that you specify is non-positive, the result is truncated at the
beginning, so that the first character of the result is the first character of the
string. The length of the result is reduced accordingly.

� If the length that you specify extends beyond the end of the string, the result is
truncated at the end, so that the last character of the result is the last character of
the string.

Using the SUBSTRN Function in a Macro If you call SUBSTRN by using the
%SYSFUNC macro, then the macro processor resolves the first argument (string) to
determine whether the argument is character or numeric. If you do not want the first
argument to be evaluated as a macro expression, use one of the macro-quoting functions
in the first argument.

Comparisons

The following table lists comparisons between the SUBSTRN and the SUBSTR
functions:

Functions and CALL Routines � SUBSTRN Function 1109

Table 4.6 Comparisons between SUBSTRN and SUBSTR

Condition Function Result

the value of position is
nonpositive

SUBSTRN returns a result beginning at the first
character of the string.

the value of position is
nonpositive

SUBSTR � writes a note to the log stating
that the second argument is
invalid.

� sets _ERROR_ =1.

� returns the substring that
extends from the position that
you specified to the end of the
string.

the value of length is
nonpositive

SUBSTRN returns a result with a length of zero.

the value of length is
nonpositive

SUBSTR � writes a note to the log stating
that the third argument is
invalid.

� sets _ERROR_ =1.

� returns the substring that
extends from the position that
you specified to the end of the
string.

the substring that you
specify extends past the end
of the string

SUBSTRN truncates the result.

the substring that you
specify extends past the end
of the string

SUBSTR � writes a note to the log stating
that the third argument is
invalid.

� sets _ERROR_=1.

� returns the substring that
extends from the position that
you specified to the end of the
string.

Examples

Example 1: Manipulating Strings with the SUBSTRN Function The following example
shows how to manipulate strings with the SUBSTRN function.

options pageno=1 nodate ls=80 ps=60;

data test;
retain string "abcd";
drop string;
do Position = -1 to 6;

do Length = max(-1,-position) to 7-position;
Result = substrn(string, position, length);
output;

1110 SUBSTRN Function � Chapter 4

end;
end;
datalines;

abcd
;

proc print noobs data=test;
run;

Output 4.91 Output from the SUBSTRN Function

The SAS System 1

Position Length Result

-1 1
-1 2
-1 3 a
-1 4 ab
-1 5 abc
-1 6 abcd
-1 7 abcd
-1 8 abcd
0 0
0 1
0 2 a
0 3 ab
0 4 abc
0 5 abcd
0 6 abcd
0 7 abcd
1 -1
1 0
1 1 a
1 2 ab
1 3 abc
1 4 abcd
1 5 abcd
1 6 abcd
2 -1
2 0
2 1 b
2 2 bc
2 3 bcd
2 4 bcd
2 5 bcd
3 -1
3 0
3 1 c
3 2 cd
3 3 cd
3 4 cd
4 -1
4 0
4 1 d
4 2 d
4 3 d
5 -1
5 0
5 1
5 2
6 -1
6 0
6 1

Functions and CALL Routines � SUM Function 1111

Example 2: Comparison between the SUBSTR and SUBSTRN Functions The following
example compares the results of using the SUBSTR function and the SUBSTRN
function when the first argument is numeric.

data _null_;
substr_result = "*" || substr(1234.5678,2,6) || "*";
put substr_result=;
substrn_result = "*" || substrn(1234.5678,2,6) || "*";
put substrn_result=;

run;

Output 4.92 Results from the SUBSTR and SUBSTRN Functions

substr_result=* 1234*
substrn_result=*234.56*

See Also

Functions:

“SUBPAD Function” on page 1104

“SUBSTR (left of =) Function” on page 1105

“SUBSTR (right of =) Function” on page 1106

SUM Function

Returns the sum of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
SUM(argument,argument, ...)

Arguments

argument
specifies a numeric constant, variable, or expression. If all the arguments have
missing values, then one of the following occurs:

� If you use only one argument, then the value of that argument is returned.

� If you use two or more arguments, then a standard missing value (.) is returned.

Otherwise, the result is the sum of the nonmissing values. The argument list can
consist of a variable list, which is preceded by OF.

1112 SUMABS Function � Chapter 4

Examples

SAS Statements Results

x1=sum(4,9,3,8); 24

x2=sum(4,9,3,8,.); 24

x1=9;
x2=39;
x3=sum(of x1-x2); 48

x1=5; x2=6; x3=4; x4=9;
y1=34; y2=12; y3=74; y4=39;
result=sum(of x1-x4, of y1-y5); 183

x1=55;
x2=35;
x3=6;
x4=sum(of x1-x3, 5); 101

x1=7;
x2=7;
x5=sum(x1-x2); 0

y1=20;
y2=30;
x6=sum(of y:); 50

SUMABS Function

Returns the sum of the absolute values of the non-missing arguments.

Category: Descriptive Statistics

Syntax
SUMABS(value-1 <,value-2 ...>)

Arguments

value
specifies a numeric expression.

Details
If all arguments have missing values, then the result is a missing value. Otherwise, the
result is the sum of the absolute values of the non-missing values.

Examples

Example 1: Calculating the Sum of Absolute Values The following example returns
the sum of the absolute values of the non-missing arguments.

Functions and CALL Routines � SYMEXIST Function 1113

data _null_;
x=sumabs(1,.,-2,0,3,.q,-4);
put x=;

run;

SAS writes the following output to the log:

x=10

Example 2: Calculating the Sum of Absolute Values When You Use a Variable List The
following example uses a variable list and returns the sum of the absolute value of the
non-missing arguments.

data _null_;
x1 = 1;
x2 = 3;
x3 = 4;
x4 = 3;
x5 = 1;
x = sumabs(of x1-x5);
put x=;

run;

SAS writes the following output to the log:

x=12

SYMEXIST Function
Returns an indication of the existence of a macro variable.

Category: Macro
See: SYMEXIST Function in SAS Macro Language: Reference

Syntax
SYMEXIST (argument)

Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand

� the name of a DATA step character variable, specified with no quotation marks,
which contains a macro variable name

� a character expression that constructs a macro variable name

Details
The SYMEXIST function searches any enclosing local symbol tables and then the global
symbol table for the indicated macro variable and returns 1 if the macro variable is
found or 0 if the macro variable is not found.

1114 SYMGET Function � Chapter 4

For more information, see the “SYMEXIST Function” in SAS Macro Language:
Reference.

SYMGET Function

Returns the value of a macro variable during DATA step execution.

Category: Macro

Syntax
SYMGET(argument)

Arguments

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand

� the name of a DATA step character variable, specified with no quotation marks,
which contains a macro variable name

� a character expression that constructs a macro variable name

Details
If the SYMGET function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

The SYMGET function returns the value of a macro variable during DATA step
execution. For more information, see the “SYMGET Function” in SAS Macro Language:
Reference.

See Also

CALL routine:
“CALL SYMPUT Routine” on page 533

SAS Macro Language: Reference

SYMGLOBL Function

Returns an indication of whether a macro variable is in global scope to the DATA step during DATA
step execution.

Category: Macro
See: SYMGLOBL Function in SAS Macro Language: Reference

Functions and CALL Routines � SYMLOCAL Function 1115

Syntax
SYMGLOBL (argument)

Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand.

� the name of a DATA step character variable, specified with no quotation marks,
which contains a macro variable name.

� a character expression that constructs a macro variable name.

Details
The SYMGLOBL function searches only the global symbol table for the indicated macro
variable and returns 1 if the macro variable is found or 0 if the macro variable is not
found.

SYMGLOBL is fully documented in SAS Macro Language: Reference.

SYMLOCAL Function

Returns an indication of whether a macro variable is in local scope to the DATA step during DATA
step execution.

Category: Macro

See: SYMLOCAL Function in SAS Macro Language: Reference

Syntax
SYMLOCAL (argument)

Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand.

� the name of a DATA step character variable, specified with no quotation marks,
which contains a macro variable name.

� a character expression that constructs a macro variable name.

1116 SYSGET Function � Chapter 4

Details
The SYMLOCAL function searches the enclosing local symbol tables for the indicated
macro variable and returns 1 if the macro variable is found or 0 if the macro variable
is not found.

SYMLOCAL is fully documented in SAS Macro Language: Reference.

SYSGET Function

Returns the value of the specified operating environment variable.

Category: Special
See: SYSGET Function in the documentation for your operating environment.

Syntax
SYSGET(operating-environment-variable)

Arguments

operating-environment-variable
is a character constant, variable, or expression with a value that is the name of an
operating environment variable. The case of operating-environment-variable must
agree with the case that is stored in the operating environment. Trailing blanks in
the argument of SYSGET are significant. Use the TRIM function to remove them.

Operating Environment Information: The term operating-environment-variable used in
the description of this function refers to a name that represents a numeric, character, or
logical value in the operating environment. Refer to the SAS documentation for your
operating environment for details. �

Details
If the SYSGET function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

If the value of the operating environment variable is truncated or the variable is not
defined in the operating environment, SYSGET displays a warning message in the SAS
log.

Examples

This example obtains the value of two environment variables in the UNIX
environment:

data _null_;
length result $200;
input env_var $;
result=sysget(trim(env_var));
put env_var= result=;

Functions and CALL Routines � SYSMSG Function 1117

datalines;
USER
PATH
;

Executing this DATA step for user ABCDEF displays these lines:

ENV_VAR=USER RESULT=abcdef
ENV_VAR=PATH RESULT=path-for-abcdef

See Also

� Functions:
� “ENVLEN Function” on page 661

SYSMSG Function

Returns error or warning message text from processing the last data set or external file function.

Category: SAS File I/O
Category: External Files

Syntax
SYSMSG()

Details
SYSMSG returns the text of error messages or warning messages that are produced
when a data set or external file access function encounters an error condition. If no
error message is available, the returned value is blank. The internally stored error
message is reset to blank after a call to SYSMSG, so subsequent calls to SYSMSG
before another error condition occurs return blank values.

Examples

This example uses SYSMSG to write to the SAS log the error message generated if
FETCH cannot copy the next observation into the Data Set Data Vector. The return
code is 0 only when a record is fetched successfully:

%let rc=%sysfunc(fetch(&dsid));
%if &rc ne 0 %then

%put %sysfunc(sysmsg());

See Also

Functions:
“FETCH Function” on page 674

1118 SYSPARM Function � Chapter 4

“SYSRC Function” on page 1121

SYSPARM Function

Returns the system parameter string.

Category: Special

Syntax
SYSPARM()

Details
If the SYSPARM function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

SYSPARM allows you to access a character string specified with the SYSPARM=
system option at SAS invocation or in an OPTIONS statement.

Note: If the SYSPARM= system option is not specified, the SYSPARM function
returns a string with a length of zero. �

Examples

This example shows the SYSPARM= system option and the SYSPARM function.

options sysparm=’yes’;
data a;

If sysparm()=’yes’ then
do;
...SAS Statements...
end;

run;

See Also

System option:

SYSPARM= System Option in SAS Macro Language: Reference

SYSPROCESSID Function

Returns the process ID of the current process.

Category: Special

Functions and CALL Routines � SYSPROCESSNAME Function 1119

Syntax
SYSPROCESSID()

Details
The SYSPROCESSID function returns the 32–character hexadecimal ID of the current
process. This ID can be passed to the SYSPROCESSNAME function to obtain the name
of the current process.

Examples

Example 1: Using a DATA Step The following DATA step writes the current process id
to the SAS log:

data _null_;
id=sysprocessid();
put id;

run;

Example 2: Using SAS Macro Language The following SAS Macro Language code
writes the current process id to the SAS log:

%let id=%sysfunc(sysprocessid());
%put &id;

See Also

Function:

“SYSPROCESSNAME Function” on page 1119

SYSPROCESSNAME Function

Returns the process name that is associated with a given process ID, or returns the name of the
current process.

Category: Special

Syntax
SYSPROCESSNAME(<process_id>)

Arguments

process_id
specifies a 32–character hexadecimal process id.

1120 SYSPROD Function � Chapter 4

Details
The SYSPROCESSNAME function returns the process name associated with the
process id you supply as an argument. You can use the value returned from the
SYSPROCESSID function as the argument to SYSPROCESSNAME. If you omit the
argument, then SYSPROCESSNAME returns the name of the current process.

You can also use the values stored in the automatic macro variables
SYSPROCESSID and SYSSTARTID as arguments to SYSPROCESSNAME.

Examples

Example 1: Using SYSPROCESSNAME Without an Argument in a DATA Step The
following DATA step writes the current process name to the SAS log:

data _null_;
name=sysprocessname();
put name;

run;

Example 2: Using SYSPROCESSNAME With an Argument in SAS Macro Language The
following SAS Macro Language code writes the process name associated with the given
process id to the SAS log:

%let id=&sysprocessid;
%let name=%sysfunc(sysprocessname(&id));
%put &name;

See Also

Function:
“SYSPROCESSID Function” on page 1118

SYSPROD Function

Determines whether a product is licensed.

Category: Special

Syntax
SYSPROD(product-name)

Arguments

product-name
specifies a character constant, variable, or expression with a value that is the name
of a SAS product.
Requirement: Product-name must be the correct official name of the product or

solution.

Functions and CALL Routines � SYSRC Function 1121

Details
The SYSPROD function returns 1 if a specific SAS software product is licensed, 0 if it is
a SAS software product but not licensed for your system, and -1 if the product name is
not recognized. Use SYSPROD in the DATA step, in an IML step, or in an SCL program.

If SYSPROD indicates that a product is licensed, it means that the final license
expiration date has not passed. To determine the final expiration date for the product,
execute the following program:

proc setinit noalias;
run;

It is possible for a SAS software product to exist on your system even though the
product is no longer licensed. In this case, SAS cannot access this product. Similarly, it
is possible for a product to be licensed, but not installed.

You can enter the product name in uppercase, in lowercase, or in mixed case. You
can prefix the product with ’SAS/’. You can prefix SAS/ACCESS product names with
’ACC-’. To view a list of products that are available on your system, execute the
following program:

proc setinit noalias;
run;

Examples

These examples determine whether a specified product is licensed.

� x=sysprod(’graph’);

If SAS/GRAPH software is currently licensed, then SYSPROD returns a value
of 1. If SAS/GRAPH software is not currently licensed, then SYSPROD returns a
value of 0.

� x=sysprod(’abc’);

SYSPROD returns a value of –1 because ABC is not a valid product name.

� x=sysprod(’base’);

or

x=sysprod(’base sas’);

SYSPROD always returns a value of 1 because the Base product must be
licensed for the SYSPROD function to run successfully.

SYSRC Function

Returns a system error number.

Category: SAS File I/O

Category: External Files

Syntax
SYSRC()

1122 SYSTEM Function � Chapter 4

Details
SYSRC returns the error number for the last system error encountered by a call to one
of the data set functions or external file functions.

Examples

This example determines the error message if FILEREF does not exist:

%if %sysfunc(fileref(myfile)) ne 0 %then
%put %sysfunc(sysrc()) - %sysfunc(sysmsg());

See Also

Functions:
“FILEREF Function” on page 682
“SYSMSG Function” on page 1117

SYSTEM Function

Issues an operating environment command during a SAS session, and returns the system return
code.

Category: Special
See: SYSTEM Function in the documentation for your operating environment.

Syntax
SYSTEM(command)

Arguments

command
specifies any of the following: a system command that is enclosed in quotation marks
(explicit character string), an expression whose value is a system command, or the
name of a character variable whose value is a system command that is executed.

Operating Environment Information: See the SAS documentation for your operating
environment for information about what you can specify. The system return code is
dependent on your operating environment. �

Restriction: The length of the command cannot be greater than 1024 characters,
including trailing blanks.

Comparisons
The SYSTEM function is similar to the X statement, the X command, and the CALL
SYSTEM routine. In most cases, the X statement, X command, or %SYSEXEC macro
statement are preferable because they require less overhead. However, the SYSTEM

Functions and CALL Routines � TAN Function 1123

function can be executed conditionally, and accepts expressions as arguments. The X
statement is a global statement and executes as a DATA step is being compiled,
regardless of whether SAS encounters a conditional statement.

Examples
Execute the host command TIMEDATA if the macro variable SYSDAY is Friday.

data _null_;
if "&sysday"="Friday" then do;

rc=system("timedata");
end;
else rc=system("errorck");

run;

See Also

CALL Routine:
“CALL SYSTEM Routine” on page 535

Statement:
“X Statement” on page 1756

TAN Function
Returns the tangent.

Category: Trigonometric

Syntax
TAN(argument)

Arguments

argument
specifies a numeric constant, variable, or expression and is expressed in radians. If
the magnitude of argument is so great that mod(argument,pi) is accurate to less
than about three decimal places, TAN returns a missing value.
Restriction: cannot be an odd multiple of � /2

Examples

SAS Statements Results

x=tan(0.5); 0.5463024898

x=tan(0); 0

x=tan(3.14159/3); 1.7320472695

1124 TANH Function � Chapter 4

TANH Function

Returns the hyperbolic tangent.

Category: Hyperbolic

Syntax
TANH(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Details
The TANH function returns the hyperbolic tangent of the argument, which is given by

�
�
��������

� �
���������

�

���������� � �
����������

Examples

SAS Statements Results

x=tanh(0); 0

x=tanh(0.5); 0.4621171573

x=tanh(-0.5); -0.462117157

TIME Function

Returns the current time of day as a numeric SAS time value.

Category: Date and Time

Syntax
TIME()

Functions and CALL Routines � TINV Function 1125

Examples

SAS assigns CURRENT a SAS time value corresponding to 14:32:00 if the following
statements are executed exactly at 2:32 PM:

current=time();
put current=time.;

TIMEPART Function

Extracts a time value from a SAS datetime value.

Category: Date and Time

Syntax
TIMEPART(datetime)

Arguments

datetime
is a numeric constant, variable, or expression that represents a SAS datetime value.

Examples

SAS assigns TIME a SAS value that corresponds to 10:40:17 if the following
statements are executed exactly at 10:40:17 a.m. on any date:

datim=datetime();
time=timepart(datim);

TINV Function

Returns a quantile from the t distribution.

Category: Quantile

Syntax
TINV(p,df<,nc>)

Arguments

p

1126 TNONCT Function � Chapter 4

is a numeric probability.
Range: 0 < p < 1

df
is a numeric degrees of freedom parameter.
Range: df > 0

nc
is an optional numeric noncentrality parameter.

Details
The TINV function returns the pth quantile from the Student’s t distribution with
degrees of freedom df and a noncentrality parameter nc. The probability that an
observation from a t distribution is less than or equal to the returned quantile is p.

TINV accepts a noninteger degree of freedom parameter df. If the optional parameter
nc is not specified or is 0, the quantile from the central t distribution is returned.

CAUTION:
For large values of nc, the algorithm can fail. In that case, a missing value is
returned. �

Note: TINV is the inverse of the PROBT function. �

Examples

SAS Statements Results

x=tinv(.95,2); 2.9199855804

x=tinv(.95,2.5,3); 11.033833625

See Also

Functions:
“QUANTILE Function” on page 1033

TNONCT Function

Returns the value of the noncentrality parameter from the Student’s t distribution.

Category: Mathematical

Syntax
TNONCT(x,df,prob)

Arguments

Functions and CALL Routines � TNONCT Function 1127

x
is a numeric random variable.

df
is a numeric degrees of freedom parameter.

Range: df > 0

prob
is a probability.

Range: 0 < prob < 1

Details
The TNONCT function returns the nonnegative noncentrality parameter from a
noncentral t distribution whose parameters are x, df, and nc. A Newton-type algorithm
is used to find a root nc of the equation

�� ������ ���� ��	
 � �

where

�� ������ ��� �
�

�
�
��
�

�
��

�

�
��

�
��

�
��

�

�
��

���
��

�
�

�������

� ����

If the algorithm fails to converge to a fixed point, a missing value is returned.

Examples
data work;

x=2;
df=4;
do nc=1 to 3 by .5;

prob=probt(x,df,nc);
ncc=tnonct(x,df,prob);
output;

end;
run;
proc print;
run;

Output 4.93 Computations of the Noncentrality Parameter from the t Distribution

OBS x df nc prob ncc

1 2 4 1.0 0.76457 1.0
2 2 4 1.5 0.61893 1.5
3 2 4 2.0 0.45567 2.0
4 2 4 2.5 0.30115 2.5
5 2 4 3.0 0.17702 3.0

1128 TODAY Function � Chapter 4

TODAY Function

Returns the current date as a numeric SAS date value.

Category: Date and Time
Alias: DATE

Syntax
TODAY()

Details
The TODAY function produces the current date in the form of a SAS date value,

which is the number of days since January 1, 1960.

Examples

These statements illustrate a practical use of the TODAY function:

data _null_;
tday=today();
if (tday-datedue)> 15 then

do;
put ’As of ’ tday date9. ’ Account #’

account ’is more than 15 days overdue.’;
end;

run;

TRANSLATE Function

Replaces specific characters in a character string.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KTRANSLATE in SAS National Language Support
(NLS): Reference Guide.
See: TRANSLATE Function in the documentation for your operating environment.

Syntax
TRANSLATE(source,to-1,from-1<,…to-n,from-n>)

Arguments

Functions and CALL Routines � TRANSTRN Function 1129

source
specifies a character constant, variable, or expression that contains the original
character string.

to
specifies the characters that you want TRANSLATE to use as substitutes.

from
specifies the characters that you want TRANSLATE to replace.
Interaction: Values of to and from correspond on a character-by-character basis;

TRANSLATE changes the first character of from to the first character of to, and so
on. If to has fewer characters than from, TRANSLATE changes the extra from
characters to blanks. If to has more characters than from, TRANSLATE ignores
the extra to characters.

Operating Environment Information: You must have pairs of to and from arguments
on some operating environments. On other operating environments, a segment of the
collating sequence replaces null from arguments. See the SAS documentation for your
operating environment for more information. �

Details
In a DATA step, if the TRANSLATE function returns a value to a variable that has not
previously been assigned a length, then that variable is given the length of the first
argument.

The maximum number of pairs of to and from arguments that TRANSLATE accepts
depends on the operating environment you use to run SAS. There is no functional
difference between using several pairs of short arguments, or fewer pairs of longer
arguments.

Comparisons
The TRANWRD function differs from TRANSLATE in that it scans for words (or
patterns of characters) and replaces those words with a second word (or pattern of
characters).

Examples

SAS Statements Results

x=translate(’XYZW’,’AB’,’VW’);
put x; XYZB

See Also

Function:
“TRANWRD Function” on page 1132

TRANSTRN Function
Replaces or removes all occurrences of a substring in a character string.

1130 TRANSTRN Function � Chapter 4

Category: Character

Syntax
TRANSTRN(source,target,replacement)

Arguments

source
specifies a character constant, variable, or expression that you want to translate.

target
specifies a character constant, variable, or expression that is searched for in source.
Requirement: The length for target must be greater than zero.

replacement
specifies a character constant, variable, or expression that replaces target.

Details

Length of Returned Variable In a DATA step, if the TRANSTRN function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes. You can use the LENGTH statement, before calling
TRANSTRN, to change the length of the value.

The Basics The TRANSTRN function replaces or removes all occurrences of a given
substring within a character string. The TRANSTRN function does not remove trailing
blanks in the target string and the replacement string. To remove all occurrences of
target, specify replacement as TRIMN("").

Comparisons
The TRANWRD function differs from the TRANSTRN function because TRANSTRN
allows the replacement string to have a length of zero. TRANWRD uses a single blank
instead when the replacement string has a length of zero.

The TRANSLATE function converts every occurrence of a user-supplied character to
another character. TRANSLATE can scan for more than one character in a single call.
In doing this scan, however, TRANSLATE searches for every occurrence of any of the
individual characters within a string. That is, if any letter (or character) in the target
string is found in the source string, it is replaced with the corresponding letter (or
character) in the replacement string.

The TRANSTRN function differs from TRANSLATE in that TRANSTRN scans for
substrings and replaces those substrings with a second substring.

Examples

Example 1: Replacing All Occurrences of a Word These statements and these values
produce these results:

name=transtrn(name, "Mrs.", "Ms.");
name=transtrn(name, "Miss", "Ms.");
put name;

Functions and CALL Routines � TRANSTRN Function 1131

Values Results

Mrs. Joan Smith Ms. Joan Smith

Miss Alice Cooper Ms. Alice Cooper

Example 2: Removing Blanks from the Search String In this example, the TRANSTRN
function does not replace the source string because the target string contains blanks.

data list;
input salelist $;
length target $10 replacement $3;
target=’FISH’;
replacement=’NIP’;
salelist=transtrn(salelist,target,replacement);
put salelist;
datalines;

CATFISH
;

The LENGTH statement pads target with blanks to the length of 10, which causes
the TRANSTRN function to search for the character string ’FISH ’ in
SALELIST. Because the search fails, this line is written to the SAS log:

CATFISH

You can use the TRIM function to exclude trailing blanks from a target or
replacement variable. Use the TRIM function with target:

salelist=transtrn(salelist,trim(target),replacement);
put salelist;

Now, this line is written to the SAS log:

CATNIP

Example 3: Zero Length in the Third Argument of the TRANSTRN Function The
following example shows the results of the TRANSTRN function when the third
argument, replacement, has a length of zero. In the DATA step, a character constant
that consists of two quotation marks represents a single blank, and not a zero-length
string. In the following example, the results for string1 are different from the results
for string2.

data _null_;
string1=’*’ || transtrn(’abcxabc’, ’abc’, trimn(’’)) || ’*’;
put string1=;
string2=’*’ || transtrn(’abcxabc’, ’abc’, ’’) || ’*’;

put string2=;
run;

SAS writes the following output to the log:

Output 4.94 Output When the Third Argument of TRANSTRN Has a Length of Zero

string1=*x*
string2=* x *

1132 TRANWRD Function � Chapter 4

See Also

Function:
“TRANSLATE Function” on page 1128

TRANWRD Function

Replaces all occurrences of a substring in a character string.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
TRANWRD(source,target,replacement)

Arguments

source
specifies a character constant, variable, or expression that you want to translate.

target
specifies a character constant, variable, or expression that is searched for in source.
Requirement: The length for target must be greater than zero.

replacement
specifies a character constant, variable, or expression that replaces target. When the
replacement string has a length of zero, TRANWRD uses a single blank instead.

Details

Length of Returned Variable In a DATA step, if the TRANWRD function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes. You can use the LENGTH statement, before calling
TRANWRD, to change the length of the value.

The Basics
The TRANWRD function replaces all occurrences of a given substring within a
character string. The TRANWRD function does not remove trailing blanks in the target
string and the replacement string.

Comparisons

The TRANWRD function differs from the TRANSTRN function because TRANSTRN
allows the replacement string to have a length of zero. TRANWRD uses a single blank
instead when the replacement string has a length of zero.

The TRANSLATE function converts every occurrence of a user-supplied character to
another character. TRANSLATE can scan for more than one character in a single call.

Functions and CALL Routines � TRANWRD Function 1133

In doing this scan, however, TRANSLATE searches for every occurrence of any of the
individual characters within a string. That is, if any letter (or character) in the target
string is found in the source string, it is replaced with the corresponding letter (or
character) in the replacement string.

The TRANWRD function differs from TRANSLATE in that TRANWRD scans for
substrings and replaces those substrings with a second substring.

Examples

Example 1: Replacing All Occurrences of a Word These statements and these values
produce these results:

name=tranwrd(name, "Mrs.", "Ms.");
name=tranwrd(name, "Miss", "Ms.");
put name;

Values Results

Mrs. Joan Smith Ms. Joan Smith

Miss Alice Cooper Ms. Alice Cooper

Example 2: Removing Blanks From the Search String In this example, the TRANWRD
function does not replace the source string because the target string contains blanks.

data list;
input salelist $;
length target $10 replacement $3;
target=’FISH’;
replacement=’NIP’;
salelist=tranwrd(salelist,target,replacement);
put salelist;
datalines;

CATFISH
;

The LENGTH statement pads target with blanks to the length of 10, which causes
the TRANWRD function to search for the character string ’FISH ’ in SALELIST.
Because the search fails, this line is written to the SAS log:

CATFISH

You can use the TRIM function to exclude trailing blanks from a target or
replacement variable. Use the TRIM function with target:

salelist=tranwrd(salelist,trim(target),replacement);
put salelist;

Now, this line is written to the SAS log:

CATNIP

Example 3: Zero Length in the Third Argument of the TRANWRD Function
The following example shows the results of the TRANWRD function when the third
argument, replacement, has a length of zero. In this case, TRANWRD uses a single
blank. In the DATA step, a character constant that consists of two consecutive

1134 TRIGAMMA Function � Chapter 4

quotation marks represents a single blank, and not a zero-length string. In this
example, the results for string1 and string2 are the same:

data _null_;
string1=’*’ || tranwrd(’abcxabc’, ’abc’, trimn(’’)) || ’*’;
put string1=;
string2=’*’ || tranwrd(’abcxabc’, ’abc’, ’’) || ’*’;
put string2=;

run;

SAS writes the following output to the log:

Output 4.95 Output When the Third Argument of TRANWRD Has a Length of Zero

string1=* x *
string2=* x *

Removing Repeated Commas

You can use the TRANWRD function to remove repeated commas in text, and replace
the repeated commas with a single comma. In the following example, the TRANWRD
function is used twice: to replace three commas with one comma, and to replace the
ending two commas with a period:

data _null_;
mytxt=’If you exercise your power to vote,,,then your opinion will be heard,,’;
newtext=tranwrd(mytxt, ’,,,’, ’,’);
newtext2=tranwrd(newtext, ’,,’ , ’.’);
put // mytxt= / newtext= / newtext2=;

run;

SAS writes the following output to the log:

Output 4.96 Output from Removing Repeated Commas

mytxt=If you exercise your power to vote,,,then your opinion will be heard,,
newtext=If you exercise your power to vote,then your opinion will be heard,,
newtext2=If you exercise your power to vote,then your opinion will be heard.

See Also

Function:
“TRANSLATE Function” on page 1128

TRIGAMMA Function

Returns the value of the trigamma function.

Category: Mathematical

Functions and CALL Routines � TRIM Function 1135

Syntax
TRIGAMMA(argument)

Arguments

argument
specifies a numeric constant, variable, or expression.

Restriction: Nonpositive integers are invalid.

Details
The TRIGAMMA function returns the derivative of the DIGAMMA function. For
argument > 0, the TRIGAMMA function is the second derivative of the LGAMMA
function.

Examples

SAS Statements Results

x=trigamma(3); 0.3949340668

TRIM Function

Removes trailing blanks from a character string, and returns one blank if the string is missing.

Category: Character

Restriction: “I18N Level 0” on page 312

Tip: DBCS equivalent function is KTRIM in SAS National Language Support (NLS):
Reference Guide.

Syntax
TRIM(argument)

Arguments

argument
specifies a character constant, variable, or expression.

1136 TRIM Function � Chapter 4

Details

Length of Returned Variable In a DATA step, if the TRIM function returns a value to
a variable that has not previously been assigned a length, then that variable is given
the length of the argument.

The Basics TRIM copies a character argument, removes trailing blanks, and returns
the trimmed argument as a result. If the argument is blank, TRIM returns one blank.
TRIM is useful for concatenating because concatenation does not remove trailing blanks.

Assigning the results of TRIM to a variable does not affect the length of the receiving
variable. If the trimmed value is shorter than the length of the receiving variable, SAS
pads the value with new blanks as it assigns it to the variable.

Comparisons
The TRIM and TRIMN functions are similar. TRIM returns one blank for a blank
string. TRIMN returns a string with a length of zero for a blank string.

Examples

Example 1: Removing Trailing Blanks These statements and this data line produce
these results:

data test;
input part1 $ 1-10 part2 $ 11-20;
hasblank=part1||part2;
noblank=trim(part1)||part2;
put hasblank;
put noblank;
datalines;

Data Line Results

----+----1----+----2

apple sauce apple sauce

applesauce

Example 2: Concatenating a Blank Character Expression

SAS Statements Results

x="A"||trim(" ")||"B"; put x; A B

x=" "; y=">"||trim(x)||"<"; put y; > <

See Also

Functions:
“COMPRESS Function” on page 598

Functions and CALL Routines � TRIMN Function 1137

“LEFT Function” on page 862
“RIGHT Function” on page 1063

TRIMN Function
Removes trailing blanks from character expressions, and returns a string with a length of zero if
the expression is missing.

Category: Character
Restriction: “I18N Level 0” on page 312

Syntax
TRIMN(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable In a DATA step, if the TRIMN function returns a value
to a variable that has not previously been assigned a length, then that variable is given
the length of the argument.

Assigning the results of TRIMN to a variable does not affect the length of the
receiving variable. If the trimmed value is shorter than the length of the receiving
variable, SAS pads the value with new blanks as it assigns it to the variable.

The Basics TRIMN copies a character argument, removes all trailing blanks, and
returns the trimmed argument as a result. If the argument is blank, TRIMN returns a
string with a length of zero. TRIMN is useful for concatenating because concatenation
does not remove trailing blanks.

Comparisons
The TRIMN and TRIM functions are similar. TRIMN returns a string with a length of
zero for a blank string. TRIM returns one blank for a blank string.

Examples

SAS Statements Results

x="A"||trimn("")||"B";
put x; AB

x=" ";
z=">"||trimn(x)||"<";
put z; ><

1138 TRUNC Function � Chapter 4

See Also

Functions:
“COMPRESS Function” on page 598
“LEFT Function” on page 862
“RIGHT Function” on page 1063
“TRIM Function” on page 1135

TRUNC Function

Truncates a numeric value to a specified number of bytes.

Category: Truncation

Syntax
TRUNC(number,length)

Arguments

number
specifies a numeric constant, variable, or expression.

length
specifies an integer.

Details
The TRUNC function truncates a full-length number (stored as a double) to a smaller
number of bytes, as specified in length and pads the truncated bytes with 0s. The
truncation and subsequent expansion duplicate the effect of storing numbers in less
than full length and then reading them.

Examples
data test;

length x 3;
x=1/5;

run;
data test2;

set test;
if x ne 1/5 then

put ’x ne 1/5’;
if x eq trunc(1/5,3) then

put ’x eq trunc(1/5,3)’;
run;

The variable X is stored with a length of 3 and, therefore, each of the above
comparisons is true.

Functions and CALL Routines � UPCASE Function 1139

UNIFORM Function

Returns a random variate from a uniform distribution.

Category: Random Number
Alias: RANUNI
See: “RANUNI Function” on page 1057

UPCASE Function

Converts all letters in an argument to uppercase.

Category: Character
Restriction: “I18N Level 2” on page 313

Syntax
UPCASE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details
In a DATA step, if the UPCASE function returns a value to a variable that has not
previously been assigned a length, then that variable is given the length of the
argument.

The UPCASE function copies a character argument, converts all lowercase letters to
uppercase letters, and returns the altered value as a result.

The results of the UPCASE function depend directly on the translation table that is
in effect (see "TRANTAB System Option") and indirectly on the "ENCODING System
Option" and the "LOCALE System Option" in SAS National Language Support (NLS):
Reference Guide.

Examples

SAS Statements Results

name=upcase(’John B. Smith’);
put name; JOHN B. SMITH

1140 URLDECODE Function � Chapter 4

See Also

Functions:
“LOWCASE Function” on page 891
“PROPCASE Function” on page 1008

URLDECODE Function

Returns a string that was decoded using the URL escape syntax.

Category: Web Tools
Restriction: “I18N Level 2” on page 313

Syntax
URLDECODE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable in a DATA Step If the URLDECODE function returns a
value to a variable that has not previously been assigned a length, then that variable is
given the length of the argument.

The Basics The URL escape syntax is used to hide characters that might otherwise
be significant when used in a URL.

A URL escape sequence can be one of the following:
� a plus sign, which is replaced by a blank
� a sequence of three characters beginning with a percent sign and followed by two

hexadecimal characters, which is replaced by a single character that has the
specified hexadecimal value.

Operating Environment Information: In operating environments that use EBCDIC,
SAS performs an extra translation step after it recognizes an escape sequence. The
specified character is assumed to be an ASCII encoding. SAS uses the transport-to-local
translation table to convert this character to an EBCDIC character in operating
environments that use EBCDIC. For more information see TRANTAB= System Option
in SAS National Language Support (NLS): Reference Guide. �

Functions and CALL Routines � URLENCODE Function 1141

Examples

SAS Statements Results

x1=urldecode (’abc+def’);
put x1; abc def

x2=urldecode (’why%3F’);
put x2; why?

x3=urldecode (’%41%42%43%23%31’);
put x3; ABC#1

See Also

Function:
“URLENCODE Function” on page 1141

URLENCODE Function

Returns a string that was encoded using the URL escape syntax.

Category: Web Tools
Restriction: “I18N Level 2” on page 313

Syntax
URLENCODE(argument)

Arguments

argument
specifies a character constant, variable, or expression.

Details

Length of Returned Variable in a DATA Step If the URLDECODE function returns a
value to a variable that has not previously been assigned a length, then that variable is
given a length of 200 bytes.

The Basics The URLENCODE function encodes characters that might otherwise be
significant when used in a URL. This function encodes all characters except for the
following:

� all alphanumeric characters
� dollar sign ($)
� hyphen (-)

1142 USS Function � Chapter 4

� underscore (_)
� at sign (@)
� period (.)
� exclamation point (!)
� asterisk (*)
� open parenthesis (()and close parenthesis ())
� comma (,).

Note: The encoded string might be longer than the original string. Ensure that you
consider the additional length when you use this function. �

Examples

SAS Statements Results

x1=urlencode (’abc def’);
put x1; abc%20def

x2=urlencode (’why?’);
put x2; why%3F

x3=urlencode (’ABC#1’);
put x3; ABC%231

See Also

Function:
“URLDECODE Function” on page 1140

USS Function

Returns the uncorrected sum of squares of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
USS(argument-1<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least one nonmissing
argument is required. Otherwise, the function returns a missing value. If you have
more than one argument, the argument list can consist of a variable list, which is
preceded by OF.

Functions and CALL Routines � UUIDGEN Function 1143

Examples

SAS Statements Results

x1=uss(4,2,3.5,6); 68.25

x2=uss(4,2,3.5,6,.); 68.25

x3=uss(of x1-x2); 9316.125

UUIDGEN Function

Returns the short or binary form of a Universal Unique Identifier (UUID).

Category: Special

Syntax
UUIDGEN(<max-warnings<,binary-result>>)

Arguments

max-warnings
specifies an integer value that represents the maximum number of warnings that
this function writes to the log.
Default: 1

binary-result
specifies an integer value that indicates whether this function should return a binary
result. Nonzero indicates a binary result should be returned. Zero indicates that a
character result should be returned.
Default: 0

Details

Length of Returned Variable in a DATA Step If the UUIDGEN function returns a value
to a variable that has not previously been assigned a length, then that variable is given
a length of 200 bytes.

The Basics The UUIDGEN function returns a UUID (a unique value) for each cell.
The default result is 36 characters long and it looks like:

5ab6fa40--426b-4375--bb22--2d0291f43319

A binary result is 16 bytes long.

See Also
“Universal Unique Identifiers” in SAS Language Reference: Concepts

1144 VAR Function � Chapter 4

VAR Function

Returns the variance of the nonmissing arguments.

Category: Descriptive Statistics

Syntax
VAR(argument-1,argument-2<,...argument-n>)

Arguments

argument
specifies a numeric constant, variable, or expression. At least two nonmissing
arguments are required. Otherwise, the function returns a missing value. The
argument list can consist of a variable list, which is preceded by OF.

Examples

SAS Statements Results

x1=var(4,2,3.5,6); 2.7291666667

x2=var(4,6,.); 2

x3=var(of x1-x2); 0.2658420139

VARFMT Function

Returns the format that is assigned to a SAS data set variable.

Category: SAS File I/O

Syntax
VARFMT(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.

Functions and CALL Routines � VARFMT Function 1145

Tip: This number is next to the variable in the list that is produced by the
CONTENTS procedure.

Tip: The VARNUM function returns this number.

Details

If no format has been assigned to the variable, a blank string is returned.

Examples

Example 1: Using VARFMT to Obtain the Format of the Variable NAME This example
obtains the format of the variable NAME in the SAS data set MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let fmt=%sysfunc(varfmt(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

Example 2: Using VARFMT to Obtain the Format of all the Numeric Variables in a Data
Set This example creates a data set that contains the name and formatted content of
each numeric variable in the SAS data set MYDATA.

data vars;
length name $ 8 content $ 12;
drop dsid i num rc fmt;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do while (fetch(dsid)=0);

do i=1 to num;
name=varname(dsid,i);
if (vartype(dsid,i)=’N’) then do;

fmt=varfmt(dsid,i);
if fmt=’’ then fmt="BEST12.";
content=putc(putn(getvarn

(dsid,i),fmt),"$char12.");
output;
end;

end;
end;
rc=close(dsid);

run;

See Also

Functions:

“VARINFMT Function” on page 1146

“VARNUM Function” on page 1150

1146 VARINFMT Function � Chapter 4

VARINFMT Function

Returns the informat that is assigned to a SAS data set variable.

Category: SAS File I/O

Syntax
VARINFMT(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
If no informat has been assigned to the variable, a blank string is returned.

Examples

Example 1: Using VARINFMT to Obtain the Informat of the Variable NAME This
example obtains the informat of the variable NAME in the SAS data set MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let fmt=%sysfunc(varinfmt(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

Example 2: Using VARINFMT to Obtain the Informat of all the Variables in a Data
Set This example creates a data set that contains the name and informat of the
variables in MYDATA.

data vars;
length name $ 8 informat $ 10 ;
drop dsid i num rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
informat=varinfmt(dsid,i);

Functions and CALL Routines � VARLABEL Function 1147

output;
end;
rc=close(dsid);

run;

See Also

Functions:
“OPEN Function” on page 955
“VARFMT Function” on page 1144
“VARNUM Function” on page 1150

VARLABEL Function

Returns the label that is assigned to a SAS data set variable.

Category: SAS File I/O

Syntax
VARLABEL(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
If no label has been assigned to the variable, a blank string is returned.

Comparisons
VLABEL returns the label that is associated with the given variable.

Examples

This example obtains the label of the variable NAME in the SAS data set MYDATA.

Example Code 4.1 Obtaining the Label of the Variable NAME

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

1148 VARLEN Function � Chapter 4

%do;
%let fmt=%sysfunc(varlabel(&dsid,

%sysfunc(varnum
(&dsid,NAME))));

%let rc=%sysfunc(close(&dsid));
%end;

See Also

Functions:
“OPEN Function” on page 955
“VARNUM Function” on page 1150

VARLEN Function

Returns the length of a SAS data set variable.

Category: SAS File I/O

Syntax
VARLEN(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Comparisons
VLENGTH returns the compile-time (allocated) size of the given variable.

Examples
� This example obtains the length of the variable ADDRESS in the SAS data set

MYDATA.

%let dsid=%sysfunc(open(mydata,i));
%if &dsid %then

%do;
%let len=%sysfunc(varlen(&dsid,

%sysfunc(varnum

Functions and CALL Routines � VARNAME Function 1149

(&dsid,ADDRESS))));
%let rc=%sysfunc(close(&dsid));

%end;

� This example creates a data set that contains the name, type, and length of the
variables in MYDATA.

data vars;
length name $ 8 type $ 1;
drop dsid i num rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
type=vartype(dsid,i);
length=varlen(dsid,i);
output;

end;
rc=close(dsid);

run;

See Also

Functions:

“OPEN Function” on page 955

“VARNUM Function” on page 1150

VARNAME Function

Returns the name of a SAS data set variable.

Category: SAS File I/O

Syntax
VARNAME(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.

Tip: This number is next to the variable in the list that is produced by the
CONTENTS procedure.

Tip: The VARNUM function returns this number.

1150 VARNUM Function � Chapter 4

Examples

This example copies the names of the first five variables in the SAS data set CITY
(or all of the variables if there are fewer than five) into a macro variable.

%macro names;
%let dsid=%sysfunc(open(city,i));
%let varlist=;
%do i=1 %to

%sysfunc(min(5,%sysfunc(attrn
(&dsid,nvars))));

%let varlist=&varlist %sysfunc(varname
(&dsid,&i));

%end;
%put varlist=&varlist;

%mend names;
%names

See Also

Functions:

“OPEN Function” on page 955

“VARNUM Function” on page 1150

VARNUM Function

Returns the number of a variable’s position in a SAS data set.

Category: SAS File I/O

Syntax
VARNUM(data-set-id,var-name)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-name
specifies the variable’s name.

Details
VARNUM returns the number of a variable’s position in a SAS data set, or 0 if the
variable is not in the SAS data set. This is the same variable number that is next to
the variable in the output from PROC CONTENTS.

Functions and CALL Routines � VARRAY Function 1151

Examples
� This example obtains the number of a variable’s position in the SAS data set

CITY, given the name of the variable.

%let dsid=%sysfunc(open(city,i));
%let citynum=%sysfunc(varnum(&dsid,CITYNAME));
%let rc=%sysfunc(fetch(&dsid));
%let cityname=%sysfunc(getvarc

(&dsid,&citynum));

� This example creates a data set that contains the name, type, format, informat,
label, length, and position of the variables in SASUSER.HOUSES.

data vars;
length name $ 8 type $ 1

format informat $ 10 label $ 40;
drop dsid i num rc;
dsid=open("sasuser.houses","i");
num=attrn(dsid,"nvars");
do i=1 to num;

name=varname(dsid,i);
type=vartype(dsid,i);
format=varfmt(dsid,i);
informat=varinfmt(dsid,i);
label=varlabel(dsid,i);
length=varlen(dsid,i);
position=varnum(dsid,name);
output;

end;
rc=close(dsid);

run;

See Also

Functions:

“OPEN Function” on page 955

“VARNAME Function” on page 1149

VARRAY Function

Returns a value that indicates whether the specified name is an array.

Category: Variable Information

Restriction: Use only with the DATA step

Syntax
VARRAY (name)

1152 VARRAYX Function � Chapter 4

Arguments

name
specifies a name that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
VARRAY returns 1 if the given name is an array; it returns 0 if the given name is not
an array.

Comparisons
� VARRAY returns a value that indicates whether the specified name is an array.

VARRAYX returns a value that indicates whether the value of the specified
expression is an array.

� VARRAY does not accept an expression as an argument. VARRAYX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
a=varray(x);
B=varray(x1);
put a=;
put B=;

a=1
B=0

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VARRAYX Function

Returns a value that indicates whether the value of the specified argument is an array.

Category: Variable Information

Syntax
VARRAYX (expression)

Functions and CALL Routines � VARTYPE Function 1153

Arguments

expression
specifies a character constant, variable, or expression.

Restriction: The value of the specified expression cannot denote an array reference.

Details
VARRAYX returns 1 if the value of the given argument is the name of an array; it
returns 0 if the value of the given argument is not the name of an array.

Comparisons
� VARRAY returns a value that indicates whether the specified name is the name of

an array. VARRAYX returns a value that indicates whether the value of the
specified expression is the name of an array.

� VARRAY does not accept an expression as an argument. VARRAYX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(4) $6 vx1 vx2 vx3 vx4

(’x’ ’x1’ ’x2’ ’x3’);
y=varrayx(vx(1));
z=varrayx(vx(2));
put y=;
put z=;

y=1
z=0

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VARTYPE Function

Returns the data type of a SAS data set variable.

Category: SAS File I/O

1154 VARTYPE Function � Chapter 4

Syntax
VARTYPE(data-set-id,var-num)

Arguments

data-set-id
specifies the data set identifier that the OPEN function returns.

var-num
specifies the number of the variable’s position in the SAS data set.
Tip: This number is next to the variable in the list that is produced by the

CONTENTS procedure.
Tip: The VARNUM function returns this number.

Details
VARTYPE returns C for a character variable or N for a numeric variable.

Examples

Example 1: Using VARTYPE to Determine which Variables are Numeric This example
places the names of all the numeric variables of the SAS data set MYDATA into a
macro variable.

%let dsid=%sysfunc(open(mydata,i));
%let varlist=;
%do i=1 %to %sysfunc(attrn(&dsid,nvars));

%if (%sysfunc(vartype(&dsid,&i)) = N) %then
%let varlist=&varlist %sysfunc(varname

(&dsid,&i));
%end;
%let rc=%sysfunc(close(&dsid));

Example 2: Using VARTYPE to Determine which Variables are Character This example
creates a data set that contains the name and formatted contents of each character
variable in the SAS data set MYDATA.

data vars;
length name $ 8 content $ 20;
drop dsid i num fmt rc;
dsid=open("mydata","i");
num=attrn(dsid,"nvars");
do while (fetch(dsid)=0);

do i=1 to num;
name=varname(dsid,i);
fmt=varfmt(dsid,i);
if (vartype(dsid,i)=’C’) then do;

content=getvarc(dsid,i);
if (fmt ne ’’) then
content=left(putc(content,fmt));
output;
end;

end;

Functions and CALL Routines � VERIFY Function 1155

end;
rc=close(dsid);

run;

See Also

Function:
“VARNUM Function” on page 1150

VERIFY Function
Returns the position of the first character in a string that is not in any of several other strings.

Category: Character
Restriction: “I18N Level 0” on page 312
Tip: DBCS equivalent function is KVERIFY in SAS National Language Support (NLS):
Reference Guide.

Syntax
VERIFY(source,excerpt-1<, …, excerpt-n>)

Arguments

source
specifies a character constant, variable, or expression.

excerpt
specifies a character constant, variable, or expression. If you specify more than one
excerpt, separate them with a comma.

Details
The VERIFY function returns the position of the first character in source that is not
present in any excerpt. If VERIFY finds every character in source in at least one
excerpt, it returns a 0.

Examples

SAS Statements Results

data scores;
input Grade : $1. @@;
check=’abcdf’;
if verify(grade,check)>0 then

put @1 ’INVALID ’ grade=;
datalines;

a b c b c d f a a q a b d d b
; INVALID Grade=q

1156 VFORMAT Function � Chapter 4

See Also

Functions:
“FINDC Function” on page 723

VFORMAT Function
Returns the format that is associated with the specified variable.

Category: Variable Information
Restriction: Use only with the DATA step

Syntax
VFORMAT (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If the VFORMAT function returns a value to a variable that has not yet been assigned
a length, by default the variable is assigned a length of 200.

VFORMAT returns the complete format name, which includes the width and the
period (for example, $CHAR20.).

Comparisons
� VFORMAT returns the format that is associated with the specified variable.

VFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the format that is associated with that variable name.

� VFORMAT does not accept an expression as an argument. VFORMATX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformat(x(1));
put y=; y=BEST6.

Functions and CALL Routines � VFORMATD Function 1157

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VFORMATD Function

Returns the decimal value of the format that is associated with the specified variable.

Category: Variable Information

Syntax
VFORMATD (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VFORMATD returns the format decimal value that is associated with the specified

variable. VFORMATDX, however, evaluates the argument to determine the
variable name. The function then returns the format decimal value that is
associated with that variable name.

� VFORMATD does not accept an expression as an argument. VFORMATDX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 comma8.2;
y=vformatd(x(1));
put y=; y=2

See Also

1158 VFORMATDX Function � Chapter 4

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VFORMATDX Function

Returns the decimal value of the format that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VFORMATDX (expression)

Arguments

expression
specifies a SAS character constant, variable, or expression that evaluates to a
variable name.

Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VFORMATD returns the format decimal value that is associated with the specified

variable. VFORMATDX, however, evaluates the argument to determine the
variable name. The function then returns the format decimal value that is
associated with that variable name.

� VFORMATD does not accept an expression as an argument. VFORMATDX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 comma8.2;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatdx(vx(1));
z=vformatdx(’x’||’1’);
put y=;
put z=;

y=2
z=2

Functions and CALL Routines � VFORMATN Function 1159

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VFORMATN Function

Returns the format name that is associated with the specified variable.

Category: Variable Information

Syntax
VFORMATN (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If the VFORMATN function returns a value to a variable that has not yet been assigned
a length, by default the variable is assigned a length of 200.

VFORMATN returns only the format name, which does not include the width or the
period (for example, $CHAR).

Comparisons
� VFORMATN returns the format name that is associated with the specified

variable. VFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the format name that is associated with
that variable name.

� VFORMATN does not accept an expression as an argument. VFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

1160 VFORMATNX Function � Chapter 4

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformatn(x(1));
put y=; y=BEST

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VFORMATNX Function

Returns the format name that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VFORMATNX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.

Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VFORMATNX function returns a value to a variable that has not yet been
assigned a length, by default the variable is assigned a length of 200.

VFORMATNX returns only the format name, which does not include the length or
the period (for example, $CHAR).

Comparisons
� VFORMATN returns the format name that is associated with the specified

variable. VFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the format name that is associated with
that variable name.

Functions and CALL Routines � VFORMATW Function 1161

� VFORMATN does not accept an expression as an argument. VFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatnx(vx(1));
put y=; y=BEST

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VFORMATW Function

Returns the format width that is associated with the specified variable.

Category: Variable Information

Syntax
VFORMATW (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VFORMATW returns the format width that is associated with the specified

variable. VFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the format width that is associated with
that variable name.

1162 VFORMATWX Function � Chapter 4

� VFORMATW does not accept an expression as an argument. VFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
y=vformatw(x(1));
put y=; y=6

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VFORMATWX Function

Returns the format width that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VFORMATWX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.

Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VFORMATW returns the format width that is associated with the specified

variable. VFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the format width that is associated with
that variable name.

Functions and CALL Routines � VFORMATX Function 1163

� VFORMATW does not accept an expression as an argument. VFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatwx(vx(1));
put y=; y=6

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VFORMATX Function

Returns the format that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VFORMATX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VFORMATX function returns a value to a variable that has not yet been assigned
a length, by default the variable is assigned a length of 200.

VFORMATX returns the complete format name which includes the width and the
period (for example, $CHAR20.).

1164 VINARRAY Function � Chapter 4

Comparisons
� VFORMAT returns the format that is associated with the specified variable.

VFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the format that is associated with that variable name.

� VFORMAT does not accept an expression as an argument. VFORMATX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

array x(3) x1-x3;
format x1 best6.;
format x2 20.10;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vformatx(vx(1));
z=vformatx(vx(2));
put y=;
put z=;

y=BEST6.
z=F20.10

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINARRAY Function

Returns a value that indicates whether the specified variable is a member of an array.

Category: Variable Information
Restriction: Use only with the DATA step

Syntax
VINARRAY (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.

Functions and CALL Routines � VINARRAYX Function 1165

Restriction: You cannot use an expression as an argument.

Details
VINARRAY returns 1 if the given variable is a member of an array; it returns 0 if the
given variable is not a member of an array.

Comparisons
� VINARRAY returns a value that indicates whether the specified variable is a

member of an array. VINARRAYX, however, evaluates the argument to determine
the variable name. The function then returns a value that indicates whether the
variable name is a member of an array.

� VINARRAY does not accept an expression as an argument. VINARRAYX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

array x(3) x1-x3;
y=vinarray(x);
Z=vinarray(x1);
put y=;
put Z=;

y=0
z=1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINARRAYX Function
Returns a value that indicates whether the value of the specified argument is a member of an array.

Category: Variable Information

Syntax
VINARRAYX (expression)

Arguments

1166 VINFORMAT Function � Chapter 4

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
VINARRAYX returns 1 if the value of the given argument is a member of an array; it
returns 0 if the value of the given argument is not a member of an array.

Comparisons
� VINARRAY returns a value that indicates whether the specified variable is a

member of an array. VINARRAYX, however, evaluates the argument to determine
the variable name. The function then returns a value that indicates whether the
variable name is a member of an array.

� VINARRAY does not accept an expression as an argument. VINARRAYX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(4) $6 vx1 vx2 vx3 vx4

(’x’ ’x1’ ’x2’ ’x3’);
y=vinarrayx(vx(1));
z=vinarrayx(vx(2));
put y=;
put z=;

y=0
z=1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMAT Function

Returns the informat that is associated with the specified variable.

Category: Variable Information
Restriction: Use only with the DATA step

Functions and CALL Routines � VINFORMATD Function 1167

Syntax
VINFORMAT (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If the VINFORMAT function returns a value to a variable that has not yet been
assigned a length, by default the variable is assigned a length of 200.

VINFORMAT returns the complete informat name, which includes the width and the
period (for example, $CHAR20.).

Comparisons
� VINFORMAT returns the informat that is associated with the specified variable.

VINFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the informat that is associated with that variable name.

� VINFORMAT does not accept an expression as an argument. VINFORMATX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformat(x);
put y=; y=$CHAR6.

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMATD Function

Returns the decimal value of the informat that is associated with the specified variable.

1168 VINFORMATDX Function � Chapter 4

Category: Variable Information

Syntax
VINFORMATD (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� VINFORMATD returns the informat decimal value that is associated with the

specified variable. VINFORMATDX, however, evaluates the argument to
determine the variable name. The function then returns the informat decimal
value that is associated with that variable name.

� VINFORMATD does not accept an expression as an argument. VINFORMATDX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x comma8.2;
input x;
y=vinformatd(x);
put y=; y=2

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMATDX Function

Returns the decimal value of the informat that is associated with the value of the specified
variable.

Category: Variable Information

Functions and CALL Routines � VINFORMATN Function 1169

Syntax
VINFORMATDX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified variable cannot denote an array reference.

Comparisons
� VINFORMATD returns the informat decimal value that is associated with the

specified variable. VINFORMATDX, however, evaluates the argument to
determine the variable name. The function then returns the informat decimal
value that is associated with that variable name.

� VINFORMATD does not accept an expression as an argument. VINFORMATDX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x1 x2 x3 comma9.3;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatdx(vx(1));
put y=; y=3

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMATN Function

Returns the informat name that is associated with the specified variable.

1170 VINFORMATN Function � Chapter 4

Category: Variable Information

Syntax
VINFORMATN (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
If the VINFORMATN function returns a value to a variable that has not yet been
assigned a length, by default the variable is assigned a length of 200.

VINFORMATN returns only the informat name, which does not include the width or
the period (for example, $CHAR).

Comparisons
� VINFORMATN returns the informat name that is associated with the specified

variable. VINFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the informat name that is associated
with that variable name.

� VINFORMATN does not accept an expression as an argument. VINFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformatn(x);
put y=; y=$CHAR

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

Functions and CALL Routines � VINFORMATNX Function 1171

VINFORMATNX Function
Returns the informat name that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VINFORMATNX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VINFORMATNX function returns a value to a variable that has not yet been
assigned a length, by default the variable is assigned a length of 200.

VINFORMATNX returns only the informat name, which does not include the width
or the period (for example, $CHAR).

Comparisons
� VINFORMATN returns the informat name that is associated with the specified

variable. VINFORMATNX, however, evaluates the argument to determine the
variable name. The function then returns the informat name that is associated
with that variable name.

� VINFORMATN does not accept an expression as an argument. VINFORMATNX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatnx(vx(1));
put y=; y=$CHAR

See Also

1172 VINFORMATW Function � Chapter 4

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMATW Function

Returns the informat width that is associated with the specified variable.

Category: Variable Information

Syntax
VINFORMATW (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Comparisons
� VINFORMATW returns the informat width that is associated with the specified

variable. VINFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the informat width that is associated
with that variable name.

� VINFORMATW does not accept an expression as an argument. VINFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, type, and length, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x $char6.;
input x;
y=vinformatw(x);
put y=; y=6

See Also

Functions:

Functions and CALL Routines � VINFORMATWX Function 1173

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VINFORMATWX Function

Returns the informat width that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VINFORMATWX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Comparisons
� VINFORMATW returns the informat width that is associated with the specified

variable. VINFORMATWX, however, evaluates the argument to determine the
variable name. The function then returns the informat width that is associated
with that variable name.

� VINFORMATW does not accept an expression as an argument. VINFORMATWX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatwx(vx(1));
put y=; y=6

See Also

1174 VINFORMATX Function � Chapter 4

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VINFORMATX Function
Returns the informat that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VINFORMATX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VINFORMATX function returns a value to a variable that has not yet been
assigned a length, by default the variable is assigned a length of 200.

VINFORMATX returns the complete informat name, which includes the width and
the period (for example, $CHAR20.).

Comparisons
� VINFORMAT returns the informat that is associated with the specified variable.

VINFORMATX, however, evaluates the argument to determine the variable name.
The function then returns the informat that is associated with that variable name.

� VINFORMAT does not accept an expression as an argument. VINFORMATX
accepts expressions, but the value of the specified expression cannot denote an
array reference.

� Related functions return the value of other variable attributes, such as the variable
name, length, and type, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

informat x1 x2 x3 $char6.;
input x1 x2 x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vinformatx(vx(1));
put y=; y=$CHAR6.

Functions and CALL Routines � VLABEL Function 1175

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VLABEL Function

Returns the label that is associated with the specified variable.

Category: Variable Information

Restriction: Use only with the DATA step

Syntax

VLABEL (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details

If the VLABEL function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

If there is no label, VLABEL returns the variable name.

Comparisons

� VLABEL returns the label of the specified variable or the name of the specified
variable, if no label exists. VLABELX, however, evaluates the argument to
determine the variable name. The function then returns the label that is
associated with that variable name, or the variable name if no label exists.

� VLABEL does not accept an expression as an argument. VLABELX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� VLABEL has the same functionality as CALL LABEL.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

1176 VLABELX Function � Chapter 4

Examples

SAS Statements Results

array x(3) x1-x3;
label x1=’Test1’;
y=vlabel(x(1));
put y=; y=Test1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VLABELX Function

Returns the label that is associated with the value of the specified argument.

Category: Variable Information

Syntax
VLABELX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VLABELX function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

If there is no label, VLABELX returns the variable name.

Comparisons
� VLABEL returns the label of the specified variable, or the name of the specified

variable if no label exists. VLABELX, however, evaluates the argument to
determine the variable name. The function then returns the label that is
associated with that variable name, or the variable name if no label exists.

� VLABEL does not accept an expression as an argument. VLABELX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

Functions and CALL Routines � VLENGTH Function 1177

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
label x1=’Test1’;
y=vlabelx(vx(1));
put y=; y=Test1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VLENGTH Function

Returns the compile-time (allocated) size of the specified variable.

Category: Variable Information
Restriction: Use only with the DATA step

Syntax
VLENGTH (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Comparisons
� LENGTH examines the variable at run-time, trimming trailing blanks to

determine the length. VLENGTH returns a compile-time constant value, which
reflects the maximum length.

� LENGTHC returns the same value as VLENGTH, but LENGTHC can be used in
any calling environment and its argument can be any expression.

1178 VLENGTHX Function � Chapter 4

� VLENGTH returns the length of the specified variable. VLENGTHX, however,
evaluates the argument to determine the variable name. The function then
returns the compile-time size that is associated with that variable name.

� VLENGTH does not accept an expression as an argument. VLENGTHX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

length x $8;
x=’abc’;
y=vlength(x);
z=length(x);
put y=;
put z=;

y=8
z=3

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VLENGTHX Function

Returns the compile-time (allocated) size for the variable that has a name that is the same as the
value of the argument.

Category: Variable Information

Syntax
VLENGTHX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.

Restriction: The value of the specified expression cannot denote an array reference.

Functions and CALL Routines � VNAME Function 1179

Comparisons
� LENGTH examines the variable at run-time, trimming trailing blanks to

determine the length. VLENGTHX, however, evaluates the argument to determine
the variable name. The function then returns the compile-time size that is
associated with that variable name.

� LENGTHC accepts an expression as the argument, but it returns the length of the
value of the expression, not the length of the variable that has a name equal to the
value of the expression.

� VLENGTH returns the length of the specified variable. VLENGTHX returns the
length for the value of the specified expression.

� VLENGTH does not accept an expression as an argument. VLENGTHX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the variable
name, informat, format, among others. For a list, see the “Variable Information”
functions in “Functions and CALL Routines by Category” on page 342 .

Examples

SAS Statements Results

length x1 $8;
x1=’abc’;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vlengthx(vx(1));
z=length(x1);
put y=;
put z=;

y=8
z=3

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

VNAME Function

Returns the name of the specified variable.

Category: Variable Information

Restriction: Use only with the DATA step

Syntax
VNAME (var)

1180 VNAMEX Function � Chapter 4

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If the VNAME function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

Comparisons
� VNAME returns the name of the specified variable. VNAMEX, however, evaluates

the argument to determine a variable name. If the name is a known variable
name, the function returns that name. Otherwise, the function returns a blank.

� VNAME does not accept an expression as an argument. VNAMEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� VNAME has the same functionality as CALL VNAME.
� Related functions return the value of other variable attributes, such as the

variable label, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page 342.

Examples

SAS Statements Results

array x(3) x1-x3;
y=vname(x(1));
put y=; y=x1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VNAMEX Function

Validates the value of the specified argument as a variable name.

Category: Variable Information

Syntax
VNAMEX (expression)

Functions and CALL Routines � VTYPE Function 1181

Arguments

expression
specifies a character constant, variable, or expression.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VNAMEX function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

Comparisons
� VNAME returns the name of the specified variable. VNAMEX, however, evaluates

the argument to determine a variable name. If the name is a known variable
name, the function returns that name. Otherwise, the function returns a blank.

� VNAME does not accept an expression as an argument. VNAMEX accepts
expressions, but the value of the specified variable cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable label, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page 342.

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vnamex(vx(1));
z=vnamex(’x’||’1’);
put y=;
put z=;

y=x1
z=x1

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VTYPE Function

Returns the type (character or numeric) of the specified variable.

Category: Variable Information

1182 VTYPEX Function � Chapter 4

Restriction: Use only with the DATA step

Syntax
VTYPE (var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.
Restriction: You cannot use an expression as an argument.

Details
If the VTYPE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 1.

VTYPE returns N for numeric variables and C for character variables.

Comparisons
� VTYPE returns the type of the specified variable. VTYPEX, however, evaluates

the argument to determine the variable name. The function then returns the type
(character or numeric) that is associated with that variable name.

� VTYPE does not accept an expression as an argument. VTYPEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

array x(3) x1-x3;
y=vtype(x(1));
put y=; y=N

See Also

Functions:
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VTYPEX Function
Returns the type (character or numeric) for the value of the specified argument.

Functions and CALL Routines � VTYPEX Function 1183

Category: Variable Information

Syntax
VTYPEX (expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.

Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VTYPEX function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 1.

VTYPEX returns N for numeric variables and C for character variables.

Comparisons
� VTYPE returns the type of the specified variable. VTYPEX, however, evaluates

the argument to determine the variable name. The function then returns the type
(character or numeric) that is associated with that variable name.

� VTYPE does not accept an expression as an argument. VTYPEX accepts
expressions, but the value of the specified expression cannot denote an array
reference.

� Related functions return the value of other variable attributes, such as the
variable name, informat, and format, among others. For a list, see the “Variable
Information” functions in “Functions and CALL Routines by Category” on page
342 .

Examples

SAS Statements Results

array x(3) x1-x3;
array vx(3) $6 vx1 vx2 vx3

(’x1’ ’x2’ ’x3’);
y=vtypex(vx(1));
put y=; y=N

See Also

Functions:

“Variable Information” functions in “Functions and CALL Routines by Category”
on page 342

1184 VVALUE Function � Chapter 4

VVALUE Function

Returns the formatted value that is associated with the variable that you specify.

Category: Variable Information

Restriction: Use only with the DATA step

Syntax
VVALUE(var)

Arguments

var
specifies a variable that is expressed as a scalar or as an array reference.

Restriction: You cannot use an expression as an argument.

Details
If the VVALUE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

VVALUE returns a character string that contains the current value of the variable
that you specify. The value is formatted using the current format that is associated
with the variable.

Comparisons
� VVALUE returns the value that is associated with the variable that you specify.

VVALUEX, however, evaluates the argument to determine the variable name. The
function then returns the value that is associated with that variable name.

� VVALUE does not accept an expression as an argument. VVALUEX accepts
expressions, but the value of the expression cannot denote an array reference.

� VVALUE and an assignment statement both return a character string that
contains the current value of the variable that you specify. With VVALUE, the
value is formatted using the current format that is associated with the variable.
With an assignment statement, however, the value is unformatted.

� The PUT function allows you to reformat a specified variable or constant.
VVALUE uses the current format that is associated with the variable.

Examples

SAS Statements Results

y=9999;
format y comma10.2;
v=vvalue(y);
put v; 9,999.00

Functions and CALL Routines � VVALUEX Function 1185

See Also

Functions:
“VVALUEX Function” on page 1185
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

VVALUEX Function

Returns the formatted value that is associated with the argument that you specify.

Category: Variable Information

Syntax
VVALUEX(expression)

Arguments

expression
specifies a character constant, variable, or expression that evaluates to a variable
name.
Restriction: The value of the specified expression cannot denote an array reference.

Details
If the VVALUEX function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 200.

VVALUEX returns a character string that contains the current value of the
argument that you specify. The value is formatted by using the format that is currently
associated with the argument.

Comparisons
� VVALUE accepts a variable as an argument and returns the value of that

variable. VVALUEX, however, accepts a character expression as an argument. The
function then evaluates the expression to determine the variable name and
returns the value that is associated with that variable name.

� VVALUE does not accept an expression as an argument, but it does accept array
references. VVALUEX accepts expressions, but the value of the expression cannot
denote an array reference.

� VVALUEX and an assignment statement both return a character string that
contains the current value of the variable that you specify. With VVALUEX, the
value is formatted by using the current format that is associated with the variable.
With an assignment statement, however, the value is unformatted.

� The PUT function allows you to reformat a specified variable or constant.
VVALUEX uses the current format that is associated with the variable.

1186 WEEK Function � Chapter 4

Examples

SAS Statements Results

date1=’31mar02’d;
date2=’date1’;
format date1 date7.;
datevalue=vvaluex(date2);
put datevalue; 31MAR02

See Also

Functions:

“VVALUE Function” on page 1184
“Variable Information” functions in “Functions and CALL Routines by Category”

on page 342

WEEK Function

Returns the week-number value.

Category: Date and Time

Syntax
WEEK(<sas-date>, < ’descriptor’>)

Arguments

sas-date
specifies the SAS data value. If the sas-date argument is not specified, the WEEK
function returns the week-number value of the current date.

descriptor
specifies the value of the descriptor. The following descriptors can be specified in
uppercase or lowercase characters.

U (default)
specifies the number-of-the-week within the year. Sunday is considered the first
day of the week. The number-of-the-week value is represented as a decimal
number in the range 0–53. Week 53 has no special meaning. The value of
week(’31dec2006’d, ’u’) is 53.
Tip: The U and W descriptors are similar, except that the U descriptor considers

Sunday as the first day of the week, and the W descriptor considers Monday as
the first day of the week.

See: “The U Descriptor” on page 1187

Functions and CALL Routines � WEEK Function 1187

V
specifies the number-of-the-week whose value is represented as a decimal number
in the range 1–53. Monday is considered the first day of the week and week 1 of
the year is the week that includes both January 4th and the first Thursday of the
year. If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are
part of the last week of the preceding year.

See: “The V Descriptor” on page 1187

W
specifies the number-of-the-week within the year. Monday is considered the first
day of the week. The number-of-the-week value is represented as a decimal
number in the range 0–53. Week 53 has no special meaning.
The value of week(’31dec2006’d, ’w’) is 53.

Tip: The U and W descriptors are similar except that the U descriptor considers
Sunday as the first day of the week, and the W descriptor considers Monday as
the first day of the week.

See: “The W Descriptor” on page 1187

Details

The Basics
The WEEK function reads a SAS date value and returns the week number. The

WEEK function is not dependent on locale, and uses only the Gregorian calendar in its
computations.

The U Descriptor
The WEEK function with the U descriptor reads a SAS date value and returns the
number of the week within the year. The number-of-the-week value is represented as a
decimal number in the range 0–53, with a leading zero and maximum value of 53.
Week 0 means that the first day of the week occurs in the preceding year. The fifth
week of the year is represented as 05.

Sunday is considered the first day of the week. For example, the value of
week(’01jan2007’d, ’u’) is 0.

The V Descriptor
The WEEK function with the V descriptor reads a SAS date value and returns the week
number. The number-of-the-week is represented as a decimal number in the range
01–53. The decimal number has a leading zero and a maximum value of 53. Weeks
begin on a Monday, and week 1 of the year is the week that includes both January 4th
and the first Thursday of the year. If the first Monday of January is the 2nd, 3rd, or
4th, the preceding days are part of the last week of the preceding year. In the following
example, 01jan2006 and 30dec2005 occur in the same week. The first day (Monday) of
that week is 26dec2005. Therefore, week(’01jan2006’d, ’v’) and
week(’30dec2005’d, ’v’) both return a value of 52. This means that both dates
occur in week 52 of the year 2005.

The W Descriptor The WEEK function with the W descriptor reads a SAS date value
and returns the number of the week within the year. The number-of-the-week value is
represented as a decimal number in the range 0–53, with a leading zero and maximum
value of 53. Week 0 means that the first day of the week occurs in the preceding year.
The fifth week of the year would be represented as 05.

Monday is considered the first day of the week. Therefore, the value of
week(’01jan2007’d, ’w’) is 1.

1188 WEEK Function � Chapter 4

Comparisons of Descriptors
U is the default descriptor. Its range is 0-53, and the first day of the week is Sunday.
The V descriptor has a range of 1-53 and the first day of the week is Monday. The W
descriptor has a range of 0-53 and the first day of the week is Monday.

The following list describes the descriptors and an associated week:
� Week 0:

U indicates the days in the current Gregorian year before week 1.

V does not apply.

W indicates the days in the current Gregorian year before week 1.
� Week 1:

U begins on the first Sunday in a Gregorian year.

V begins on the Monday between December 29 of the previous
Gregorian year and January 4 of the current Gregorian year.
The first ISO week can span the previous and current
Gregorian years.

W begins on the first Monday in a Gregorian year.
� End of Year Weeks:

U specifies that the last week (52 or 53) in the year can contain
less than 7 days. A Sunday to Saturday period that spans 2
consecutive Gregorian years is designated as 52 and 0 or 53
and 0.

V specifies that the last week (52 or 53) of the ISO year contains
7 days. However, the last week of the ISO year can span the
current Gregorian and next Gregorian year.

W specifies that the last week (52 or 53) in the year can contain
less than 7 days. A Monday to Sunday period that spans two
consecutive Gregorian years is designated as 52 and 0 or 53
and 0.

Examples

The following example shows the values of the U, V, and W descriptors for dates near
the end of certain years and the beginning of the next year. Examining the full data set
illustrates how the behavior can differ between the various descriptors depending on
the day of the week for January 1. The output displays the first 20 observations:

options pageno=1 nodate ls=80 ps=64;

title ’Values of the U, V, and W Descriptors’;
data a(drop=i date0 date1 y);

date0 = ’20dec2005’d;
do y = 0 to 5;

date1 = intnx("YEAR",date0,y,’s’);
do i = 0 to 20;

date = intnx("DAY",date1,i);
year = YEAR(date);
week = week(date);
week_u = week(date, ’u’);
week_v = week(date, ’v’);
week_w = week(date, ’w’);

Functions and CALL Routines � WEEKDAY Function 1189

output;
end;

end;
format date WEEKDATX17.;

run;
proc print;
run;

Output 4.97 Results of Identifying the Values of the U, V, and W Descriptors

Values of the U, V, and W Descriptors 1

Obs date year week week_u week_v week_w

1 Tue, 20 Dec 2005 2005 51 51 51 51
2 Wed, 21 Dec 2005 2005 51 51 51 51
3 Thu, 22 Dec 2005 2005 51 51 51 51
4 Fri, 23 Dec 2005 2005 51 51 51 51
5 Sat, 24 Dec 2005 2005 51 51 51 51
6 Sun, 25 Dec 2005 2005 52 52 51 51
7 Mon, 26 Dec 2005 2005 52 52 52 52
8 Tue, 27 Dec 2005 2005 52 52 52 52
9 Wed, 28 Dec 2005 2005 52 52 52 52

10 Thu, 29 Dec 2005 2005 52 52 52 52
11 Fri, 30 Dec 2005 2005 52 52 52 52
12 Sat, 31 Dec 2005 2005 52 52 52 52
13 Sun, 1 Jan 2006 2006 1 1 52 0
14 Mon, 2 Jan 2006 2006 1 1 1 1
15 Tue, 3 Jan 2006 2006 1 1 1 1
16 Wed, 4 Jan 2006 2006 1 1 1 1
17 Thu, 5 Jan 2006 2006 1 1 1 1
18 Fri, 6 Jan 2006 2006 1 1 1 1
19 Sat, 7 Jan 2006 2006 1 1 1 1
20 Sun, 8 Jan 2006 2006 2 2 1 1

See Also

Functions:
“INTNX Function” on page 831

Formats:
“WEEKUw. Format” on page 259
“WEEKVw. Format” on page 261
“WEEKWw. Format” on page 263

Informats:
“WEEKUw. Informat” on page 1356
“WEEKVw. Informat” on page 1358
“WEEKWw. Informat” on page 1360

WEEKDAY Function
From a SAS date value, returns an integer that corresponds to the day of the week.

1190 WHICHC Function � Chapter 4

Category: Date and Time

Syntax
WEEKDAY(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The WEEKDAY function produces an integer that represents the day of the week,
where 1=Sunday, 2=Monday, ..., 7=Saturday.

Examples

SAS Statements Results

x=weekday(’16mar97’d);
put x; 1

WHICHC Function
Searches for a character value that is equal to the first argument, and returns the index of the first
matching value.

Category: Search

Syntax
WHICHC(string, value-1 <, value-2, …>)

Arguments

string
is a character constant, variable, or expression that specifies the value to search for.

value
is a character constant, variable, or expression that specifies the value to be searched.

Details
The WHICHC function searches the second and subsequent arguments for a value that
is equal to the first argument, and returns the index of the first matching value.

Functions and CALL Routines � WHICHN Function 1191

If string is missing, then WHICHC returns a missing value. Otherwise, WHICHC
compares the value of string with value-1, value-2, and so on, in sequence. If argument
value-i equals string, then WHICHC returns the positive integer i. If string does not
equal any subsequent argument, then WHICHC returns 0.

Using WHICHC is useful when the values that are being searched are subject to
frequent change. If you need to perform many searches without changing the values
that are being searched, using the HASH object is much more efficient.

Examples

The following example searches the array for the first argument and returns the
index of the first matching value.

data _null_;
array fruit (*) $12 fruit1-fruit3 (’watermelon’ ’apple’ ’banana’);
x1=whichc(’watermelon’, of fruit[*]);
x2=whichc(’banana’, of fruit[*]);
x3=whichc(’orange’, of fruit[*]);
put x1= / x2= / x3=;

run;

SAS writes the following output to the log:

x1=1
x2=3
x3=0

See Also

Functions:
“WHICHN Function” on page 1191

“The IN Operator in Character Comparisons” in SAS Language Reference: Concepts.
“Using the HASH Object” in SAS Language Reference: Concepts.

WHICHN Function

Searches for a numeric value that is equal to the first argument, and returns the index of the first
matching value.

Category: Search

Syntax
WHICHN(argument, value-1 <, value-2, …>)

Arguments

argument

1192 YEAR Function � Chapter 4

is a numeric constant, variable, or expression that specifies the value to search for.

value
is a numeric constant, variable, or expression that specifies the value to be searched.

Details
The WHICHN function searches the second and subsequent arguments for a value that
is equal to the first argument, and returns the index of the first matching value.

If string is missing, then WHICHN returns a missing value. Otherwise, WHICHN
compares the value of string with value-1, value-2, and so on, in sequence. If argument
value-i equals string, then WHICHN returns the positive integer i. If string does not
equal any subsequent argument, then WHICHN returns 0.

Using WHICHN is useful when the values that are being searched are subject to
frequent change. If you need to perform many searches without changing the values
that are being searched, using the HASH object is much more efficient.

Examples

The following example searches the array for the first argument and returns the
index of the first matching value.

data _null_;
array dates[*] Columbus Hastings Nicea US_Independence missing

Magna_Carta Gutenberg
(1492 1066 325 1776 . 1215 1450);

x0=whichn(., of dates[*]);
x1=whichn(1492, of dates[*]);
x2=whichn(1066, of dates[*]);
x3=whichn(1450, of dates[*]);
x4=whichn(1000, of dates[*]);
put x0= / x1= / x2= / x3= / x4=;

run;

SAS writes the following output to the log:

x0=.
x1=1
x2=2
x3=7
x4=0

See Also

Functions:
“WHICHC Function” on page 1190

“The IN Operator in Numeric Comparisons” in SAS Language Reference: Concepts.
“Using the Hash Object” in SAS Language Reference: Concepts.

YEAR Function
Returns the year from a SAS date value.

Functions and CALL Routines � YIELDP Function 1193

Category: Date and Time

Syntax
YEAR(date)

Arguments

date
specifies a SAS expression that represents a SAS date value.

Details
The YEAR function produces a four-digit numeric value that represents the year.

Examples

SAS Statements Results

date=’25dec97’d;
y=year(date);
put y; 1997

See Also

Functions:
“DAY Function” on page 630
“MONTH Function” on page 913

YIELDP Function

Returns the yield-to-maturity for a periodic cash flow stream, such as a bond.

Category: Financial

Syntax
YIELDP(A,c,n,K,k0,p)

Arguments

A

1194 YIELDP Function � Chapter 4

specifies the face value.

Range: � � �

c
specifies the nominal annual coupon rate, expressed as a fraction.

Range: � � � � �

n
specifies the number of coupons per year.

Range: � � � and is an integer

K
specifies the number of remaining coupons from settlement date to maturity.

Range: � � � and is an integer

k0

specifies the time from settlement date to the next coupon as a fraction of the annual
basis.

Range: � � �� �
�

�

p
specifies the price with accrued interest.

Range: � � �

Details
The YIELDP function is based on the relationship

� �
��

���

� ���
�

�
� � �

�

���

where

	� � ��� � � � �

� ��� � �
�
�
�� � � � � � � � � �

� ��� �
�
� � �

�

�
�

The YIELDP function solves for y.

Examples

In the following example, the YIELDP function returns the yield-to-maturity of a
bond that has a face value of 1000, an annual coupon rate of 0.01, 4 coupons per year,
and 14 remaining coupons. The time from settlement date to next coupon date is 0.165,
and the price with accrued interest is 800.

data _null_;
y=yieldp(1000,.01,4,14,.165,800);
put y;

run;

The value returned is 0.0775031248.

Functions and CALL Routines � YRDIF Function 1195

YRDIF Function

Returns the difference in years between two dates.

Category: Date and Time

Syntax
YRDIF(sdate,edate,basis)

Arguments

sdate
specifies a SAS date value that identifies the starting date.

edate
specifies a SAS date value that identifies the ending date.

basis
identifies a character constant or variable that describes how SAS calculates the date
difference. The following character strings are valid:

’30/360’
specifies a 30-day month and a 360-day year in calculating the number of years.
Each month is considered to have 30 days, and each year 360 days, regardless of
the actual number of days in each month or year.
Alias: ’360’
Tip: If either date falls at the end of a month, it is treated as if it were the last

day of a 30-day month.

’ACT/ACT’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days that fall in 365-day years divided
by 365 plus the number of days that fall in 366-day years divided by 366.
Alias: ’Actual’

’ACT/360’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days divided by 360, regardless of the
actual number of days in each year.

’ACT/365’
uses the actual number of days between dates in calculating the number of years.
SAS calculates this value as the number of days divided by 365, regardless of the
actual number of days in each year.

Examples

In the following example, YRDIF returns the difference in years between two dates
based on each of the options for basis.

data _null_;
sdate=’16oct1998’d;

1196 YYQ Function � Chapter 4

edate=’16feb2003’d;
y30360=yrdif(sdate, edate, ’30/360’);
yactact=yrdif(sdate, edate, ’ACT/ACT’);
yact360=yrdif(sdate, edate, ’ACT/360’);
yact365=yrdif(sdate, edate, ’ACT/365’);
put y30360= yactact= yact360= yact365=;

run;

SAS Statements Results

put y30360=;
put yactact=;
put yact360=;
put yact365=;

4.333333333
4.3369863014
4.4
4.3397260274

See Also

Functions:

“DATDIF Function” on page 625

YYQ Function

Returns a SAS date value from year and quarter year values.

Category: Date and Time

Syntax

YYQ(year,quarter)

Arguments

year
specifies a two-digit or four-digit integer that represents the year. The
YEARCUTOFF= system option defines the year value for two-digit dates.

quarter
specifies the quarter of the year (1, 2, 3, or 4).

Details

The YYQ function returns a SAS date value that corresponds to the first day of the
specified quarter. If either year or quarter is missing, or if the quarter value is not
valid, the result is missing.

Functions and CALL Routines � ZIPCITY Function 1197

Examples

SAS Statements Results

DateValue=yyq(2001,3);
put DateValue;
put DateValue date7.;
put DateValue date9.;

15157
01JUL01
01JUL2001

StartOfQtr=yyq(99,4);
put StartOfQtr;
put StartOfQtr=worddate.;

14518
StartOfQtr=October 1, 1999

See Also

Functions:
“QTR Function” on page 1032
“YEAR Function” on page 1192

System Option:
“YEARCUTOFF= System Option” on page 1996

ZIPCITY Function

Returns a city name and the two-character postal code that corresponds to a ZIP code.

Category: State and ZIPCode

Syntax
ZIPCITY(zip-code)

Arguments

zip-code
specifies a numeric or character expression that contains a five-digit ZIP code.
Tip: If the value of zip-code begins with leading zeros, you can enter the value

without the leading zeros. For example, if you enter 1040, ZIPCITY assumes that
the value is 01040.

Details

The Basics If the ZIPCITY function returns a value to a variable that has not yet
been assigned a length, by default the variable is assigned a length of 20.

ZIPCITY returns a city name and the two-character postal code that corresponds to
its five-digit zip code argument. ZIPCITY returns the character values in mixed-case. If
the zip code is unknown, ZIPCITY returns a blank value.

1198 ZIPCITY Function � Chapter 4

Note: The SASHELP.ZIPCODE data set must be present when you use this
function. If you remove the data set, ZIPCITY will return unexpected results. �

How the ZIP Code Is Translated to the State Postal Code To determine which state
corresponds to a particular ZIP code, this function uses a zone table that consists of the
start and end ZIP code values for each state. It then finds the corresponding state for
that range of ZIP codes. The zone table consists of start and end ZIP code values for
each state to allow for exceptions, and does not validate ZIP code values.

With very few exceptions, a zone does not span multiple states. The exceptions are
included in the zone table. It is possible for new zones or new exceptions to be added by
the U.S. Postal Service at any time. However, SAS software is updated only with each
new release of the product.

Determining When the State Postal Code Table Was Last Updated The
SASHELP.ZIPCODE data set contains postal code information that is used with the
ZIPCITY and other ZIP code functions. This data set is updated with each new release
of SAS software. To determine when this table was last updated, execute PROC
CONTENTS:

proc contents data=SASHELP.ZIPCODE;
run;

Then view the label information for the SASHELP.ZIPCODE data set:

Label zipcodedownload.com
April2004, UNIQUE-updated
(sorted) February
2006, Release 9.2

The label shows that zipcodedownload.com is the site from which the ZIP codes
were downloaded, and that April 2004 is the date that the ZIP codes were last refreshed.
February 2006 is the last date that modifications were made to SASHELP.ZIPCODE.

Note: You can download the latest version of the SASHELP.ZIPCODE file from the
SAS external Web site at any time. The file is located at http://support.sas.com/
rnd/datavisualization/mapsonline/html/misc.html. Select Zipcode Dataset
from the Name column to begin the download process. You must execute the CIMPORT
procedure after you download and unzip the data set. �

Comparisons
The ZIPCITY, ZIPNAME, ZIPNAMEL, and ZIPSTATE functions accept the same
argument but return different values:

� ZIPCITY returns the name of the city in mixed-case and the two-character postal
code that corresponds to its five-digit ZIP code argument.

� ZIPNAME returns the uppercase name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPNAMEL returns the mixed case name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPSTATE returns the uppercase two-character state postal code (or world-wide
GSA geographic code for U.S. territories) that corresponds to its five-digit ZIP code
argument.

Examples

The following SAS statements produce these results.

Functions and CALL Routines � ZIPCITYDISTANCE Function 1199

SAS Statements Results

city1=zipcity(27511);
put city1; Cary, NC

length zip $10.;
zip=’90049-1392’;
zip=substr(zip,1,5);
city2=zipcity(zip);
put city2; Los Angeles, CA

city3=zipcity(4338);
put city3; Augusta, ME

city4=zipcity(01040);
put city4; Holyoke, MA

See Also

Functions:
“ZIPNAME Function” on page 1202
“ZIPNAMEL Function” on page 1203
“ZIPSTATE Function” on page 1205
“ZIPFIPS Function” on page 1200

ZIPCITYDISTANCE Function

Returns the geodetic distance between two ZIP code locations.

Category: Distance
Category: State and Zip Code

Syntax
ZIPCITYDISTANCE(zip-code-1, zip-code-2)

Arguments

zip-code
specifies a numeric or character expression that contains the ZIP code of a location in
the United States of America.

Details
The ZIPCITYDISTANCE function returns the geodetic distance in miles between two
ZIP code locations. The centroid of each ZIP code is used in the calculation.

The SASHELP.ZIPCODE data set must be present when you use this function. If you
remove the data set, then ZIPCITYDISTANCE will return unexpected results.

1200 ZIPFIPS Function � Chapter 4

The SASHELP.ZIPCODE data set contains postal code information that is used with
ZIPCITYDISTANCE and other ZIP code functions. This data set is updated with each
new release of SAS software. To determine when this table was last updated, execute
PROC CONTENTS:

proc contents data=SASHELP.ZIPCODE;
run;

Then view the label information for the SASHELP.ZIPCODE data set:

Label zipcodedownload.com
April2004, UNIQUE-updated
(sorted) February
2006, Release 9.2

The label shows that zipcodedownload.com is the site from which the ZIP codes
were downloaded, and that April 2004 is the date that the ZIP codes were last refreshed.
February 2006 is the last date that modifications were made to SASHELP.ZIPCODE.

Note: You can download the latest version of the SASHELP.ZIPCODE file from the
SAS external Web site at any time. The file is located at http://support.sas.com/
rnd/datavisualization/mapsonline/html/misc.html. Select Zipcode Dataset
from the Name column to begin the download process. You must execute the CIMPORT
procedure after you download and unzip the data set. �

Examples

In the following example, the first ZIP code identifies a location in San Francisco,
CA, and the second ZIP code identifies a location in Bangor, ME. ZIPCITYDISTANCE
returns the distance in miles between these two locations.

data _null_;
distance=zipcitydistance(’94103’, ’04401’);
put ’Distance from San Francisco, CA, to Bangor, ME: ’ distance 4. ’ miles’;

run;

SAS writes the following output to the log:

Distance from San Francisco, CA, to Bangor, ME: 2782 miles

See Also

Functions:

“ZIPCITY Function” on page 1197

ZIPFIPS Function

Converts ZIP codes to two-digit FIPS codes.

Category: State and Zip Code

Functions and CALL Routines � ZIPFIPS Function 1201

Syntax
ZIPFIPS(zip-code)

Arguments

zip-code
specifies a numeric or character expression that contains a five-digit ZIP code.

Tip: If the value of zip-code begins with leading zeros, you can enter the value
without the leading zeros. For example, if you enter 1040, ZIPFIPS assumes that
the value is 01040.

Details

The Basics The ZIPFIPS function returns the two-digit numeric U.S. Federal
Information Processing Standards (FIPS) code that corresponds to its five-digit ZIP code
argument.

How the Zip Code Is Translated to the State Postal Code To determine which state
corresponds to a particular ZIP code, this function uses a zone table that consists of the
start and end ZIP code values for each state. It then finds the corresponding state for
that range of ZIP codes. The zone table consists of start and end ZIP code values for
each state to allow for exceptions, and does not validate ZIP code values.

With very few exceptions, a zone does not span multiple states. The exceptions are
included in the zone table. It is possible for new zones or new exceptions to be added by
the U.S. Postal Service at any time. However, SAS software is updated only with each
new release of the product.

Examples

The following SAS statements produce these results.

SAS Statements Results

fips1=zipfips(’27511’);
put fips1; 37

fips2=zipfips(’01040’);
put fips2; 25

fips3=zipfips(1040);
put fips3; 25

fips4=zipfips(59017);
put fips4; 30

fips5=zipfips(24862);
put fips5; 54

See Also

Functions:

1202 ZIPNAME Function � Chapter 4

“ZIPCITY Function” on page 1197
“ZIPNAME Function” on page 1202
“ZIPNAMEL Function” on page 1203
“ZIPSTATE Function” on page 1205

ZIPNAME Function

Converts ZIP codes to uppercase state names.

Category: State and Zip Code

Syntax
ZIPNAME(zip-code)

Arguments

zip-code
specifies a numeric or character expression that contains a five-digit ZIP code.
Tip: If the value of zip-code begins with leading zeros, you can enter the value

without the leading zeros. For example, if you enter 1040, ZIPNAME assumes
that the value is 01040.

Details

The Basics If the ZIPNAME function returns a value to a variable that has not yet
been assigned a length, by default the variable is assigned a length of 20.

ZIPNAME returns the name of the state or U.S. territory that corresponds to its
five-digit ZIP code argument. ZIPNAME returns character values up to 20 characters
long, all in uppercase.

How the Zip Code Is Translated to the State Postal Code To determine which state
corresponds to a particular ZIP code, this function uses a zone table that consists of the
start and end ZIP code values for each state. It then finds the corresponding state for
that range of ZIP codes. The zone table consists of start and end ZIP code values for
each state to allow for exceptions, and does not validate ZIP code values.

With very few exceptions, a zone does not span multiple states. The exceptions are
included in the zone table. It is possible for new zones or new exceptions to be added by
the U.S. Postal Service at any time. However, SAS software is updated only with each
new release of the product.

Comparisons
The ZIPCITY, ZIPNAME, ZIPNAMEL, and ZIPSTATE functions accept the same
argument but return different values:

� ZIPCITY returns the mixed-case name of the city and the two-character postal
code that corresponds to its five-digit ZIP code argument.

Functions and CALL Routines � ZIPNAMEL Function 1203

� ZIPNAME returns the upper-case name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPNAMEL returns the mixed-case name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPSTATE returns the uppercase two-character state postal code (or world-wide
GSA geographic code for U.S. territories) that corresponds to its five-digit ZIP code
argument.

Examples

The following SAS statements produce these results.

SAS Statements Results

state1=zipname(’27511’);
put state1; NORTH CAROLINA

state2=zipname(’01040’);
put state2; MASSACHUSETTS

state3=zipname(1040);
put state3; MASSACHUSETTS

state4=zipname(’59017’);
put state4; MONTANA

length zip $10.;
zip=’90049-1392’;
zip=substr(zip,1,5);
state5=zipname(zip);
put state5; CALIFORNIA

See Also

Functions:
“ZIPCITY Function” on page 1197
“ZIPFIPS Function” on page 1200
“ZIPNAMEL Function” on page 1203
“ZIPSTATE Function” on page 1205

ZIPNAMEL Function

Converts zip codes to mixed case state names.

Category: State and Zip Code

Syntax
ZIPNAMEL(zip-code)

1204 ZIPNAMEL Function � Chapter 4

Arguments

zip-code
specifies a numeric or character expression that contains a five-digit zip code.
Tip: If the value of zip-code begins with leading zeros, you can enter the value

without the leading zeros. For example, if you enter 1040, ZIPNAMEL assumes
that the value is 01040.

Details

The Basics If the ZIPNAMEL function returns a value to a variable that has not yet
been assigned a length, by default the variable is assigned a length of 20.

ZIPNAMEL returns the name of the state or U.S. territory that corresponds to its
five-digit zip code argument. ZIPNAMEL returns mixed-case character values up to 20
characters long.

How the Zip Code Is Translated to the State Postal Code To determine which state
corresponds to a particular zip code, this function uses a zone table that consists of the
start and end zip code values for each state. It then finds the corresponding state for
that range of zip codes. The zone table consists of start and end zip code values for each
state to allow for exceptions, and does not validate zip code values.

With very few exceptions, a zone does not span multiple states. The exceptions are
included in the zone table. It is possible for new zones or new exceptions to be added by
the U.S. Postal Service at any time. However, SAS software is updated only with each
new release of the product.

Comparisons
The ZIPCITY, ZIPNAME, ZIPNAMEL, and ZIPSTATE functions accept the same
argument but return different values:

� ZIPCITY returns the name of the city in mixed-case and the two-character postal
code that corresponds to its five-digit zip code argument.

� ZIPNAME returns the uppercase name of the state or U.S. territory that
corresponds to its five-digit zip code argument.

� ZIPNAMEL returns the mixed-case name of the state or U.S. territory that
corresponds to its five-digit zip code argument.

� ZIPSTATE returns the upper-case two-character state postal code (or world-wide
GSA geographic code for U.S. territories) that corresponds to its five-digit zip code
argument.

Examples

The following SAS statements produce these results.

SAS Statements Results

state1=zipnamel(’27511’);
put state1; North Carolina

state2=zipnamel(’01040’);
put state2; Massachusetts

state3=zipnamel(1040);
put state3; Massachusetts

Functions and CALL Routines � ZIPSTATE Function 1205

SAS Statements Results

state4=zipnamel(59017);
put state4; Montana

length zip $10.;
zip=’90049-1392’;
zip=substr(zip,1,5);
state5=zipnamel(zip);
put state5; California

See Also

Functions:
“ZIPCITY Function” on page 1197
“ZIPFIPS Function” on page 1200
“ZIPNAME Function” on page 1202
“ZIPSTATE Function” on page 1205

ZIPSTATE Function

Converts ZIP codes to two-character state postal codes.

Category: State and Zip Code

Syntax
ZIPSTATE(zip-code)

Arguments

zip-code
specifies a numeric or character expression that contains a valid five-digit ZIP code.
Tip: If the value of zip-code begins with leading zeros, you can enter the value

without the leading zeros. For example, if you enter 1040, ZIPSTATE assumes
that the value is 01040.

Details

The Basics If the ZIPSTATE function returns a value to a variable that has not yet
been assigned a length, by default the variable is assigned a length of 20.

ZIPSTATE returns the two-character state postal code (or world-wide GSA
geographic code for U.S. territories) that corresponds to its five-digit ZIP code
argument. ZIPSTATE returns character values in uppercase.

Note: ZIPSTATE does not validate the ZIP code. �

1206 ZIPSTATE Function � Chapter 4

How the Zip Code Is Translated to the State Postal Code To determine which state
corresponds to a particular ZIP code, this function uses a zone table that consists of the
start and end ZIP code values for each state. It then finds the corresponding state for
that range of ZIP codes. The zone table consists of start and end ZIP code values for
each state to allow for exceptions, and does not validate ZIP code values.

With very few exceptions, a zone does not span multiple states. The exceptions are
included in the zone table. It is possible for new zones or new exceptions to be added by
the U.S. Postal Service at any time. However, SAS software is updated only with each
new release of the product.

Army Post Office (APO) and Fleet Post Office (FPO) Postal Codes The ZIPSTATE
function recognizes APO and FPO ZIP codes. The APO and FPO states correspond to
their exit bases in the United States.

Determining When the State Postal Code Table Was Last Updated The
SASHELP.ZIPCODE data set contains postal code information that is used with the
ZIPSTATE and other ZIP code functions. This data set is updated with each new
release of SAS software. To determine when this table was last updated, execute PROC
CONTENTS:

proc contents data=SASHELP.ZIPCODE;
run;

Then view the label information for the SASHELP.ZIPCODE data set:

Label zipcodedownload.com
April2004, UNIQUE-updated
(sorted) February
2006, Release 9.2

The label shows that zipcodedownload.com is the site from which the ZIP codes
were downloaded, and that April 2004 is the date that the ZIP codes were last refreshed.
February 2006 is the last date that modifications were made to SASHELP.ZIPCODE.

Note: You can download the latest version of the SASHELP.ZIPCODE file from the
SAS external Web site at any time. The file is located at http://support.sas.com/
rnd/datavisualization/mapsonline/html/misc.html. Select Zipcode Dataset
from the Name column to begin the download process. You must execute the CIMPORT
procedure after you download and unzip the data set. �

Comparisons

The ZIPCITY, ZIPNAME, ZIPNAMEL, and ZIPSTATE functions accept the same
argument but return different values:

� ZIPCITY returns the mixed-case name of the city and the two-character postal
code that corresponds to its five-digit ZIP code argument.

� ZIPNAME returns the uppercase name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPNAMEL returns the mixed-case name of the state or U.S. territory that
corresponds to its five-digit ZIP code argument.

� ZIPSTATE returns the upper-case two-character state postal code (or world-wide
GSA geographic code for U.S. territories) that corresponds to its five-digit ZIP code
argument.

Functions and CALL Routines � SAS Companion for Windows 1207

Examples

The following SAS statements produce these results.

SAS Statements Results

state1=zipstate(’27511’);
put state1; NC

state2=zipstate(’01040’);
put state2; MA

state3=zipstate(1040);
put state3; MA

state4=zipstate(59017);
put state4; MT

length zip $10.;
zip=’90049-1392’;
zip=substr(zip,1,5);
state5=zipstate(zip);
put state5; CA

See Also

Functions:
“ZIPFIPS Function” on page 1200
“ZIPNAME Function” on page 1202
“ZIPNAMEL Function” on page 1203
“ZIPCITY Function” on page 1197

Functions and CALL Routines Documented in Other SAS Publications
In addition to functions and CALL routines documented in SAS Language Reference:

Dictionary, functions and CALL routines are also documented in the following
publications:

“SAS Companion for Windows” on page 1207
“SAS Companion for OpenVMS on HP Integrity SErvers” on page 1208
“SAS Companion for z/OS” on page 1209
“SAS Data Quality Server: Reference” on page 1209
“SAS Logging Facility: Configuration and Programming Reference ”on page 1210
“SAS Macro Language: Reference” on page 1211
“SAS National Language Support (NLS): Reference Guide” on page 1212

SAS Companion for Windows
The functions and CALL routines listed here are documented only in SAS

Companion for Windows. Other functions and CALL routines in SAS Companion for
Windows contain information specific to the Windows operating environment, where the

1208 SAS Companion for OpenVMS on HP Integrity SErvers � Chapter 4

main documentation is in SAS Language Reference: Dictionary. These latter functions
and CALL routines are not listed here.

Function or CALL routine Description

CALL SOUND Generates a sound with a specific frequency and duration.

MCIPISLP Causes SAS to wait for a piece of multimedia equipment to
become active.

MCIPISTR Submits an MCI string command to a piece of multimedia
equipment.

MODULE Calls a specific routine or module that resides in an
external dynamic link library (DLL).

WAKEUP Specifies the time a SAS DATA step begins execution.

SAS Companion for OpenVMS on HP Integrity SErvers
The functions and CALL routines listed here are documented only in SAS Companion

for OpenVMS on HP Integrity Servers. Other functions and CALL routines in SAS
Companion for OpenVMS on HP Integrity Servers contain information specific to the
OpenVMS operating environment, where the main documentation is in SAS Language
Reference: Dictionary. These latter functions and CALL routines are not listed here.

Function or CALL Routine Description

ASCEBC Converts an input character string from ASCII to EBCDIC.

CALL FINDEND Releases resources that are associated with a directory search.

DELETE Deletes a file.

EBCASC Converts an input character string from EBCDIC to ASCII.

FILEATTR Returns the attribute information for a specified file.

FINDFILE Searches a directory for a file.

GETDVI Returns a specified item of information from a device.

GETJPI Retrieves job-process information.

GETLOG Returns information about a DCL logical name.

GETMSG Translates an OpenVMS error code into text.

GETQUOTA Retrieves disk quota information.

GETSYM Returns the value of a DCL symbol.

GETTERM Returns the characteristics of your terminal device.

MODULE Calls a specific routine or module that resides in a shareable
image.

NODENAME Returns the name of the current node.

PUTLOG Creates an OpenVMS logical-name in your process-level logical
name table.

PUTSYM Creates a DCL symbol in the parent SAS process.

Functions and CALL Routines � SAS Data Quality Server: Reference 1209

Function or CALL Routine Description

SETTERM Modifies a characteristic of your terminal device.

TERMIN Allows simple input from SYS$INPUT.

TERMOUT Allows simple output to SYS$OUTPUT.

TTCLOSE Closes a channel that was previously assigned by TTOPEN.

TTCONTRL Modifies the characteristics of a channel that was previously
assigned by TTOPEN.

TTOPEN Assigns an I/O channel to a terminal.

TTREAD Reads characters from the channel assigned by TTOPEN.

TTWRITE Writes characters to the channel assigned by TTOPEN.

VMS Spawns a subprocess and executes a DCL command.

SAS Companion for z/OS
The functions and CALL routines listed here are documented only in SAS

Companion for z/OS. Other functions and CALL routines in SAS Companion for z/OS
contain information specific to the z/OS operating environment, where the main
documentation is in SAS Language Reference: Dictionary . These latter functions and
CALL routines are not listed here.

Function or CALL routine Description

CALL TSO Issues a TSO command or invokes a CLIST or a REXX
exec during a SAS session.

CALL WTO Sends a message to the system console.

TSO Issues a TSO command or invokes a CLIST or a REXX
exec during a SAS session.

WTO Sends a message to the system console.

SAS Data Quality Server: Reference

Function Description

DQCASE Returns a character value with standardized capitalization.

DQGENDER Returns a gender determination from the name of an individual.

DQGENDERINFOGET Returns the name of the parse definition that is associated with the
specified gender definition.

DQGENDERPARSED Returns a gender determination from the parsed name of an
individual.

DQIDENTIFY Returns a category name from a character value.

1210 SAS Logging Facility: Configuration and Programming Reference � Chapter 4

Function Description

DQLOCALEGUESS Returns the name of the locale that is most likely represented by a
character value.

DQLOCALEINFOGET Returns information about locales.

DQLOCALEINFOLIST Displays the names of the definitions in a locale and returns a count
of those definitions.

DQMATCH Returns a match code from a character value.

DQMATCHINFOGET Returns the name of the parse definition that is associated with a
match definition.

DQMATCHPARSED Returns a match code from a parsed character value.

DQPARSE Returns a parsed character value.

DQPARSEINFOGET Returns the token names in a parse definition.

DQPARSETOKENGET Returns a token from a parsed character value.

DQPARSETOKENPUT Inserts a token into a parsed character value and returns the
updated parsed character value.

DQPATTERN Returns a pattern analysis from an input character value.

DQSCHEMEAPPLY CALL
ROUTINE

Applies a scheme and returns a transformed value and a
transformation flag.

DQSCHEMEAPPLY Applies a scheme and returns a transformed value.

DQSRVARCHJOB Runs an dfPower Architect job on a DataFlux Integration Server and
returns a job identifier.

DQSRVCOPYLOG Copies a job’s log from a DataFlux Integration Server.

DQSRVDELETELOG Deletes a job’s log file from a DataFlux Integration Server.

DQSRVJOBSTATUS Returns the status of a job that was submitted to a DataFlux
Integration Server.

DQSRVKILLJOB Terminates a job that is running on a DataFlux Integration Server.

DQSRVPROFJOBFILE Runs a file-type Profile job on a DataFlux Integration Server and
returns a job identifier.

DQSRVPROFJOBREP Runs a repository-type Profile job on a DataFlux Integration Server
and returns a job identifier.

DQSRVUSER Authenticates a user on a DataFlux Integration Server.

DQSTANDARDIZE Returns a character value after standardizing casing, spacing, and
format, and applies a common representation to certain words and
abbreviations.

DQTOKEN Returns a token from a character table.

SAS Logging Facility: Configuration and Programming Reference

Functions and CALL Routines � SAS Macro Language: Reference 1211

Function or CALL Routine Description

LOG4SAS_APPENDER Creates a fileref appender that can be referenced by a logger.

LOG4SAS_LOGEVENT Logs a message using a specific logger.

LOG4SAS_LOGGER Creates a logger.

SAS Macro Language: Reference

SAS Macro Description

%BQUOTE, %NRBQUOTE Masks special characters and mnemonic operators in a
resolved value at macro execution.

%EVAL Evaluates arithmetic and logical expressions using integer
arithmetic.

%INDEX Returns the position of the first character of a string.

%LENGTH Returns the length of a string.

%QUOTE, %NRQUOTE Masks special characters and mnemonic operators in a
resolved value at macro execution.

%SCAN, %QSCAN Searches for a word that is specified by its position in a
string.

%STR, %NRSTR Masks special characters and mnemonic operators in
constant text at macro compilation.

%SUBSTR, %QSUBSTR Produces a substring of a character string.

%SUPERQ Masks all special characters and mnemonic operators at
macro execution but prevents further resolution of the
value.

%SYMEXIST Returns an indication of the existence of a macro variable.

%SYMGLOBL Returns an indication as to whether a macro variable is
global in scope.

%SYMLOCAL Returns an indication as to whether a macro variable is
local in scope,

%SYSEVALF Evaluates arithmetic and logical expressions using
floating-point arithmetic.

%SYSFUNC, %QSYSFUNC Executes SAS functions or user-written functions.

%SYSGET Returns the value of the specified operating environment
variable.

%SYSPROD Reports whether a SAS software product is licenses at the
site.

%UNQUOTE During macro execution, unmasks all special characters
and mnemonic operators for a value.

%UPCASE, %QUPCASE Converts values to uppercase.

1212 SAS National Language Support (NLS): Reference Guide � Chapter 4

SAS National Language Support (NLS): Reference Guide

Function or CALL Routine Description

EUROCURR Converts one European currency to another.

GETPXLANGUAGE Returns the current two letter language code.

GETPXLOCALE Returns the POSIX locale value for a SAS locale.

GETPXREGION Returns the current two letter region code.

KCOMPARE Returns the result of a comparison of character expressions.

KCOMPRESS Removes specified characters from a character expression.

KCOUNT Returns the number of double-byte characters in an
expression.

KCVT Converts data from one type of encoding data to another
encoding data.

KINDEX Searches a character expression for a string of characters.

KINDEXC Searches a character expression for specified characters.

KLEFT Left-aligns a character expression by removing
unnecessary leading DBCS blanks and SO/SI.

KLENGTH Returns the length of an argument.

KLOWCASE Converts all letters in an argument to lowercase.

KREVERSE Reverses a character expression.

KRIGHT Right-aligns a character expression by trimming trailing
DBCS blanks and SO/SI.

KSCAN Selects a specified word from a character expression.

KSTRCAT Concatenates two or more character expressions.

KSUBSTR Extracts a substring from an argument.

KSUBSTRB Extracts a substring from an argument according to the
byte position of the substring in the argument.

KTRANSLATE Replaces specific characters in a character expression.

KTRIM Removes trailing DBCS blanks and SO/SI from character
expressions.

KTRUNCATE Truncates a numeric value to a specified length.

KUPCASE Converts all single-byte letters in an argument to
uppercase.

KUPDATE Inserts, deletes, and replaces character value contents.

KUPDATEB Inserts, deletes, and replaces the contents of the character
value according to the byte position of the character value
in the argument.

KVERIFY Returns the position of the first character that is unique to
an expression.

NLDATE Converts the SAS date value to the date value of the
specified locale by using the date format descriptors.

Functions and CALL Routines � References 1213

Function or CALL Routine Description

NLDATM Converts the SAS datetime value to the time value of the
specified locale by using the datetime- format descriptors.

NLTIME Converts the SAS time or the datetime value to the time
value of the specified locale by using the NLTIME
descriptors.

SORTKEY Creates a linguistic sort key.

TRANTAB Transcodes data by using the specified translation table.

VARTRANSCODE Returns the transcode attribute of a SAS data set variable.

VTRANSCODE Returns a value that indicates whether transcoding is
enabled for the specified character variable.

VTRANSCODEX Returns a value that indicates whether transcoding is
enabled for the specified argument.

UNICODELEN Specifies the length of the character unit for the Unicode
data.

UNICODEWIDTH Specifies the length of a display unit for the Unicode data.

References
Abramowitz, M. and Stegun, I. (1964), Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables — National Bureau of Standards
Applied Mathematics Series #55, Washington, DC: U.S. Government Printing
Office.

Amos, D.E., Daniel, S.L., and Weston, K. (1977), “CDC 6600 Subroutines IBESS and
JBESS for Bessel Functions I(v,x) and J(v,x), x ≥ 0, v ≥ 0,” ACM Transactions on
Mathematical Software, 3, 76–95.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., (1974), The Design and Analysis of
Computer Algorithms, Reading, MA: Addison-Wesley Publishing Co.

Cheng, R.C.H. (1977), “The Generation of Gamma Variables,” Applied Statistics, 26,
71–75.

Duncan, D.B. (1955), “Multiple Range and Multiple F Tests,” Biometrics, 11, 1–42.
Dunnett, C.W. (1955), “A Multiple Comparisons Procedure for Comparing Several

Treatments with a Control,” Journal of the American Statistical Association, 50,
1096–1121.

Fishman, G.S. (1976), “Sampling from the Poisson Distribution on a Computer,”
Computing, 17, 145–156.

Fishman, G.S. (1978), Principles of Discrete Event Simulation, New York: John Wiley
& Sons, Inc.

Fishman, G.S. and Moore, L.R. (1982), “A Statistical Evaluation of Multiplicative
Congruential Generators with Modulus (231 – 1),” Journal of the American
Statistical Association, 77, 1 29–136.

Knuth, D.E. (1973), The Art of Computer Programming, Volume 3. Sorting and
Searching, Reading, MA: Addison-Wesley.

Hochberg, Y. and Tamhane, A.C. (1987), Multiple Comparison Procedures, New York:
John Wiley & Sons, Inc.

1214 References � Chapter 4

Williams, D.A. (1971), “A Test for Differences Between Treatment Means when
Several Dose Levels are Compared with a Zero Dose Control,” Biometrics, 27,
103–117.

Williams, D.A. (1972), “The Comparison of Several Dose Levels with a Zero Dose
Control,” Biometrics, 28, 519–531.

1215

C H A P T E R

5
Informats

Definition of Informats 1217
Syntax 1218

Using Informats 1219

Ways to Specify Informats 1219

INPUT Statement 1219

INPUT Function 1219
INFORMAT Statement 1219

ATTRIB Statement 1220

Permanent versus Temporary Association 1220

User-Defined Informats 1220

Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms 1221

Definitions 1221
How the Bytes Are Ordered 1221

Reading Data Generated on Big Endian or Little Endian Platforms 1222

Integer Binary Notation in Different Programming Languages 1222

Working with Packed Decimal and Zoned Decimal Data 1223

Definitions 1223
Types of Data 1224

Packed Decimal Data 1224

Zoned Decimal Data 1224

Packed Julian Dates 1224

Platforms Supporting Packed Decimal and Zoned Decimal Data 1225
Languages Supporting Packed Decimal and Zoned Decimal Data 1225

Summary of Packed Decimal and Zoned Decimal Formats and Informats 1226

Reading Dates and Times Using the ISO 860 Basic and Extended Notations 1227

ISO 8601 Formatting Symbols 1227

Reading ISO 8601 Date, Time, and Datetime Values 1228

Reading ISO 8601 Duration, Interval, and Datetime Values 1229
Informats That Read Duration, Interval, and Datetime Values 1229

Complete Duration, Interval, and Datetime Notations 1229

Reading Omitted Components 1230

Truncated Values 1231

Normalizing Duration Components 1231
Fractions in Durations, Datetime, and Interval Values 1231

Informats by Category 1232

Dictionary 1238

$ASCIIw. Informat 1238

$BASE64Xw. Informat 1239
$BINARYw. Informat 1241

$CBw. Informat 1242

$CHARw. Informat 1243

1216 Contents � Chapter 5

$CHARZBw. Informat 1244
$EBCDICw. Informat 1245

$HEXw. Informat 1246

$OCTALw. Informat 1247

$PHEXw. Informat 1248

$N8601Bw.d Informat 1249
$N8601Ew.d Informat 1251

$QUOTEw. Informat 1253

$UPCASEw. Informat 1254

$VARYINGw. Informat 1254

$w. Informat 1256

ANYDTDTEw. Informat 1257
ANYDTDTMw. Informat 1259

ANYDTTMEw. Informat 1262

B8601DAw. Informat 1265

B8601DNw. Informat 1266

B8601DTw.d Informat 1267
B8601DZw.d Informat 1268

B8601TMw.d Informat 1270

B8601TZw.d Informat 1272

BINARYw.d Informat 1273

BITSw.d Informat 1274
BZw.d Informat 1275

CBw.d Informat 1277

COMMAw.d Informat 1278

COMMAXw.d Informat 1279

DATEw. Informat 1280

DATETIMEw. Informat 1281
DDMMYYw. Informat 1283

Ew.d Informat 1284

E8601DAw. Informat 1285

E8601DNw. Informat 1286

E8601DTw.d Informat 1287
E8601DZw.d Informat 1289

E8601LZw.d Informat 1290

E8601TMw.d Informat 1292

E8601TZw.d Informat 1293

FLOATw.d Informat 1295
HEXw. Informat 1297

IBw.d Informat 1298

IBRw.d Informat 1299

IEEEw.d Informat 1300

JULIANw. Informat 1301

MDYAMPMw.d Informat 1303
MMDDYYw. Informat 1305

MONYYw. Informat 1307

MSECw. Informat 1308

NUMXw.d Informat 1309

OCTALw.d Informat 1310
PDw.d Informat 1311

PDJULGw. Informat 1312

PDJULIw. Informat 1314

PDTIMEw. Informat 1315

PERCENTw.d Informat 1317

Informats � Definition of Informats 1217

PIBw.d Informat 1318
PIBRw.d Informat 1319

PKw.d Informat 1321

PUNCH.d Informat 1322

RBw.d Informat 1323

RMFDURw. Informat 1324
RMFSTAMPw. Informat 1326

ROWw.d Informat 1327

S370FFw.d Informat 1329

S370FIBw.d Informat 1330

S370FIBUw.d Informat 1331

S370FPDw.d Informat 1333
S370FPDUw.d Informat 1334

S370FPIBw.d Informat 1335

S370FRBw.d Informat 1336

S370FZDBw.d Informat 1338

S370FZDw.d Informat 1338
S370FZDLw.d Informat 1340

S370FZDSw.d Informat 1341

S370FZDTw.d Informat 1342

S370FZDUw.d Informat 1343

SHRSTAMPw. Informat 1344
SIZEKMGw.d Informat 1345

SMFSTAMPw. Informat 1346

STIMERw. Informat 1347

TIMEw. Informat 1349

TODSTAMPw. Informat 1351

TRAILSGNw. Informat 1351
TUw. Informat 1352

VAXRBw.d Informat 1354

VMSZNw.d Informat 1355

WEEKUw. Informat 1356

WEEKVw. Informat 1358
WEEKWw. Informat 1360

w.d Informat 1363

YMDDTTMw.d Informat 1364

YYMMDDw. Informat 1366

YYMMNw. Informat 1367
YYQw. Informat 1369

ZDw.d Informat 1370

ZDBw.d Informat 1372

ZDVw.d Informat 1372

Informats Documented in Other Base SAS Publications 1374

SAS National Language Support: Reference Guide 1374

Definition of Informats

An informat is an instruction that SAS uses to read data values into a variable. For
example, the following value contains a dollar sign and commas:

$1,000,000

1218 Syntax � Chapter 5

To remove the dollar sign ($) and commas (,) before storing the numeric value 1000000
in a variable, read this value with the COMMA11. informat.

Unless you explicitly define a variable first, SAS uses the informat to determine
whether the variable is numeric or character. SAS also uses the informat to determine
the length of character variables.

Syntax
SAS informats have the following form:

<$>informat<w>.<d>

where

$
indicates a character informat; its absence indicates a numeric informat.

informat
names the informat. The informat is a SAS informat or a user-defined informat
that was previously defined with the INVALUE statement in PROC FORMAT. For
more information about user-defined informats, see the FORMAT procedure in the
Base SAS Procedures Guide.

w
specifies the informat width, which for most informats is the number of columns in
the input data.

d
specifies an optional decimal scaling factor in the numeric informats. SAS divides
the input data by 10 to the power of d.

Note: Even though SAS can read up to 32 digits when you specify some numeric
informats, numbers with more than 15 significant digits might lose precision due to the
limitations of the eight-byte floating-point representation used by most computers. �

Informats always contain a period (.) as a part of the name. If you omit the w and the d
values from the informat, SAS uses default values. If the data contain decimal points,
SAS ignores the d value and reads the number of decimal places that are actually in
the input data.

If the informat width is too narrow to read all the columns in the input data, you
might get unexpected results. The problem frequently occurs with the date and time
informats. You must adjust the width of the informat to include blanks or special
characters between the day, month, year, or time. For more information about date and
time values, see the discussion on SAS date and time values in SAS Language
Reference: Concepts.

When a problem occurs with an informat, SAS writes a note to the SAS log and
assigns a missing value to the variable. Problems occur if you use an incompatible
informat, such as a numeric informat to read character data, or if you specify the width
of a date and time informat that causes SAS to read a special character in the last
column.

Informats � Ways to Specify Informats 1219

Using Informats

Ways to Specify Informats
You can specify informats in the following ways:
� in an INPUT statement
� with the INPUT, INPUTC, and INPUTN functions
� in an INFORMAT statement in a DATA step or a PROC step
� in an ATTRIB statement in a DATA step or a PROC step.

INPUT Statement
The INPUT statement with an informat after a variable name is the simplest way to

read values into a variable. For example, the following INPUT statement uses two
informats:

input @15 style $3. @21 price 5.2;

The $w. character informat reads values into the variable STYLE. The w.d numeric
informat reads values into the variable PRICE.

For a complete discussion of the INPUT statement, see “INPUT Statement” on page
1569.

INPUT Function
The INPUT function converts a SAS character expression using a specified informat.

The informat determines whether the resulting value is numeric or character. Thus, the
INPUT function is useful for converting data. For example,

TempCharacter=’98.6’;
TemperatureNumber=input(TempCharacter,4.);

Here, the INPUT function in combination with the w.d informat converts the character
value of TempCharacter to a numeric value and assigns the numeric value 98.6 to
TemperatureNumber.

Use the PUT function with a SAS format to convert numeric values to character
values. See “PUT Function” on page 1026 for an example of a numeric-to-character
conversion. For a complete discussion of the INPUT function, see “INPUT Function” on
page 807.

INFORMAT Statement
The INFORMAT statement associates an informat with a variable. SAS uses the

informat in any subsequent INPUT statement to read values into the variable. For
example, in the following statements the INFORMAT statement associates the DATEw.
informat with the variables Birthdate and Interview:

informat Birthdate Interview date9.;
input @63 Birthdate Interview;

An informat that is associated with an INFORMAT statement behaves like an
informat that you specify with a colon (:) format modifier in an INPUT statement. (For
details about using the colon (:) modifier, see the “INPUT Statement, List” on page
1590.) Therefore, SAS uses a modified list input to read the variable so that

1220 Permanent versus Temporary Association � Chapter 5

� the w value in an informat does not determine column positions or input field
widths in an external file

� the blanks that are embedded in input data are treated as delimiters unless you
change the DLM= or DLMSTR= option in an INFILE statement

� for character informats, the w value in an informat specifies the length of
character variables

� for numeric informats, the w value is ignored
� for numeric informats, the d value in an informat behaves in the usual way for

numeric informats.

If you have coded the INPUT statement to use another style of input, such as
formatted input or column input, that style of input is not used when you use the
INFORMAT statement.

See “INPUT Statement, List” on page 1590 for more information about how to use
modified list input to read data.

Note: Any time a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option in either ASCII
or EBCDIC environments.

For example, when you read an EBCDIC text file on an ASCII platform, it is
recommended that you specify the ENCODING= option in the FILENAME or INFILE
statement. However, if you use the DSD and the DLM= or DLMSTR= options in the
FILENAME or INFILE statement, the ENCODING= option is a requirement because
these options require certain characters in the session encoding (such as quotation
marks, commas, and blanks).

The use of encoding-specific informats should be reserved for use with true binary
files. That is, they contain both character and non-character fields. �

ATTRIB Statement
The ATTRIB statement can also associate an informat, as well as other attributes,

with one or more variables. For example, in the following statements, the ATTRIB
statement associates the DATEw. informat with the variables Birthdate and Interview:

attrib Birthdate Interview informat=date9.;
input @63 Birthdate Interview;

An informat that is associated by using the INFORMAT= option in the ATTRIB
statement behaves like an informat that you specify with a colon (:) format modifier in
an INPUT statement. (For details about using the colon (:) modifier, see the “INPUT
Statement, List” on page 1590.) Therefore, SAS uses a modified list input to read the
variable in the same way as it does for the INFORMAT statement.

See “ATTRIB Statement” on page 1403 for more information.

Permanent versus Temporary Association
When you specify an informat in an INPUT statement, SAS uses the informat to read

input data values during that DATA step. SAS, however, does not permanently associate
the informat with the variable. To permanently associate a format with a variable, use
an INFORMAT statement or an ATTRIB statement. SAS permanently associates an
informat with the variable by modifying the descriptor information in the SAS data set.

User-Defined Informats
In addition to the informats that are supplied with Base SAS software, you can

create your own informats. In Base SAS software, PROC FORMAT allows you to create

Informats � How the Bytes Are Ordered 1221

your own informats and formats for both character and numeric variables. For more
information about user-defined informats, see the FORMAT procedure in the Base SAS
Procedures Guide.

When you execute a SAS program that uses user-defined informats, these informats
should be available. The two ways to make these informats available are

� to create permanent, not temporary, informats with PROC FORMAT

� to store the source code that creates the informats (the PROC FORMAT step) with
the SAS program that uses them.

If you execute a program that cannot locate a user-defined informat, the result
depends on the setting of the FMTERR= system option. If the user-defined informat is
not found, then these system options produce these results:

System Options Results

FMTERR SAS produces an error that causes the current DATA or
PROC step to stop.

NOFMTERR SAS continues processing by substituting a default informat.

Although using NOFMTERR enables SAS to process a variable, you lose the
information that the user-defined informat supplies. This option can cause a DATA step
to misread data, and it can produce incorrect results.

To avoid problems, make sure that users of your program have access to all the
user-defined informats that are used.

Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms

Definitions
Integer values for integer binary data are typically stored in one of three sizes:

one–byte, two–byte, or four–byte. The ordering of the bytes for the integer varies
depending on the platform (operating environment) on which the integers were
produced.

The ordering of bytes differs between the “big endian” and the “little endian”
platforms. These colloquial terms are used to describe byte ordering for IBM
mainframes (big endian) and for Intel-based platforms (little endian). In the SAS
System, the following platforms are considered big endian: IBM mainframe, HP-UX,
AIX, Solaris on SPARC, and Macintosh. In SAS, the following platforms are considered
little endian: Intel ABI, Linux, OpenVMS Alpha, OpenVMS Integrity, Solaris on x64,
Tru64 UNIX, and Windows.

How the Bytes Are Ordered
On big endian platforms, the value 1 is stored in binary and is represented here in

hexadecimal notation. One byte is stored as 01, two bytes as 00 01, and four bytes as 00

1222 Reading Data Generated on Big Endian or Little Endian Platforms � Chapter 5

00 00 01. On little endian platforms, the value 1 is stored in one byte as 01 (the same
as big endian), in two bytes as 01 00, and in four bytes as 01 00 00 00.

If an integer is negative, the “two’s complement” representation is used. The
high-order bit of the most significant byte of the integer will be set on. For example, –2
would be represented in one, two, and four bytes on big endian platforms as FE, FF FE,
and FF FF FF FE respectively. On little endian platforms, the representation would be
FE, FE FF, and FE FF FF FF. These representations result from the output of the
integer binary value –2 expressed in hexadecimal representation.

Reading Data Generated on Big Endian or Little Endian Platforms
SAS can read signed and unsigned integers regardless of whether they were

generated on a big endian or a little endian system. Likewise, SAS can write signed
and unsigned integers in both big endian and little endian format. The length of these
integers can be up to eight bytes.

The following table shows which informat to use for various combinations of
platforms. In the Sign? column, “no” indicates that the number is unsigned and cannot
be negative. “Yes” indicates that the number can be either negative or positive.

Table 5.1 SAS Informats and Byte Ordering

Platform for Which the
Data Was Created

Platform the Data Is Read
on

Signed
Integer

Informat

big endian big endian yes IB or S370FIB

big endian big endian no PIB, S370FPIB,
S370FIBU

big endian little endian yes IBR

big endian little endian no PIBR

little endian big endian yes IBR

little endian big endian no PIBR

little endian little endian yes IB or IBR

little endian little endian no PIB or PIBR

big endian either yes S370FIB

big endian either no S370FPIB

little endian either yes IBR

little endian either no PIBR

Integer Binary Notation in Different Programming Languages
The following table compares integer binary notation according to programming

language.

Informats � Definitions 1223

Table 5.2 Integer Binary Notation and Programming Languages

Language 2 Bytes or 8-Bit
Systems

4 Bytes or 16-Bit
Systems

8 Bytes or 64-Bit
Systems

SAS IB2., IBR2.,
PIB2.,PIBR2.,
S370FIB2.,
S370FIBU2.,
S370FPIB2.

IB4., IBR4., PIB4.,
PIBR4., S370FIB4.,
S370FIBU4.,
S370FPIB4.

IB8., IBR8., PIB8.,
PIBR8., S370FIB8.,
S370FIBU8.,
S370FPIB8.

C short int long*

Java short int long*

Visual Basic 6.0 short long* none

Visual Basic.NET short integer long*

PL/I fixed bin(15) fixed bin(31) fixed bin(63)

Fortran integer*2 integer*4 integer*8

COBOL comp pic 9(4) comp pic 9(8) comp pic 9(16)

IBM assembler H F FD

* the size of integers declared as long depends on the operating environment

* the size of integers declared as long depends on the operating environment

Working with Packed Decimal and Zoned Decimal Data

Definitions

Packed decimal specifies a method of encoding decimal numbers by using each byte
to represent two decimal digits. Packed decimal representation
stores decimal data with exact precision. The fractional part of the
number is determined by the informat or format because there is no
separate mantissa and exponent.

An advantage of using packed decimal data is that exact precision
can be maintained. However, computations involving decimal data
might become inexact due to the lack of native instructions.

Zoned decimal specifies a method of encoding decimal numbers in which each digit
requires one byte of storage. The last byte contains the number’s
sign as well as the last digit. Zoned decimal data produces a
printable representation.

Nibble specifies 1/2 of a byte.

1224 Types of Data � Chapter 5

Types of Data

Packed Decimal Data
A packed decimal representation stores decimal digits in each “nibble” of a byte.

Each byte has two nibbles, and each nibble is indicated by a hexadecimal character. For
example, the value 15 is stored in two nibbles, using the hexadecimal characters 1 and 5.

The sign indication is dependent on your operating environment. On IBM
mainframes, the sign is indicated by the last nibble. With formats, C indicates a
positive value, and D indicates a negative value. With informats, A, C, E, and F
indicate positive values, and B and D indicate negative values. Any other nibble is
invalid for signed packed decimal data. In all other operating environments, the sign is
indicated in its own byte. If the high-order bit is 1, then the number is negative.
Otherwise, it is positive.

The following applies to packed decimal data representation:
� You can use the S370FPD format on all platforms to obtain the IBM mainframe

configuration.
� You can have unsigned packed data with no sign indicator. The packed decimal

format and informat handles the representation. It is consistent between ASCII
and EBCDIC platforms.

� Note that the S370FPDU format and informat expects to have an F in the last
nibble, while packed decimal expects no sign nibble.

Zoned Decimal Data
The following applies to zoned decimal data representation:
� A zoned decimal representation stores a decimal digit in the low order nibble of

each byte. For all but the byte containing the sign, the high-order nibble is the
numeric zone nibble (F on EBCDIC and 3 on ASCII).

� The sign can be merged into a byte with a digit, or it can be separate, depending
on the representation. But the standard zoned decimal format and informat
expects the sign to be merged into the last byte.

� The EBCDIC and ASCII zoned decimal formats produce the same printable
representation of numbers. There are two nibbles per byte, each indicated by a
hexadecimal character. For example, the value 15 is stored in two bytes. The first
byte contains the hexadecimal value F1 and the second byte contains the
hexadecimal value C5.

Packed Julian Dates
The following applies to packed Julian dates:
� The two formats and informats that handle Julian dates in packed decimal

representation are PDJULI and PDJULG. PDJULI uses the IBM mainframe year
computation, while PDJULG uses the Gregorian computation.

� The IBM mainframe computation considers 1900 to be the base year, and the year
values in the data indicate the offset from 1900. For example, 98 means 1998, 100
means 2000, and 102 means 2002. 1998 would mean 3898.

� The Gregorian computation allows for 2–digit or 4–digit years. If you use 2–digit
years, SAS uses the setting of the YEARCUTOFF= system option to determine the
true year.

Informats � Languages Supporting Packed Decimal and Zoned Decimal Data 1225

Platforms Supporting Packed Decimal and Zoned Decimal Data
Some platforms have native instructions to support packed and zoned decimal data,

while others must use software to emulate the computations. For example, the IBM
mainframe has an Add Pack instruction to add packed decimal data, but the
Intel-based platforms have no such instruction and must convert the decimal data into
some other format.

Languages Supporting Packed Decimal and Zoned Decimal Data
Several languages support packed decimal and zoned decimal data. The following

table shows how COBOL picture clauses correspond to SAS formats and informats.

IBM VS COBOL II Clauses Corresponding S370Fxxx
Formats/Informats

PIC S9(X) PACKED-DECIMAL S370FPDw.

PIC 9(X) PACKED-DECIMAL S370FPDUw.

PIC S9(W) DISPLAY S370FZDw.

PIC 9(W) DISPLAY S370FZDUw.

PIC S9(W) DISPLAY SIGN LEADING S370FZDLw.

PIC S9(W) DISPLAY SIGN LEADING SEPARATE S370FZDSw.

PIC S9(W) DISPLAY SIGN TRAILING SEPARATE S370FZDTw.

For the packed decimal representation listed above, X indicates the number of digits
represented, and W is the number of bytes. For PIC S9(X) PACKED-DECIMAL, W is
ceil((x+1)/2). For PIC 9(X) PACKED-DECIMAL, W is ceil(x/2). For example, PIC
S9(5) PACKED-DECIMAL represents five digits. If a sign is included, six nibbles are
needed. ceil((5+1)/2) has a length of three bytes, and the value of W is 3.

Note that you can substitute COMP-3 for PACKED-DECIMAL.
In IBM assembly language, the P directive indicates packed decimal, and the Z

directive indicates zoned decimal. The following shows an excerpt from an assembly
language listing, showing the offset, the value, and the DC statement:

offset value (in hex) inst label directive

+000000 00001C 2 PEX1 DC PL3’1’
+000003 00001D 3 PEX2 DC PL3’-1’
+000006 F0F0C1 4 ZEX1 DC ZL3’1’
+000009 F0F0D1 5 ZEX2 DC ZL3’1’

In PL/I, the FIXED DECIMAL attribute is used in conjunction with packed decimal
data. You must use the PICTURE specification to represent zoned decimal data. There
is no standardized representation of decimal data for the Fortran or the C languages.

1226 Summary of Packed Decimal and Zoned Decimal Formats and Informats � Chapter 5

Summary of Packed Decimal and Zoned Decimal Formats and
Informats

SAS uses a group of formats and informats to handle packed and zoned decimal data.
The following table lists the type of data representation for these formats and
informats. Note that the formats and informats that begin with S370 refer to IBM
mainframe representation.

Format Data Type
Representation

Corresponding
Informat

Comments

PD Packed decimal PD Local signed packed decimal

PK Packed decimal PK Unsigned packed decimal; not
specific to your operating
environment

ZD Zoned decimal ZD Local zoned decimal

none Zoned decimal ZDB Translates EBCDIC blank
(hex 40) to EBCDIC zero (hex
F0), and then corresponds to
the informat as zoned decimal

none Zoned decimal ZDV Non-IBM zoned decimal
representation

S370FPD Packed decimal S370FPD Last nibble C (positive) or D
(negative)

S370FPDU Packed decimal S370FPDU Last nibble always F
(positive)

S370FZD Zoned decimal S370FZD Last byte contains sign in
upper nibble: C (positive) or
D (negative)

S370FZDU Zoned decimal S370FZDU Unsigned; sign nibble always
F

S370FZDL Zoned decimal S370FZDL Sign nibble in first byte in
informat; separate leading
sign byte of hex C0 (positive)
or D0 (negative) in format

S370FZDS Zoned decimal S370FZDS Leading sign of - (hex 60) or +
(hex 4E)

S370FZDT Zoned decimal S370FZDT Trailing sign of - (hex 60) or +
(hex 4E)

PDJULI Packed decimal PDJULI Julian date in packed
representation - IBM
computation

PDJULG Packed decimal PDJULG Julian date in packed
representation - Gregorian
computation

none Packed decimal RMFDUR Input layout is: mmsstttF

Informats � ISO 8601 Formatting Symbols 1227

Format Data Type
Representation

Corresponding
Informat

Comments

none Packed decimal SHRSTAMP Input layout is:
yyyydddFhhmmssth, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal SMFSTAMP Input layout is:
xxxxxxxxyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

none Packed decimal PDTIME Input layout is: 0hhmmssF

none Packed decimal RMFSTAMP Input layout is:
0hhmmssFyyyydddF, where
yyyydddF is the packed
Julian date; yyyy is a 0-based
year from 1900

Reading Dates and Times Using the ISO 860 Basic and Extended
Notations

ISO 8601 Formatting Symbols
The following list explains the formatting symbols that are used to notate the ISO

8601 dates, time, datetime, durations, and interval values:

n specifies a number that represents the number of years, months, or
days

P indicates that the duration that follows is specified by the number of
years, months, days, hours, minutes, and seconds

T indicates that a time value follows. Any value with a time must
begin with T.
Requirement: Time values that are read by the extended notation

informats that begin with the characters E8601 must use an
uppercase T.

W indicates that the duration is specified in weeks.

Z indicates that the time value is the time in Greenwich, England, or
UTC time.

+|- the + indicates the time zone offset to the east of Greenwich,
England. The - indicates the time zone offset to the west of
Greenwich, England.

yyyy specifies a four-digit year

mm as part of a date, specifies a two-digit month, 01 - 12

1228 Reading ISO 8601 Date, Time, and Datetime Values � Chapter 5

dd specifies a two-digit day, 01 - 31

hh specifies a two-digit hour, 00 - 24

mm as part of a time, specifies a two-digit minute, 00 - 59

ss specifies a two-digit second, 00 - 59

fff | ffffff specifies an optional fraction of a second using the digits 0 - 9:

fff use 1 - 3 digits for values read by the $N8601B
informat and the $N8601E informat

ffffff use 1 - 6 digits for informat other than the
$N8601B informat and the $N8601E informat

Y indicates that a year value proceeds this character in a duration

M as part of a date, indicates that a month value proceeds this
character in a duration

D indicates that a day value proceeds this character in a duration

H indicates that an hour value proceeds this character in a duration

M as part of a time, indicates that a minute value proceeds this
character in a duration

S indicates that a seconds value proceeds this character in a duration

Reading ISO 8601 Date, Time, and Datetime Values
SAS reads ISO 8601 dates, times, and datetimes using various informats, and the

resulting values are SAS date, time, or datetime values. The following table shows
different date, time, and datetime forms and the informats you use to read them:

Table 5.3 Informats for Reading ISO 8601 Dates, Times, and Datetimes

Date, Time, or
Datetime

ISO 8601 Notation Example Informat

Basic Notations

Date YYYYMMDD 20080915 B8601DAw.

Time hhmmssnnnnnn 155300322348 B8601TMw.d

Time with time zone hhmmss+|-hhmm 155300+0500 B8601TZw.d

hhmmssZ 155300Z B8601TZw.d

Convert to local time
with time zone

hhmmss+|-hhmm 155300+0500 B8601LZw.d

Datetime YYYYMMDDThhmmss
nnnnnn

20080915T155300 B8601DTw.d

Datetime with
timezone

YYYYMMDDThhmmss
+|-hhmm

20080915T155300+0500 B8601DZw.d

YYYYMMDDThhmmssZ 20080915T155300Z B8601DZw.d

Read the date from a
datetime

YYYYMMD 20080915 B8601DNw.

Informats � Reading ISO 8601 Duration, Interval, and Datetime Values 1229

Date, Time, or
Datetime

ISO 8601 Notation Example Informat

Extended Notations

Date YYYY-MM-DD 2008-09-15 E8601DAw.

Time hh:mm:ss.nnnnnn 15:53:00.322348 E8601TMw.d

Time with time zone hh:mm:ss.nnnnnn+|-
hh:mm

15:53:00+05:00 E8601TZw.d

Convert to local time
with time zone

hh:mm:ss.nnnnnn+|-
hh:mm

15:53:00+05:00 E8601LZw.d

Datetime YYYY-MM-DDT
hh:mm:ss.nnnnnn

2008-09-15T15:53:00 E8601TZw.d

Datetime with time
zone

YYYY-MM-DDT
hh:mm:ss.nnnnnn
+|-hh:mm

2008-09-
15T15:53:00+05:00

E8601DZw.d

Read date from a
datetime

YYYY-MM-DD 2008-09-15 E8601DNw.

Reading ISO 8601 Duration, Interval, and Datetime Values

Informats That Read Duration, Interval, and Datetime Values
SAS uses two informats that reads ISO datetime, duration, and interval values.

$N8601B informat
reads duration, interval, and datetime values that are specified in either the basic
notation or the extended notation

$N8601E informat
reads duration, interval, and datetime values that are specified only in the
extended notation

Use the $N8601E informat when you want to make sure that you are in compliance
with the extended notation.

The datetime values that are read by these informats result in a SAS character
representation. If you want a datetime value to be read as a numeric value, use the
B8601DT informat, the B8601DZ informat, the E8601DT informat, or the E8601DZ
informat.

Complete Duration, Interval, and Datetime Notations
The following table shows the formatting of duration, datetime, and interval values

that can be read in the complete form:

Time Component ISO 8601 Notation Example

Duration - Basic Notation PYYYYMMDDThhmmss P20080915T155300

-PYYYYMMDDThhmmss -P20080915T155300

Duration - Extended Notation PYYYY-MM-DDThh:mm:ss P2008-09-15T15:53:00

-PYYYY-MM-DDThh:mm:ss -P2008-09-15T15:53:00

1230 Reading ISO 8601 Duration, Interval, and Datetime Values � Chapter 5

Time Component ISO 8601 Notation Example

Duration - Basic and Extended
Notation

PnYnMnDTnHnMnS P2y10m14dT20h13m45s

-PnYnMnDTnHnMnS -P2n10m14dT20h13m45s

PnW (weeks) P6w

Interval - Basic Notation YYYYMMDDThhmmss/
YYYYMMDDThhmmss

20080915T155300/
20101113T000000

PnYnMnDTnHnMnS/
YYYYMMDDThhmmss

P2y10M14dT20h13m45s/
20080915T155300

YYYYMMDDThhmmss/
PnYnMnDTnHnMnS

20080915T155300/
P2y10M14dT20h13m45s

Interval- Extended Notation YYYY-MM-DDThh:mm:ss/
YYYY-MM-DDThh:mm:ss

2008-09-15T15:53:00/
2010-11-13T00:00:00

PnYnMnDTnHnMnS/
YYYY-MM-DDThh:mm:ss

P2y10M14dT20h13m45s/
2008-09-15T15:53:00

YYYY-MM-DDThh:mm:ss/
PnYnMnDTnHnMnS

2008-09-15T15:53:00/
P2y10M14dT20h13m45s

Datetime-Basic Notation YYYYMMDDThhmmss.fff+|-
hhmm

20080915T155300

(all blank)

Datetime-Extended Notation YYYY-MM-
DDThh:mm:ss.fff+|-hhmm

2008-09-15T15:53:00

+04:30

(all blank)

Reading Omitted Components

One or more date or time components can be omitted from a datetime value or a
duration value that is in the form Pyyyymmdd. SAS reads omitted components using
the $N8601B informat or the $N8601E informat, and the omitted component must be
represented by a hyphen (-).

The following examples show duration, datetime, and interval values with omitted
components:

p0003-02--T10:31:33
The omitted component is the number of days.

-p0003-02-02T-:31:33
The omitted component is the number of hours.

x-09-15T15:x:x
The omitted components are the number of years, minutes, and seconds.

2008-09-15T15:x:00/2010-09-15T15:x:00
The omitted components are the minutes.

When reading values that contain a time zone offset, omitted components are not
allowed. Use 00 in place of omitted components.

Informats � Reading ISO 8601 Duration, Interval, and Datetime Values 1231

Truncated Values
SAS reads truncated duration, datetime, and interval values, where one or more

lower order components is truncated because the value is 0 or the value is not
significant.

The following list shows examples of truncated values:

p00030202T1031

2008-09-15T15/2010-09-15T15:53

-p0003-03-03T-:-:-

P2y3m4dT5h6m

2008-09-xTx:x:x

2008

When reading values that contain a time zone offset, truncation is not allowed. Use
00 in place of truncated values.

Normalizing Duration Components
When a value for a duration component is greater than the largest standard value

for a component, SAS normalizes the component except when the duration component
is a single component. The following table shows examples of normalized duration
components:

Duration Extended Normalized Duration

p3y13m p0004-01

pt24h24m65s P----01T-:25:05

p3y13mT24h61m P0004-01-01T01:01

p0004-13 p0005-01

p0003-02-61T15:61:61 P0003-04-01T16:02:01

p13m P13M

If a component contains the largest value, such as 60 for minutes or seconds, SAS
normalizes the value and replaces the value with a hyphen. For example, pT12:60:13
becomes PT13:-:13.

Thirty days is used to normalize a month.
Dates and times in a datetime value that are greater than the standard value for the

component are not normalized. They produce an error.

Fractions in Durations, Datetime, and Interval Values
Ending components can contain a fraction that consists of a period or a comma,

followed by one to three digits. The following examples show the use of fractions in
duration, datetime, and interval values:

200809.5

P2008-09-15T10.33

2008-09-15/P0003-03-03,333

1232 Informats by Category � Chapter 5

Informats by Category

There are five categories of informats in this list:

Category Description

Character instructs SAS to read character data values into character variables.

Column Binary instructs SAS to read data stored in column-binary or multipunched form
into character and numeric variables.

Date and Time instructs SAS to read date values into variables that represent dates,
times, and datetimes.

ISO 8601 instructs SAS to read date, time, and datetime values that are written in
the ISO 8601 standard into either numeric or character variables.

Numeric instructs SAS to read numeric data values into numeric variables.

For information about reading column-binary data, see SAS Language Reference:
Concepts. For information about creating user-defined informats, see the FORMAT
procedure in the Base SAS Procedures Guide.

The following table provides brief descriptions of the SAS informats. For more
detailed descriptions, see the dictionary entry for each informat.

Table 5.4 Categories and Descriptions of Informats

Category Informats Description

Character “$ASCIIw. Informat” on
page 1238

Converts ASCII character data to native format.

“$BASE64Xw. Informat”
on page 1239

Converts ASCII text into character data by using Base
64 encoding.

“$BINARYw. Informat” on
page 1241

Converts binary data to character data.

“$CHARw. Informat” on
page 1243

Reads character data with blanks.

“$CHARZBw. Informat”
on page 1244

Converts binary 0s to blanks.

“$EBCDICw. Informat” on
page 1245

Converts EBCDIC character data to native format.

“$HEXw. Informat” on
page 1246

Converts hexadecimal data to character data.

“$OCTALw. Informat” on
page 1247

Converts octal data to character data.

“$PHEXw. Informat” on
page 1248

Converts packed hexadecimal data to character data.

“$QUOTEw. Informat” on
page 1253

Removes matching quotation marks from character data.

Informats � Informats by Category 1233

Category Informats Description

“$UPCASEw. Informat” on
page 1254

Converts character data to uppercase.

“$VARYINGw. Informat”
on page 1254

Reads character data of varying length.

“$w. Informat” on page
1256

Reads standard character data.

Column Binary “$CBw. Informat” on page
1242

Reads standard character data from column-binary files.

“CBw.d Informat” on page
1277

Reads standard numeric values from column-binary files.

“PUNCH.d Informat” on
page 1322

Reads whether a row of column-binary data is punched.

“ROWw.d Informat” on
page 1327

Reads a column-binary field down a card column.

Date and Time “$N8601Bw.d Informat” on
page 1249

Reads complete, truncated, and omitted forms of ISO
8601 duration, datetime, and interval values that are
specified in either the basic or extended notations.

“$N8601Ew.d Informat” on
page 1251

Reads ISO 8601 duration, datetime, and interval values
that are specified in the extended notation.

“ANYDTDTEw. Informat”
on page 1257

Reads and extracts the date value from various date,
time, and datetime forms.

“ANYDTDTMw. Informat”
on page 1259

Reads and extracts datetime values from various date,
time, and datetime forms.

“ANYDTTMEw. Informat”
on page 1262

Reads and extracts time values from various date, time,
and datetime forms.

“B8601DAw. Informat” on
page 1265

Reads date values that are specified in the ISO 8601
base notation yyyymmdd.

“B8601DNw. Informat” on
page 1266

Reads date values that are specified the ISO 8601 basic
notation yyyymmdd and returns SAS datetime values
where the time portion of the value is 000000.

“B8601DTw.d Informat” on
page 1267

Reads datetime values that are specified in the ISO 8601
basic notation yyyymmddThhmmssffffff.

“B8601DZw.d Informat” on
page 1268

Reads datetime values that are specified in the
Coordinated Universal Time (UTC) time scale using ISO
8601 datetime basic notation yyyymmdd
Thhmmss+|-hhmm or yyyymmddT hhmmssffffffZ.

“B8601TMw.d Informat”
on page 1270

Reads time values that are specified in the ISO 8601
basic notation hhmmssffffff.

“B8601TZw.d Informat” on
page 1272

Reads time values that are specified in the ISO 8601
basic time notation hhmmssfffff+|-hhmm or
hhmmssffffffZ.

“DATEw. Informat” on
page 1280

Reads date values in the form ddmmmyy or ddmmmyyyy
.

1234 Informats by Category � Chapter 5

Category Informats Description

“DATETIMEw. Informat”
on page 1281

Reads datetime values in the form ddmmmyy
hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss.

“DDMMYYw. Informat” on
page 1283

Reads date values in the form ddmmyy<yy> or
dd-mm-yy<yy>, where a special character, such as a
hyphen (-), period (.), or slash (/), separates the day,
month, and year; the year can be either 2 or 4 digits.

“E8601DAw. Informat” on
page 1285

Reads date values that are specified in the ISO 8601
extended notation yyyy-mm-dd.

“E8601DNw. Informat” on
page 1286

Reads date values that are specified in the ISO 8601
extended notation yyyy-mm-dd and returns SAS datetime
values where the time portion of the value is 000000.

“E8601DTw.d Informat” on
page 1287

Reads datetime values that are specified in the ISO 8601
extended notation yyyy-mm-ddThh:mm:ss.ffffff.

“E8601DZw.d Informat” on
page 1289

Reads datetime values that are specified in the
Coordinated Universal Time (UTC) time scale using ISO
8601 datetime extended notation hh:
mm:ss+|-hh:mm.fffff or hh:mm:ss.fffffZ.

“E8601LZw.d Informat” on
page 1290

Reads Coordinated Universal Time (UTC) values that
are specified in the ISO 8601 extended notation
hh:mm:ss +|-hh:mm.fffff or hh:mm:ss.fffffZ and converts
them to the local time.

“E8601TMw.d Informat”
on page 1292

Reads time values that are specified in the ISO 8601
extended notation hh:mm:ss.ffffff.

“E8601TZw.d Informat” on
page 1293

Reads time values that are specified in the ISO 8601
extended time notation hh:mm:ss+|-hh:mm.ffffff or
hh:mm:ss Z.

“JULIANw. Informat” on
page 1301

Reads Julian dates in the form yyddd or yyyyddd .

“MDYAMPMw.d Informat”
on page 1303

Reads datetime values in the form mm-dd-yy<yy>
hh:mm:ss.ss AM|PM, where a special character such as
a hyphen (-), period (.), slash (/), or colon (:) separates the
month, day, and year; the year can be either 2 or 4 digits.

“MMDDYYw. Informat” on
page 1305

Reads date values in the form mmddyy or mmddyyyy .

“MONYYw. Informat” on
page 1307

Reads month and year date values in the form mmmyy
or mmmyyyy.

“MSECw. Informat” on
page 1308

Reads TIME MIC values.

“PDJULGw. Informat” on
page 1312

Reads packed Julian date values in the hexadecimal
form yyyydddF for IBM.

“PDJULIw. Informat” on
page 1314

Reads packed Julian dates in the hexadecimal format
ccyyddd F for IBM.

“PDTIMEw. Informat” on
page 1315

Reads packed decimal time of SMF and RMF records.

Informats � Informats by Category 1235

Category Informats Description

“RMFDURw. Informat” on
page 1324

Reads duration intervals of RMF records.

“RMFSTAMPw. Informat”
on page 1326

Reads time and date fields of RMF records.

“SHRSTAMPw. Informat”
on page 1344

Reads date and time values of SHR records.

“SMFSTAMPw. Informat”
on page 1346

Reads time and date values of SMF records.

“STIMERw. Informat” on
page 1347

Reads time values and determines whether the values
are hours, minutes, or seconds; reads the output of the
STIMER system option.

“TIMEw. Informat” on
page 1349

Reads hours, minutes, and seconds in the form
hh:mm:ss.ss , where special characters such as the colon
(:) or the period (.) are used to separate the hours,
minutes, and seconds.

“TODSTAMPw. Informat”
on page 1351

Reads an eight-byte time-of-day stamp.

“TUw. Informat” on page
1352

Reads timer units.

“WEEKUw. Informat” on
page 1356

Reads the format of the number-of-week value within the
year and returns a SAS date value by using the U
algorithm.

“WEEKVw. Informat” on
page 1358

Reads the format of the number-of-week value within the
year and returns a SAS date value using the V algorithm.

“WEEKWw. Informat” on
page 1360

Reads the format of the number-of-week value within the
year and returns a SAS date value using the W
algorithm.

“YMDDTTMw.d Informat”
on page 1364

Reads datetime values in the form <yy>yy-mm-dd
hh:mm:ss.ss , where special characters such as a hyphen
(-), period (.), slash (/), or colon (:) are used to separate
the year, month, day, hour, minute, and seconds; the year
can be either 2 or 4 digits.

“YYMMDDw. Informat” on
page 1366

Reads date values in the form yymmdd or yyyymmdd .

“YYMMNw. Informat” on
page 1367

Reads date values in the form yyyymm or yymm .

“YYQw. Informat” on page
1369

Reads quarters of the year in the form yyQ q or yyyyQq.

ISO 8601 “$N8601Bw.d Informat” on
page 1249

Reads complete, truncated, and omitted forms of ISO
8601 duration, datetime, and interval values that are
specified in either the basic or extended notations.

“$N8601Ew.d Informat” on
page 1251

Reads ISO 8601 duration, datetime, and interval values
that are specified in the extended notation.

“B8601DAw. Informat” on
page 1265

Reads date values that are specified in the ISO 8601
base notation yyyymmdd.

1236 Informats by Category � Chapter 5

Category Informats Description

“B8601DNw. Informat” on
page 1266

Reads date values that are specified the ISO 8601 basic
notation yyyymmdd and returns SAS datetime values
where the time portion of the value is 000000.

“B8601DTw.d Informat” on
page 1267

Reads datetime values that are specified in the ISO 8601
basic notation yyyymmddThhmmssffffff.

“B8601DZw.d Informat” on
page 1268

Reads datetime values that are specified in the
Coordinated Universal Time (UTC) time scale using ISO
8601 datetime basic notation yyyymmdd
Thhmmss+|-hhmm or yyyymmddT hhmmssffffffZ.

“B8601TMw.d Informat”
on page 1270

Reads time values that are specified in the ISO 8601
basic notation hhmmssffffff.

“B8601TZw.d Informat” on
page 1272

Reads time values that are specified in the ISO 8601
basic time notation hhmmssfffff+|-hhmm or
hhmmssffffffZ.

“E8601DAw. Informat” on
page 1285

Reads date values that are specified in the ISO 8601
extended notation yyyy-mm-dd.

“E8601DNw. Informat” on
page 1286

Reads date values that are specified in the ISO 8601
extended notation yyyy-mm-dd and returns SAS datetime
values where the time portion of the value is 000000.

“E8601DTw.d Informat” on
page 1287

Reads datetime values that are specified in the ISO 8601
extended notation yyyy-mm-ddThh:mm:ss.ffffff.

“E8601DZw.d Informat” on
page 1289

Reads datetime values that are specified in the
Coordinated Universal Time (UTC) time scale using ISO
8601 datetime extended notation hh:
mm:ss+|-hh:mm.fffff or hh:mm:ss.fffffZ.

“E8601LZw.d Informat” on
page 1290

Reads Coordinated Universal Time (UTC) values that
are specified in the ISO 8601 extended notation
hh:mm:ss +|-hh:mm.fffff or hh:mm:ss.fffffZ and converts
them to the local time.

“E8601TMw.d Informat”
on page 1292

Reads time values that are specified in the ISO 8601
extended notation hh:mm:ss.ffffff.

“E8601TZw.d Informat” on
page 1293

Reads time values that are specified in the ISO 8601
extended time notation hh:mm:ss+|-hh:mm.ffffff or
hh:mm:ss Z.

Numeric “BINARYw.d Informat” on
page 1273

Converts positive binary values to integers.

“BITSw.d Informat” on
page 1274

Extracts bits.

“BZw.d Informat” on page
1275

Converts blanks to 0s.

“COMMAw.d Informat” on
page 1278

Removes embedded characters.

“COMMAXw.d Informat”
on page 1279

Removes embedded characters.

Informats � Informats by Category 1237

Category Informats Description

“Ew.d Informat” on page
1284

Reads numeric values that are stored in scientific
notation and double-precision scientific notation.

“FLOATw.d Informat” on
page 1295

Reads a native single-precision, floating-point value and
divides it by 10 raised to the dth power.

“HEXw. Informat” on page
1297

Converts hexadecimal positive binary values to either
integer (fixed-point) or real (floating-point) binary values.

“IBw.d Informat” on page
1298

Reads native integer binary (fixed-point) values,
including negative values.

“IBRw.d Informat” on page
1299

Reads integer binary (fixed-point) values in Intel and
DEC formats.

“IEEEw.d Informat” on
page 1300

Reads an IEEE floating-point value and divides it by 10
raised to the d th power.

“NUMXw.d Informat” on
page 1309

Reads numeric values with a comma in place of the
decimal point.

“OCTALw.d Informat” on
page 1310

Converts positive octal values to integers.

“PDw.d Informat” on page
1311

Reads data that are stored in IBM packed decimal
format.

“PERCENTw.d Informat”
on page 1317

Reads percentages as numeric values.

“PIBw.d Informat” on page
1318

Reads positive integer binary (fixed-point) values.

“PIBRw.d Informat” on
page 1319

Reads positive integer binary (fixed-point) values in Intel
and DEC formats.

“PKw.d Informat” on page
1321

Reads unsigned packed decimal data.

“RBw.d Informat” on page
1323

Reads numeric data that are stored in real binary
(floating-point) notation.

“S370FFw.d Informat” on
page 1329

Reads EBCDIC numeric data.

“S370FIBw.d Informat” on
page 1330

Reads integer binary (fixed-point) values, including
negative values, in IBM mainframe format.

“S370FIBUw.d Informat”
on page 1331

Reads unsigned integer binary (fixed-point) values in
IBM mainframe format.

“S370FPDw.d Informat”
on page 1333

Reads packed data in IBM mainframe format.

“S370FPDUw.d Informat”
on page 1334

Reads unsigned packed decimal data in IBM mainframe
format.

“S370FPIBw.d Informat”
on page 1335

Reads positive integer binary (fixed-point) values in IBM
mainframe format.

“S370FRBw.d Informat”
on page 1336

Reads real binary (floating-point) data in IBM
mainframe format.

“S370FZDw.d Informat” on
page 1338

Reads zoned decimal data in IBM mainframe format.

1238 Dictionary � Chapter 5

Category Informats Description

“S370FZDLw.d Informat”
on page 1340

Reads zoned decimal leading-sign data in IBM
mainframe format.

“S370FZDSw.d Informat”
on page 1341

Reads zoned decimal separate leading-sign data in IBM
mainframe format.

“S370FZDTw.d Informat”
on page 1342

Reads zoned decimal separate trailing-sign data in IBM
mainframe format.

“S370FZDUw.d Informat”
on page 1343

Reads unsigned zoned decimal data in IBM mainframe
format.

“TRAILSGNw. Informat”
on page 1351

Reads a trailing plus (+) or minus (–) sign.

“VAXRBw.d Informat” on
page 1354

Reads real binary (floating-point) data in VMS format.

“VMSZNw.d Informat” on
page 1355

Reads VMS and MicroFocus COBOL zoned numeric data.

“w.d Informat” on page
1363

Reads standard numeric data.

“ZDw.d Informat” on page
1370

Reads zoned decimal data.

“ZDBw.d Informat” on
page 1372

Reads zoned decimal data in which zeros have been left
blank.

“ZDVw.d Informat” on
page 1372

Reads and validates zoned decimal data.

Dictionary

$ASCIIw. Informat

Converts ASCII character data to native format.

Category: Character

Syntax
$ASCIIw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.

Informats � $BASE64Xw. Informat 1239

Range: 1–32767

Details
If ASCII is the native format, no conversion occurs.

Comparisons
� On an IBM mainframe system, $ASCIIw. converts ASCII data to EBCDIC.
� On all other systems, $ASCIIw. behaves like the $CHARw. informat except that

the default length is different.

Examples
input @1 name $ascii3.;

Data Line Results*

----+----1 EBCDIC ASCII

abc 818283 616263

ABC C1C2C3 414243

(); 4D5D5E 28293B

* The results are hexadecimal representations of codes for characters. Each two hexadecimal
characters correspond to one byte of binary data, and each byte corresponds to one character
value.

$BASE64Xw. Informat
Converts ASCII text into character data by using Base 64 encoding.

Category: Character
Alignment: left

Syntax
$BAS64Xw.

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32767

Details
Base 64 is an industry encoding method whose encoded characters are determined by
using a positional scheme that uses only ASCII characters. Several Base 64 encoding

1240 $BASE64Xw. Informat � Chapter 5

schemes have been defined by the industry for specific uses, such as e-mail or content
masking. SAS maps positions 0–61 to the characters A–Z, a–z, and 0–9. Position 62
maps to the character +, and position 63 maps to the character /.

The following are some uses of Base 64 encoding:
� embed binary data in an XML file
� encode passwords
� encode URLs

The ’=’ character in the encoded results indicates that the results have been padded
with zero bits. In order for the encoded characters to be decoded, the ’=’ must be
included in the value to be decoded.

Examples

input @1 b64exmpl $base64x64.;

Data Line Results

RkNBMDFBNzk5M0JD FCA01A7993BC

TXlQYXNzd29yZA== MyPassword

d3d3Lm15ZG9tYWluLmNvbi9teWhpZGRlblVSTA== www.mydomain.com/
myhiddenURL

See Also

Format:
“$BASE64Xw. Format” on page 109

The XMLDOUBLE option of the LIBNAME Statement for the XML engine, in the
SAS XML LIBNAME Engine: User’s Guide

Informats � $BINARYw. Informat 1241

$BINARYw. Informat

Converts binary data to character data.

Category: Character

Syntax
$BINARYw.

Syntax Description

w
specifies the width of the input field. Because eight bits of binary information
represent one character, every eight characters of input that $BINARYw. reads
becomes one character value stored in a variable.

If w< 8, $BINARYw. reads the data as w characters followed by 0s. Thus,
$BINARY4. reads the characters 0101 as 01010000, which converts to an EBCDIC &
or an ASCII P. If w> 8 but is not a multiple of 8, $BINARYw. reads up to the largest
multiple of 8 that is less than w before converting the data.
Default: 8
Range: 1–32767

Details
The $BINARYw. informat does not interpret actual binary data, but it converts a string
of characters that contains only 0s or 1s as if it is actual binary information. Therefore,
use only the character digits 1 and 0 in the input, with no embedded blanks.
$BINARYw. ignores leading and trailing blanks.

To read representations of binary codes for unprintable characters, enter an ASCII or
EBCDIC equivalent for a particular character as a string of 0s and 1s. The $BINARYw.
informat converts the string to its equivalent character value.

Comparisons
� The BINARYw. informat reads eight characters of input that contain only 0s or 1s

as a binary representation of one byte of numeric data.
� The $HEXw. informat reads hexadecimal characters that represent the ASCII or

EBCDIC equivalent of character data.

Examples
input @1 name $binary16.;

Data Line Results

----+----1----+----2 ASCII EBCDIC

0100110001001101 LM <(

1242 $CBw. Informat � Chapter 5

$CBw. Informat

Reads standard character data from column-binary files.

Category: Column Binary

Syntax
$CBw.

Syntax Description

w
specifies the width of the input field.
Default: none
Range: 1–32767

Details
Column-binary data storage compresses data so that more than 80 items of data can be
stored on a single “virtual” punch card.

The $CBw. informat reads standard character data from column-binary files, with
each card column represented in two bytes. The $CBw. informat translates the data
into standard character codes. If the combinations are invalid punch codes, SAS returns
blanks and sets the automatic variable _ERROR_ to 1.

Examples
input @1 name $cb2.;

Data Line* Results

----+----1 EBCDIC ASCII

200A + N

* The data line is a hexadecimal representation of the column binary. The “virtual” punch card
column for the example data has row 12, row 6, and row 8 punched. The binary representation
is 0010 0000 0000 1010.

See Also

Informats:
“CBw.d Informat” on page 1277
“PUNCH.d Informat” on page 1322
“ROWw.d Informat” on page 1327

“How to Read Column-Binary Data” in SAS Language Reference: Concepts

Informats � $CHARw. Informat 1243

$CHARw. Informat

Reads character data with blanks.

Category: Character

Syntax
$CHARw.

Syntax Description

w
specifies the width of the input field.
Default: 8 if the length of the variable is undefined. Otherwise, the default is the

length of the variable

Range: 1–32767

Details
The $CHARw. informat does not trim leading and trailing blanks or convert a single
period in the input data field to a blank before storing values. If you use $CHARw. in
an INFORMAT or ATTRIB statement within a DATA step to read list input, then by
default SAS interprets any blank embedded within data as a field delimiter, including
leading blanks.

Comparisons
� The $CHARw. informat is almost identical to the $w. informat. However

$CHARw. does not trim leading blanks or convert a single period in the input data
field to a blank, while the $w. informat does.

� Use the table below to compare the SAS informat $CHAR8. with notation in other
programming languages:

Language Character Notation

SAS $CHAR8.

IBM 370 assembler CL8

C char [8]

COBOL PIC x(8)

Fortran A8

PL/I CHAR(8)

Examples
input @1 name $char5.;

1244 $CHARZBw. Informat � Chapter 5

Data Line Results*

----+----1

XYZ XYZ##

XYZ #XYZ#

. ##.##

X YZ #X#YZ

* The character # represents a blank space.

$CHARZBw. Informat

Converts binary 0s to blanks.

Category: Character

Syntax
$CHARZBw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

Details
The $CHARZBw. informat does not trim leading and trailing blanks in character data
before it stores values.

Comparisons
The $CHARZBw. informat is identical to the $CHARw. informat except that
$CHARZBw. converts any byte that contains a binary 0 to a blank character.

Examples
input @1 name $charzb5.;

Informats � $EBCDICw. Informat 1245

Data Line* Results

EBCDIC ASCII

E7E8E90000 58595A0000 XYZ##

00E7E8E900 0058595A00 #XYZ#

00E700E8E9 005800595A #X#YZ

* The data lines are hexadecimal representations of codes for characters. Each two hexadecimal
characters correspond to one byte of binary data, and each byte corresponds to one character.

** The character # represents a blank space.

$EBCDICw. Informat

Converts EBCDIC character data to native format.

Category: Character

Syntax
$EBCDICw.

Syntax Description

w
specifies the width of the input field.
Default: 1 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

Details
If EBCDIC is the native format, no conversion occurs.

Note: Any time a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option on either ASCII
or EBCDIC environments.

When you read an EBCDIC text file on an ASCII platform, it is recommended that
you specify the ENCODING= option in the FILENAME or INFILE statement. However,
if you use the DSD and the DLM= or DLMSTR= options in the FILENAME or INFILE
statement, the ENCODING= option is a requirement because these options require
certain characters in the session encoding (such as quotation marks, commas, and
blanks).

The use of encoding-specific informats should be reserved for use with true binary
files. That is, they contain both character and non-character fields. �

Comparisons
� On an IBM mainframe system, $EBCDICw. behaves like the $CHARw. informat.

1246 $HEXw. Informat � Chapter 5

� On all other systems, $EBCDICw. converts EBCDIC data to ASCII.

Examples

input @1 name $ebcdic3.

Data Line Results*

----+----1 ASCII EBCDIC

qrs 717273
9899A2

QRS 515253 D8D9E2

+;> 2B3B3E 4E5E6E

* The results are hexadecimal representations of codes for characters. Each two hexadecimal
characters correspond to one byte of binary data, and each byte corresponds to one character
value.

$HEXw. Informat

Converts hexadecimal data to character data.

Category: Character

See: $HEXw. Informat in the documentation for your operating environment.

Syntax
$HEXw.

Syntax Description

w
specifies the number of digits of hexadecimal data.

If w=1, $HEXw. pads a trailing hexadecimal 0. If w is an odd number that is
greater than 1, then $HEXw. reads w–1 hexadecimal characters.

Default: 2

Range: 1–32767

Details
The $HEXw. informat converts every two digits of hexadecimal data into one byte of
character data. Use $HEXw. to encode hexadecimal values into a character variable
when your input method is limited to printable characters.

Informats � $OCTALw. Informat 1247

Comparisons
The HEXw. informat reads two digits of hexadecimal data at a time and converts them
into one byte of numeric data.

Examples
input @1 name $hex4.;

Data Line Results

----+----1 ASCII EBCDIC

6C6C ll %%

$OCTALw. Informat
Converts octal data to character data.

Category: Character

Syntax
$OCTALw.

Syntax Description

w
specifies the width of the input field in bits. Because one digit of octal data
represents three bits of binary information, increment the value of w by three for
every column of octal data that $OCTALw. will read.
Default: 3
Range: 1–32767

Details
Eight bits of binary data represent the code for one digit of character data. Therefore,
you need at least three digits of octal data to represent one digit of character data,
which includes an extra bit. $OCTALw. treats every three digits of octal data as one
digit of character data, ignoring the extra bit.

Use $OCTALw. to read octal representations of binary codes for unprintable
characters. Enter an ASCII or EBCDIC equivalent for a particular character in octal
notation. Then use $OCTALw. to convert it to its equivalent character value.

Use only the digits 0 through 7 in the input, with no embedded blanks. $OCTALw.
ignores leading and trailing blanks.

Comparisons
The OCTALw. informat reads octal data and converts them into the numeric
equivalents.

1248 $PHEXw. Informat � Chapter 5

Examples
input @1 name $octal9.;

Data Line Results

----+----1 EBCDIC ASCII

114 < L

$PHEXw. Informat

Converts packed hexadecimal data to character data.

Category: Character

Syntax
$PHEXw.

Syntax Description

w
specifies the number of bytes in the input.

When you use $PHEXw. to read packed hexadecimal data, the length of the
variable is the number of bytes that are required to store the resulting character
value, not w. In general, a character variable whose length is implicitly defined with
$PHEXw. has a length of 2w–1.

Default: 2

Range: 1–32767

Details
Packed hexadecimal data are like packed decimal data, except that all hexadecimal
characters are valid. In packed hexadecimal data, the value of the low-order nibble has
no meaning. In packed decimal data, the value of the low-order nibble indicates the
sign of the numeric value that the data represent. The $PHEXw. informat returns a
character value and treats the value of the sign nibble as if it were X’F’, regardless of
its actual value.

Comparisons
The PDw.d. informat reads packed decimal data and converts them to numeric data.

Examples
input @1 devaddr $phex2.;

Informats � $N8601Bw.d Informat 1249

Data Line* Results

0001111000001111 1E0

*The data line represents two bytes of actual binary data, with each half byte
corresponding to a single hexadecimal digit. The equivalent hexadecimal representation
for the data line is 1E0F.

$N8601Bw.d Informat

Reads complete, truncated, and omitted forms of ISO 8601 duration, datetime, and interval values
that are specified in either the basic or extended notations.

Category: Date and Time

ISO 8601

Alignment: left

Time Zone Informat: No

ISO 8601 Element: 5.4.4 Complete representation

Syntax

$N8601Bw.d

Syntax Description

w
specifies the width of the input field.

Default: 50

Range: 1 - 200

Requirement: The minimum length for a duration value or a datetime value is 16.
The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.

Default: 0

Range: 0 - 3

Details

The $N8601B informat reads ISO 8601 duration, datetime, and interval values as
character data for the following basic notations:

1250 $N8601Bw.d Informat � Chapter 5

Time Component ISO 8601 Notation Example

Duration Pyyyy-mm-ddThh:mm:ss.fff P2008-09-15T15:53:00

PyyyymmddThhmmss P00020304T050607

PnYnMnDTnHnMn.fffS P2y10m14dT20h13m45.222s

PnW P6w

Interval yyyy-mm-ddThh:mm:ss.fff/
yyyy-mm-ddThh:mm:ss.fff

2008-09-15T15:53:00/
2010-11-13T00:00:00

yyyymmddThhmmss.fff/
yyyymmddThhmmss.fff

20080915T155300/
20101115T120000

PnYnMnDTnHnMn.fffS/
yyyy-mm-ddThh:mm:ss.fff

P2y10M14dT20h13m45s/
2008-09-15T15:53:00

yyyy-mm-ddThh:mm:ss.fff/
PnYnMnDTnHnMn.fffS

2008-09-15T15:53:00/
P2y10M14dT20h13m45s

Datetime yyyy-mm-ddThh:mm:ss.fff 2008-09-15T15:53:00

yyyymmddThhmmss.fff 20080915T155300

The $N8601B informat also reads ISO 8601 duration, interval, and datetime
components that contain omitted components or truncated components. Omitted
components must use a single hyphen (-)to represent the component.

Comparisons

The $N8601B informat reads durations, intervals, and datetimes that are specified in
either the basic or extended notation. The $N8601E informat reads valid durations,
intervals, and datetimes that are specified only in the extended notation. Use the
$N8601E informat when you need to ensure compliance with the extended notation.

Examples

input @1 i860 $n8601b.;

Data Line Results

p0002-04-05t5:1:12 0002405050112FFC

2008-09-15T15:53:00/2010-09-15T00:00:00 2008915155300FFD2010915000000FFD

p0033-01-04T3:2:55/2008-09-15T15:53:00 0033104030255FFC2008915155300FFD

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

Informats � $N8601Ew.d Informat 1251

$N8601Ew.d Informat

Reads ISO 8601 duration, datetime, and interval values that are specified in the extended notation.

Category: Date and Time
ISO 8601

Alignment: left
Time Zone Informat: No
ISO 8601 Element: 5.4.4 Complete representation

Syntax
$N8601Ew.d

Syntax Description

w
specifies the width of the input field.
Default: 50
Range: 1 - 200
Requirement: The minimum length for a duration value or a datetime value is 16.

The minimum length for an interval value is 16.

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0 - 3

Details
The $N8601E informat reads ISO 8601 durations, datetime, and interval values that
can be specified in the following the extended notations:

Time Component ISO 8601 Notation Example

Duration Pyyyy-mm-ddThh:mm:ss.fff P2008-09-15T15:53:00

PnW P6w

Interval yyyy-mm-ddThh:mm:ss.fff/
yyyy-mm-ddThh:mm:ss.fff

2008-09-15T15:53:00/
2010-11-13T00:00:00

yyyy-mm-ddThh:mm:ss.fff/
PnYnMnDTnHnMns.fffS

2008-09-15T15:53:00/
P2y10M14dT20h13m45s

Datetime yyyy-mm-ddThh:mm:ss.fff 2008-09-15T15:53:00

1252 $N8601Ew.d Informat � Chapter 5

n specifies a number that represents the number of years, months, or
days

P is the character that is used to indicate that the duration that
follows is specified by the number of years, months, days, hours,
minutes, and seconds

W is the character that is used to designate that the duration is
specified in weeks.

T is the character used to designate that a time value follows. If all
time values are 0, T is not required.

yyyy specifies a four-digit year

mm specifies a two-digit month, 01 - 12

dd specifies a two-digit day, 01 - 31

hh specifies a two-digit hour, 00 - 23

mm specifies a two-digit minute, 00 - 59

ss specifies a two-digit second, 00 - 59

fff specifies an optional fraction of a second that can be 1 - 3 digits, 0 - 9

Y is the character that is used to designate years in a duration

M is the character used to designate months in a duration

D is the character used to designate days in a duration

H is the character used to designate hours in a duration

S is the character used to designate minutes in a duration

S is the character used to designate seconds in a duration

Comparisons

The $N8601E informat reads only valid durations, intervals, and datetimes that are
specified in the extended notation. The $N8601B informat reads valid durations,
intervals, and datetimes that are specified in either the basic or extended notation. Use
the $N8601E informat when you need to ensure compliance with the extended notation.

Examples

input @1 i860 $n8601e.;

Data Line Results

p0002-04-05t5:1:12s 0002405050112FFC

2008-09-15T15:53:00/2010-09-15T00:00:00 2008915155300FFD2010915000000FFD

p0033-01-04T3:2:55/2008-09-15T15:53:00 0033104030255FFC2008915155300FFD

Informats � $QUOTEw. Informat 1253

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

$QUOTEw. Informat

Removes matching quotation marks from character data.

Category: Character

Syntax
$QUOTEw.

Syntax Description

w
specifies the width of the input field.
Default: 8 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

Examples
input @1 name $quote7.;

Data Line Results

----+----1

’SAS’ SAS

"SAS" SAS

"SAS’s" SAS’s

1254 $UPCASEw. Informat � Chapter 5

$UPCASEw. Informat

Converts character data to uppercase.

Category: Character

Syntax
$UPCASEw.

Syntax Description

w
specifies the width of the input field.
Default: 8 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

Details
Special characters, such as hyphens, are not altered.

Examples
input @1 name $upcase3.;

Data Line Results

----+----1

sas SAS

$VARYINGw. Informat

Reads character data of varying length.

Valid: in a DATA step
Category: Character

Syntax
$VARYINGw. length-variable

Syntax Description

Informats � $VARYINGw. Informat 1255

w
specifies the maximum width of a character field for all the records in an input file.
Default: 8 if the length of the variable is undefined. Otherwise, the default is the

length of the variable.
Range: 1–32767

length-variable
specifies a numeric variable that contains the width of the character field in the
current record. SAS obtains the value of length-variable by reading it directly from a
field that is described in an INPUT statement or by calculating its value in the DATA
step.

Requirement: You must specify length-variable immediately after $VARYINGw. in
an INPUT statement.

Restriction: Length-variable cannot be an array reference.
Tip: If the value of length-variable is 0, negative, or missing, SAS reads no data

from the corresponding record. A value of 0 for length-variable enables you to read
zero-length records and fields. If length-variable is greater than 0 but less than w,
SAS reads the number of columns that are specified by length-variable. Then SAS
pads the value with trailing blanks up to the maximum width that is assigned to
the variable. If length-variable is greater than or equal to w, SAS reads w columns.

Details
Use $VARYINGw. when the length of a character value differs from record to record.
After reading a data value with $VARYINGw., the pointer’s position is set to the first
column after the value.

Examples

Example 1: Obtaining a Current Record Length Directly

input fwidth 1. name $varying9. fwidth;

Data Line Results

----+----1

5shark shark

3sunfish sun

8bluefish bluefish

* Notice the result of reading the second data line.

Example 2: Obtaining a Record Length Indirectly Use the LENGTH= option in the
INFILE statement to obtain a record length indirectly. The input data lines and results
follow the explanation of the SAS statements.

data one;
infile file-specification length=reclen;
input @;
fwidth=reclen-9;
input name $ 1-9

@10 class $varying20. fwidth;

1256 $w. Informat � Chapter 5

run;

The LENGTH= option in the INFILE statement assigns the internally stored record
length to RECLEN when the first INPUT statement executes. The trailing @ holds the
record for another INPUT statement. Next, the assignment statement calculates the
value of the varying-length field by subtracting the fixed-length portion of the record
from the total record length. The variable FWIDTH contains the length of the last field
and becomes the length-variable argument to the $VARYING20. informat.

Data Line Results

----+----1----+----2

PATEL CHEMISTRY PATEL CHEMISTRY

JOHNSON GEOLOGY JOHNSON GEOLOGY

WILCOX ART WILCOX ART

$w. Informat

Reads standard character data.

Category: Character
Alias: $Fw.

Syntax
$w.

Syntax Description

w
specifies the width of the input field. You must specify w because SAS does not
supply a default value.
Range: 1–32767

Details
The $w. informat trims leading blanks and left aligns the values before storing the text.
In addition, if a field contains only blanks and a single period, $w. converts the period
to a blank because it interprets the period as a missing value. The $w. informat treats
two or more periods in a field as character data.

Comparisons
The $w. informat is almost identical to the $CHARw. informat. However, $CHARw.
does not trim leading blanks nor does it convert a single period in an input field to a
blank, while $w. does both.

Informats � ANYDTDTEw. Informat 1257

Examples
input @1 name $5.;

Data Line Results*

----+----1

XYZ XYZ##

XYZ XYZ##

.

X YZ X#YZ#

* The character # represents a blank space.

ANYDTDTEw. Informat

Reads and extracts the date value from various date, time, and datetime forms.

Category: Date and Time

Syntax
ANYDTDTEw.

Syntax Description

w
specifies the width of the input field.
Default: 9
Range: 5–32

Details
The ANYDTDTE informat reads input data that corresponds to any of the following
informats or date, time, or datetime forms and extracts the date part from the derived
value.

Informat or Form of
Input

Example Data Informat or Form of
Input

Example Data

DATE 01JAN09

01JAN2009

MONYY JAN09

JAN2009

DATETIME 01JAN09 14:30:08

01JAN2009 14:30:08.5

TIME 14:30

14:30:08.05

DDMMYY 010109

01012009

YMDDTTM 08-03-16 11:23

1258 ANYDTDTEw. Informat � Chapter 5

Informat or Form of
Input

Example Data Informat or Form of
Input

Example Data

JULIAN 09001

2009001

YYMMDD 090101

20090101

MDYAMPM 09-15-08 3:53 pm YYQ 09Q1

2009Q1

MMDDYY 010109

01012009

YY<YY>xMM* 09/01

2009-01

MMxYY<YY>* 01/09

01-2009

month-day-year January 1, 2009

* x is a special character that separates the month from the year

If the input value is a time-only value, then SAS assumes a date of 01JAN1960.
It is possible for input data such as 01-02-03 or 01-02 to be ambiguous with respect

to the month, day, and year. In this case, the DATESTYLE system option indicates the
order of the month, day, and year.

Comparisons

The ANYDTDTE informat extracts the date part from the derived value. The
ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts
the time part.

Examples

input dateinfo anydtdte21.;

Data Line Informat Form Results Formatted with the
DATEw. Format

----+----1----+----2

01JAN09 DATE 17898 01JAN09

01JAN2009 14:30:08.5 DATETIME 17898 01JAN09

01012009 DDMMYY 17898 01JAN09

2009001 JULIAN 17898 01JAN09

01/01/09 MMDDYY 17898 01JAN09

JAN2009 MONYY 17898 01JAN09

14:30 TIME 0 01JAN60

20090101 YYMMDD 17898 01JAN09

09q1 YYQ 17898 01JAN09

January 1, 2009 none 17898 01JAN09

Informats � ANYDTDTMw. Informat 1259

See Also

Informats:
“ANYDTDTMw. Informat” on page 1259
“ANYDTTMEw. Informat” on page 1262
“DATEw. Informat” on page 1280
“DATETIMEw. Informat” on page 1281
“DDMMYYw. Informat” on page 1283
“JULIANw. Informat” on page 1301
“MDYAMPMw.d Informat” on page 1303
“MMDDYYw. Informat” on page 1305
“MONYYw. Informat” on page 1307
“TIMEw. Informat” on page 1349
“YMDDTTMw.d Informat” on page 1364
“YYMMDDw. Informat” on page 1366
“YYQw. Informat” on page 1369

ANYDTDTMw. Informat
Reads and extracts datetime values from various date, time, and datetime forms.

Category: Date and Time

Syntax
ANYDTDTMw.

Syntax Description

w
specifies the width of the input field.
Default: 19
Range: 1–32

Details
The ANYDTDTM informat reads data that is in the form of any of the following
informats or date/time forms, and extracts the datetime part from the derived value:

Informat or Form of Input Example Data

DATE 01JAN09

01JAN2009

DATETIME 01JAN09 14:30:08

01JAN2009 14:30:08.5

DDMM<YY>YY 010109

01012009

1260 ANYDTDTMw. Informat � Chapter 5

Informat or Form of Input Example Data

JULIAN 09001

2009001

MMDD<YY>YY* 010109

01012009

MMx<YY>YY* 01/09

01-2009

MDYAMPM** 01/01/09 02:30:08 AM

01/01/2009 02:30:08 AM

MONYY JAN09

JAN2009

TIME 14.30

14:30:08.05

<YY>YYMMDD 090101

20090101

<YY>YYQ 09Q1

2009Q1

<YY>YYxMM* 09/01

2009/01

month-day-year January 1, 2009

* x is a special character that separates the month from the year. <YY> indicates the century is
optional.

** If AM | PM is not present and the month and day values are ambiguous, the value for the
DATESYTLE= system option is used to determine the order.

If the input value is a time-only value, then SAS assumes a date of 01JAN1960. If
the input value is a date-only value , then SAS assumes a time of 12:00 midnight.
Input time values must include hours and minutes. If any part of a date in the input
value is missing in the input value, or if the hour and minutes in a time value are
missing or out of range, then the value read is a SAS missing value.

The input values for the preceding informats are mutually exclusive except for
MMDDYY, DDMMYY, or YYMMDD when two-digit years are used. It is possible for
input data such as 01-02-03 or 01-02 to be ambiguous with respect to the month, day,
and year. In this case, the DATESTYLE system option indicates the order of the month,
day, and year.

The ANYDTTME informat uses the following rules when reading colons and periods
in time values:

Use of Colons and Periods Example

a single colon in the value h:m indicates hours
and minutes

14:30

two colons in the value h:m:s indicate hours,
minutes, and seconds

14:30:08

Informats � ANYDTDTMw. Informat 1261

Use of Colons and Periods Example

a single period in the value m:s.ff, where ff is a
fraction of a second, indicates that the number
preceding the period is the number of seconds

2:39.66

multiple periods in the value indicate that the
period is a delimiter for dates and the value is
not a time value.

12.25.2009

Comparisons
The ANYDTDTE informat extracts the date part from the derived value. The
ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts
the time part.

Examples
input dateinfo anydtdtm21.;

Data Line Informat or Form of Data Result Formatted
with
DATETIMEw.d
Format

-+-1-+-2

01JAN2009 DATE 1546387200 01JAN09:00:00:00

01JAN2009 14:30:08.5 DATETIME 1546439408.5 01JAN09:14:30:09

01012009 DDMMYY 1546387200 01JAN09:00:00:00

2009001 JULIAN 1546387200 01JAN09:00:00:00

01/01/09 MMDDYY 1546387200 01JAN09:00:00:00

01-09 MMxYY 1546387200 01JAN09:00:00:00

JAN2009 MONYY 1546387200 01JAN09:00:00:00

14:30 TIME 52200 01JAN60:14:30:00

20090101 YYMMDD 1546387200 01JAN09:00:00:00

09Q1 YYQ 1546387200 01JAN09:00:00:00

January 1, 2009 month-day-year 1546387200 01JAN09:00:00:00

See Also

Informats:
“ANYDTDTEw. Informat” on page 1257
“ANYDTTMEw. Informat” on page 1262
“DATEw. Informat” on page 1280
“DATETIMEw. Informat” on page 1281

1262 ANYDTTMEw. Informat � Chapter 5

“DDMMYYw. Informat” on page 1283
“JULIANw. Informat” on page 1301
“MMDDYYw. Informat” on page 1305
“MONYYw. Informat” on page 1307
“TIMEw. Informat” on page 1349
“YYMMDDw. Informat” on page 1366
“YYQw. Informat” on page 1369

ANYDTTMEw. Informat

Reads and extracts time values from various date, time, and datetime forms.

Category: Date and Time

Syntax
ANYDTTMEw.

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1-32

Details
The ANYDTTME informat reads input data that corresponds to any of the following
informats or forms.

Informat or Form of
Input

Example Data Informat or Form of
Input

Example Data

DATE 01JAN09

01JAN2009

MONYY JAN09

JAN2009

DATETIME 01JAN09 14:30:08

01JAN2009 14:30:08.5

YYMMDD 090101

20090101

DDMMYY 010109

01012009

YYQ 09Q1

2009Q1

JULIAN 09001

2009001

YYQ 09Q1

2009Q1

MMDDYY 010109

01012009

month-day-year January 1, 2009
2009-01

Informats � ANYDTTMEw. Informat 1263

If the input value is a time-only value, then SAS assumes a date of 01JAN1960. If
the input value is a date value only, then SAS assumes a time of 12:00 midnight.

It is possible for input data such as 01-02-03 or 01-02 to be ambiguous with respect
to the month, day, and year. In this case, the DATESTYLE system option indicates the
order of the month, day, and year.

The ANYDTTME informat uses the following rules when reading colons and periods
in time values:

Use of Colons and Periods Example

a single colon in the value h:m indicates hours
and minutes

14:30

two colons in the value h:m:s indicate hours,
minutes, and seconds

14:30:08

a single period in the value m:s.ff, where ff is a
fraction of a second, indicates that the number
preceding the period is the number of seconds

2:39.66

multiple periods in the value indicate that the
period is a delimiter for dates and the value is
not a time value.

12.25.2009

Comparisons
The ANYDTDTE informat extracts the date part from the derived value. The
ANYDTDTM informat extracts the datetime part. The ANYDTTME informat extracts
the time part.

Examples
input dateinfo anydttme21.;

Data Line Informat Results Formatted
with the
TIMEw.d
Format

----+----1----+----2

01JAN09 DATE 0 00:00:00

01JAN2009 14:30:08.5 DATETIME 52208.5 14:30:09

010109 DDMMYY 0 00:00:00

2009001 JULIAN 0 00:00:00

01012009 MMDDYY 0 00:00:00

JAN2009 MONYY 0 00:00:00

14:30:08.5 TIME 52208.5 14:30:09

20090101 YYMMDD 0 00:00:00

1264 ANYDTTMEw. Informat � Chapter 5

Data Line Informat Results Formatted
with the
TIMEw.d
Format

09Q1 YYQ 0 00:00:00

January 1, 2009 month-day-year 0 00:00:00

See Also

Informats:
“ANYDTDTEw. Informat” on page 1257
“ANYDTDTMw. Informat” on page 1259
“DATEw. Informat” on page 1280
“DATETIMEw. Informat” on page 1281
“DDMMYYw. Informat” on page 1283
“JULIANw. Informat” on page 1301
“MMDDYYw. Informat” on page 1305
“MONYYw. Informat” on page 1307
“TIMEw. Informat” on page 1349
“YYMMDDw. Informat” on page 1366
“YYQw. Informat” on page 1369

Informats � B8601DAw. Informat 1265

B8601DAw. Informat

Reads date values that are specified in the ISO 8601 base notation yyyymmdd.

Category: Date and Time
ISO 8601

Alignment: left
Alias: ND8601DA
Time Zone Informat: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
B8601DAw.

Syntax Description

w
specifies the width of the input field.
Default: 10
Requirement: The width of the output field must be 10.

Details
The B8602DA informat reads date values that are specified in the ISO 8601 basic date
notation yyyymmdd:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

Examples

input @1 bda b8601da.;

Data Line Results

------+------1

20080915 17790

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

1266 B8601DNw. Informat � Chapter 5

B8601DNw. Informat

Reads date values that are specified the ISO 8601 basic notation yyyymmdd and returns SAS
datetime values where the time portion of the value is 000000.

Category: Date and Time
ISO 8601

Alignment: left
Alias: ND8601DN
Time Zone Informat: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
B8601DNw.

Syntax Description

w
specifies the width of the input field.
Default: 10
Requirement: The width of the input field must be 10.

Details
The B8602DN informat reads date values that are specified in the ISO 8601 basic date
notation yyyymmdd and returns the date in a SAS datetime value:

yyyy is a four-digit year, such as 2008.

mm is a two-digit month (zero padded) between 01 and 12.

dd is a two-digit day of the month (zero padded) between 01 and 31.

Examples

input @1 bdn b8601dn.;

Data Line Results

----+----1

20080915 1537056000

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

Informats � B8601DTw.d Informat 1267

B8601DTw.d Informat

Reads datetime values that are specified in the ISO 8601 basic notation yyyymmddThhmmssffffff.

Category: Date and Time
ISO 8601

Alignment: left
Alias: ND8601DT
Time Zone Format: No
ISO 8601 Element: 5.4.1 Complete representation

Syntax
B8601DTw.d

Syntax Description

w
specifies the width of the input field.
Default: 19
Range: 19–26

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–6

Details
The B8602DT informat reads datetime values that are specified in the ISO 8601 basic
datetime notation yyyymmddThhmmssffffff:

yyyy
is a four-digit year, such as 2008

mm
is a two-digit month (zero padded) between 01 and 12

dd
is a two-digit day of the month (zero padded) between 01 and 31

hh
is a two-digit hour (zero padded), between 00 - 23

mm
is a two-digit minute (zero padded), between 00 - 59

ss
is a two-digit second (zero padded), between 00 - 59

ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 - 9

1268 B8601DZw.d Informat � Chapter 5

Examples

input @1 bdt b8601dt;

Data Line Results

------+------1

20080915T155300 1537113180

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

B8601DZw.d Informat

Reads datetime values that are specified in the Coordinated Universal Time (UTC) time scale
using ISO 8601 datetime basic notation yyyymmddThhmmss+|-hhmm or yyyymmddThhmmssffffffZ.

Category: Date and Time

ISO 8601

Alignment: left

Alias: ND8601DZ

Time Zone Informat: Yes

ISO 8601 Element: 5.4.1 Complete representation

Syntax
B8601DZw.d

Syntax Description

w
specifies the width of the input field.

Default: 26

Range: 20–35

d
specifies the number of digits to the right of the seconds value, which represents a
fraction of a second. This argument is optional.

Default: 0

Range: 0–6

Informats � B8601DZw.d Informat 1269

Details
UTC values specify a time and a time zone based on the zero meridian in Greenwich,
England. The B8602DZ informat reads datetime values that are specified in one of the
following ISO 8601 basic datetime notations:

yyyymmddThhmmss+|–hhmm
yyyymmddThhmmssffffffZ

where

yyyy
is a four-digit year, such as 2008

mm
is a two-digit month (zero padded) between 01 and 12

dd
is a two-digit day of the month (zero padded) between 01 and 31

hh
is a two-digit hour (zero padded), between 00 and 24

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9.

Z
indicates that the time is for zero meridian (Greenwich, England) or UTC time.

+|–hhmm
is an hour and minute signed offset from zero meridian time. Note that the offset
must be +|–hhmm (that is, + or – and four characters).

Use + for time zones east of the zero meridian and use – for time zones west of
the zero meridian. For example, +0200 indicates a two hour time difference to the
east of the zero meridian, and –0600 indicates a six hour time differences to the
west of the zero meridian.
Restriction: The shorter form +|–hh is not supported.

Examples

input @1 bdz b8601dz.;

Data Line Results

----+----1

20080915T155300+0500 1537095180

1270 B8601TMw.d Informat � Chapter 5

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

B8601TMw.d Informat

Reads time values that are specified in the ISO 8601 basic notation hhmmssffffff.

Category: Date and Time
ISO 8601

Alignment: left
Alias: ND8601TM
Time Zone Informat: No
ISO 8601 Element: 5.3.1.1 Complete representation and 5,3,1,3 Representation of decimal
fractions

Syntax
B8601TMw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 6–15

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–6

Informats � B8601TMw.d Informat 1271

Details
The B8601TM informat reads time values that are specified in the ISO 8601 basic time
notation hhmmssffffff:

hh
is a two-digit hour (zero padded), between 00 and 23

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 - 9

Examples

input @1 btm b8601tm;

Data Line Results

----+----1

155300 57180

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

1272 B8601TZw.d Informat � Chapter 5

B8601TZw.d Informat

Reads time values that are specified in the ISO 8601 basic time notation hhmmssfffff+|-hhmm or
hhmmssffffffZ.

Category: Date and Time

ISO 8601

Alignment: left

Alias: ND8601TZ

Time Zone Informat: Yes

ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
B8601TZw.d

Syntax Description

w
specifies the width of the input field.

Default: 14

Range: 9–20

d
(optional) specifies the number of digits to the right of the decimal point in the
seconds value.

Default: 0

Range: 0 - 6

Details
UTC time values specify a time and a time zone based on the zero meridian in
Greenwich, England. The B8602TZ informat reads time values that are specified in the
following ISO 8601 basic time notations:

hhmmssffffff+|–hhmm

hhmmssffffffZ

where

hh
is a two-digit hour (zero padded), between 00 and 23

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

Informats � BINARYw.d Informat 1273

ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9

Z
indicates that the time is for zero meridian (Greenwich, England) or UTC time

+|–hh:mm
is an hour and minute signed offset from zero meridian time. Note that the offset
must be +|–hhmm (that is, + or – and four characters).

Use + for time zones east of the zero meridian and use – for time zones west of
the zero meridian. For example, +0200 indicates a two hour time difference to the
east of the zero meridian, and –0600 indicates a six hour time differences to the
west of the zero meridian.
Restriction: The shorter form +|–hh is not supported.

When SAS reads a UTC time by using the B8601TZ informat and the adjusted time
is greater than 240000 or less than 000000, SAS adjusts the time so that it represents a
time between 000000 and 240000. For example, if SAS reads the UTC time
234344-0500 using the B8601TZ informat, SAS adds five hours to the time so that the
value is 284344, and then makes the time adjustment. The value stored represents the
time 044344+0000.

Examples

input @1 btz b8601tz.;

Data Line Results

----+----1

202401-0500 5041

202401Z 73441

202401+0000 73441

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

BINARYw.d Informat

Converts positive binary values to integers.

Category: Numeric

Syntax
BINARYw.d

1274 BITSw.d Informat � Chapter 5

Syntax Description

w
specifies the width of the input field.

Default: 8
Range: 1–64

d
specifies the power of 10 by which to divide the value. SAS uses the d value even if
the data contain decimal points. This argument is optional.

Range: 0–31

Details
Use only the character digits 1 and 0 in the input, with no embedded blanks.
BINARYw.d ignores leading and trailing blanks.

BINARYw.d cannot read negative values. It treats all input values as positive
(unsigned).

Examples
input @1 value binary8.1;

Data Line Results

----+----1----+

00001111 1.5

BITSw.d Informat

Extracts bits.

Category: Numeric

Syntax
BITSw.d

Syntax Description

w
specifies the number of bits to read.
Default: 1
Range: 1–64

Informats � BZw.d Informat 1275

d
specifies the zero-based offset.
Range: 0–63

Details
The BITSw.d informat extracts particular bits from an input stream and assigns the
numeric equivalent of the extracted bit string to a variable. Together, the w and d
values specify the location of the string you want to read.

This informat is useful for extracting data from system records that have many
pieces of information packed into single bytes.

Examples
input @1 value bits4.1;

Data Line Results*

----+----1----+

B 8

*The EBCDIC binary code for a capital B is 11000010, and the ASCII binary code is
01000010.

The input pointer moves to column 2 (d=1). Then the INPUT statement reads four
bits (w=4) which is the bit string 1000 and stores the numeric value 8, which is
equivalent to this binary combination.

BZw.d Informat

Converts blanks to 0s.

Category: Numeric

1276 BZw.d Informat � Chapter 5

Syntax

BZw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contain decimal
points, the d value is ignored. This argument is optional.

Range: 0–31

Details

The BZw.d informat reads numeric values, converts any trailing or embedded blanks to
0s, and ignores leading blanks.

The BZw.d informat can read numeric values that are located anywhere in the field.
Blanks can precede or follow the numeric value, and a minus sign must precede
negative values. The BZw.d informat ignores blanks between a minus sign and a
numeric value in an input field.

The BZw.d informat interprets a single period in a field as a 0. The informat
interprets multiple periods or other nonnumeric characters in a field as a missing value.

To use BZw.d in a DATA step with list input, change the delimiter for list input with
the DLM= or DLMSTR= option in the INFILE statement. By default, SAS interprets
blanks between values in the data line as delimiters rather than 0s.

Comparisons

The BZw.d informat converts trailing or embedded blanks to 0s. If you do not want to
convert trailing blanks to 0s (for example, when reading values in E-notation), use
either the w.d informat or the Ew.d informat instead.

Examples

input @1 x bz4.;

Data Line Result

----+----1

34 3400

-2 -200

-2 1 -201

Informats � CBw.d Informat 1277

CBw.d Informat

Reads standard numeric values from column-binary files.

Category: Column Binary

Syntax
CBw.d

Syntax Description

w
specifies the width of the input field.
Range: 1–32

d
specifies the power of 10 by which to divide the value. SAS uses the d value even if
the data contain decimal points. This argument is optional.

Details
Column-binary data storage compresses data so that more than 80 items of data can be
stored on a single “virtual” punch card.

The CBw.d informat reads standard numeric values from column-binary files and
translates the data into standard binary format.

SAS first stores each column of column-binary data you read with CBw.d in two
bytes and ignores the two high-order bits of each byte. If the punch codes are valid,
then SAS stores the equivalent numeric value in the variable that you specify. If the
combinations are not valid, then SAS assigns the variable a missing value and sets the
automatic variable _ERROR_ to 1.

Examples
input @1 x cb8.;

Data Line* Results

----+----1

0009 9

* The data line is a hexadecimal representation of the column binary. The “virtual” punch card
column for the example data has row 9 punched. The binary representation is 0000 0000 0000
1001.

See Also

Informats:

1278 COMMAw.d Informat � Chapter 5

“$CBw. Informat” on page 1242

“PUNCH.d Informat” on page 1322

“ROWw.d Informat” on page 1327

“How to Read Column-Binary Data” in SAS Language Reference: Concepts

COMMAw.d Informat

Removes embedded characters.

Category: Numeric

Alias: DOLLARw.d

Syntax
COMMAw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contain decimal
points, the d value is ignored. This argument is optional.

Range: 0–31

Details
The COMMAw.d informat reads numeric values and removes embedded commas,
blanks, dollar signs, percent signs, dashes, and close parentheses from the input data.
The COMMAw.d informat converts an open parenthesis at the beginning of a field to a
minus sign.

Comparisons
The COMMAw.d informat operates like the COMMAXw.d informat, but it reverses the
roles of the decimal point and the comma. This convention is common in European
countries.

Examples
input @1 x comma10.;

Informats � COMMAXw.d Informat 1279

Data Line Results

----+----1----+

$1,000,000 1000000

(500) -500

COMMAXw.d Informat

Removes embedded periods, blanks, dollar signs, percent signs, dashes, and closing parenthesis
from the input data. An open parenthesis at the beginning of a field is converted to a minus sign.
The COMMAX informat reverses the roles of the decimal point and the comma.

Category: Numeric

Alias: DOLLARXw.d

Syntax
COMMAXw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1−32

d
specifies the power of 10 by which to divide the value. If the data contain a comma,
which represents a decimal point, the d value is ignored. This argument is optional.

Range: 0−31

Details
The COMMAXw.d informat reads numeric values and removes embedded periods,
blanks, dollar signs, percent signs, dashes, and close parentheses from the input data.
The COMMAXw.d informat converts an open parenthesis at the beginning of a field to
a minus sign.

Comparisons
The COMMAXw.d informat operates like the COMMAw.d informat, but it reverses the
roles of the decimal point and the comma. This convention is common in European
countries.

1280 DATEw. Informat � Chapter 5

Examples
input @1 x commax10.;

Data Line Results

----+----1----+

$1.000.000 1000000

1.234,56 1234.56

(500) -500

DATEw. Informat

Reads date values in the form ddmmmyy or ddmmmyyyy.

Category: Date and Time

Syntax
DATEw.

Syntax Description

w
specifies the width of the input field.

Default: 7

Range: 7–32

Tip: Use a width of 9 to read a 4–digit year.

Details
The date values must be in the form ddmmmyy or ddmmmyyyy, where

dd
is an integer from 01 through 31 that represents the day of the month.

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can separate the year, month, and day values by blanks or by special characters.
Make sure the width of the input field allows space for blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Informats � DATETIMEw. Informat 1281

Examples
input calendar_date date11.;

Data Line Results

----+----1----+

16mar99 14319

16 mar 99 14319

16-mar-1999 14319

See Also

Format:
“DATEw. Format” on page 151

Function:
“DATE Function” on page 627

System Option:
“YEARCUTOFF= System Option” on page 1996

DATETIMEw. Informat

Reads datetime values in the form ddmmmyy hh:mm:ss.ss or ddmmmyyyy hh:mm:ss.ss.

Category: Date and Time

Syntax
DATETIMEw.

Syntax Description

w
specifies the width of the input field.
Default: 18
Range: 13–40

Details
The datetime values must be in the following form: ddmmmyy or ddmmmyyyy, followed
by a blank or special character, followed by hh:mm:ss.ss (the time). In the date,

dd
is an integer from 01 through 31 that represents the day of the month.

1282 DATETIMEw. Informat � Chapter 5

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

In the time,

hh
is the number of hours ranging from 00 through 23.

mm
is the number of minutes ranging from 00 through 59.

ss.ss
is the number of seconds ranging from 00 through 59 with the fraction of a second
following the decimal point.

DATETIMEw. requires values for both the date and the time. However, the ss.ss
portion is optional.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Note: SAS can read time values with AM and PM in them. �

Comparisons
The DATETIMEw.d informat reads datetime values with optional separators in the
form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by
a special character.

The MDYAMPMw.d in format reads datetime values with optional separators in the
form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and
the time.

The YMDDTTMw.d informat reads datetime values with required separators in the
form <yy>yy-mm-dd/hh:mm:ss.ss.

Examples
input date_and_time datetime20.;

Data Line Results

----+----1----+----2

16mar08:11:23:07.4 1521285787.4

16mar2008/11:23:07.4 1521285787.4

16mar2008/11:23 PM 1521328980

See Also

Formats:
“DATEw. Format” on page 151
“DATETIMEw.d Format” on page 154
“TIMEw.d Format” on page 246

Informats � DDMMYYw. Informat 1283

Function:
“DATETIME Function” on page 629

Informats:
“DATEw. Informat” on page 1280
“MDYAMPMw.d Informat” on page 1303
“TIMEw. Informat” on page 1349
“YMDDTTMw.d Informat” on page 1364

System Option:
“YEARCUTOFF= System Option” on page 1996

See the discussion on using SAS date and time values in SAS Language Reference:
Concepts

DDMMYYw. Informat

Reads date values in the form ddmmyy<yy> or dd-mm-yy<yy>, where a special character, such as
a hyphen (-), period (.), or slash (/), separates the day, month, and year; the year can be either 2
or 4 digits.

Category: Date and Time

Syntax
DDMMYYw.

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 6–32

Details
The date values must be in the form ddmmyy<yy> or ddxmmxyy<yy>, where

dd
is an integer from 01 through 31 that represents the day of the month.

mm
is an integer from 01 through 12 that represents the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

x
is a separators that can be any special character or a blank.:

If you use separators, place them between all the values. Blanks can also be placed
before and after the date. Make sure the width of the input field allows space for blanks
and special characters.

1284 Ew.d Informat � Chapter 5

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
input calendar_date ddmmyy10.;

Data Line Results

----+----1----+

160308 17607

16/03/08 17607

16-03-2008 17607

16 03 2008 17607

See Also

Formats:

“DATEw. Format” on page 151

“DDMMYYw. Format” on page 157

“MMDDYYw. Format” on page 195

“YYMMDDw. Format” on page 273

Function:

“MDY Function” on page 901

Informats:

“DATEw. Informat” on page 1280

“MMDDYYw. Informat” on page 1305

“YYMMDDw. Informat” on page 1366

System Option:

“YEARCUTOFF= System Option” on page 1996

Ew.d Informat

Reads numeric values that are stored in scientific notation and double-precision scientific notation.

Category: Numeric

See: Ew.d Informat in the documentation for your operating environment.

Syntax
Ew.d

Informats � E8601DAw. Informat 1285

Syntax Description

w
specifies the width of the field that contains the numeric value.
Default: 12
Range: 1–32

d
specifies the number of digits to the right of the decimal point in the numeric value.
If the data contain decimal points, the d value is ignored. This argument is optional.
Range: 0–31

Comparisons
The Ew.d informat is not used extensively because the SAS informat for standard
numeric data, the w.d informat, can read numbers in scientific notation. Use Ew.d to
permit only scientific notation in your input data.

Examples
input @1 x e7.;

Data Line Results

----+----1----+

1.257E3 1257

12d3 12000

E8601DAw. Informat

Reads date values that are specified in the ISO 8601 extended notation yyyy-mm-dd.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DA
Time Zone Informat: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
E8601DAw.

Syntax Description

1286 E8601DNw. Informat � Chapter 5

w
specifies the width of the input field.
Default: 10
Requirement: The width of the input field must be 10.

Details
The E8601DA informat reads date values that are specified in the ISO 8601 extended
date notation yyyy-mm-dd:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

Examples

input eda e8601da.;

Data Line Results

------+------1

2008-09-15 17790

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601DNw. Informat

Reads date values that are specified in the ISO 8601 extended notation yyyy-mm-dd and returns
SAS datetime values where the time portion of the value is 000000.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DN
Time Zone Informat: No
ISO 8601 Element: 5.2.1.1 Complete representation

Syntax
E8601DNw.

Informats � E8601DTw.d Informat 1287

Syntax Description

w
specifies the width of the input field.

Default: 10

Requirement: The width of the input field must be 10.

Details
The E8601DN informat reads date values that are specified in the ISO 8601 extended
date notation is yyyy-mm-dd and returns the date in a SAS datetime value:

yyyy is a four-digit year, such as 2008

mm is a two-digit month (zero padded) between 01 and 12

dd is a two-digit day of the month (zero padded) between 01 and 31

Examples

input edn is8601dn.;

Data Line Results

------+------1

2008-09-15 1537056000

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601DTw.d Informat

Reads datetime values that are specified in the ISO 8601 extended notation
yyyy-mm-ddThh:mm:ss.ffffff.

Category: Date and Time

ISO 8601

Alignment: left

Alias: IS8601DT

Time Zone Informat: No

ISO 8601 Element: 5.4.1 Complete representation

1288 E8601DTw.d Informat � Chapter 5

Syntax
E8601DTw.d

Syntax Description

w
specifies the width of the input field.

Default: 19

Range: 19–26

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.

Default: 0

Range: 0–6

Details
The E8601DT informat reads datetime values that are specified in the ISO 8601
extended datetime notationyyyy-mm-ddThh:mm:ss.ffffff:

yyyy
is a four-digit year, such as 2008.

mm
is a two-digit month (zero padded) between 01 and 12.

dd
is a two-digit day of the month (zero padded) between 01 and 31.

hh
is a two-digit hour (zero padded), between 00 and 23.

mm
is a two-digit minute (zero padded), between 00 and 59.

ss
is a two-digit second (zero padded), between 00 and 59.

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9.

Examples

input @1 edt e8601dt.;

Data Line Results

------+------1------+------2------+------3

2008-09-15T15:53:00 1537113180

Informats � E8601DZw.d Informat 1289

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601DZw.d Informat

Reads datetime values that are specified in the Coordinated Universal Time (UTC) time scale
using ISO 8601 datetime extended notation hh:mm:ss+|-hh:mm.fffff or hh:mm:ss.fffffZ.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601DZ
Time Zone Informat: Yes
ISO 8601 Element: 5.4.1 Complete representation

Syntax
E8601DZw.d

Syntax Description

w
specifies the width of the input field.
Default: 26
Range: 20–35

d
specifies the number of digits to the right of the decimal point in the value for the
lowest order component. This argument is optional.
Default: 0
Range: 0–6

Details
UTC values specify a time and a time zone based on the zero meridian in Greenwich,
England. The E8602DZ informat reads datetime values contain UTC time offsets and
that are specified in one of the following ISO 8601 extended datetime notations:

yyyy-mm-ddThh:mm:ss.ffffff+|–hh:mm
yyyy-mm-ddThh:mm:ss.ffffffZ

where

yyyy
is a four-digit year, such as 2008

mm

1290 E8601LZw.d Informat � Chapter 5

is a two-digit month (zero padded) between 01 and 12

dd
is a two-digit day of the month (zero padded) between 01 and 31

hh
is a two-digit hour (zero padded), between 00 and 24

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9

Z
indicates that the time is UTC time at the zero meridian (Greenwich, England)

+|–hh:mm
is an hour and minute signed offset from zero meridian time. Note that the offset
must be +|–hh:mm (that is, + or – and five characters).

Use + for time zones east of the zero meridian and use – for time zones west of
the zero meridian. For example, +02:00 indicates a two hour time difference to the
east of the zero meridian, and –06:00 indicates a six hour time differences to the
west of the zero meridian.
Restriction: The shorter form +|–hh is not supported.

Examples

Input Statement Data Line Results

------+------1------+------2------+

input edz e8601dz.; 2008-09-15T15:53:00Z 1537113180

input edz e8601dz28.2; 2008-09-15T15:53:00+03:00 1537102380

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601LZw.d Informat

Reads Coordinated Universal Time (UTC) values that are specified in the ISO 8601 extended
notation hh:mm:ss+|-hh:mm.fffff or hh:mm:ss.fffffZ and converts them to the local time.

Category: Date and Time

Informats � E8601LZw.d Informat 1291

ISO 8601
Alignment: left
Alias: IS8601LZ
Time Zone Informat: Yes
ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
E8601LZw.d

Syntax Description

w
specifies the width of the input field.
Default: 14
Range: 9–20
Requirement: To read a time with the Z time zone indicator, the width of the input

field must be 9 if data follows on the same line of data.

d
specifies the number of digits to the right of the decimal point in the value for the
lowest order component. This argument is optional.
Default: 0
Range: 0–6

Details
UTC values specify a time and a time zone based on the zero meridian in Greenwich,
England. The E8602LZ informat reads UTC time values that are specified in one of the
following ISO 8601 extended time notations and return a SAS time value for the local
time:

hh:mm:ss.ffffff+|–00:00
hh:mm:ss.ffffffZ

where

hh
is a two-digit hour (zero padded), between 00 and 23

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9

Z
indicate zero meridian or UTC time.

+|–hh:mm

1292 E8601TMw.d Informat � Chapter 5

is an hour and minute signed offset from zero meridian or UTC time. Note that
the offset must be +|–hh:mm (that is, + or – and five characters).

Use the + for time zones east of the zero meridian and use the – for time zones
west of the zero meridian.
Restriction: The shorter form +|–hh is not supported.

When SAS reads a UTC time by using the E8601LZ informat and the adjusted time
is greater than 24:00:00 or less than 00:00:00, SAS adjusts the time so that it
represents a time between 00:00:00 and 24:00:00. For example, if SAS reads the UTC
time 23:43:44-05:00 using the E8601LZ informat, SAS adds 5 hours to the time so that
the value is 28:43:44, and then makes the time adjustment. The value stored
represents the time 04:43:44+00:00.

Examples

input elz e8601lz.;

Data Line Results

09:13:21+02:00 26001

23:43:44Z 85424

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601TMw.d Informat

Reads time values that are specified in the ISO 8601 extended notation hh:mm:ss.ffffff.

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601TM
Time Zone Informat: No
ISO 8601 Element: 5.3.1.1 Complete representation and 5.3.1.3 Representation of decimal
fractions

Syntax
E8601TMw.d

Syntax Description

Informats � E8601TZw.d Informat 1293

w
specifies the width of the input field.
Default: 8
Range: 8–15

d
specifies the number of digits to the right of the decimal point in the seconds value.
This argument is optional.
Default: 0
Range: 0–6

Details
The E8601TM informat reads time values that are specified in the following ISO 8601
extended time notation:

hh:mm:ss.ffffff

hh
is a two-digit hour (zero padded), between 00 and 23

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 and 9

Examples

input @1 etm e8601tm.

Data Line Results

------+------1

15:53:00 57180

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

E8601TZw.d Informat

Reads time values that are specified in the ISO 8601 extended time notation
hh:mm:ss+|-hh:mm.ffffff or hh:mm:ssZ.

1294 E8601TZw.d Informat � Chapter 5

Category: Date and Time
ISO 8601

Alignment: left
Alias: IS8601TZ
Time Zone Informat: Yes
ISO 8601 Element: 5.3.1.1 Complete representation

Syntax
E8601TZw.d

Syntax Description

w
specifies the width of the input field.
Default: 14
Range: 9−20
Requirement: To read a time with the Z time zone indicator, the width of the input

field must be 9 if data follows on the same line of data.

d
(optional) specifies the number of digits to the right of the decimal point in the value
for the lowest order component.
Default: 0
Range: 0−6

Details
UTC time values specify a time and a time zone based on the zero meridian in
Greenwich, England. The E8602TZ informat reads UTC time values that are specified
in one of the following ISO 8601 extended notations:

hh:mm:ss+|–hh:mm.ffffff

hh:mm:ss

Informats � FLOATw.d Informat 1295

The following list explains the UTC time variables:

hh
is a two-digit hour (zero padded), between 00 and 23

mm
is a two-digit minute (zero padded), between 00 and 59

ss
is a two-digit second (zero padded), between 00 and 59

.ffffff
are optional fractional seconds, with a precision of up to six digits, where each
digit is between 0 - 9

Z
indicate zero meridian or UTC time

+|–hh:mm
is an hour and minute signed offset from zero meridian. Note that the offset must
be +|–hh:mm (that is, + or – and five characters).

Use the + for time zones east of the zero meridian and use the – for time zones
west of the zero meridian.

Restriction: The shorter form +|–hh is not supported.

When SAS reads a UTC time by using the E8601TZ informat and the adjusted time
is greater than 24:00:00 or less than 00:00:00, SAS adjusts the time so that it
represents a time between 00:00:00 and 24:00:00. For example, if SAS reads the UTC
time 23:43:44-05:00 using the E8601TZ informat, SAS adds 5 hours to the time so that
the value is 28:43:44, and then makes the time adjustment. The value stored
represents the time 04:43:44+00:00.

Examples

input @1 etz e8601tz.;

Data Line Results

------+------1------+------2

23:43:44-05:00 17024

23:43:44Z 85424

See Also

“Reading Dates and Times Using the ISO 860 Basic and Extended Notations” on
page 1227

FLOATw.d Informat

Reads a native single-precision, floating-point value and divides it by 10 raised to the dth power.

1296 FLOATw.d Informat � Chapter 5

Category: Numeric

Syntax
FLOATw.d

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 4.

d
specifies the power of 10 by which to divide the value. This argument is optional.

Details
The FLOATw.d informat is useful in operating environments where a float value is not
the same as a truncated double.

On the IBM mainframe systems, a four-byte floating-point number is the same as a
truncated eight-byte floating-point number. However, in operating environments that
use the IEEE floating-point standard, such as the IBM PC-based operating
environments and most UNIX platforms, a four-byte floating-point number is not the
same as a truncated double. Therefore, the RB4. informat does not produce the same
results as FLOAT4. Floating-point representations other than IEEE might have this
same characteristic. Values read with FLOAT4. typically come from some other
external program that is running in your operating environment.

Comparisons
The following table compares the names of float notation in several programming
languages:

Language Float Notation

SAS FLOAT4.

Fortran REAL*4

C float

IBM 370 ASM E

PL/I FLOAT BIN(21)

Examples
input x float4.;

Data Line* Results

----+----1----+----2

3F800000 1

* The data line is a hexadecimal representation of a binary number that is stored in IEEE form.

Informats � HEXw. Informat 1297

HEXw. Informat

Converts hexadecimal positive binary values to either integer (fixed-point) or real (floating-point)
binary values.

Category: Numeric

See: HEXw. Informat in the documentation for your operating environment.

Syntax
HEXw.

Syntax Description

w
specifies the field width of the input value and also specifies whether the final value
is fixed-point or floating-point.

Default: 8

Range: 1–16

Tip: If w<16, HEXw. converts the input value to positive integer binary values,
treating all input values as positive (unsigned). If w is 16, HEXw. converts the
input value to real binary (floating-point) values, including negative values.

Details
Note: Different operating environments store floating-point values in different ways.

However, HEX16. reads hexadecimal representations of floating-point values with
consistent results if the values are expressed in the same way that your operating
environment stores them. �

The HEXw. informat ignores leading or trailing blanks.

Examples
input @1 x hex3. @5 y hex16.;

Data Line* Results

----+----1----+----2

88F 4152000000000000 2191 5.125

* The data line shows IBM mainframe hexadecimal data.

1298 IBw.d Informat � Chapter 5

IBw.d Informat

Reads native integer binary (fixed-point) values, including negative values.

Category: Numeric
See: IBw.d Informat in the documentation for your operating environment.

Syntax
IBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
The IBw.d informat reads integer binary (fixed-point) values, including negative values
represented in two’s complement notation. IBw.d reads integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 1221. �

Comparisons
The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values created in the same operating environment.)
The IBRw.d and PIBRw.d informats are used to read little endian integers in any
operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 1222.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the IB informat. However, these
examples use the informat with the INPUT function, where binary input values are
described using a hexadecimal literal.

Informats � IBRw.d Informat 1299

x=input(’0080’x,ib2.);
y=input(’8000’x,ib2.);

SAS Statement Results on Big
Endian Platforms

Results on Little
Endian Platforms

put x=; 128 -32768

put y=; -32768 128

See Also

Informat:
“IBRw.d Informat” on page 1299

IBRw.d Informat

Reads integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric

Syntax
IBRw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
The IBRw.d informat reads integer binary (fixed-point) values, including negative
values that are represented in two’s complement notation. IBRw.d reads integer binary
values that are generated by and for Intel and DEC platforms. Use IBRw.d to read
integer binary data from Intel or DEC environments in other operating environments.
The IBRw.d informat in SAS code allows for a portable implementation for reading the
data in any operating environment.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte

1300 IEEEw.d Informat � Chapter 5

ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 1221. �

Comparisons

The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

On Intel and DEC operating environments, the IBw.d and IBRw.d informats are
equivalent.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 1222.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the IBR informat. However, in these
examples we use the informat with the INPUT function, where binary input values are
described using a hexadecimal literal.

x=input(’0100’x,ibr2.);
y=input(’0001’x,ibr2.);

SAS Statement Results on Big
Endian Platforms

Results on Little
Endian Platforms

put x=;
put y=;

1
256

1
256

See Also

Informat:

“IBw.d Informat” on page 1298

IEEEw.d Informat

Reads an IEEE floating-point value and divides it by 10 raised to the d th power.

Category: Numeric

Syntax

IEEEw.d

Informats � JULIANw. Informat 1301

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 2–8
Tip: If w is 8, an IEEE double-precision, floating-point number is read. If w is 5, 6,

or 7, an IEEE double-precision, floating-point number is read, which assumes
truncation of the appropriate number of bytes. If w is 4, an IEEE single-precision,
floating-point number is read. If w is 3, an IEEE single-precision, floating-point
number is read, which assumes truncation of one byte.

d
specifies the power of 10 by which to divide the value.

Details
The IEEEw.d informat is useful in operating environments where IEEE is the
floating-point representation that is used. In addition, you can use the IEEEw.d
informat to read files that are created by programs on operating environments that use
the IEEE floating-point representation.

Typically, programs generate IEEE values in single precision (4 bytes) or double
precision (8 bytes). Truncation is performed by programs solely to save space on output
files. Machine instructions require that the floating-point number be of one of the two
lengths. The IEEEw.d informat allows other lengths, which enables you to read data
from files that contain space-saving truncated data.

Examples
input test1 ieee4.;
input test2 ieee5.;

Data Line* Results

----+----1----+

3F800000 1

3FF0000000 1

* The data lines are hexadecimal representations of binary numbers that are stored in IEEE
format.

The first INPUT statement reads the first data line, and the second INPUT
statement reads the next data line.

JULIANw. Informat

Reads Julian dates in the form yyddd or yyyyddd.

Category: Date and Time

1302 JULIANw. Informat � Chapter 5

Syntax
JULIANw.

Syntax Description

w
specifies the width of the input field.
Default: 5
Range: 5–32

Details
The date values must be in the form yyddd or yyyyddd, where

yy or yyyy
is a two-digit or four-digit integer that represents the year.

dd or ddd
is an integer from 01 through 365 that represents the day of the year.

Julian dates consist of strings of contiguous numbers, which means that zeros must
pad any space between the year and the day values.

Julian dates that contain year values before 1582 are invalid for the conversion to
Gregorian dates.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
input julian_date julian7.;

Data Line Results*

----+----1

99075 14319

1999075 14319

* The input values correspond to the 75th day of 1999, which is March 16.

Informats � MDYAMPMw.d Informat 1303

See Also

Format:
“JULIANw. Format” on page 193

Functions:
“DATEJUL Function” on page 628
“JULDATE Function” on page 848

System Option:
“YEARCUTOFF= System Option” on page 1996

MDYAMPMw.d Informat

Reads datetime values in the form mm-dd-yy<yy> hh:mm:ss.ss AM|PM, where a special character
such as a hyphen (-), period (.), slash (/), or colon (:) separates the month, day, and year; the
year can be either 2 or 4 digits.

Category: Date and Time
Alignment: right
Default Time Period: AM
Requirement: A space must separate the date and the time.

Syntax
MDYAMPMw.d

Syntax Description

w
specifies the width of the output field.
Default: 19
Range: 8–40

d
specifies the number of digits to the right of the decimal point in the seconds value.
The digits to the right of the decimal point specify a fraction of a second. This
argument is optional.
Default: 0
Range: 0–39

1304 MDYAMPMw.d Informat � Chapter 5

Details
The MDYAMPMw.d format reads SAS datetime values in the following form:

mm-dd-yy<yy> hh:mm<:ss<.ss>> <AM | PM>

where:

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

yy or yyyy
specifies a two-digit or four-digit integer that represents the year.

hh
is the number of hours that range from 00 through 23.

mm
is the number of minutes that range from 00 through 59.

ss.ss
is the number of seconds that range from 00 through 59 with the fraction of a
second following the decimal point.
Requirement: If a fraction of a second is specified, the decimal point can be

represented only by a period and is required.

AM | PM
specifies either the time period 00:01–12:00 noon (AM) or the time period 12:01 –
12:00 midnight (PM)

- or :
represents one of several special characters, such as the slash (/), hyphen (-), colon
(:), or a blank character that can be used to separate date and time components.
Special characters can be used as separators between any date or time component
and between the date and the time.

Comparisons
The MDYAMPMw.d informat reads datetime values with optional separators in the
form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and
the time.

Informats � MMDDYYw. Informat 1305

The DATETIMEw.d informat reads datetime values with optional separators in the
form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by
a special character.

The YMDDTTMw.d informat reads datetime values with required separators in the
form <yy>yy-mm-dd/hh:mm:ss.ss.

Examples

input @1 dt mdyampm25.2.;

Data Line Results

09.15.2008 03:53:00 pm 1537113180

09-15-08 3.53 pm 1537113180

See Also

Informat:
“DATETIMEw. Informat” on page 1281

“YMDDTTMw.d Informat” on page 1364

MMDDYYw. Informat

Reads date values in the form mmddyy or mmddyyyy.

Category: Date and Time

Syntax
MMDDYYw.

Syntax Description

w
specifies the width of the input field.

Default: 6
Range: 6–32

Details
The date values must be in the form mmddyy or mmddyyyy, where

mm
is an integer from 01 through 12 that represents the month.

1306 MMDDYYw. Informat � Chapter 5

dd
is an integer from 01 through 31 that represents the day of the month.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

You can separate the month, day, and year fields by blanks or by special characters.
However, if you use delimiters, place them between all fields in the value. Blanks can
also be placed before and after the date.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples

input calendar_date mmddyy8.;

Data Line Results

----+----1----+

031699 14319

03/16/99 14319

03 16 99 14319

03161999 14319

See Also

Formats:

“DATEw. Format” on page 151

“DDMMYYw. Format” on page 157

“MMDDYYw. Format” on page 195

“YYMMDDw. Format” on page 273

Functions:

“DAY Function” on page 630

“MDY Function” on page 901

“MONTH Function” on page 913

“YEAR Function” on page 1192

Informats:

“DATEw. Informat” on page 1280

“DDMMYYw. Informat” on page 1283

“YYMMDDw. Informat” on page 1366

System Option:

“YEARCUTOFF= System Option” on page 1996

Informats � MONYYw. Informat 1307

MONYYw. Informat

Reads month and year date values in the form mmmyy or mmmyyyy.

Category: Date and Time

Syntax
MONYYw.

Syntax Description

w
specifies the width of the input field.
Default: 5
Range: 5–32

Details
The date values must be in the form mmmyy or mmmyyyy, where

mmm
is the first three letters of the month name.

yy or yyyy
is a two-digit or four-digit integer that represents the year.

A value read with the MONYYw. informat results in a SAS date value that
corresponds to the first day of the specified month.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOF= system option. �

Examples
input month_and_year monyy7.;

Data Line Results

----+----1----+

mar 99 14304

mar1999 14304

See Also

Formats:
“DDMMYYw. Format” on page 157

1308 MSECw. Informat � Chapter 5

“MMDDYYw. Format” on page 195
“MONYYw. Format” on page 205
“YYMMDDw. Format” on page 273

Functions:
“MONTH Function” on page 913
“YEAR Function” on page 1192

Informats:
“DDMMYYw. Informat” on page 1283
“MMDDYYw. Informat” on page 1305
“YYMMDDw. Informat” on page 1366

System Option:
“YEARCUTOFF= System Option” on page 1996

MSECw. Informat

Reads TIME MIC values.

Category: Date and Time

Syntax
MSECw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because the OS TIME macro or the STCK System/370

instruction on IBM mainframes each return an eight-byte value.

Details
The MSECw. informat reads time values that are produced by IBM mainframe
operating environments and converts the time values to SAS time values.

Use the MSECw. informat to find the difference between two IBM mainframe TIME
values, with precision to the nearest microsecond.

Comparisons
The MSECw. and TODSTAMPw. informats both read IBM time-of-day clock values,
but the MSECw. informat assigns a time value to a variable, and the TODSTAMPw.
informat assigns a datetime value.

Examples
input btime msec8.;

Informats � NUMXw.d Informat 1309

Data Line* Results

0000EA044E65A000 62818.412122

* The data line is a hexadecimal representation of a binary 8-byte time-of-day clock value. Each
byte occupies one column of the input field. The result is a SAS time value corresponding to
5:26:58.41 p.m.

See Also

Informat:
“TODSTAMPw. Informat” on page 1351

NUMXw.d Informat

Reads numeric values with a comma in place of the decimal point.

Category: Numeric

Syntax
NUMXw.d

Syntax Description

w
specifies the width of the input field.
Default: 12
Range: 1–32

d
specifies the number of digits to the right of the decimal. If the data contain decimal
points, the d value is ignored. This argument is optional.
Range: 0–31

Details
The NUMXw.d informat reads numeric values and interprets a comma as a decimal
point.

Comparisons
The NUMXw.d informat is similar to the w.d informat except that it reads numeric
values that contain a comma in place of the decimal point.

Examples
input @1 x numx10.;

1310 OCTALw.d Informat � Chapter 5

Data Line Results

----+----1----+

896,48 896.48

3064,1 3064.1

6489 6489

See Also

Formats:
“NUMXw.d Format” on page 208
“w.d Format” on page 254

OCTALw.d Informat

Converts positive octal values to integers.

Category: Numeric

Syntax
OCTALw.d

Syntax Description

w
specifies the width of the input field.
Default: 3
Range: 1–24

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 1–31
Restriction: must be greater than or equal to the w value.

Details
Use only the digits 0 through 7 in the input, with no embedded blanks. The OCTALw.d
informat ignores leading and trailing blanks.

OCTALw.d cannot read negative values. It treats all input values as positive
(unsigned).

Examples
input @1 value octal3.1;

Informats � PDw.d Informat 1311

Data Line Results

----+----1

177 12.7

PDw.d Informat

Reads data that are stored in IBM packed decimal format.

Category: Numeric

See: PBw.d Informat in the documentation for your operating environment.

Syntax

PDw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–16

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details
The PDw.d informat is useful because many programs write data in packed decimal
format for storage efficiency, fitting two digits into each byte and using only a half byte
for a sign.

Note: Different operating environments store packed decimal values in different
ways. However, PDw.d reads packed decimal values with consistent results if the values
are created on the same type of operating environment that you use to run SAS. �

The PDw.d format writes missing numerical data as -0. When the PDw.d informat
reads -0, it stores it as 0.

Comparisons

The following table compares packed decimal notation in several programming
languages:

1312 PDJULGw. Informat � Chapter 5

Language Notation

SAS PD4.

COBOL COMP-3 PIC S9(7)

IBM 370 Assembler PL4

PL/I FIXED DEC

Examples

Example 1: Reading Packed Decimal Data

input @1 x pd4.;

Data Line* Results

----+----1

0000128C 128

* The data line is a hexadecimal representation of a binary number stored in packed decimal
form. Each byte occupies one column of the input field.

Example 2: Creating a SAS Date with Packed Decimal Data

input mnth pd4.;
date=input(put(mnth,6.),mmddyy6.);

Data Line* Results

----+----1

0122599C 14603

* The data line is a hexadecimal representation of a binary number that is stored in packed
decimal form on an IBM mainframe operating environment. Each byte occupies one column of
the input field. The result is a SAS date value that corresponds to December 25, 1999.

PDJULGw. Informat

Reads packed Julian date values in the hexadecimal form yyyydddF for IBM.

Category: Date and Time

Syntax
PDJULGw.

Informats � PDJULGw. Informat 1313

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 4

Details
The PDJULGw. informat reads IBM packed Julian date values in the form of
yyyydddF, converting them to SAS date values, where

yyyy
is the two-byte representation of the four-digit Gregorian year.

ddd
is the one-and-a-half byte representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
input date pdjulg4.;

Data Line Results*

----+----1

1999003F 14247

* SAS date value 14247 represents January 3, 1999.

See Also

Formats:
“JULDAYw. Format” on page 192
“JULIANw. Format” on page 193
“PDJULGw. Format” on page 211
“PDJULIw. Format” on page 212

Functions:
“DATEJUL Function” on page 628
“JULDATE Function” on page 848

Informats:
“JULIANw. Informat” on page 1301
“PDJULIw. Informat” on page 1314

System Option:

1314 PDJULIw. Informat � Chapter 5

“YEARCUTOFF= System Option” on page 1996

PDJULIw. Informat

Reads packed Julian dates in the hexadecimal format ccyydddF for IBM.

Category: Date and Time

Syntax

PDJULIw.

Syntax Description

w
specifies the width of the input field.

Default: 4

Range: 4

Details

The PDJULIw. informat reads IBM packed Julian date values in the form ccyydddF,
converting them to SAS date values, where

cc
is the one-byte representation of a two-digit integer that represents the century.

yy
is the one-byte representation of a two-digit integer that represents the year. The
PDJULIw informat makes an adjustment to the one-byte century representation
by adding 1900 to the two-byte ccyy value in order to produce the correct
four–digit Gregorian year. This adjustment causes ccyy values of 0098 to become
1998, 0101 to become 2001, and 0218 to become 2118.

ddd
is the one-and-a-half bytes representation of the three-digit integer that
corresponds to the Julian day of the year, 1–365 (or 1–366 for leap years).

F
is the half byte that contains all binary 1s, which assigns the value as positive.

Examples

input date pdjuli4.;

Informats � PDTIMEw. Informat 1315

Data Line Results*

----+----1

0099001F 14245

0110015F 18277

* SAS date value 14245 is January 1, 1999. SAS date value 18277 is January 15, 2010.

See Also

Formats:

“JULDAYw. Format” on page 192

“JULIANw. Format” on page 193

“PDJULGw. Format” on page 211

“PDJULIw. Format” on page 212

Functions:

“DATEJUL Function” on page 628

“JULDATE Function” on page 848

Informats:

“JULIANw. Informat” on page 1301

“PDJULGw. Informat” on page 1312

System Option:

“YEARCUTOFF= System Option” on page 1996

PDTIMEw. Informat

Reads packed decimal time of SMF and RMF records.

Category: Date and Time

Syntax
PDTIMEw.

Syntax Description

w
specifies the width of the input field.

Requirement: w must be 4 because packed decimal time values in RMF and SMF
records contain four bytes of information.

1316 PDTIMEw. Informat � Chapter 5

Details
The PDTIMEw. informat reads packed decimal time values that are contained in SMF
and RMF records that are produced by IBM mainframe systems and converts the
values to SAS time values.

The general form of a packed decimal time value in hexadecimal notation is
0hhmmssF, where

0
is a half byte that contains all 0s.

hh
is one byte that represents two digits that correspond to hours.

mm
is one byte that represents two digits that correspond to minutes.

ss
is one byte that represents two digits that correspond to seconds.

F
is a half byte that contains all 1s.

If a field contains all 0s, PDTIMEw. treats it as a missing value.
PDTIMEw. enables you to read packed decimal time values from files that are

created on an IBM mainframe on any operating environment.

Examples
input begin pdtime4.;

Data Line* Results

0142225F 51745

* The data line is a hexadecimal representation of a binary time value that is stored in packed
decimal form. Each byte occupies one column of the input field. The result is a SAS time value
that corresponds to 2:22.25 p.m.

Informats � PERCENTw.d Informat 1317

PERCENTw.d Informat

Reads percentages as numeric values.

Category: Numeric

Syntax
PERCENTw.d

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contain decimal
points, the d value is ignored. This argument is optional.
Range: 0–31

Details
The PERCENTw.d informat converts the numeric portion of the input data to a number
using the same method as the COMMAw.d informat. If a percent sign (%) follows the
number in the input field, PERCENTw.d divides the number by 100.

Examples
input @1 x percent3. @4 y percent5.;

Data Line Results

----+----1----+

1% (20%) 0.01 -0.2

1318 PIBw.d Informat � Chapter 5

PIBw.d Informat

Reads positive integer binary (fixed-point) values.

Category: Numeric

See: PIBw.d Informat in the documentation for your operating environment.

Syntax

PIBw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details

All values are treated as positive. PIBw.d reads positive integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about
byte ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little
Endian Platforms” on page 1221. �

Comparisons

� Positive integer binary values are the same as integer binary values except that
the sign bit is part of the value, which is always a positive integer. The PIBw.d
informat treats all values as positive and includes the sign bit as part of the value.

� The PIBw.d informat with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. The binary equivalent of the contents
of a byte is useful if your data contain values between hexadecimal 80 and
hexadecimal FF, where the high-order bit can be misinterpreted as a negative sign.

� The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

Informats � PIBRw.d Informat 1319

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 1222.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the PIB informat. However, in these
examples we use the informat with the INPUT function, where binary input values are
described by using a hexadecimal literal.

x=input(’0100’x,pib2.);
y=input(’0001’x,pib2.);

SAS Statement Results on Big Endian Platforms
Results on Little Endian
Platforms

put x=;
put y=;

256
1

1
256

See Also

Informat:
“PIBRw.d Informat” on page 1319

PIBRw.d Informat

Reads positive integer binary (fixed-point) values in Intel and DEC formats.

Category: Numeric

Syntax
PIBRw.d

1320 PIBRw.d Informat � Chapter 5

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–10

Details
All values are treated as positive. PIBRw.d reads positive integer binary values that
have been generated by and for Intel and DEC operating environments. Use PIBRw.d
to read positive integer binary data from Intel or DEC environments on other operating
environments. The PIBRw.d informat in SAS code allows for a portable implementation
for reading the data in any operating environment.

Note: Different operating environments store positive integer binary values in
different ways. This concept is called byte ordering. For a detailed discussion about
byte ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little
Endian Platforms” on page 1221. �

Comparisons
� Positive integer binary values are the same as integer binary values except that

the sign bit is part of the value, which is always a positive integer. The PIBRw.d
informat treats all values as positive and includes the sign bit as part of the value.

� The PIBRw.d informat with a width of 1 results in a value that corresponds to the
binary equivalent of the contents of a byte. This is useful if your data contain
values between hexadecimal 80 and hexadecimal FF, where the high-order bit can
be misinterpreted as a negative sign.

� On Intel and DEC platforms, the PIBw.d and PIBRw.d informats are equivalent.

� The IBw.d and PIBw.d informats are used to read native format integers. (Native
format allows you to read and write values that are created in the same operating
environment.) The IBRw.d and PIBRw.d informats are used to read little endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 1222.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the PIBR informat. However, these
examples use the informat with the INPUT function, where binary input values are
described using a hexadecimal literal.

x=input(’0100’x,pibr2.);
y=input(’0001’x,pibr2.);

Informats � PKw.d Informat 1321

SAS Statement Results on Big Endian Platforms
Results on Little Endian
Platforms

put x=;
put y=;

1
256

1
256

See Also

Informat:

“PIBw.d Informat” on page 1318

PKw.d Informat

Reads unsigned packed decimal data.

Category: Numeric

Syntax
PKw.d

Syntax Description

w
specifies the number of bytes of unsigned packed decimal data, each of which
contains two digits.
Default: 1

Range: 1–16

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
Each byte of unsigned packed decimal data contains two digits.

Comparisons
The PKw.d informat is the same as the PDw.d informat, except that PKw.d treats the
sign half of the field’s last byte as part of the value, not as the sign of the value.

Examples
input @1 x pk3.;

1322 PUNCH.d Informat � Chapter 5

Data Line* Results

----+----1

001234 1234

* The data line is a hexadecimal representation of a binary number stored in unsigned packed
decimal form. Each byte occupies one column of the input field.

PUNCH.d Informat

Reads whether a row of column-binary data is punched.

Category: Column Binary

Syntax
PUNCH.d

Syntax Description

d
specifies which row in a card column to read.
Range: 1–12

Details
Column-binary data storage compresses data so that more than 80 items of data can be
stored on a single “virtual” punch card.

This informat assigns the value 1 to the variable if row d of the current card column
is punched, or 0 if row d of the current card column is not punched. After PUNCH.d
reads a field, the pointer does not advance to the next column.

Informats � RBw.d Informat 1323

Examples

Data Line* SAS Statement Results

12-7-8 input x punch.12 1

input x punch.11 0

input x punch0.7 1

* The data line is “virtual” punched card code. The punch card column for the example data has
row 12, row 7, and row 8 punched.

See Also

Informats:
“$CBw. Informat” on page 1242
“CBw.d Informat” on page 1277
“ROWw.d Informat” on page 1327

“How to Read Column-Binary Data” in SAS Language Reference: Concepts

RBw.d Informat

Reads numeric data that are stored in real binary (floating-point) notation.

Category: Numeric
See: RBw.d Informat in the documentation for your operating environment.

Syntax
RBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 2–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
Note: Different operating environments store real binary values in different ways.

However, the RBw.d informat reads real binary values with consistent results if the

1324 RMFDURw. Informat � Chapter 5

values are created on the same type of operating environment that you use to run
SAS. �

Comparisons
The following table compares the names of real binary notation in several programming
languages:

Real Binary Notation

Language 4 Bytes 8 Bytes

SAS RB4. RB8.

Fortran REAL*4 REAL*8

C float double

IBM 370 assembler F D

PL/I FLOAT BIN(21) FLOAT BIN(53)

CAUTION:
Using the RBw.d informat to read real binary information on equipment that conforms to
the IEEE standard for floating-point numbers results in a truncated eight-byte number
(double-precision), rather than in a true four-byte floating-point number (single-precision).
�

Examples
input @1 x rb8.;

Data Line* Results

----+----1

4280000000000000 128

* The data line is a hexadecimal representation of a real binary (floating-point) number on an
IBM mainframe operating environment. Each byte occupies one column of the input field.

See Also

Informat:
“IEEEw.d Informat” on page 1300

RMFDURw. Informat

Reads duration intervals of RMF records.

Category: Date and Time

Informats � RMFDURw. Informat 1325

Syntax
RMFDURw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 4 because packed decimal duration values in RMF records

contain four bytes of information.

Details
The RMFDURw. informat reads the duration of RMF measurement intervals of RMF
records that are produced as packed decimal data by IBM mainframe systems and
converts them to SAS time values.

The general form of the duration interval data in an RMF record in hexadecimal
notation is mmsstttF, where

mm
is the one-byte representation of two digits that correspond to minutes.

ss
is the one-byte representation of two digits that correspond to seconds.

ttt
is the one-and-a-half-bytes representation of three digits that correspond to
thousandths of a second.

F
is a half byte that contains all binary 1s, which assigns the value as positive.

If the field does not contain packed decimal data, then RMFDURw. results in a
missing value.

Comparisons
� Both the RMFDURw. informat and the RMFSTAMPw. informat read packed

decimal information from RMF records that are produced by IBM mainframe
systems.

� The RMFDURw. informat reads duration data and results in a time value.
� The RMFSTAMPw. informat reads time-of-day data and results in a datetime

value.

Examples
input dura rmfdur4.;

Data Line* Results

----+----1----+

3552226F 2152.226

* The data line is a hexadecimal representation of a binary duration value that is stored in packed
decimal form as it would appear in an RMF record. Each byte occupies one column of the input
field. The result is a SAS time value corresponding to 00:35:52.226.

1326 RMFSTAMPw. Informat � Chapter 5

See Also

Informats:
“RMFSTAMPw. Informat” on page 1326
“SMFSTAMPw. Informat” on page 1346

RMFSTAMPw. Informat

Reads time and date fields of RMF records.

Category: Date and Time

Syntax
RMFSTAMPw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because packed decimal time and date values in RMF

records contain eight bytes of information: four bytes of time data that are
followed by four bytes of date data.

Details
The RMFSTAMPw. informat reads packed decimal time and date values of RMF
records that are produced by IBM mainframe systems, and converts the time and date
values to SAS datetime values.

The general form of the time and date information in an RMF record in hexadecimal
notation is 0hhmmssFccyydddF, where

0
is the half byte that contains all binary 0s.

hh
is the one-byte representation of two digits that correspond to the hour of the day.

mm
is the one-byte representation of two digits that correspond to minutes.

ss
is 1 byte that represents two digits that correspond to seconds.

cc
is the one-byte representation of two digits that correspond to the century.

yy

Informats � ROWw.d Informat 1327

is the one-byte representation of two digits that correspond to the year.

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

F
is the half byte that contains all binary 1s.

The century indicators 00 correspond to 1900, 01 to 2000, and 02 to 2100.

RMFSTAMPw. enables you to read, on any operating environment, packed decimal
time and date values from files that are created on an IBM mainframe.

Comparisons
Both the RMFSTAMPw. informat and the PDTIMEw. informat read packed decimal
values from RMF records. The RMFSTAMPw. informat reads both time and date
values and results in a SAS datetime value. The PDTIMEw. informat reads only time
values and results in a SAS time value.

Examples
input begin rmfstamp8.;

Data Line* Results

----+----1----+----2

0142225F0102286F 1350138145

* The data line is a hexadecimal representation of a binary time and date value that is stored
in packed decimal form as it would appear in an RMF record. Each byte occupies one column
of the input field. The result is a SAS datetime value that corresponds to October 13, 2002,
2:22.25 PM.

ROWw.d Informat

Reads a column-binary field down a card column.

Category: Column Binary

Syntax
ROWw.d

Syntax Description

w
specifies the row where the field begins.
Range: 0–12

1328 ROWw.d Informat � Chapter 5

d
specifies the length in rows of the field.
Default: 1
Range: 1–25

Details
Column-binary data storage compresses data so that more than 80 items of data can be
stored on a single “virtual” punch card.

The ROWw.d informat assigns the relative position of the punch in the field to a
numeric variable.

If the field that you specify has more than one punch, then ROWw.d assigns the
variable a missing value and sets the automatic variable _ERROR_ to 1. If the field has
no punches, then ROWw.d assigns the variable a missing value.

ROWw.d can read fields across columns, continuing with row 12 of the new column
and going down through the rest of the rows. After ROWw.d reads a field, the pointer
moves to the next row.

Examples
input x row5.3
input x row7.1
input x row5.2
input x row3.5

Data Line* Results

----+----1

00

04 3

1

.

5

* The data line is a hexadecimal representation of the column binary. The “virtual” punch card
column for the example data has row 7 punched. The binary representation is 0000 0000 0000
0100.

See Also

Informats:
“$CBw. Informat” on page 1242
“CBw.d Informat” on page 1277
“PUNCH.d Informat” on page 1322

“How to Read Column-Binary Data” in SAS Language Reference: Concepts

Informats � S370FFw.d Informat 1329

S370FFw.d Informat

Reads EBCDIC numeric data.

Category: Numeric

Syntax

S370FFw.d

Syntax Description

w
specifies the width of the input field.

Default: 12

Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 0–31

Details

The S370FFw.d informat reads numeric data that are represented in EBCDIC and
converts the data to native format. If EBCDIC is the native format, S370FFw.d
performs no conversion.

S370FFw.d reads EBCDIC numeric values that are represented with one byte per
digit. Use S370FFw.d on other operating environments to read numeric data from IBM
mainframe files.

S370FFw.d reads numeric values located anywhere in the input field. EBCDIC
blanks can precede or follow a numeric value with no effect. If a value is negative, an
EBCDIC minus sign should immediately precede the value. S370FFw.d reads values
with EBCDIC decimal points and values in scientific notation, and it interprets a single
EBCDIC period as a missing value.

Comparisons

The S370FFw.d informat performs the same role for numeric data that the
$EBCDICw.d informat does for character data. That is, on an IBM mainframe system,
S370FFw.d has the same effect as the standard w.d informat. On all other systems,
using S370FFw.d is equivalent to using $EBCDICw.d as well as using the standard w.d
informat.

Examples

input @1 x s370ff3.;

1330 S370FIBw.d Informat � Chapter 5

Data Line* Results

----+----1

F1F2F3 123

F2F4F0 240

* The data lines are hexadecimal representations of codes for characters. Each two hexadecimal
characters correspond to one byte of binary data, and each byte corresponds to one character
value.

S370FIBw.d Informat
Reads integer binary (fixed-point) values, including negative values, in IBM mainframe format.

Category: Numeric

Syntax
S370FIBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
The S370FIBw.d informat reads integer binary (fixed-point) values that are stored in
IBM mainframe format, including negative values that are represented in two’s
complement notation. S370FIBw.d reads integer binary values with consistent results
if the values are created in the same type of operating environment that you use to run
SAS.

Use S370FIBw.d for integer binary data that are created in IBM mainframe format
for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 1221. �

Comparisons
� If you use SAS on an IBM mainframe, S370FIBw.d and IBw.d are identical.

Informats � S370FIBUw.d Informat 1331

� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian
integers in any operating environment.

To view a table that shows the type of informat to use with big endian and little
endian integers, see Table 5.1 on page 1222.

To view a table that compares integer binary notation in several programming
languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the S370FIB informat. However, this
example uses the informat with the INPUT function, where the binary input value is
described by using a hexadecimal literal.

x=input(’0080’x,s370fib2.);

SAS Statement Results

put x=; 128

See Also

Informats:
“S370FIBUw.d Informat” on page 1331
“S370FPIBw.d Informat” on page 1335

S370FIBUw.d Informat

Reads unsigned integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric

Syntax
S370FIBUw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
specifies the power of 10 by which to divide the value. SAS uses the d value even if
the data contain decimal points. This argument is optional.
Range: 0–10

1332 S370FIBUw.d Informat � Chapter 5

Details
The S370FIBUw.d informat reads unsigned integer binary (fixed-point) values that are
stored in IBM mainframe format, including negative values that are represented in
two’s complement notation. Unsigned integer binary values are the same as integer
binary values, except that all values are treated as positive. S370FIBUw.d reads
integer binary values with consistent results if the values are created in the same type
of operating environment that you use to run SAS.

Use S370FIBUw.d for unsigned integer binary data that are created in IBM
mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 1221. �

Comparisons
� The S370FIBUw.d informat is equivalent to the COBOL notation PIC 9(n)

BINARY, where n is the number of digits.
� The S370FIBUw.d and S370FPIBw.d informats are identical.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian

integers in any operating environment.
To view a table that shows the type of informat to use with big endian and little

endian integers, see Table 5.1 on page 1222.
To view a table that compares integer binary notation in several programming

languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the S370FIBU informat. However,
these examples use the informat with the INPUT function, where binary input values
are described by using a hexadecimal literal.

x=input(’7F’x,s370fibu1.);
y=input(’F6’x,s370fibu1.);

SAS Statement Results

put x=;
put y=;

127
246

See Also

Informats:
“S370FIBw.d Informat” on page 1330
“S370FPIBw.d Informat” on page 1335

Informats � S370FPDw.d Informat 1333

S370FPDw.d Informat

Reads packed data in IBM mainframe format.

Category: Numeric

Syntax

S370FPDw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–16

d
specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0

Range: 0–31

Details

Packed decimal data contain two digits per byte, but only one digit in the input field
represents the sign. The last half of the last byte indicates the sign: a C or an F for
positive numbers and a D for negative numbers.

Use S370FPDw.d to read packed decimal data from IBM mainframe files on other
operating environments.

Comparisons

� If you use SAS on an IBM mainframe, the S370FPDw.d and the PDw.d informats
are identical.

� The following table compares the equivalent packed decimal notation by
programming language:

Language Packed Decimal Notation

SAS S370FPD4.

PL/I FIXED DEC(7,0)

COBOL COMP-3 PIC 9(7)

assembler PL4

1334 S370FPDUw.d Informat � Chapter 5

S370FPDUw.d Informat

Reads unsigned packed decimal data in IBM mainframe format.

Category: Numeric

Syntax
S370FPDUw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–16

d
specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0

Range: 0–31

Details
Packed decimal data contain two digits per byte. The last half of the last byte, which
indicates the sign for signed packed data, is always F for unsigned packed data.

Use S370FPDUw.d on other operating environments to read unsigned packed
decimal data from IBM mainframe files.

Comparisons
� The S370FPDUw.d informat is similar to the S370FPDw.d informat except that

the S370FPDUw.d informat rejects all sign digits except F.

� The S370FPDUw.d informat is equivalent to the COBOL notation PIC 9(n)
PACKED-DECIMAL, where the n value is the number of digits.

Examples
input @1 x s370fpdu3.;

Data Line* Results

----+----1

12345F 12345

* The data line is a hexadecimal representation of a binary number that is stored in packed
decimal form. Each two hexadecimal characters correspond to one byte of binary data, and
each byte corresponds to one column of the input field.

Informats � S370FPIBw.d Informat 1335

S370FPIBw.d Informat

Reads positive integer binary (fixed-point) values in IBM mainframe format.

Category: Numeric

Syntax
S370FPIBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Default: 0
Range: 0–10

Details
Positive integer binary values are the same as integer binary values, except that all
values are treated as positive. S370FPIBw.d reads integer binary values with
consistent results if the values are created in the same type of operating environment
that you use to run SAS.

Use S370FPIBw.d for positive integer binary data that are created in IBM
mainframe format for reading in other operating environments.

Note: Different operating environments store integer binary values in different
ways. This concept is called byte ordering. For a detailed discussion about byte
ordering, see “Byte Ordering for Integer Binary Data on Big Endian and Little Endian
Platforms” on page 1221. �

1336 S370FRBw.d Informat � Chapter 5

Comparisons
� If you use SAS on an IBM mainframe, S370FPIBw.d and PIBw.d are identical.
� S370FPIBw.d, S370FIBUw.d, and S370FIBw.d are used to read big endian

integers in any operating environment.
To view a table that shows the type of informat to use with big endian and little

endian integers, see Table 5.1 on page 1222.
To view a table that compares integer binary notation in several programming

languages, see Table 5.2 on page 1223.

Examples

You can use the INPUT statement and specify the S370FPIB informat. However, this
example uses the informat with the INPUT function, where the binary input value is
described using a hexadecimal literal.

x=input(’0100’x,s370fpib2.);

SAS Statement Results

put x=4; 256

See Also

Informats:
“S370FIBw.d Informat” on page 1330
“S370FIBUw.d Informat” on page 1331

S370FRBw.d Informat

Reads real binary (floating-point) data in IBM mainframe format.

Category: Numeric

Syntax
S370FRBw.d

Informats � S370FRBw.d Informat 1337

Syntax Description

w
specifies the width of the input field.
Default: 6
Range: 2–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
Real binary values are represented in two parts: a mantissa that gives the value, and
an exponent that gives the value’s magnitude.

Use S370FRBw.d to read real binary data from IBM mainframe files on other
operating environments.

Comparisons
� If you use SAS on an IBM mainframe, S370FRBw.d and RBw.d are identical.
� The following table shows the equivalent real binary notation for several

programming languages:

Real Binary Notation

Language 4 Bytes 8 Bytes

SAS S370FRB4. S370FRB8.

PL/I FLOAT BIN(21) FLOAT BIN(53)

Fortran REAL*4 REAL*8

COBOL COMP-1 COMP-2

assembler E D

C float double

See Also

Informat:
“RBw.d Informat” on page 1323

1338 S370FZDBw.d Informat � Chapter 5

S370FZDBw.d Informat

Reads zoned decimal data in which zeros have been left blank.

Category: Numeric
See: ZBDw.d Informat in SAS Companion for z/OS

Syntax
S370FZBDw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.
Default: 0
Range: 0–31

Details
Use the S370ZFDBw.d informat on other operating environments to read zoned decimal
data from IBM mainframe files.

Examples

input @1 x s370fzdb8.;

Data Line * Results

—-+—-1

40404040F14040C0 1000

4040404040F1F2D3 –123

* The data lines contain a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Two hexadecimal characters
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDw.d Informat
Reads zoned decimal data in IBM mainframe format.

Informats � S370FZDw.d Informat 1339

Category: Numeric

Syntax
S370FZDw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contain decimal
points, the d value is ignored. This argument is optional.
Default: 0
Range: 0–31

Details
Zoned decimal data are similar to standard decimal data in that every digit requires
one byte. However, the value’s sign is stored in the last byte, along with the last digit.

Use S370FZDw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� If you use SAS on an IBM mainframe, S370FZDw.d and ZDw.d are identical.
� The following table shows the equivalent zoned decimal notation for several

programming languages:

Language Zoned Decimal Notation

SAS S370FZD3.

PL/I PICTURE’99T’

COBOL PIC S9(3) DISPLAY

assembler ZL3

Examples
input @1 x s370fzd3.;

Data Line* Results

----+----1

F1F2C3 123

F1F2D3 -123

* The data line contains a hexadecimal representation of a binary number stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal characters

1340 S370FZDLw.d Informat � Chapter 5

correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

See Also

Informat:
“ZDw.d Informat” on page 1370

S370FZDLw.d Informat

Reads zoned decimal leading-sign data in IBM mainframe format.

Category: Numeric

Syntax
S370FZDLw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FZDLw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal leading-sign data is similar to standard zoned decimal data except

that the sign of the value is stored in the first byte of zoned decimal leading-sign
data, along with the first digit.

� The S370FZDLw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING, where the n value is the number of digits.

Examples
input @1 x s370fzdl3.;

Informats � S370FZDSw.d Informat 1341

Data Line* Results

----+----1

C1F2F3 123

D1F2F3 -123

* The data lines contain a hexadecimal representation of a binary number stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal characters
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDSw.d Informat

Reads zoned decimal separate leading-sign data in IBM mainframe format.

Category: Numeric

Syntax
S370FZDSw.d

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 2–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Default: 0

Range: 0–31

Details
Use S370FZDSw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal separate leading-sign data is similar to standard zoned decimal

data except that the sign of the value is stored in the first byte of zoned decimal
leading sign data, and the first digit of the value is stored in the second byte.

� The S370FZDSw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN LEADING SEPARATE, where the n value is the number of digits.

1342 S370FZDTw.d Informat � Chapter 5

Examples
input @1 x s370fzds4.;

Data Line* Results

----+----1

4EF1F2F3 123

60F1F2F3 -123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal characters
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDTw.d Informat

Reads zoned decimal separate trailing-sign data in IBM mainframe format.

Category: Numeric

Syntax
S370FZDTw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 2–32

d
specifies the power of 10 by which to divide the value. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FZDTw.d on other operating environments to read zoned decimal data from
IBM mainframe files.

Comparisons
� Zoned decimal separate trailing-sign data are similar to zoned decimal separate

leading-sign data except that the sign of the value is stored in the last byte of
zoned decimal separate trailing-sign data.

Informats � S370FZDUw.d Informat 1343

� The S370FZDTw.d informat is equivalent to the COBOL notation PIC S9(n)
DISPLAY SIGN TRAILING SEPARATE, where the n value is the number of digits.

Examples
input @1 x s370fzdt4.;

Data Line* Results

----+----1

F1F2F34E 123

F1F2F360 -123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal characters
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

S370FZDUw.d Informat

Reads unsigned zoned decimal data in IBM mainframe format.

Category: Numeric

Syntax
S370FZDUw.d

Syntax Description

w
specifies the width of the input field.
Default: 8
Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.
Default: 0
Range: 0–31

Details
Use S370FZDUw.d on other operating environments to read unsigned zoned decimal
data from IBM mainframe files.

Comparisons
� The S370FZDUw.d informat is similar to the S370FZDw.d informat except that

the S370FZDUw.d informat rejects all sign digits except F.

1344 SHRSTAMPw. Informat � Chapter 5

� The S370FZDUw.d informat is equivalent to the COBOL notation PIC 9(n)
DISPLAY, where the n value is the number of digits.

Examples
input @1 x s370fzdu3.;

Data Line* Results

----+----1

F1F2F3 123

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe operating environment. Each two hexadecimal characters
correspond to one byte of binary data, and each byte corresponds to one column of the input
field.

SHRSTAMPw. Informat

Reads date and time values of SHR records.

Category: Date and Time

Syntax
SHRSTAMPw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because packed decimal date and time values in SHR

records contain eight bytes of information: four bytes of date data that are
followed by four bytes of time data.

Details
The SHRSTAMPw. informat reads packed decimal date and time values of SHR records
that are produced by IBM mainframe environments and converts the date and time
values to SAS datetime values.

The general form of the date and time information in an SHR record in hexadecimal
notation is ccyydddFhhmmssth, where

ccyy
is the two byte representation of the year. The cc portion is the one byte
representation of a two-digit integer that represents the century. The yy portion is
the one byte representation of two digits that correspond to the year.

The cc portion is the century indicator where 00 indicates 19yy, 01 indicates
20yy, 02 indicates 21yy, and so on. A hexadecimal year value of 0115 is equal to
the year 2015.

Informats � SIZEKMGw.d Informat 1345

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

F
is the half byte that contains all binary 1s.

hh
is the one byte representation of two digits that correspond to the hour of the day.

mm
is the one byte representation of two digits that correspond to minutes.

ss
is the one byte representation of two digits that correspond to seconds.

th
is the one byte representation of two digits that correspond to a 100th of a second.

The SHRSTAMPw. informat enables you to read, on any operation environment,
packed decimal date and time values from files that are created on an IBM mainframe.

Examples
input begin shrstamp8.;

Data Line* Results

----+----1----+----2

0097239F12403576 1188304835.8

* The data line is a hexadecimal representation of a packed decimal date and time value that is
stored as it would appear in an SHR record. Each byte occupies one column of the input field.
The result is a SAS datetime value that corresponds to Aug. 27, 1997 12:40:36 p.m.

SIZEKMGw.d Informat

Reads numeric data that is appended to the letters K, M, or G.

Category: Numeric

Syntax
SIZEKMGw.d

Syntax Description

w
specifies the width of the input field.
Default: 6

1346 SMFSTAMPw. Informat � Chapter 5

Range: 4–35

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.
Default: 0
Range: 0–31

Details
The SAS data value that results when the SIZEKMGw.d informat reads a number that
contains a K, M, or G is the number multiplied by the following values:

K 1024

M 1048576

G 1073741824

Examples

input x sizekmg.;

Data Line Results

1K 1024

1M 1048576

1G 1073741824

17K 17408

45M 47185920

4G 4294967296

See Also

Formats:
“SIZEKw.d Format” on page 242
“SIZEKBw.d Format” on page 243
“SIZEKMGw.d Format” on page 244

SMFSTAMPw. Informat
Reads time and date values of SMF records.

Category: Date and Time

Syntax
SMFSTAMPw.

Informats � STIMERw. Informat 1347

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because time and date values in SMF records contain

eight bytes of information: four bytes of time data that are followed by four bytes
of date data.

Tip: The time portion of an SMF record is a four-byte integer binary number that
represents time as the number of hundredths of a second past midnight.

Details
The SMFSTAMPw. informat reads integer binary time values and packed decimal date
values of SMF records that are produced by IBM mainframe systems and converts the
time and date values to SAS datetime values.

The date portion of an SMF record in hexadecimal notation is ccyydddF, where

cc
is the one-byte representation of two digits that correspond to the century.

yy
is the one-byte representation of two digits that correspond to the year.

ddd
is the one-and-a-half bytes that contain three digits that correspond to the day of
the year.

F
is the half byte that contains all binary 1s.

The SMFSTAMPw. informat enables you to read, on any operating environment,
integer binary time values and packed decimal date values from files that are created
on an IBM mainframe.

Examples
input begin smfstamp8.;

Data Line* Results

----+----1----+----2

0058DC0C0098200F 1216483835

* The data line is a hexadecimal representation of a binary time and date value that is stored as
it would appear in an SMF record. Each byte occupies one column of the input field. The result
is a SAS datetime value that corresponds to July 19, 1998 4:10:35 PM.

STIMERw. Informat

Reads time values and determines whether the values are hours, minutes, or seconds; reads the
output of the STIMER system option.

1348 STIMERw. Informat � Chapter 5

Category: Date and Time

Syntax
STIMERw.

Syntax Description

w
specifies the width of the input field.

Details
The STIMER informat reads performance statistics that the STIMER system option
writes to the SAS log.

The informat reads time values and determines whether the values are hours,
minutes, or seconds based on the presence of decimal points and colons:

� If no colon is present, the value is the number of seconds.
� If a single colon is present, the value before the colon is the number of minutes.

The value after the colon is the number of seconds.
� If two colons are present, the sequence of time is hours, minutes, and then seconds.

In all cases, the result is a SAS time value.
The input values for STIMER must be in one of the following forms:
� ss

� ss.ss

� mm:ss
� mm:ss.ss

� hh:mm:ss

� hh:mm:ss.ss

where

ss
is an integer that represents the number of seconds.

mm
is an integer that represents the number of minutes.

hh
is an integer that represents the number of hours.

Informats � TIMEw. Informat 1349

TIMEw. Informat

Reads hours, minutes, and seconds in the form hh:mm:ss.ss, where special characters such as
the colon (:) or the period (.) are used to separate the hours, minutes, and seconds.

Category: Date and Time

Syntax

TIMEw.

Syntax Description

w
specifies the width of the input field.

Default: 8

Range: 5–32

Details

The TIMEw. informat reads SAS time values in the following form:

hh:mm:ss<.ss> <AM | PM>

where

hh
is an integer that represents the number of hours.

:
represents a special character that separates hours, minutes, and seconds.

mm
is the number of minutes that range from 00 through 59.

ss<.ss>
is an integer that represents the number of seconds, and if needed, tenths of a
second. Seconds and tenths of a second must always be separated by a period.

AM | PM
AM indicates time between 12:00 midnight and 11:59 in the morning. PM
indicates time between 12:00 noon and 11:59 at night.

Separate hh, mm, and ss with a special character. When the period is used as the
special character, the time is interpreted in the order hours, minutes, and seconds. For
example, 23.22 is 23 hours and 22 minutes, not 23 minutes and 22 seconds, or 23
seconds and 22 tenths of a second.

If you do not enter a value for seconds, SAS assumes a value of 0.
The stored value is the total number of seconds in the time value.

1350 TIMEw. Informat � Chapter 5

Examples
input begin time10.;

Data Line Results Formatted with TIMEw.

----+----1----+

12.56 46560 12:56:00

120:120 439200 122:00:00

1:13 pm 47580 13:13:00

See Also

Formats:
“HHMMw.d Format” on page 184
“HOURw.d Format” on page 187
“MMSSw.d Format” on page 199
“TIMEw.d Format” on page 246

Functions:
“HOUR Function” on page 791
“MINUTE Function” on page 905
“SECOND Function” on page 1087
“TIME Function” on page 1124

Informats � TRAILSGNw. Informat 1351

TODSTAMPw. Informat
Reads an eight-byte time-of-day stamp.

Category: Date and Time

Syntax
TODSTAMPw.

Syntax Description

w
specifies the width of the input field.
Requirement: w must be 8 because the OS TIME macro or the STCK instruction

on IBM mainframes each return an eight-byte value.

Details
The TODSTAMPw. informat reads time-of-day clock values that are produced by IBM
mainframe operating systems and converts the clock values to SAS datetime values.

If the time-of-day value is all 0s, TODSTAMPw. results in a missing value.
Use TODSTAMPw. on other operating environments to read time-of-day values that

are produced by an IBM mainframe.

Examples
input btime todstamp8.;

Data Line* Results

----+----1----+----2

B361183D5FB80000 1262303998

* The data line is a hexadecimal representation of a binary, 8-byte time-of-day clock value. Each
byte occupies one column of the input field. The result is a SAS datetime value that corresponds
to December 31, 1999, 11:59:58 p.m.

TRAILSGNw. Informat
Reads a trailing plus (+) or minus (–) sign.

Category: Numeric

Syntax
TRAILSGNw.

1352 TUw. Informat � Chapter 5

Syntax Description

w
specifies the width of the input field.
Default: 6

Range: 1–32

Details
If the data contains a decimal point, the TRAILSGN informat honors the number of
decimal places that are in the input data. If the data contains a comma, the
TRAILSGN informat reads the value, ignoring the comma.

Examples
input x trailsgn8.;

Data Line Results

----+----1----+

1 1

1,000 1000

1+ 1

1- -1

1.2 1.2

1.2+ 1.2

1.2- -1.2

TUw. Informat

Reads timer units.

Category: Date and Time

Syntax
TUw.

Syntax Description

w
specifies the width of the input field.

Informats � TUw. Informat 1353

Requirement: w must be 4 because the OS TIME macro returns a four-byte value.

Details
The TUw. informat reads timer unit values that are produced by IBM mainframe
operating environments and converts the timer unit values to SAS time values.

There are exactly 38,400 software timer units per second. The low-order bit in a
timer unit value represents approximately 26.041667 microseconds.

Use the TUw. informat to read timer unit values that are produced by an IBM
mainframe on other operating environments.

Examples
input btime tu4.;

Data Line* Results

----+----1----+

8FC7A9BC 62818.411563

* The data line is a hexadecimal representation of a binary, four-byte timer unit value. Each
byte occupies one column of the input field. The result is a SAS time value that corresponds to
5:26:58.41 p.m.

1354 VAXRBw.d Informat � Chapter 5

VAXRBw.d Informat

Reads real binary (floating-point) data in VMS format.

Category: Numeric

Syntax
VAXRBw.d

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 2–8

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–10

Details
Use the VAXRBw.d informat to read floating-point data from VMS files on other
operating environments.

Comparisons
If you use SAS that is running under VMS, the VAXRBw.d and the RBw.d informats
are identical.

See Also

Informat:
“RBw.d Informat” on page 1323

Informats � VMSZNw.d Informat 1355

VMSZNw.d Informat

Reads VMS and MicroFocus COBOL zoned numeric data.

Category: Numeric

Width range: 1 to 32

Default width: 1

Syntax

VMSZNw.d

w
specifies the width of the output field.

d
specifies the number of digits to the right of the decimal point in the numeric value.
This argument is optional.

Details

The VMSZNw.d informat is similar to the ZDw.d informat. Both read a string of ASCII
digits, and the last digit is a special character denoting the magnitude of the last digit
and the sign of the entire number. The difference between the VMSZNw.d informat and
the ZDw.d informat is in the special character used for the last digit. The following
table shows the special characters used by the VMSZNw.d informat.

Desired

Digit

Special

Character

Desired

Digit

Special

Character

0 0 -0 p

1 1 -1 q

2 2 -2 r

3 3 -3 s

4 4 -4 t

5 5 -5 u

6 6 -6 v

7 7 -7 w

8 8 -8 x

9 9 -9 y

Data formatted using the VMSZNw.d informat are ASCII strings.

1356 WEEKUw. Informat � Chapter 5

Examples

input @1 vmszn4.;

Data line Results

------+------1

1234 1234

123t -1234

See Also

Format:
“VMSZNw.d Format” on page 253

Informat:
“ZDw.d Informat” on page 1370

WEEKUw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value by
using the U algorithm.

Category: Date and Time

Syntax
WEEKUw.

Syntax Description

w
specifies the width of the input field.
Default: 11
Range: 3–200

Informats � WEEKUw. Informat 1357

Details
The WEEKUw. informat reads the format of the number-of-week within the year, and
then returns a SAS date value by using the U algorithm. If the input does not contain a
year expression, then WEEKUw. uses the current year as the year expression, which is
the default. If the input does not contain a day expression, then WEEKUw. uses the
first day of the week as the day expression, which is the default.

The U Algorithm calculates the SAS date value using the number-of-week value
within the year (Sunday is considered the first day of the week). The number-of-week
value is represented as a decimal number in the range 0–53, with a leading zero and
maximum value of 53. For example, the fifth week of the year would be represented as
05.

The inputs to the WEEKUw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

Examples

The current year is 2003 in the following examples.

1358 WEEKVw. Informat � Chapter 5

Statements Results

----+----1----+

v=input(’W01’,weeku3.);

w=input(’03W01’,weeku5.);

x=input(’03W0101’,weeku7.);

y=input(’2003W0101’,weeku9.);

z=input(’2003-W01-01’,weeku11.);

put v;

put w;

put x;

put y;

put z;

15710

15710

15710

15710

15710

See Also

Formats:
“WEEKUw. Format” on page 259
“WEEKVw. Format” on page 261
“WEEKWw. Format” on page 263

Functions:
“WEEK Function” on page 1186

Informats:
“WEEKVw. Informat” on page 1358
“WEEKWw. Informat” on page 1360

WEEKVw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value using
the V algorithm.

Category: Date and Time

Syntax
WEEKVw.

Syntax Description

w
specifies the width of the input field.
Default: 11
Range: 3–200

Informats � WEEKVw. Informat 1359

Details
The WEEKVw. informat reads a format of the number-of-week value. If the input does
not contain a year expression, WEEKVw. uses the current year as the year expression,
which is the default. If the input does not contain a day expression, WEEKVw. uses the
first day of the week as the day expression, which is the default.

The V algorithm calculates the SAS date value. The number-of-week value is
represented as a decimal number in the range 01–53, with a leading zero and
maximum value of 53. Weeks begin on a Monday and week 1 of the year is the week
that includes both January 4th and the first Thursday of the year. If the first Monday
of January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. For example, the fifth week of the year would be represented as 06.

The inputs to the WEEKVw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

1360 WEEKWw. Informat � Chapter 5

Examples

The current year is 2003 in the following examples.

Statements Results

----+----1----+

v=input(’W01’,weekv3.);

w=input(’03W01’,weekv5.);

x=input(’03W0101’,weekv7.);

y=input(’2003W0101’,weekv9.);

z=input(’2003-W01-01’,weekv11.);

put v;

put w;

put x;

put y;

put z;

15704

15704

15704

15704

15704

See Also

Formats:
“WEEKUw. Format” on page 259
“WEEKVw. Format” on page 261
“WEEKWw. Format” on page 263

Functions:
“WEEK Function” on page 1186

Informats:
“WEEKUw. Informat” on page 1356
“WEEKWw. Informat” on page 1360

WEEKWw. Informat

Reads the format of the number-of-week value within the year and returns a SAS date value using
the W algorithm.

Category: Date and Time

Syntax
WEEKWw.

Syntax Description

Informats � WEEKWw. Informat 1361

w
specifies the width of the input field.

Default: 11
Range: 3–200

Details
The WEEKWw. informat reads a format of the number-of-week value. If the input does
not contain a year expression, the WEEKWw. informat uses the current year as the
year expression, which is the default. If the input does not contain a day expression,
the WEEKWw. informat uses the first day of the week as the day expression, which is
the default. Algorithm W calculates the SAS date value using the number of the week
within the year (Monday is considered the first day of the week). The number-of-week
value is represented as a decimal number in the range 0–53, with a leading zero and
maximum value of 53. For example, the fifth week of the year would be represented as
05.

The inputs to the WEEKWw. informat are the same date for the following example.
The current year is 2003.

Widths Formats Examples

3-4 Www w01

5-6 yyWww 03W01

7-8 yyWwwdd 03W0101

9-10 yyyyWwwdd 2003W0101

11-200 yyyy-Www-dd 2003-W01-01

Comparisons
The WEEKUw. informat reads the number-of-week value within the year. Sunday is
the first day of the week, as a decimal number in the range 0–53, with a leading zero.
The WEEKVw. informat reads the number-of-week value as a decimal number in the
range 01–53. Weeks begin on a Monday and week 1 of the year is the week that
includes both January 4th and the first Thursday of the year. If the first Monday of
January is the 2nd, 3rd, or 4th, the preceding days are part of the last week of the
preceding year. The WEEKWw. informat reads the week-number-of-year value as a
decimal number in the range 00–53, with Monday as the first day of week 1.

1362 WEEKWw. Informat � Chapter 5

Examples

The current year is 2003 in the following examples.

Statements Results

----+----1----+

v=input(’W01’,weekw3.);
w=input(’03W01’,weekw5.);
x=input(’03W0101’,weekw7.);
y=input(’2003W0101’,weekw9.);
z=input(’2003-W01-01’,weekw11.);
put v;
put w;
put x;
put y;
put z;

15711
15711
15711
15711
15711

See Also

Formats:
“WEEKUw. Format” on page 259
“WEEKVw. Format” on page 261
“WEEKWw. Format” on page 263

Function:
“WEEK Function” on page 1186

Informats:
“WEEKUw. Informat” on page 1356
“WEEKVw. Informat” on page 1358

Informats � w.d Informat 1363

w.d Informat

Reads standard numeric data.

Category: Numeric
Alias: BESTw.d, Dw.d, Ew.d, Fw.d

Syntax
w.d

Syntax Description

w
specifies the width of the input field.
Range: 1–32

d
specifies the power of 10 by which to divide the value. If the data contain decimal
points, the d value is ignored. This argument is optional.
Range: 0–31

Details
The w.d informat reads numeric values that are located anywhere in the field. Blanks
can precede or follow a numeric value with no effect. A minus sign with no separating
blank should immediately precede a negative value. The w.d informat reads values
with decimal points and values in scientific E-notation, and it interprets a single period
as a missing value.

Comparisons
� The w.d informat is identical to the BZw.d informat, except that the w.d informat

ignores trailing blanks in the numeric values. To read trailing blanks as 0s, use
the BZw.d informat.

� The w.d informat can read values in scientific E-notation exactly as the Ew.d
informat does.

1364 YMDDTTMw.d Informat � Chapter 5

Examples

input @1 x 6. @10 y 6.2;
put x @7 y;

Data Line Results

----+----1----+----+

23 2300 23 23

23 2300 23 0

23 -2300 23 -23

23.0 23. 23 23

2.3E1 2.3 23 2.3

-23 0 -23 .

YMDDTTMw.d Informat

Reads datetime values in the form <yy>yy-mm-dd hh:mm:ss.ss, where special characters such as
a hyphen (-), period (.), slash (/), or colon (:) are used to separate the year, month, day, hour,
minute, and seconds; the year can be either 2 or 4 digits.

Category: Date and Time

Alignment: right

Syntax

YMDDTTMw.d

Syntax Description

w
specifies the width of the output field.

Default: 19

Range: 13−40

d
specifies the number of digits to the right of the decimal point in the seconds value.
The digits to the right of the decimal point specify a fraction of a second. This
argument is optional.

Default: 0

Range: 0−39

Informats � YMDDTTMw.d Informat 1365

Details
The YMDDTTMw.d format reads SAS datetime values in the following form:

<yy>yy-mm-dd hh:mm:<ss< .ss>>

The following list explains the datetime variables:

yy or yyyy
specifies a two- or four-digit integer that represents the year.

mm
is an integer from 01 through 12 that represents the month.

dd
is an integer from 01 through 31 that represents the day of the month.

hh
is the number of hours ranging from 00 through 23.

mm
is the number of minutes ranging from 00 through 59.

ss.ss
is the number of seconds ranging from 00 through 59 with the fraction of a second
following the decimal point.
Requirement: If a fraction of a second is specified, the decimal point can be

represented only by a period and is required.

- or :
represents one of several special characters, such as the slash (/), dash (-), colon (:),
or a blank character that can be used to separate date and time components.
Special characters can be used as separators between any date or time component
and between the date and the time.

Comparisons
The YMDDTTMw.d informat reads datetime values with required separators in the
form <yy>yy-mm-dd/hh:mm:ss.ss.

The MDYAMPMw.d in format reads datetime values with optional separators in the
form mm-dd-yy<yy> hh:mm:ss.ss AM | PM, and requires a space between the date and
the time.

The DATETIMEw.d informat reads datetime values with optional separators in the
form dd-mmm-yy<yy> hh:mm:ss.ss AM|PM, and the date and time can be separated by
a special character.

1366 YYMMDDw. Informat � Chapter 5

Examples

input @1 dt ymddttm24.;

Data Line Results

2008-03-16 11:23:07.4 1521285787.4

2008 03 16 11 23 07.4 1521285787.4

08.3.16/11:23 1521285780

See Also

Informats:

“DATETIMEw. Informat” on page 1281

“MDYAMPMw.d Informat” on page 1303

YYMMDDw. Informat

Reads date values in the form yymmdd or yyyymmdd.

Category: Date and Time

Syntax
YYMMDDw.

Syntax Description

w
specifies the width of the input field.

Default: 6

Range: 6–32

Details
The date values must be in the form yymmdd or yyyymmdd, where

yy or yyyy
is a two-digit or four-digit integer that represents the year.

mm
is an integer from 01 through 12 that represents the month of the year.

Informats � YYMMNw. Informat 1367

dd
is an integer from 01 through 31 that represents the day of the month.

You can separate the year, month, and day values by blanks or by special characters.
However, if delimiters are used, place them between all the values. You can also place
blanks before and after the date. Make sure the width of the input field allows space for
blanks and special characters.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
input calendar_date yymmdd10.;

Data Line Results

----+----1----+

050316 16511

05/03/16 16511

05 03 16 16511

2005-03-16 16511

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYw. Format” on page 157
“MMDDYYw. Format” on page 195
“YYMMDDw. Format” on page 273

Functions:
“DAY Function” on page 630
“MDY Function” on page 901
“MONTH Function” on page 913
“YEAR Function” on page 1192

Informats:
“DATEw. Informat” on page 1280
“DDMMYYw. Informat” on page 1283
“MMDDYYw. Informat” on page 1305

System Option:
“YEARCUTOFF= System Option” on page 1996

YYMMNw. Informat

Reads date values in the form yyyymm or yymm.

1368 YYMMNw. Informat � Chapter 5

Category: Date and Time

Syntax
YYMMNw.

Syntax Description

w
specifies the width of the input field.
Default: 4
Range: 4–6

Details
The date values must be in the form yyyymm or yymm, where

yy or yyyy
is a two-digit or four-digit integer that represents the year.

mm
is a two-digit integer that represents the month.

The N in the informat name must be used and indicates that you cannot separate the
year and month values by blanks or by special characters. SAS automatically adds a
day value of 01 to the value to make a valid SAS date variable.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

Examples
input date1 yymmn6.;

Data Line Results

----+----1----+

200508 16649

See Also

Formats:
“DATEw. Format” on page 151
“DDMMYYw. Format” on page 157
“YYMMDDw. Format” on page 273
“YYMMw. Format” on page 270
“YYMONw. Format” on page 276

Functions:

Informats � YYQw. Informat 1369

“DAY Function” on page 630

“MONTH Function” on page 913

“MDY Function” on page 901

“YEAR Function” on page 1192

Informats:

“DATEw. Informat” on page 1280

“DDMMYYw. Informat” on page 1283

“MMDDYYw. Informat” on page 1305

“YYMMDDw. Informat” on page 1366

System Option:

“YEARCUTOFF= System Option” on page 1996

YYQw. Informat

Reads quarters of the year in the form yyQq or yyyyQq.

Category: Date and Time

Syntax
YYQw.

Syntax Description

w
specifies the width of the input field.

Default: 6 (For SAS version 6, the default is 4.)

Range: 4–32 (For SAS version 6, the range is 4–6.)

Details
The quarter must be in the form yyQq or yyyyQq, where

yy or yyyy
is an integer that represents the two-digit or four-digit year.

q
is an integer (1, 2, 3, or 4) that represents the quarter of the year. You can also
represent the quarter as 01, 02, 03, or 04.

The letter Q must separate the year value and the quarter value. The year value, the
letter Q, and the quarter value cannot be separated by blanks. A value that is read
with YYQw. produces a SAS date value that corresponds to the first day of the specified
quarter.

Note: SAS interprets a two-digit year as belonging to the 100-year span that is
defined by the YEARCUTOFF= system option. �

1370 ZDw.d Informat � Chapter 5

Examples
input quarter yyq9.;

Data Line Results

----+----1----+

05Q2 16527

05Q02 16527

2005Q02 16527

See Also

Functions:

“QTR Function” on page 1032

“YEAR Function” on page 1192

“YYQ Function” on page 1196

System Option:

“YEARCUTOFF= System Option” on page 1996

ZDw.d Informat

Reads zoned decimal data.

Category: Numeric

See: ZDw.d Informat in the documentation for your operating environment.

Syntax
ZDw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 1–31

Informats � ZDw.d Informat 1371

Details
The ZDw.d informat reads zoned decimal data in which every digit requires one byte
and in which the last byte contains the value’s sign along with the last digit.

Note: Different operating environments store zoned decimal values in different
ways. However, ZDw.d reads zoned decimal values with consistent results if the values
are created in the same type of operating environment that you use to run SAS. �

You can enter positive values in zoned decimal format from a personal computer.
Some keying devices enable you to enter negative values by overstriking the last digit
with a minus sign.

Comparisons
� Like the w.d informat, the ZDw.d informat reads data in which every digit

requires one byte. Use ZDVw.d or ZDw.d to read zoned decimal data in which the
last byte contains the last digit and the sign.

� The ZDw.d informat functions like the ZDVw.d informat with one exception:
ZDVw.d validates the input string and disallows invalid data.

� The following table compares the zoned decimal informat with notation in several
programming languages:

Language Zoned Decimal Notation

SAS ZD3.

PL/I PICTURE’99T’

COBOL DISPLAY PIC S 999

IBM assembler ZL3

Examples
input @1 x zd4.;

Data Line* Results

----+----1

F0F1F2C8 128

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal format on an IBM mainframe computer system. Each byte occupies one column of the
input field.

See Also

Informats:

“w.d Informat” on page 1363

“ZDVw.d Informat” on page 1372

1372 ZDBw.d Informat � Chapter 5

ZDBw.d Informat

Reads zoned decimal data in which zeros have been left blank.

Category: Numeric
See: ZDBw.d Informat in the documentation for your operating environment.

Syntax
ZDBw.d

Syntax Description

w
specifies the width of the input field.
Default: 1
Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.
Range: 0–31

Details
The ZDBw.d informat reads zoned decimal data that are produced in IBM 1410, 1401,
and 1620 form, where 0s are left blank rather than being punched.

Examples
input @1 x zdb3.;

Data Line* Results

----+----1

F140C2 102

* The data line contains a hexadecimal representation of a binary number that is stored in zoned
decimal form, including the codes for spaces, on an IBM mainframe operating environment.
Each byte occupies one column of the input field.

ZDVw.d Informat

Reads and validates zoned decimal data.

Category: Numeric

Informats � ZDVw.d Informat 1373

Syntax
ZDVw.d

Syntax Description

w
specifies the width of the input field.

Default: 1

Range: 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range: 1–31

Details
The ZDVw.d informat reads data in which every digit requires one byte and in which
the last byte contains the value’s sign along with the last digit. It also validates the
input string and disallows invalid data.

ZDVw.d is dependent on the operating environment. For example, on IBM
mainframes, ZDVw.d requires an F for all high-order nibbles except the last. (In
contrast, the ZDw.d informat ignores the high-order nibbles for all bytes except for the
nibbles that are associated with the sign.) The last high-order nibble accepts values
ranging from A-F, where A, C, E, and F are positive values and B and D are negative
values. The low-order nibble on IBM mainframes must be a numeric digit that ranges
from 0-9, as with ZD.

Note: Different operating environments store zoned decimal values in different
ways. However, the ZDVw.d informat reads zoned decimal values with consistent
results if the values are created in the same type of operating environment that you use
to run SAS. �

Comparisons
The ZDVw.d informat functions like the ZDw.d informat with one exception: ZDVw.d
validates the input string and disallows invalid data.

Examples
input @1 test zdv4.;

Data Line* Results

----+----1

F0F1F2C8 128

* The data line contains a hexadecimal representation of a binary number stored in zoned decimal
form. The example was run on an IBM mainframe. The results might vary depending on your
operating environment.

1374 Informats Documented in Other Base SAS Publications � Chapter 5

See Also

Informats:

“w.d Informat” on page 1363

“ZDw.d Informat” on page 1370

Informats Documented in Other Base SAS Publications

The main references for SAS formats are SAS Language Reference: Dictionary and
the SAS National Language Support (NLS): Reference Guide. See the documentation
for your operating environment for host-specific information about formats.

SAS National Language Support: Reference Guide

Table 5.5 Summary of NLS Formats by Category

Category Informats for NLS Description

BIDI text handling $LOGVSw. Informat Reads a character string that is in left-to-right logical
order, and then converts the character string to visual
order.

$LOGVSRw. Informat Reads a character string that is in right-to-left logical
order, and then converts the character string to visual
order.

$VSLOGw. Informat Reads a character string that is in visual order, and then
converts the character string to left-to-right logical order.

$VSLOGRw. Informat Reads a character string that is in visual order, and then
converts the character string to right-to-left logical order.

Character $REVERJw. Informat Reads character data from right to left and preserves
blanks.

$REVERSw. Informat Reads character data from right to left, and then left
aligns the text.

$UCS2Bw. Informat Reads a character string that is encoded in big-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

$UCS2BEw. Informat Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to big-endian, 16-bit, UCS2, Unicode encoding.

$UCS2Lw. Informat Reads a character string that is encoded in little-endian,
16-bit, UCS2, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

$UCS2LEw. Informat Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to little-endian, 16-bit, UCS2, Unicode encoding.

Informats � SAS National Language Support: Reference Guide 1375

Category Informats for NLS Description

$UCS2Xw. Informat Reads a character string that is encoded in 16-bit, UCS2,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session.

$UCS2XEw. Informat Reads a character string that is in the encoding of the
current SAS session and then converts the character
string to 16-bit, UCS2, Unicode encoding.

$UCS4Bw. Informat Reads a character string that is encoded in big-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

$UCS4Lw. Informat Reads a character string that is encoded in little-endian,
32-bit, UCS4, Unicode encoding, and then converts the
character string to the encoding of the current SAS
session.

$UCS4Xw. Informat Reads a character string that is encoded in 32-bit, UCS4,
Unicode encoding, and then converts the character string
to the encoding of the current SAS session.

$UCS4XEw. Informat Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to 32-bit, UCS4, Unicode encoding.

$UESCw. Informat Reads a character string that is encoded in UESC
representation, and then converts the character string to
the encoding of the current SAS session.

$UESCEw. Informat Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UESC representation.

$UNCRw. Informat Reads an NCR character string, and then converts the
character string to the encoding of the current SAS
session.

UNCREw. Informat Reads a character string in the encoding of the current
SAS session, and then converts the character string to
NCR.

$UPARENw. Informat Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session.

$UPARENEw. Informat Reads a character string that is in the encoding of the
current SAS session, and then converts the character
string to UPAREN representation.

$UPARENPw. Informat Reads a character string that is encoded in UPAREN
representation, and then converts the character string to
the encoding of the current SAS session, with national
characters remaining in the encoding of the UPAREN
representation.

$UTF8Xw. informat Reads a character string that is encoded in UTF-8, and
then converts the character string to the encoding of the
current SAS session.

1376 SAS National Language Support: Reference Guide � Chapter 5

Category Informats for NLS Description

DBCS $KANJIw. Informat Removes shift code data from DBCS data.

$KANJIXw. Informat Adds shift-code data to DBCS data.

Date and Time JDATEYMDw. Informat Reads Japanese kanji date values in the format
yymmmdd or yyyymmmdd.

JNENGOw. Informat Reads Japanese kanji date values in the form yymmdd.

MINGUOw. Informat Reads dates in Taiwanese format.

NENGOw. Informat Reads Japanese date values in the form eyymmdd.

NLDATEw. Informat Reads the date value in the specified locale, and then
converts the date value to the local SAS date value.

NLDATMw. Informat Reads the datetime value of the specified locale, and then
converts the datetime value to the local SAS datetime
value.

NLTIMAPw. Informat Reads the time value and uses a.m. and p.m. in the
specified locale, and then converts the time value to the
local SAS time value.

NLTIMEw. Informat Reads the time value in the specified locale, and then
converts the time value to the local SAS time value.

Hebrew text handling $CPTDWw. Informat Reads a character string that is in Hebrew DOS (cp862)
encoding, and then converts the character string to
Windows (cp1255) encoding.

$CPTWDw. Informat Reads a character string that is in Windows (cp1255)
encoding, and then converts the character string to
Hebrew DOS (cp862) encoding.

Numeric EUROw.d Informat Reads numeric values, removes embedded characters in
European currency, and reverses the comma and decimal
point.

EUROXw.d Informat Reads numeric values and removes embedded characters
in European currency.

NLMNIAEDw.d Informat Reads the monetary format of the international
expression for the United Arab Emirates.

NLMNIAUDw.d Informat Reads the monetary format of the international
expression for Australia.

NLMNIBGNw.d Informat Reads the monetary format of the international
expression for Bulgaria.

NLMNIBRLw.d Informat Reads the monetary format of the international
expression for Brazil.

NLMNICADw.d Informat Reads the monetary format of the international
expression for Canada.

NLMNICHFw.d Informat Reads the monetary format of the international
expression for Liechtenstein and Switzerland.

NLMNICNYw.d Informat Reads the monetary format of the international
expression for China.

Informats � SAS National Language Support: Reference Guide 1377

Category Informats for NLS Description

NLMNICZKw.d Informat Reads the monetary format of the international
expression for the Czech Republic.

NLMNIDKKw.d Informat Reads the monetary format of the international
expression for Denmark, Faroe Island, and Greenland.

NLMNIEEKw.d Informat Reads the monetary format of the international
expression for Estonia.

NLMNIEGPw.d Informat Reads the monetary format of the international
expression for Egypt.

NLMNIEURw.d Informat Reads the monetary format of the international
expression for Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, the
Netherlands, Portugal, Slovenia, and Spain.

NLMNIGBPw.d Informat Reads the monetary format of the international
expression for the United Kingdom.

NLMNIHKDw.d Informat Reads the monetary format of the international
expression for Hong Kong.

NLMNIHRKw.d Informat Reads the monetary format of the international
expression for Croatia.

NLMNIHUFw.d Informat Reads the monetary format of the international
expression for Hungary.

NLMNIIDRw.d Informat Reads the monetary format of the international
expression for Indonesia.

NLMNIILSw.d Informat Reads the monetary format of the international
expression for Israel.

NLMNIINRw.d Informat Reads the monetary format of the international
expression for India.

NLMNIJPYw.d Informat Reads the monetary format of the international
expression for Japan.

NLMNIKRWw.d Informat Reads the monetary format of the international
expression for South Korea.

NLMNILTLw.d Informat Reads the monetary format of the international
expression for Lithuania.

NLMNILVLw.d Informat Reads the monetary format of the international
expression for Latvia.

NLMNIMOPw.d Informat Reads the monetary format of the international
expression for Macau.

NLMNIMXNw.d Informat Reads the monetary format of the international
expression for Mexico.

NLMNIMYRw.d Informat Reads the monetary format of the international
expression for Malaysia.

NLMNINOKw.d Informat Reads the monetary format of the international
expression for Norway.

NLMNINZDw.d Informat Reads the monetary format of the international
expression for New Zealand.

1378 SAS National Language Support: Reference Guide � Chapter 5

Category Informats for NLS Description

NLMNIPLNw.d Informat Reads the monetary format of the international
expression for Poland.

NLMNIRUBw.d Informat Reads the monetary format of the international
expression for Russia.

NLMNISEKw.d Informat Reads the monetary format of the international
expression for Sweden.

NLMNISGDw.d Informat Reads the monetary format of the international
expression for Singapore.

NLMNITHBw.d Informat Reads the monetary format of the international
expression for Thailand.

NLMNITRYw.d Informat Reads the monetary format of the international
expression for Turkey.

NLMNITWDw.d Informat Reads the monetary format of the international
expression for Taiwan.

NLMNIUSDw.d Informat Reads the monetary format of the international
expression for the Caribbean, Puerto Rico and the United
States.

NLMNIZARw.d Informat Reads the monetary format of the international
expression for South Africa.

NLMNLAEDw.d Informat Reads the monetary format of the local expression for the
United Arab Emirates.

NLMNLAUDw.d Informat Reads the monetary format of the local expression for
Australia.

NLMNLBGNw.d Informat Reads the monetary format of the local expression for
Bulgaria.

NLMNLBRLw.d Informat Reads the monetary format of the local expression for
Brazil.

NLMNLCADw.d Informat Reads the monetary format of the local expression for
Canada.

NLMNLCHFw.d Informat Reads the monetary format of the local expression for
Liechtenstein and Switzerland.

NLMNLCNYw.d Informat Reads the monetary format of the local expression for
China.

NLMNLCZKw.d Informat Reads the monetary format of the local expression for the
Czech Republic.

NLMNLDKKw.d Informat Reads the monetary format of the local expression for
Denmark, the Faroe Island, and Greenland.

NLMNLEEKw.d Informat Reads the monetary format of the local expression for
Estonia.

NLMNLEGPw.d Informat Reads the monetary format of the local expression for
Egypt.

Informats � SAS National Language Support: Reference Guide 1379

Category Informats for NLS Description

NLMNLEURw.d Informat Reads the monetary format of the local expression for
Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal,
and Spain.

NLMNLGBPw.d Informat Reads the monetary format of the local expression for the
United Kingdom.

NLMNLHKDw.d Informat Reads the monetary format of the local expression for
Hong Kong.

NLMNLHRKw.d Informat Reads the monetary format of the local expression for
Croatia.

NLMNLHUFw.d Informat Reads the monetary format of the local expression for
Hungary.

NLMNLIDRw.d Informat Reads the monetary format of the local expression for
Indonesia.

NLMNLILSw.d Informat Reads the monetary format of the local expression for
Israel.

NLMNLINRw.d Informat Reads the monetary format of the local expression for
India.

NLMNLJPYw.d Informat Reads the monetary format of the local expression for
Japan.

NLMNLKRWw.d Informat Reads the monetary format of the local expression for
South Korea.

NLMNLLTLw.d Informat Reads the monetary format of the local expression for
Lithuania.

NLMNLLVLw.d Informat Reads the monetary format of the local expression for
Latvia.

NLMNLMOPw.d Informat Reads the monetary format of the local expression for
Macau.

NLMNLMXNw.d Informat Reads the monetary format of the local expression for
Mexico.

NLMNLMYRw.d Informat Reads the monetary format of the local expression for
Malaysia.

NLMNLNOKw.d Informat Reads the monetary format of the local expression for
Norway.

NLMNLNZDw.d Informat Reads the monetary format of the local expression for
New Zealand.

NLMNLPLNw.d Informat Reads the monetary format of the local expression for
Poland.

NLMNLRUBw.d Informat Reads the monetary format of the local expression for
Russia.

NLMNLSEKw.d Informat Reads the monetary format of the local expression for
Sweden.

NLMNLSGDw.d Informat Reads the monetary format of the local expression for
Singapore.

1380 SAS National Language Support: Reference Guide � Chapter 5

Category Informats for NLS Description

NLMNLTHBw.d Informat Reads the monetary format of the local expression for
Thailand.

NLMNLTRYw.d Informat Reads the monetary format of the local expression for
Turkey.

NLMNLTWDw.d Informat Reads the monetary format of the local expression for
Taiwan.

NLMNLUSDw.d Informat Reads the monetary format of the local expression for the
Caribbean, Puerto Rico, and the United States.

NLMNLZARw.d Informat Reads the monetary format of the local expression for
South Africa.

NLMNYw.d Informat Reads monetary data in the specified locale for the local
expression, and then converts the data to a numeric
value.

NLMNYIw.d Informat Reads monetary data in the specified locale for the
international expression, and then converts the data to a
numeric value.

NLNUMw.d Informat Reads numeric data in the specified locale for local
expressions, and then converts the data to a numeric
value.

NLNUMIw.d Informat Reads numeric data in the specified locale for
international expressions, and then converts the data to
a numeric value.

NLPCTw.d Informat Reads percentage data in the specified locale for local
expressions, and then converts the data to a numeric
value.

NLPCTIw.d Informat Reads percentage data in the specified locale for
international expressions, and then converts the data to
a numeric value.

YENw.d Informat Removes embedded yen signs, commas, and decimal
points.

1381

C H A P T E R

6
Statements

Definition of Statements 1383
DATA Step Statements 1383

Executable and Declarative Statements 1383

DATA Step Statements by Category 1384

Global Statements 1389

Definition 1389
Global Statements by Category 1389

Dictionary 1392

ABORT Statement 1392

ARRAY Statement 1395

Array Reference Statement 1400

Assignment Statement 1402
ATTRIB Statement 1403

BY Statement 1407

CALL Statement 1412

CARDS Statement 1413

CARDS4 Statement 1413
CATNAME Statement 1413

CHECKPOINT EXECUTE_ALWAYS Statement 1416

Comment Statement 1417

CONTINUE Statement 1419

DATA Statement 1420
DATALINES Statement 1427

DATALINES4 Statement 1429

DECLARE Statement, Hash and Hash Iterator Objects 1430

DECLARE Statement, Java Object 1437

DELETE Statement 1439

DESCRIBE Statement 1440
DISPLAY Statement 1441

DM Statement 1443

DO Statement 1444

DO Statement, Iterative 1446

DO UNTIL Statement 1449
DO WHILE Statement 1451

DROP Statement 1452

END Statement 1453

ENDSAS Statement 1454

ERROR Statement 1455
EXECUTE Statement 1456

FILE Statement 1457

FILENAME Statement 1473

1382 Contents � Chapter 6

FILENAME Statement, CATALOG Access Method 1479
FILENAME, CLIPBOARD Access Method 1482

FILENAME Statement, EMAIL (SMTP) Access Method 1485

FILENAME Statement, FTP Access Method 1495

FILENAME Statement, SFTP Access Method 1506

FILENAME Statement, SOCKET Access Method 1512
FILENAME Statement, URL Access Method 1515

FILENAME Statement, WebDAV Access Method 1520

FOOTNOTE Statement 1525

FORMAT Statement 1528

GO TO Statement 1532

IF Statement, Subsetting 1533
IF-THEN/ELSE Statement 1535

%INCLUDE Statement 1536

INFILE Statement 1543

INFORMAT Statement 1566

INPUT Statement 1569
INPUT Statement, Column 1584

INPUT Statement, Formatted 1586

INPUT Statement, List 1590

INPUT Statement, Named 1596

KEEP Statement 1600
LABEL Statement 1601

Labels, Statement 1602

LEAVE Statement 1604

LENGTH Statement 1605

LIBNAME Statement 1607

LIBNAME Statement for WebDAV Server Access 1616
LINK Statement 1619

LIST Statement 1621

%LIST Statement 1623

LOCK Statement 1624

LOSTCARD Statement 1627
MERGE Statement 1630

MISSING Statement 1633

MODIFY Statement 1634

Null Statement 1651

OPTIONS Statement 1653
OUTPUT Statement 1654

PAGE Statement 1657

PUT Statement 1657

PUT Statement, Column 1674

PUT Statement, Formatted 1676

PUT Statement, List 1679
PUT Statement, Named 1684

PUTLOG Statement 1686

REDIRECT Statement 1688

REMOVE Statement 1690

RENAME Statement 1691
REPLACE Statement 1693

RETAIN Statement 1695

RETURN Statement 1700

RUN Statement 1701

%RUN Statement 1702

Statements � Executable and Declarative Statements 1383

SASFILE Statement 1703
SELECT Statement 1708

SET Statement 1712

SKIP Statement 1723

STOP Statement 1723

Sum Statement 1725
SYSECHO Statement 1726

TITLE Statement 1726

UPDATE Statement 1734

WHERE Statement 1739

WINDOW Statement 1745

X Statement 1756
SAS Statements Documented in Other SAS Publications 1757

SAS Companion for Windows 1758

SAS Companion for OpenVMS on HP Integrity Servers 1758

SAS Companion for UNIX Environments 1758

SAS Companion for z/OS 1758
SAS Language Interfaces to Metadata 1759

SAS Macro Language: Reference 1759

SAS Output Delivery System: User’s Guide 1760

SAS Scalable Performance Data Engine: Reference 1762

SAS XML LIBNAME Engine: User’s Guide 1762
SAS/ACCESS for Relational Databases: Reference 1762

SAS/CONNECT User’s Guide 1763

SAS/SHARE User’s Guide 1763

Definition of Statements

A SAS statement is a series of items that can include keywords, SAS names, special
characters, and operators. All SAS statements end with a semicolon. A SAS statement
either requests SAS to perform an operation or gives information to the system.

This documentation covers two types of SAS statements:

� statements that are used in DATA step programming

� statements that are global in scope and can be used anywhere in a SAS program.

The Base SAS Procedures Guide gives detailed descriptions of the SAS statements
that are specific to each SAS procedure. SAS Output Delivery System: User’s Guide
gives detailed descriptions of the Output Delivery System (ODS) statements.

DATA Step Statements

Executable and Declarative Statements
DATA step statements are executable or declarative statements that can appear in

the DATA step. Executable statements result in some action during individual iterations
of the DATA step; declarative statements supply information to SAS and take effect
when the system compiles program statements.

The following tables show the SAS executable and declarative statements that you
can use in the DATA step.

1384 DATA Step Statements by Category � Chapter 6

Executable Statements

ABORT IF, Subsetting PUT, Column

Array Reference IF-THEN/ELSE PUT, Formatted

Assignment INFILE PUT, List

CALL INPUT PUT, Named

CONTINUE GO TO PUT

DECLARE INPUT, Column PUT, ODS

DELETE INPUT, Formatted PUTLOG

DESCRIBE INPUT, List REDIRECT

DISPLAY INPUT, Named REMOVE

DO LEAVE REPLACE

DO, Iterative LINK RETURN

DO UNTIL LIST SELECT

DO WHILE LOSTCARD SET

ERROR MERGE STOP

EXECUTE MODIFY Sum

FILE Null UPDATE

FILE, ODS OUTPUT

Declarative Statements

ARRAY DATALINES4 Labels, Statement

ATTRIB DROP LENGTH

BY END RENAME

CARDS FORMAT RETAIN

CARDS4 INFORMAT WHERE

DATA KEEP WINDOW

DATALINES LABEL

DATA Step Statements by Category
In addition to being either executable or declarative, SAS DATA step statements can

be grouped into five functional categories:

Statements � DATA Step Statements by Category 1385

Table 6.1 Categories of DATA Step Statements

Statements Category Functionality

Action � create and modify variables

� select only certain observations to process in the
DATA step

� look for errors in the input data

� work with observations as they are being created

Control � skip statements for certain observations

� change the order that statements are executed

� transfer control from one part of a program to
another

File-handling � work with files used as input to the data set

� work with files to be written by the DATA step

Information � give SAS additional information about the program
data vector

� give SAS additional information about the data set
or data sets that are being created.

Window Display � display and customize windows.

The following table lists and briefly describes the DATA step statements by category.

Table 6.2 Categories and Descriptions of DATA Step Statements

Category Statement Description

Action “ABORT Statement” on
page 1392

Stops executing the current DATA step, SAS job, or SAS
session.

“Assignment Statement”
on page 1402

Evaluates an expression and stores the result in a
variable.

“CALL Statement” on page
1412

Invokes a SAS CALL routine.

“DECLARE Statement,
Hash and Hash Iterator
Objects” on page 1430

Declares a hash or hash iterator object; creates an
instance of and initializes data for a hash or hash
iterator object.

“DECLARE Statement,
Java Object” on page 1437

Declares a Java object; creates an instance of and
initializes data for a Java object.

“DELETE Statement” on
page 1439

Stops processing the current observation.

“DESCRIBE Statement”
on page 1440

Retrieves source code from a stored compiled DATA step
program or a DATA step view.

1386 DATA Step Statements by Category � Chapter 6

Category Statement Description

“ERROR Statement” on
page 1455

Sets _ERROR_ to 1. A message written to the SAS log is
optional.

“EXECUTE Statement” on
page 1456

Executes a stored compiled DATA step program .

“IF Statement, Subsetting”
on page 1533

Continues processing only those observations that meet
the condition of the specified expression.

“LIST Statement” on page
1621

Writes to the SAS log the input data record for the
observation that is being processed.

“LOSTCARD Statement”
on page 1627

Resynchronizes the input data when SAS encounters a
missing or invalid record in data that has multiple
records per observation.

“Null Statement” on page
1651

Signals the end of data lines or acts as a placeholder.

“OUTPUT Statement” on
page 1654

Writes the current observation to a SAS data set.

“PUTLOG Statement” on
page 1686

Writes a message to the SAS log.

“REDIRECT Statement”
on page 1688

Points to different input or output SAS data sets when
you execute a stored program.

“REMOVE Statement” on
page 1690

Deletes an observation from a SAS data set.

“REPLACE Statement” on
page 1693

Replaces an observation in the same location.

“STOP Statement” on page
1723

Stops execution of the current DATA step.

“Sum Statement” on page
1725

Adds the result of an expression to an accumulator
variable.

“WHERE Statement” on
page 1739

Selects observations from SAS data sets that meet a
particular condition.

Control “CONTINUE Statement”
on page 1419

Stops processing the current DO-loop iteration and
resumes processing the next iteration.

“DO Statement” on page
1444

Specifies a group of statements to be executed as a unit.

“DO Statement, Iterative”
on page 1446

Executes statements between the DO and END
statements repetitively, based on the value of an index
variable.

“DO UNTIL Statement” on
page 1449

Executes statements in a DO loop repetitively until a
condition is true.

“DO WHILE Statement”
on page 1451

Executes statements in a DO-loop repetitively while a
condition is true.

“END Statement” on page
1453

Ends a DO group or SELECT group processing.

Statements � DATA Step Statements by Category 1387

Category Statement Description

“GO TO Statement” on
page 1532

Directs program execution immediately to the statement
label that is specified and, if followed by a RETURN
statement, returns execution to the beginning of the
DATA step.

“IF-THEN/ELSE
Statement” on page 1535

Executes a SAS statement for observations that meet
specific conditions.

“Labels, Statement” on
page 1602

Identifies a statement that is referred to by another
statement.

“LEAVE Statement” on
page 1604

Stops processing the current loop and resumes with the
next statement in the sequence.

“LINK Statement” on page
1619

Directs program execution immediately to the statement
label that is specified and, if followed by a RETURN
statement, returns execution to the statement that
follows the LINK statement.

“RETURN Statement” on
page 1700

Stops executing statements at the current point in the
DATA step and returns to a predetermined point in the
step.

“SELECT Statement” on
page 1708

Executes one of several statements or groups of
statements.

File-handling “BY Statement” on page
1407

Controls the operation of a SET, MERGE, MODIFY, or
UPDATE statement in the DATA step and sets up
special grouping variables.

“CARDS Statement” on
page 1413

Specifies that data lines follow.

“CARDS4 Statement” on
page 1413

Specifies that data lines that contain semicolons follow.

“DATA Statement” on page
1420

Begins a DATA step and provides names for any output
SAS data sets, views, or programs.

“DATALINES Statement”
on page 1427

Specifies that data lines follow.

“DATALINES4 Statement”
on page 1429

Indicates that data lines that contain semicolons follow.

“FILE Statement” on page
1457

Specifies the current output file for PUT statements.

“INFILE Statement” on
page 1543

Specifies an external file to read with an INPUT
statement.

“INPUT Statement” on
page 1569

Describes the arrangement of values in the input data
record and assigns input values to the corresponding
SAS variables.

“INPUT Statement,
Column” on page 1584

Reads input values from specified columns and assigns
them to the corresponding SAS variables.

“INPUT Statement,
Formatted” on page 1586

Reads input values with specified informats and assigns
them to the corresponding SAS variables.

“INPUT Statement, List”
on page 1590

Scans the input data record for input values and assigns
them to the corresponding SAS variables.

1388 DATA Step Statements by Category � Chapter 6

Category Statement Description

“INPUT Statement,
Named” on page 1596

Reads data values that appear after a variable name
that is followed by an equal sign and assigns them to
corresponding SAS variables.

“MERGE Statement” on
page 1630

Joins observations from two or more SAS data sets into a
single observation.

“MODIFY Statement” on
page 1634

Replaces, deletes, and appends observations in an
existing SAS data set in place but does not create an
additional copy.

“PUT Statement” on page
1657

Writes lines to the SAS log, to the SAS output window, or
to an external location that is specified in the most
recent FILE statement.

“PUT Statement, Column”
on page 1674

Writes variable values in the specified columns in the
output line.

“PUT Statement,
Formatted” on page 1676

Writes variable values with the specified format in the
output line.

“PUT Statement, List” on
page 1679

Writes variable values and the specified character strings
in the output line.

“PUT Statement, Named”
on page 1684

Writes variable values after the variable name and an
equal sign.

“SET Statement” on page
1712

Reads an observation from one or more SAS data sets.

“UPDATE Statement” on
page 1734

Updates a master file by applying transactions.

Information “ARRAY Statement” on
page 1395

Defines the elements of an array.

“Array Reference
Statement” on page 1400

Describes the elements in an array to be processed.

“ATTRIB Statement” on
page 1403

Associates a format, informat, label, and length with one
or more variables.

“DROP Statement” on
page 1452

Excludes variables from output SAS data sets.

“FORMAT Statement” on
page 1528

Associates formats with variables.

“INFORMAT Statement”
on page 1566

Associates informats with variables.

“KEEP Statement” on
page 1600

Specifies the variables to include in output SAS data sets.

“LABEL Statement” on
page 1601

Assigns descriptive labels to variables.

“LENGTH Statement” on
page 1605

Specifies the number of bytes for storing variables.

“MISSING Statement” on
page 1633

Assigns characters in your input data to represent
special missing values for numeric data.

Statements � Global Statements by Category 1389

Category Statement Description

“RENAME Statement” on
page 1691

Specifies new names for variables in output SAS data
sets.

“RETAIN Statement” on
page 1695

Causes a variable that is created by an INPUT or
assignment statement to retain its value from one
iteration of the DATA step to the next.

Window Display “DISPLAY Statement” on
page 1441

Displays a window that is created with the WINDOW
statement.

“WINDOW Statement” on
page 1745

Creates customized windows for your applications.

Global Statements

Definition
Global statements generally provide information to SAS, request information or

data, move between different modes of execution, or set values for system options.
Other global statements (ODS statements) deliver output in a variety of formats, such
as in Hypertext Markup Language (HTML). You can use global statements anywhere in
a SAS program. Global statements are not executable; they take effect as soon as SAS
compiles program statements.

Other SAS software products have additional global statements that are used with
those products. For information, see the SAS documentation for those products.

Global Statements by Category
The following table lists and describes SAS global statements, organized by function

into eight categories:

Table 6.3 Global Statements by Category

Statements Category Functionality

Data Access associate reference names with SAS libraries, SAS catalogs,
external files and output devices, and access remote files.

Log Control alter the appearance of the SAS log.

ODS: Output Control choose objects to send to output destinations; edit the
output format.

ODS: SAS Formatted apply default styles to SAS specific entities such as a SAS
data set, SAS output listing, or a SAS document.

ODS: Third-Party Formatted apply styles to the output objects that are used by
applications outside of SAS.

Operating Environment access the operating environment directly.

1390 Global Statements by Category � Chapter 6

Statements Category Functionality

Output Control add titles and footnotes to your SAS output; deliver output
in a variety of formats.

Program Control govern the way SAS processes your SAS program.

The following table provides brief descriptions of SAS global statements. For more
detailed information, see the individual statements.

Table 6.4 Categories and Descriptions of Global Statements

Category Statement Description

Data Access “CATNAME Statement” on
page 1413

Logically combines two or more catalogs into one by
associating them with a catref (a shortcut name); clears
one or all catrefs; lists the concatenated catalogs in one
concatenation or in all concatenations.

“FILENAME Statement”
on page 1473

Associates a SAS fileref with an external file or an
output device, disassociates a fileref and external file, or
lists attributes of external files.

“FILENAME Statement,
CATALOG Access Method”
on page 1479

Enables you to reference a SAS catalog as an external
file.

“FILENAME,
CLIPBOARD Access
Method” on page 1482

Enables you to read text data from and write text data to
the clipboard on the host computer.

“FILENAME Statement,
EMAIL (SMTP) Access
Method” on page 1485

Enables you to send electronic mail programmatically
from SAS using the SMTP (Simple Mail Transfer
Protocol) e-mail interface.

“FILENAME Statement,
FTP Access Method” on
page 1495

Enables you to access remote files by using the FTP
protocol.

“FILENAME Statement,
SFTP Access Method” on
page 1506

Enables you to access remote files by using the SFTP
protocol.

“FILENAME Statement,
SOCKET Access Method”
on page 1512

Enables you to read from or write to a TCP/IP socket.

“FILENAME Statement,
URL Access Method” on
page 1515

Enables you to access remote files by using the URL
access method.

“FILENAME Statement,
WebDAV Access Method”
on page 1520

Enables you to access remote files by using the WebDAV
protocol.

“LIBNAME Statement” on
page 1607

Associates or disassociates a SAS library with a libref (a
shortcut name), clears one or all librefs, lists the
characteristics of a SAS library, concatenates SAS
libraries, or concatenates SAS catalogs.

Statements � Global Statements by Category 1391

Category Statement Description

“LIBNAME Statement for
WebDAV Server Access” on
page 1616

Associates a libref with a SAS library and enables access
to a WebDAV (Web-based Distributed Authoring And
Versioning) server.

Log Control “Comment Statement” on
page 1417

Specifies the purpose of the statement or program.

“PAGE Statement” on page
1657

Skips to a new page in the SAS log.

“SKIP Statement” on page
1723

Creates a blank line in the SAS log.

Operating Environment “X Statement” on page
1756

Issues an operating-environment command from within a
SAS session.

Output Control “FOOTNOTE Statement”
on page 1525

Writes up to 10 lines of text at the bottom of the
procedure or DATA step output.

“TITLE Statement” on
page 1726

Specifies title lines for SAS output.

Program Control “CHECKPOINT
EXECUTE_ALWAYS
Statement” on page 1416

Indicates to execute the DATA step or PROC step that
immediately follows without considering the
checkpoint-restart data.

“DM Statement” on page
1443

Submits SAS Program Editor, Log, Procedure Output or
text editor commands as SAS statements.

“ENDSAS Statement” on
page 1454

Terminates a SAS job or session after the current DATA
or PROC step executes.

“%INCLUDE Statement”
on page 1536

Brings a SAS programming statement, data lines, or
both, into a current SAS program.

“%LIST Statement” on
page 1623

Displays lines that are entered in the current session.

“LOCK Statement” on
page 1624

Acquires and releases an exclusive lock on an existing
SAS file.

“OPTIONS Statement” on
page 1653

Specifies or changes the value of one or more SAS system
options.

“RUN Statement” on page
1701

Executes the previously entered SAS statements.

“%RUN Statement” on
page 1702

Ends source statements following a %INCLUDE *
statement.

“SASFILE Statement” on
page 1703

Opens a SAS data set and allocates enough buffers to
hold the entire file in memory.

“SYSECHO Statement” on
page 1726

Fires a global statement complete event and passes a
text string back to the IOM client.

1392 Dictionary � Chapter 6

Dictionary

ABORT Statement

Stops executing the current DATA step, SAS job, or SAS session.

Valid: in a DATA step
Category: Action
Type: Executable
See: ABORT Statement in the documentation for your operating environment.

Syntax
ABORT <ABEND | CANCEL <FILE> | RETURN | > <n> <NOLIST>;

Without Arguments
If you specify no argument, the ABORT statement produces these results under the
following methods of operation:

batch mode and noninteractive mode
� stops processing the current DATA step and writes an error message to the

SAS log. Data sets can contain an incomplete number of observations or no
observations, depending on when SAS encountered the ABORT statement.

� sets the OBS= system option to 0.
� continues limited processing of the remainder of the SAS job, including

executing macro statements, executing system options statements, and
syntax checking of program statements.

� creates output data sets for subsequent DATA and PROC steps with no
observations.

windowing environment
� stops processing the current DATA step
� creates a data set that contains the observations that are processed before

the ABORT statement is encountered
� prints a message to the log that an ABORT statement terminated the DATA

step
� continues processing any DATA or PROC steps that follow the ABORT

statement.

interactive line mode
stops processing the current DATA step. Any further DATA steps or procedures
execute normally.

Arguments
ABEND

Statements � ABORT Statement 1393

causes abnormal termination of the current SAS job or session. Results depend on
the method of operation:

� batch mode and noninteractive mode
� stops processing immediately
� sends an error message to the SAS log that states that execution was

terminated by the ABEND option of the ABORT statement
� does not execute any subsequent statements or check syntax
� returns control to the operating environment; further action is based on

how your operating environment and your site treat jobs that end
abnormally.

� windowing environment and interactive line mode
� causes your windowing environment and interactive line mode to stop

processing immediately and return you to your operating environment.

CANCEL <FILE>
causes the execution of the submitted statements to be canceled. Results depend
on the method of operation:

� batch mode and noninteractive mode
� the entire SAS program and SAS system are terminated
� an error message is written to the SAS log

� windowing environment and interactive line mode
� clears only the current submitted program
� other subsequent submitted programs are not affected
� an error message is written to the SAS log

� workspace server and stored process server
� clears only the currently submitted program
� other subsequent submit calls are not affected
� an error message is written to the SAS log

� SAS IntrNet application server
� creates a separate execution for each request and submits the request

code. A CANCEL argument in the request code clears the current
submitted code but does not terminate the execution or the SAS session.

FILE
when coded as an option to the CANCEL argument in an autoexec file or in a
%INCLUDE file, causes only the contents of the autoexec file or %INCLUDE
file to be cleared by the ABORT statement. Other submitted source
statements will be executed after the autoexec or %INCLUDE file.

Warning: When the ABORT CANCEL FILE option is executed within a
%INCLUDE file, all open macros are closed and execution resumes at the next
source line of code.

Restriction: The CANCEL argument cannot be submitted using SAS/SHARE,
SAS/CONNECT, or SAS/AF.

RETURN
causes the immediate normal termination of the current SAS job or session.
Results depend on the method of operation:

� batch mode and noninteractive mode
� stops processing immediately

1394 ABORT Statement � Chapter 6

� sends an error message to the SAS log stating that execution was
terminated by the RETURN option in the ABORT statement

� does not execute any subsequent statements or check syntax
� returns control to your operating environment with a condition code

indicating an error

� windowing environment
� causes your windowing environment and interactive line mode to stop

processing immediately and return you to your operating environment.

n
is an integer value that enables you to specify a condition code:

� when used with the CANCEL argument, the value is placed in the SYSINFO
automatic macro variable

� when not used with the CANCEL argument, SAS returns the value to the
operating environment when the execution stops. The range of values for n
depends on your operating environment.

NOLIST
suppresses the output of all variables to the SAS log.
Requirement: NOLIST must be the last option in the ABORT statement.

Details
The ABORT statement causes SAS to stop processing the current DATA step. What
happens next depends on

� the method you use to submit your SAS statements
� the arguments you use with ABORT
� your operating environment.

The ABORT statement usually appears in a clause of an IF-THEN statement or a
SELECT statement that is designed to stop processing when an error condition occurs.

Note: The return code generated by the ABORT statement is ignored by SAS if the
system option ERRORABEND is in effect. �

Note: When you execute an ABORT statement in a DATA step, SAS does not use
data sets that were created in the step to replace existing data sets with the same
name. �

Operating Environment Information: The only difference between the ABEND and
RETURN options is that with ABEND further action is based on how your operating
environment and site treat jobs that end abnormally. RETURN simply returns a
condition code that indicates an error. �

Comparisons
� When you use the SAS windowing environment or interactive line mode, the

ABORT statement and the STOP statement both stop processing. The ABORT
statement sets the value of the automatic variable _ERROR_ to 1, and the STOP
statement does not.

� In batch or noninteractive mode, the ABORT and STOP statements also have
different effects. Both stop processing, but only ABORT sets the value of the

Statements � ARRAY Statement 1395

automatic variable _ERROR_ to 1. Use the STOP statement, therefore, when you
want to stop only the current DATA step and continue processing with the next
step.

Examples

This example uses the ABORT statement as part of an IF-THEN statement to stop
execution of SAS when it encounters a data value that would otherwise cause a
division-by-zero condition.

if volume=0 then abort 255;
density=mass/volume;

The n value causes SAS to return the condition code 255 to the operating
environment when the ABORT statement executes.

See Also

Statement:
“STOP Statement” on page 1723

ARRAY Statement

Defines the elements of an array.

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
ARRAY array-name { subscript } <$><length>

<array-elements> <(initial-value-list)>;

Arguments

array-name
specifies the name of the array.
Restriction: Array-name must be a SAS name that is not the name of a SAS

variable in the same DATA step.

CAUTION:
Using the name of a SAS function as an array name can cause unpredictable results. If
you inadvertently use a function name as the name of the array, SAS treats
parenthetical references that involve the name as array references, not function
references, for the duration of the DATA step. A warning message is written to the
SAS log. �

{subscript}

1396 ARRAY Statement � Chapter 6

describes the number and arrangement of elements in the array by using an asterisk,
a number, or a range of numbers. Subscript has one of these forms:

{dimension-size(s)}
specifies the number of elements in each dimension of the array. Dimension-size is
a numeric representation of either the number of elements in a one-dimensional
array or the number of elements in each dimension of a multidimensional array.
Tip: You can enclose the subscript in braces ({}), brackets ([])or parentheses (()).
Example: An array with one dimension can be defined as

array simple{3} red green yellow;

This ARRAY statement defines an array that is named SIMPLE that groups
together three variables that are named RED, GREEN, and YELLOW.

Example: An array with more than one dimension is known as a
multidimensional array. You can have any number of dimensions in a
multidimensional array. For example, a two-dimensional array provides row
and column arrangement of array elements. This statement defines a
two-dimensional array with five rows and three columns:

array x{5,3} score1-score15;

SAS places variables into a two-dimensional array by filling all rows in order,
beginning at the upper-left corner of the array (known as row-major order).

{<lower :>upper<, ...<lower :> upper>}
are the bounds of each dimension of an array, where lower is the lower bound of
that dimension and upper is the upper bound.
Range: In most explicit arrays, the subscript in each dimension of the array

ranges from 1 to n, where n is the number of elements in that dimension.
Example: In the following example, the value of each dimension is by default the

upper bound of that dimension.

array x{5,3} score1-score15;

As an alternative, the following ARRAY statement is a longhand version of
the previous example:

array x{1:5,1:3} score1-score15;

Tip: For most arrays, 1 is a convenient lower bound. Thus, you do not need to
specify the lower and upper bounds. However, specifying both bounds is useful
when the array dimensions have a convenient beginning point other than 1.

Tip: To reduce the computational time that is needed for subscript evaluation,
specify a lower bound of 0.

{*}
specifies that SAS is to determine the subscript by counting the variables in the
array. When you specify the asterisk, also include array-elements.
Restriction: You cannot use the asterisk with _TEMPORARY_ arrays or when

you define a multidimensional array.

$
specifies that the elements in the array are character elements.
Tip: The dollar sign is not necessary if the elements have been previously defined

as character elements.

length
specifies the length of elements in the array that have not been previously assigned a
length.

Statements � ARRAY Statement 1397

array-elements
specifies the names of the elements that make up the array. Array-elements must be
either all numeric or all character, and they can be listed in any order. The elements
can be

variables
lists variable names.
Range: The names must be either variables that you define in the ARRAY

statement or variables that SAS creates by concatenating the array name and a
number. For example, when the subscript is a number (not the asterisk), you do
not need to name each variable in the array. Instead, SAS creates variable
names by concatenating the array name and the numbers 1, 2, 3, …n.

Tip: These SAS variable lists enable you to reference variables that have been
previously defined in the same DATA step:

NUMERIC
specifies all numeric variables.

CHARACTER
specifies all character variables.

ALL
specifies all variables.

Restriction: If you use _ALL_, all the previously defined variables must be of the
same type.

Featured in: Example 1 on page 1398

TEMPORARY
creates a list of temporary data elements.
Range: Temporary data elements can be numeric or character.
Tip: Temporary data elements behave like DATA step variables with these

exceptions:
� They do not have names. Refer to temporary data elements by the array

name and dimension.
� They do not appear in the output data set.
� You cannot use the special subscript asterisk (*) to refer to all the elements.
� Temporary data element values are always automatically retained, rather

than being reset to missing at the beginning of the next iteration of the
DATA step.

Tip: Arrays of temporary elements are useful when the only purpose for creating
an array is to perform a calculation. To preserve the result of the calculation,
assign it to a variable. You can improve performance time by using temporary
data elements.

(initial-value-list)
gives initial values for the corresponding elements in the array. The values for
elements can be numbers or character strings. You must enclose all character strings
in quotation marks. To specify one or more initial values directly, use the following
format:

(initial-value(s))
To specify an iteration factor and nested sublists for the initial values, use the

following format:
<constant-iter-value*> <(>constant value | constant-sublist<)>

Restriction: If you specify both an initial-value-list and array-elements, then
array-elements must be listed before initial-value-list in the ARRAY statement.

1398 ARRAY Statement � Chapter 6

Tip: You can assign initial values to both variables and temporary data elements.

Tip: Elements and values are matched by position. If there are more array
elements than initial values, the remaining array elements receive missing values
and SAS issues a warning.

Featured in: Example 2 on page 1399, and Example 3 on page 1399

Tip: You can separate the values in the initial value list with either a comma or a
blank space.

Tip: You can also use a shorthand notation for specifying a range of sequential
integers. The increment is always +1.

Tip: If you have not previously specified the attributes of the array elements (such
as length or type), the attributes of any initial values that you specify are
automatically assigned to the corresponding array element.

Note: Initial values are retained until a new value is assigned to the array
element. �

Tip: When any (or all) elements are assigned initial values, all elements behave as
if they were named on a RETAIN statement.

Examples: The following examples show how to use the iteration factor and nested
sublists. All of these ARRAY statements contain the same initial value list:

� ARRAY x{10} x1-x10 (10*5);

� ARRAY x{10} x1-x10 (5*(5 5));

� ARRAY x{10} x1-x10 (5 5 3*(5 5) 5 5);

� ARRAY x{10} x1-x10 (2*(5 5) 5 5 2*(5 5));

� ARRAY x{10} x1-x10 (2*(5 2*(5 5)));

Details
The ARRAY statement defines a set of elements that you plan to process as a group.
You refer to elements of the array by the array name and subscript. Because you
usually want to process more than one element in an array, arrays are often referenced
within DO groups.

Comparisons
� Arrays in the SAS language are different from arrays in many other languages. A

SAS array is simply a convenient way of temporarily identifying a group of
variables. It is not a data structure, and array-name is not a variable.

� An ARRAY statement defines an array. An array reference uses an array element
in a program statement.

Examples

Example 1: Defining Arrays
� array rain {5} janr febr marr aprr mayr;

� array days{7} d1-d7;

� array month{*} jan feb jul oct nov;

� array x{*} _NUMERIC_;

� array qbx{10};

� array meal{3};

Statements � ARRAY Statement 1399

Example 2: Assigning Initial Numeric Values
� array test{4} t1 t2 t3 t4 (90 80 70 70);

� array test{4} t1-t4 (90 80 2*70);

� array test{4} _TEMPORARY_ (90 80 70 70);

Example 3: Defining Initial Character Values
� array test2{*} $ a1 a2 a3 (’a’,’b’,’c’);

Example 4: Defining More Advanced Arrays
� array new{2:5} green jacobs denato fetzer;

� array x{5,3} score1-score15;

� array test{3:4,3:7} test1-test10;

� array temp{0:999} _TEMPORARY_;

� array x{10} (2*1:5);

Example 5: Creating a Range of Variable Names That Have Leading Zeros The
following example shows that you can create a range of variable names that have
leading zeros. Each variable name has a length of three characters, and the names sort
correctly (A01, A02, … A10). Without leading zeros, the variable names would sort in
the following order: A1, A10, A2, … A9.

options pageno=1 nodate ps=64 ls=80;

data test (drop=i);
array a(10) A01-A10;
do i=1 to 10;

a(i)=i;
end;

run;

proc print noobs data=test;
run;

Output 6.1 Array Names That Have Leading Zeros

The SAS System 1

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10

1 2 3 4 5 6 7 8 9 10

See Also

Statement:
“Array Reference Statement” on page 1400

“Array Processing” in SAS Language Reference: Concepts

1400 Array Reference Statement � Chapter 6

Array Reference Statement

Describes the elements in an array to be processed.

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
array-name { subscript }

Arguments

array-name
is the name of an array that was previously defined with an ARRAY statement in the
same DATA step.

{subscript}
specifies the subscript. Any of these forms can be used:

{variable-1< , …variable-n>}
specifies a variable, or variable list that is usually used with DO-loop processing.
For each execution of the DO loop, the current value of this variable becomes the
subscript of the array element being processed.
Featured in: Example 1 on page 1401
Tip: You can enclose a subscript in braces ({ }), brackets ([]), or parentheses (()).

{*}
forces SAS to treat the elements in the array as a variable list.
Tip: The asterisk can be used with the INPUT and PUT statements, and with

some SAS functions.
Tip: This syntax is provided for convenience and is an exception to usual array

processing.
Restriction: When you define an array that contains temporary array elements,

you cannot reference the array elements with an asterisk.
Featured in: Example 4 on page 1402

expression-1< , . . . expression-n>
specifies a SAS expression.
Range: The expression must evaluate to a subscript value when the statement

that contains the array reference executes. The expression can also be an
integer with a value between the lower and upper bounds of the array, inclusive.

Featured in: Example 3 on page 1402

Details
� To refer to an array in a program statement, use an array reference. The ARRAY

statement that defines the array must appear in the DATA step before any
references to that array. An array definition is only in effect for the duration of the

Statements � Array Reference Statement 1401

DATA step. If you want to use the same array in several DATA steps, redefine the
array in each step.

CAUTION:
Using the name of a SAS function as an array name can cause unpredictable results.
If you inadvertently use a function name as the name of the array, SAS treats
parenthetical references that involve the name as array references, not function
references, for the duration of the DATA step. A warning message is written to
the SAS log. �

� You can use an array reference anywhere that you can write a SAS expression,
including SAS functions and these SAS statements:

� assignment statement

� sum statement
� DO UNTIL(expression)

� DO WHILE(expression)

� IF

� INPUT
� PUT

� SELECT

� WINDOW.

� The DIM function is often used with the iterative DO statement to return the
number of elements in a dimension of an array, when the lower bound of the
dimension is 1. If you use DIM, you can change the number of array elements
without changing the upper bound of the DO statement. For example, because
DIM(NEW) returns a value of 4, the following statements process all the elements
in the array:

array new{*} score1-score4;
do i=1 to dim(new);

new{i}=new{i}+10;
end;

Comparisons
� An ARRAY statement defines an array, whereas an array reference defines the

members of the array to process.

Examples

Example 1: Using Iterative DO-Loop Processing In this example, the statements
process each element of the array, using the value of variable I as the subscript on the
array references for each iteration of the DO loop. If an array element has a value of
99, the IF-THEN statement changes that value to 100.

array days{7} d1-d7;
do i=1 to 7;

if days{i}=99 then days{i}=100;
end;

Example 2: Referencing Many Arrays in One Statement You can refer to more than
one array in a single SAS statement. In this example, you create two arrays, DAYS and
HOURS. The statements inside the DO loop substitute the current value of variable I to
reference each array element in both arrays.

1402 Assignment Statement � Chapter 6

array days{7} d1-d7;
array hours{7} h1-h7;

do i=1 to 7;
if days{i}=99 then days{i}=100;
hours{i}=days{i}*24;

end;

Example 3: Specifying the Subscript In this example, the INPUT statement reads in
variables A1, A2, and the third element (A3) of the array named ARR1:

array arr1{*} a1-a3;
x=1;
input a1 a2 arr1{x+2};

Example 4: Using the Asterisk References as a Variable List
� array cost{10} cost1-cost10;

totcost=sum(of cost {*});

� array days{7} d1-d7;
input days {*};

� array hours{7} h1-h7;
put hours {*};

See Also

Function:
“DIM Function” on page 646

Statements
“ARRAY Statement” on page 1395
“DO Statement, Iterative” on page 1446

“Array Processing” in SAS Language Reference: Concepts

Assignment Statement

Evaluates an expression and stores the result in a variable.

Valid: in a DATA step
Category: Action
Type: Executable

Syntax
variable=expression;

Arguments

variable

Statements � ATTRIB Statement 1403

names a new or existing variable.
Range: Variable can be a variable name, array reference, or SUBSTR function.
Tip: Variables that are created by the Assignment statement are not automatically

retained.

expression
is any SAS expression.
Tip: expression can contain the variable that is used on the left side of the equal

sign. When a variable appears on both sides of a statement, the original value on
the right side is used to evaluate the expression, and the result is stored in the
variable on the left side of the equal sign. For more information, see “Expressions”
in SAS Language Reference: Concepts.

Details
Assignment statements evaluate the expression on the right side of the equal sign and
store the result in the variable that is specified on the left side of the equal sign.

Examples

These assignment statements use different types of expressions:
� name=’Amanda Jones’;

� WholeName=’Ms. ’||name;

� a=a+b;

See Also

Statement:
“Sum Statement” on page 1725

ATTRIB Statement

Associates a format, informat, label, and length with one or more variables.

Valid: in a DATA step
Category: Information
Type: Declarative
See: ATTRIB Statement in the documentation for your operating environment.

Syntax
ATTRIB variable-list(s) attribute-list(s) ;

Arguments

variable-list(s)

1404 ATTRIB Statement � Chapter 6

names the variables that you want to associate with the attributes.

Tip: List the variables in any form that SAS allows.

attribute-list(s)
specifies one or more attributes to assign to variable-list. Specify one or more of these
attributes in the ATTRIB statement:

FORMAT=format
associates a format with variables in variable-list.

Tip: The format can be either a standard SAS format or a format that is defined
with the FORMAT procedure.

INFORMAT=informat
associates an informat with variables in variable-list.

Tip: The informat can be either a standard SAS informat or an informat that is
defined with the FORMAT procedure.

LABEL=’label’
associates a label with variables in variable-list.

LENGTH=<$>length
specifies the length of variables in variable-list.

Requirement: Put a dollar sign ($) in front of the length of character variables.

Tip: Use the ATTRIB statement before the SET statement to change the length of
variables in an output data set when you use an existing data set as input.

Range: For character variables, the range is 1 to 32,767 for all operating
environments.

Operating Environment Information: For numeric variables, the minimum
length you can specify with the LENGTH= specification is 2 in some operating
environments and 3 in others. �

Restriction: You cannot change the length of a variable using LENGTH= from
PROC DATASETS.

TRANSCODE=YES | NO
specifies whether character variables can be transcoded. Use TRANSCODE=NO to
suppress transcoding. For more information about transcoding, see “Transcoding”
in the SAS National Language Support (NLS): Reference Guide.

Default: YES

Restriction: The TRANSCODE=NO attribute is not supported by some SAS
Workspace Server clients. In SAS 9.2, if the attribute is not supported, variable
values with TRANSCODE=NO are replaced (masked) with asterisks (*). Before
SAS 9.2, variables with TRANSCODE=NO were transcoded.

Restriction: Prior releases of SAS cannot access a SAS 9.1 data set that contains
a variable with a TRANSCODE=NO attribute.

Restriction: Transcode suppression is not supported by the V6TAPE engine.

Interaction: You can use the VTRANSCODE and VTRANSCODEX functions to
return a value that indicates whether transcoding is on or off for a character
variable.

Interaction: If the TRANSCODE= attribute is set to NO for any character
variable in a data set, then PROC CONTENTS prints a transcode column that
contains the TRANSCODE= value for each variable in the data set. If all
variables in the data set are set to the default TRANSCODE= value (YES), then
no transcode column prints.

Statements � ATTRIB Statement 1405

Details

The Basics Using the ATTRIB statement in the DATA step permanently associates
attributes with variables by changing the descriptor information of the SAS data set
that contains the variables.

You can use ATTRIB in a PROC step, but the rules are different.

How SAS Treats Variables When You Assign Informats with the INFORMAT= Option in the
ATTRIB Statement Informats that are associated with variables by using the
INFORMAT= option in the ATTRIB statement behave like informats that are used with
modified list input. SAS reads the variables by using the scanning feature of list input,
but applies the informat. In modified list input, SAS

� does not use the value of w in an informat to specify column positions or input
field widths in an external file

� uses the value of w in an informat to specify the length of previously undefined
character variables

� ignores the value of w in numeric informats

� uses the value of d in an informat in the same way it usually does for numeric
informats

� treats blanks that are embedded as input data as delimiters unless you change
their status with the DLM= or DLMSTR= option specification in an INFILE
statement.

If you have coded the INPUT statement to use another style of input, such as
formatted input or column input, that style of input is not used when you use the
INFORMAT= option in the ATTRIB statement.

How SAS Treats Transcoded Variables When You Use the SET and MERGE
Statements When you use the SET or MERGE statement to create a data set from
several data sets, SAS makes the TRANSCODE= attribute of the variable in the output
data set equal to the TRANSCODE= value of the variable in the first data set. See
Example 2 on page 1406 and Example 3 on page 1406.

Note: The TRANSCODE= attribute is set when the variable is first seen on an
input data set or in an ATTRIB TRANSCODE= statement. If a SET or MERGE
statement comes before an ATTRIB TRANSCODE= statement and the TRANSCODE=
attribute contradicts the SET statement, a warning will occur. �

Comparisons
You can use either an ATTRIB statement or an individual attribute statement such as
FORMAT, INFORMAT, LABEL, and LENGTH to change an attribute that is associated
with a variable.

Examples

Example 1: Examples of ATTRIB Statements with Varying Numbers of Variables and
Attributes Here are examples of ATTRIB statements that contain different numbers
of variables and attributes:

� single variable and single attribute:

attrib cost length=4;

1406 ATTRIB Statement � Chapter 6

� single variable with multiple attributes:

attrib saleday informat=mmddyy.
format=worddate.;

� multiple variables with the same multiple attributes:

attrib x y length=$4 label=’TEST VARIABLE’;

� multiple variables with different multiple attributes:

attrib x length=$4 label=’TEST VARIABLE’
y length=$2 label=’RESPONSE’;

� variable list with single attribute:

attrib month1-month12
label=’MONTHLY SALES’;

Example 2: Using the SET Statement with Transcoded Variables

In this example, which uses the SET statement, the variable Z’s TRANSCODE=
attribute in data set A is NO because B is the first data set and Z’s TRANSCODE=
attribute in data set B is NO.

data b;
length z $4;
z = ’ice’;
attrib z transcode = no;

data c;
length z $4;
z = ’snow’;
attrib z transcode = yes;

data a;
set b;
set c;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Example 3: Using the MERGE Statement with Transcoded Variables In this example,
which uses the MERGE statement, the variable Z’s TRANSCODE= attribute in data set
A is YES because C is the first data set and Z’s TRANSCODE= attribute in data set C
is YES.

data b;
length z $4;
z = ’ice’;
attrib z transcode = no;

data c;
length z $4;
z = ’snow’;
attrib z transcode = yes;

data a;
merge c b;
/* Check transcode setting for variable Z */
rc1 = vtranscode(z);
put rc1=;

run;

Statements � BY Statement 1407

See Also

Statements:
“FORMAT Statement” on page 1528

“INFORMAT Statement” on page 1566
“LABEL Statement” on page 1601
“LENGTH Statement” on page 1605

Functions:
VTRANSCODE in the SAS National Language Support (NLS): Reference Guide

VTRANSCODEX in the SAS National Language Support (NLS): Reference Guide

BY Statement

Controls the operation of a SET, MERGE, MODIFY, or UPDATE statement in the DATA step and sets
up special grouping variables.

Valid: in a DATA step or a PROC step

Category: File-handling
Type: Declarative

Syntax
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n > <NOTSORTED><GROUPFORMAT>;

Arguments

DESCENDING
specifies that the data sets are sorted in descending order by the variable that is
specified. DESCENDING means largest to smallest numerically, or reverse
alphabetical for character variables.
Restriction: You cannot use the DESCENDING option with data sets that are

indexed because indexes are always stored in ascending order.
Featured in: Example 2 on page 1410

GROUPFORMAT
uses the formatted values, instead of the internal values, of the BY variables to
determine where BY groups begin and end, and therefore how FIRST.variable and
LAST.variable are assigned. Although the GROUPFORMAT option can appear
anywhere in the BY statement, the option applies to all variables in the BY
statement.
Restriction: You must sort the observations in a data set based on the value of the

BY variables before using the GROUPFORMAT option in the BY statement.

Restriction: You can use the GROUPFORMAT option in a BY statement only in a
DATA step.

1408 BY Statement � Chapter 6

Interaction: If you also use the NOTSORTED option, you can group the
observations in a data set by the formatted value of the BY variables without
requiring that the data set be sorted or indexed.

Tip: Using the GROUPFORMAT option is useful when you define your own formats
to display data that is grouped.

Tip: Using the GROUPFORMAT option in the DATA step ensures that BY groups
that you use to create a data set match the BY groups in PROC steps that report
grouped, formatted data.

Comparison: BY-group processing in the DATA step using the GROUPFORMAT
option is the same as BY-group processing with formatted values in SAS
procedures.

See Also: By-Group Processing in the DATA Step in SAS Language Reference:
Concepts

Featured in: Example 4 on page 1410

variable
names each variable by which the data set is sorted or indexed. These variables are
referred to as BY variables for the current DATA or PROC step.
Tip: The data set can be sorted or indexed by more than one variable.
Featured in: Example 1 on page 1410, Example 2 on page 1410, Example 3 on page

1410, and Example 4 on page 1410

NOTSORTED
specifies that observations with the same BY value are grouped together but are not
necessarily sorted in alphabetical or numeric order.
Restriction: You cannot use the NOTSORTED option with the MERGE and

UPDATE statements.
Tip: The NOTSORTED option can appear anywhere in the BY statement.
Tip: Using the NOTSORTED option is useful if you have data that falls into other

logical groupings such as chronological order or categories.
Featured in: Example 3 on page 1410

Details

How SAS Identifies the Beginning and End of a BY Group SAS identifies the beginning
and end of a BY group by creating two temporary variables for each BY variable:
FIRST.variable and LAST.variable. The value of these variables is either 0 or 1. SAS
sets the value of FIRST.variable to 1 when it reads the first observation in a BY group,
and sets the value of LAST.variable to 1 when it reads the last observation in a BY
group. These temporary variables are available for DATA step programming but are not
added to the output data set.

For a complete explanation of how SAS processes grouped data and of how to prepare
your data, see “By-Group Processing in the DATA Step” in SAS Language Reference:
Concepts.

In a DATA Step The BY statement applies only to the SET, MERGE, MODIFY, or
UPDATE statement that precedes it in the DATA step, and only one BY statement can
accompany each of these statements in a DATA step.

The data sets that are listed in the SET, MERGE, or UPDATE statements must be
sorted by the values of the variables that are listed in the BY statement or have an
appropriate index. As a default, SAS expects the data sets to be arranged in ascending
numeric order or in alphabetical order. The observations can be arranged by one of the
following methods:

Statements � BY Statement 1409

� sorting the data set
� creating an index for the variables
� inputting the observations in order.

Note: MODIFY does not require sorted data, but sorting can improve performance. �

Note: The BY statement honors the linguistic collation of data that is sorted by
using the SORT procedure with the SORTSEQ=LINGUISTIC option. �

For more information, see “How to Prepare Your Data Sets” in SAS Language
Reference: Concepts.

In a PROC Step You can specify the BY statement with some SAS procedures to
modify their action. Refer to the individual procedure in the Base SAS Procedures
Guide for a discussion of how the BY statement affects processing for SAS procedures.

With SAS Views If you create a DATA step view by reading from a DBMS and the
SET, MERGE, UPDATE, or MODIFY statement is followed by a BY statement, the BY
statement might cause the DBMS to sort the data in order to return the data in sorted
order. Sorting the data could increase execution time.

Processing BY Groups SAS assigns the following values to FIRST.variable and
LAST.variable:

� FIRST.variable has a value of 1 under the following conditions:
� when the current observation is the first observation that is read from the

data set.
� when you do not use the GROUPFORMAT option and the internal value of

the variable in the current observation differs from the internal value in the
previous observation.

If you use the GROUPFORMAT option, FIRST.variable has a value of 1
when the formatted value of the variable in the current observation differs
from the formatted value in the previous observation.

� FIRST.variable has a value of 1 for any preceding variable in the BY
statement.

In all other cases, FIRST.variable has a value of 0.

� LAST.variable has a value of 1 under the following conditions:
� when the current observation is the last observation that is read from the

data set.
� when you use the GROUPFORMAT option and the internal value of the

variable in the current observation differs from the internal value in the next
observation.

If you use the GROUPFORMAT option, LAST.variable has a value of 1
when the formatted value of the variable in the current observation differs
from the formatted value in the next observation.

� LAST.variable has a value of 1 for any preceding variable in the BY
statement.

In all other cases, LAST.variable has a value of 0.

Examples

1410 BY Statement � Chapter 6

Example 1: Specifying One or More BY Variables
� Observations are in ascending order of the variable DEPT:

by dept;

� Observations are in alphabetical (ascending) order by CITY and, within each value
of CITY, in ascending order by ZIPCODE:

by city zipcode;

Example 2: Specifying Sort Order
� Observations are in ascending order of SALESREP and, within each SALESREP

value, in descending order of the values of JANSALES:

by salesrep descending jansales;

� Observations are in descending order of BEDROOMS, and, within each value of
BEDROOMS, in descending order of PRICE:

by descending bedrooms descending price;

Example 3: BY-Group Processing with Nonsorted Data Observations are ordered by
the name of the month in which the expenses were accrued:

by month notsorted;

Example 4: Grouping Observations By Using Formatted Values The following example
illustrates the use of the GROUPFORMAT option.

proc format;
value range

low -55 = ’Under 55’
55-60 = ’55 to 60’
60-65 = ’60 to 65’
65-70 = ’65 to 70’
other = ’Over 70’;

run;

proc sort data=class out=sorted_class;
by height;

run;

data _null_;
format height range.;
set sorted_class;

by height groupformat;
if first.height then

put ’Shortest in ’ height ’measures ’ height:best12.;
run;

SAS writes the following output to the log:

Shortest in Under 55 measures 51.3
Shortest in 55 to 60 measures 56.3
Shortest in 60 to 65 measures 62.5
Shortest in 65 to 70 measures 65.3
Shortest in Over 70 measures 72

Statements � BY Statement 1411

Example 5: Combining Multiple Observations and Grouping Them Based on One BY
Value The following example shows how to use FIRST.variable and LAST.variable
with BY-group processing.

options pageno=1 nodate ls=80 ps=64;

data Inventory;
length RecordID 8 Invoice $ 30 ItemLine $ 50;
infile datalines;
input RecordID Invoice ItemLine &;
drop RecordID;
datalines;

A74 A5296 Highlighters
A75 A5296 Lot # 7603
A76 A5296 Yellow Blue Green
A77 A5296 24 per box
A78 A5297 Paper Clips
A79 A5297 Lot # 7423
A80 A5297 Small Medium Large
A81 A5298 Gluestick
A82 A5298 Lot # 4422
A83 A5298 New item
A84 A5299 Rubber bands
A85 A5299 Lot # 7892
A86 A5299 Wide width, Narrow width
A87 A5299 1000 per box
;

data combined;
array Line[4] $ 60 ;
retain Line1-Line4;
keep Invoice Line1-Line4;

set Inventory;
by Invoice;

if first.Invoice then do;
call missing(of Line1-Line4);
records = 0;

end;

records + 1;
Line[records]=ItemLine;

if last.Invoice then output;
run;

proc print data=combined;
title ’Office Supply Inventory’;

run;

1412 CALL Statement � Chapter 6

Output 6.2 Output from Combining Multiple Observations

Office Supply Inventory 1

Obs Line1 Line2 Line3 Line4 Invoice

1 Highlighters Lot # 7603 Yellow Blue Green 24 per box A5296
2 Paper Clips Lot # 7423 Small Medium Large A5297
3 Gluestick Lot # 4422 New item A5298
4 Rubber bands Lot # 7892 Wide width, Narrow width 1000 per box A5299

See Also

Statements:
“MERGE Statement” on page 1630
“MODIFY Statement” on page 1634
“SET Statement” on page 1712
“UPDATE Statement” on page 1734

CALL Statement

Invokes a SAS CALL routine.

Valid: in a DATA step
Category: Action
Type: Executable

Syntax
CALL routine(parameter-1<, …parameter-n>);

Arguments

routine
specifies the name of the SAS CALL routine that you want to invoke. For
information about available routines, see Chapter 4, “Functions and CALL Routines,”
on page 295.

(parameter)
is a piece of information to be passed to or returned from the routine.
Requirement: Enclose this information, which depends on the specific routine, in

parentheses.
Tip: You can specify additional parameters, separated by commas.

Details
SAS CALL routines can assign variable values and perform other system functions.

Statements � CATNAME Statement 1413

See Also
Chapter 4, “Functions and CALL Routines,” on page 295

CARDS Statement

Specifies that data lines follow.

Valid: in a DATA step
Category: File-handling
Type: Declarative
Alias: DATALINES, LINES
See: “DATALINES Statement” on page 1427
See Also: CARDS Statement in the SAS Companion for UNIX Environments

CARDS4 Statement

Specifies that data lines that contain semicolons follow.

Valid: in a DATA step
Category: File-handling
Type: Declarative
Alias: DATALINES4, LINES4
See: “DATALINES4 Statement” on page 1429

CATNAME Statement

Logically combines two or more catalogs into one by associating them with a catref (a shortcut
name); clears one or all catrefs; lists the concatenated catalogs in one concatenation or in all
concatenations.

Valid: Anywhere
Category: Data Access

Syntax
CATNAME <libref.> catref

1414 CATNAME Statement � Chapter 6

< (libref-1.catalog-1 <(ACCESS=READONLY)>
<...libref-n.catalog–n <(ACCESS=READONLY)>)> ;

CATNAME <libref.> catref CLEAR | _ALL_ CLEAR;

CATNAME <libref.> catref LIST | _ALL_ LIST;

Arguments

libref
is any previously assigned SAS libref. If you do not specify a libref, SAS concatenates
the catalog in the Work library, using the catref that you specify.

Restriction: The libref must have been previously assigned.

catref
is a unique catalog reference name for a catalog or a catalog concatenation that is
specified in the statement. Separate the catref from the libref with a period, as in
libref.catref. Any SAS name can be used for this catref.

catalog
is the name of a catalog that is available for use in the catalog concatenation.

Options
CLEAR

disassociates a currently assigned catref or libref.catref.

Tip: Specify a specific catref or libref.catref to disassociate it from a single
concatenation. Specify _ALL_ CLEAR to disassociate all currently assigned
catref or libref.catref concatenations.

ALL CLEAR
disassociates all currently assigned catref or libref.catref concatenations.

LIST
writes the catalog names that are included in the specified concatenation to the
SAS log.

Tip: Specify catref or libref.catref to list the attributes of a single concatenation.
Specify _ALL_ to list the attributes of all catalog concatenations in your current
session.

ALL LIST
writes all catalog names that are included in any current catalog concatenation to
the SAS log.

ACCESS=READONLY
assigns a read-only attribute to the catalog. SAS, therefore, will allow users to read
from the catalog entries but not to update information or to write new information.

Details

Why Use CATNAME? CATNAME is useful because it enables you to access entries in
multiple catalogs by specifying a single catalog reference name (libref.catref or catref).
After you create a catalog concatenation, you can specify the catref in any context that
accepts a simple (non-concatenated) catref.

Statements � CATNAME Statement 1415

Rules for Catalog Concatenation To use catalog concatenation effectively, you must
understand the rules that determine how catalog entries are located among the
concatenated catalogs:

1 When a catalog entry is opened for input or update, the concatenated catalogs are
searched and the first occurrence of the specified entry is used.

2 When a catalog entry is opened for output, it will be created in the first catalog
that is listed in the concatenation.

Note: A new catalog entry is created in the first catalog even if there is an
entry with the same name in another part of the concatenation. �

Note: If the first catalog in a concatenation that is opened for update does not
exist, the item will be written to the next catalog that exists in the concatenation. �

3 When you want to delete or rename a catalog entry, only the first occurrence of the
entry is affected.

4 Any time a list of catalog entries is displayed, only one occurrence of a catalog
entry name is shown.

Note: Even if the name occurs multiple times in the concatenation, only the
first occurrence is shown. �

Comparisons
� The CATNAME statement is like a LIBNAME statement for catalogs. The

LIBNAME statement allows you to assign a shortcut name to a SAS library so
that you can use the shortcut name to find the files and use the data they contain.
CATNAME allows you to assign a short name <libref.>catref (libref is optional) to
one or more catalogs so that SAS can find the catalogs and use all or some of the
entries in each catalog.

� The CATNAME statement explicitly concatenates SAS catalogs. You can use the
LIBNAME statement to implicitly concatenate SAS catalogs.

Examples

Example 1: Assigning and Using a Catalog Concatenation You might need to access
entries in several SAS catalogs. The most efficient way to access the information is to
logically concatenate the catalogs. Catalog concatenation enables access to the
information without actually creating a new, separate, and possibly very large catalog.

Assign librefs to the SAS libraries that contain the catalogs that you want to
concatenate:

libname mylib1 ’data-library-1’;
libname mylib2 ’data-library-2’;

Assign a catref, which can be any valid SAS name, to the list of catalogs that you
want to logically concatenate:

catname allcats (mylib1.catalog1 mylib2.catalog2);

The SAS log displays this message:

Output 6.3 Log Output from CATNAME Statement

NOTE: Catalog concatenation WORK.ALLCATS has been created.

1416 CHECKPOINT EXECUTE_ALWAYS Statement � Chapter 6

Because no libref is specified, the libref is WORK by default. When you want to
access a catalog entry in either of these catalogs, use the libref WORK and the catalog
reference name ALLCATS instead of the original librefs and catalog names. For
example, to access a catalog entry named APPKEYS.KEYS in the catalog
MYLIB1.CATALOG1, specify

work.allcats.appkeys.keys

Example 2: Creating a Nested Catalog Concatenation After you create a concatenated
catalog, you can use CATNAME to combine your concatenation with other single
catalogs or other concatenated catalogs. Nested catalog concatenation is useful, because
you can use a single catref to access many different catalog combinations.

libname local ’my_dir’;
libname main ’public_dir’;

catname private_catalog (local.my_application_code
local.my_frames
local.my_formats);

catname combined_catalogs (private_catalog
main.public_catalog);

In the above example, you could work on private copies of your application entries by
using PRIVATE_CATALOG. If you want to see how your entries function when they are
combined with the public version of the application, you can use
COMBINED_CATALOGS.

See Also

Statements:

“FILENAME Statement” on page 1473

“FILENAME Statement, CATALOG Access Method” on page 1479

“LIBNAME Statement” on page 1607 for a discussion of implicitly concatenating
SAS catalogs.

CHECKPOINT EXECUTE_ALWAYS Statement

Indicates to execute the DATA step or PROC step that immediately follows without considering the
checkpoint-restart data.

Valid: Anywhere

Category: Program Control

Syntax
CHECKPOINT EXECUTE_ALWAYS;

Statements � Comment Statement 1417

Without Arguments

The CHECKPOINT EXECUTE_ALWAYS statement indicates to SAS that the DATA
step or PROC step that immediately follows is to be executed without considering the
checkpoint data.

Details
If checkpoint-restart mode is enabled and a batch program terminates without
completing, the program can be rerun beginning with the DATA step or PROC step that
was executing when it terminated. DATA or PROC steps that completed before the
batch program terminated are not reexecuted. If a DATA step or a PROC step must be
reexecuted, you can add the CHECKPOINT EXECUTE_ALWAYS statement before the
step. Using the CHECKPOINT EXECUTE_ALWAYS statement ensures that SAS
always executes the step without regard to the checkpoint-restart data.

See Also

System Options:

“STEPCHKPT System Option” on page 1954
“STEPCHKPTLIB= System Option” on page 1955

“STEPRESTART System Option” on page 1956
“Restarting Batch Programs” in SAS Language Reference: Concepts

Comment Statement

Specifies the purpose of the statement or program.

Valid: anywhere
Category: Log Control

Syntax
*message;

or

/*message*/

Arguments

*message;
specifies the text that explains or documents the statement or program.

Range: These comments can be any length and are terminated with a semicolon.
Restriction: These comments must be written as separate statements.

1418 Comment Statement � Chapter 6

Restriction: These comments cannot contain internal semicolons or unmatched
quotation marks.

Restriction: A macro statement or macro variable reference that is contained inside
this form of comment is processed by the SAS macro facility. This form of
comment cannot be used to hide text from the SAS macro facility.

Tip: When using comments within a macro definition or to hide text from the SAS
macro facility, use this style comment:

/* message */

/*message*/
specifies the text that explains or documents the statement or program.
Range: These comments can be any length.
Restriction: This type of comment cannot be nested.
Tip: These comments can contain semicolons and unmatched quotation marks.
Tip: You can write these comments within statements or anywhere a single blank

can appear in your SAS code.
Tip: In the Microsoft Windows operating environment, if you use the Enhanced

Editor, you can comment out a block of code by highlighting the block and then
pressing CTRL-/ (forward slash). To uncomment a block of code, highlight the
block and press CTRL-SHIFT-/ (forward slash).

Details
You can use the comment statement anywhere in a SAS program to document the
purpose of the program, explain unusual segments of the program, or describe steps in
a complex program or calculation. SAS ignores text in comment statements during
processing.

CAUTION:
Avoid placing the /* comment symbols in columns 1 and 2. In some operating
environments, SAS might interpret a /* in columns 1 and 2 as a request to end the
SAS program or session. �

Note: You can add these lines to your code to fix unmatched comment tags,
unmatched quotation marks, and missing semicolons.

/* ’; * "; */;
quit;
run;

�

Examples

These examples illustrate the two types of comments:
� This example uses the *message; format:

*This code finds the number in the BY group;

� This example uses the *message; format:

| This uses one comment statement |
| to draw a box. |
---------------------------------------;

Statements � CONTINUE Statement 1419

� This example uses the /*message*/ format:

input @1 name $20. /* last name */
@200 test 8. /* score test */
@50 age 3.; /* customer age */

� This example uses the /*message*/ format:

/* For example 1 use: x=abc;
for example 2 use: y=ghi; */

CONTINUE Statement

Stops processing the current DO-loop iteration and resumes processing the next iteration.

Valid: in a DATA step
Category: Control
Type: Executable
Restriction: Can be used only in a DO loop

Syntax
CONTINUE;

Without Arguments
The CONTINUE statement has no arguments. It stops processing statements within

the current DO-loop iteration based on a condition. Processing resumes with the next
iteration of the DO loop.

Comparisons
� The CONTINUE statement stops the processing of the current iteration of a loop

and resumes with the next iteration; the LEAVE statement causes processing of
the current loop to end.

� You can use the CONTINUE statement only in a DO loop; you can use the LEAVE
statement in a DO loop or a SELECT group.

Examples

This DATA step creates a report of benefits for new full-time employees. If an
employee’s status is PT (part-time), the CONTINUE statement prevents the second
INPUT statement and the OUTPUT statement from executing.

data new_emp;
drop i;
do i=1 to 5;

input name $ idno status $;
/* return to top of loop */
/* when condition is true */

if status=’PT’ then continue;
input benefits $10.;
output;

end;

1420 DATA Statement � Chapter 6

datalines;
Jones 9011 PT
Thomas 876 PT
Richards 1002 FT
Eye/Dental
Kelly 85111 PT
Smith 433 FT
HMO
;

See Also

Statements:

“DO Statement, Iterative” on page 1446

“LEAVE Statement” on page 1604

DATA Statement

Begins a DATA step and provides names for any output SAS data sets, views, or programs.

Valid: in a DATA step

Category: File-handling

Type: Declarative

Syntax
uDATA <data-set-name-1 <(data-set-options-1)>>

<… data-set-name-n <(data-set-options-n)>> </ <DEBUG> <NESTING> <STACK
= stack-size>> <NOLIST>;

vDATA _NULL_ </ <DEBUG> <NESTING> <STACK = stack-size>> <NOLIST>;

wDATA view-name <data-set-name-1 <(data-set-options-1)>>
<… data-set-name-n <(data-set-options-n)>> /
VIEW=view-name <(<password-option><SOURCE=source-option>)>

<NESTING> <NOLIST>;

xDATA data-set-name / PGM=program-name
<(<password-option><SOURCE=source-option>)> <NESTING> <NOLIST>;

yDATA VIEW=view-name <(password-option)> <NOLIST>;

DESCRIBE;

UDATA PGM=program-name <(password-option)> <NOLIST>;

<DESCRIBE;>

<REDIRECT INPUT | OUTPUT old-name-1 = new-name-1<… old-name-n =
new-name-n>;>

<EXECUTE;>

Statements � DATA Statement 1421

Without Arguments
If you omit the arguments, the DATA step automatically names each successive data

set that you create as DATAn, where n is the smallest integer that makes the name
unique.

Arguments
data-set-name

names the SAS data file or DATA step view that the DATA step creates. To create
a DATA step view, you must specify at least one data-set-name and that
data-set-name must match view-name.
Restriction: data-set-name must conform to the rules for SAS names, and

additional restrictions might be imposed by your operating environment.
Tip: You can execute a DATA step without creating a SAS data set. See Example

5 on page 1426 for an example. For more information, see “vWhen Not
Creating a Data Set” on page 1424.

See also: For details about the types of SAS data set names and when to use each
type, see “Names in the SAS Language” in SAS Language Reference: Concepts.

(data-set-options)
specifies optional arguments that the DATA step applies when it writes
observations to the output data set.

See also: “Definition of Data Set Options” on page 10 for more information and
Chapter 2, “SAS Data Set Options,” on page 9 for a list of data set options .

Featured in: Example 1 on page 1425

/ DEBUG
enables you to debug your program interactively by helping to identify logic errors,
and sometimes data errors.

/ NESTING
specifies that a note will be printed to the SAS log for the beginning and end of
each DO-END and SELECT-END nesting level. This option enables you to debug
mismatched DO-END and SELECT-END statements and is particularly useful in
large programs where the nesting level is not obvious.

/ STACK=stack-size
specifies the maximum number of nested LINK statements.

NULL
specifies that SAS does not create a data set when it executes the DATA step.

VIEW=view-name
names a view that the DATA step uses to store the input DATA step view.
Restriction: view-name must match one of the data set names.
Restriction: SAS creates only one view in a DATA step.

Tip: If you specify additional data sets in the DATA statement, SAS creates these
data sets when the view is processed in a subsequent DATA or PROC step.
Views have the capability of generating other data sets at the time the view is
executed.

Tip: SAS macro variables resolve when the view is created. Use the SYMGET
function to delay macro variable resolution until the view is processed.

Featured in: Example 2 on page 1425 and Example 3 on page 1425

password-option

1422 DATA Statement � Chapter 6

assigns a password to a stored compiled DATA step program or a DATA step view.
The following password options are available:

ALTER=alter-password
assigns an alter password to a SAS data file. The password allows you to
protect or replace a stored compiled DATA step program or a DATA step view.
Requirement: If you use an ALTER password in creating a stored compiled

DATA step program or a DATA step view, an ALTER password is required
to replace the program or view.

Requirement: If you use an ALTER password in creating a stored compiled
DATA step program or a DATA step view, an ALTER password is required
to execute a DESCRIBE statement.

Alias: PROTECT=

READ=read-password
assigns a read password to a SAS data file. The password allows you to read
or execute a stored compiled DATA step program or a DATA step view.
Requirement: If you use a READ password in creating a stored compiled

DATA step program or a DATA step view, a READ password is required to
execute the program or view.

Requirement: If you use a READ password in creating a stored compiled
DATA step program or a DATA step view, a READ password is required to
execute DESCRIBE and EXECUTE statements. If you use an invalid
password, SAS will execute the DESCRIBE statement.

Tip: If you use a READ password in creating a stored compiled DATA step
program or a DATA step view, no password is required to replace the
program or view.

Alias: EXECUTE=

PW=password
assigns a READ and ALTER password, both having the same value.

SOURCE=source-option
specifies one of the following source options:

SAVE
saves the source code that created a stored compiled DATA step program or a
DATA step view.

ENCRYPT
encrypts and saves the source code that created a stored compiled DATA step
program or a DATA step view.
Tip: If you encrypt source code, use the ALTER password option as well. SAS

issues a warning message if you do not use ALTER.

NOSAVE
does not save the source code.

CAUTION:
If you use the NOSAVE option for a DATA step view, the view cannot be
migrated or copied from one version of SAS to another version. �

Default: SAVE

PGM=program-name
names the stored compiled program that SAS creates or executes in the DATA step.
To create a stored compiled program, specify a slash (/) before the PGM= option. To
execute a stored compiled program, specify the PGM= option without a slash (/).

Statements � DATA Statement 1423

Tip: SAS macro variables resolve when the stored program is created. Use the
SYMGET function to delay macro variable resolution until the view is processed.

Featured in: Example 4 on page 1426

NOLIST
suppresses the output of all variables to the SAS log when the value of _ERROR_
is 1.
Restriction: NOLIST must be the last option in the DATA statement.

Details

Using the DATA Statement The DATA step begins with the DATA statement. You use
the DATA statement to create the following types of output: SAS data sets, data views,
and stored programs. You can specify more than one output in a DATA statement.
However, only one of the outputs can be a data view. You create a view by specifying
the wVIEW= option and a stored program by specifying the xPGM=option.

Using Both a READ and an ALTER Password If you use both a READ and an ALTER
password in creating a stored compiled DATA step program or a DATA step view, the
following items apply:

� A READ or ALTER password is required to execute the stored compiled DATA step
program or DATA step view.

� A READ or ALTER password is required if the stored compiled DATA step
program or DATA step view contains both DESCRIBE and EXECUTE statements.

� If you use an ALTER password with the DESCRIBE and EXECUTE
statements, the following items apply:

� SAS executes both the DESCRIBE and the EXECUTE statements.
� If you execute a stored compiled DATA step program or DATA step view

with an invalid ALTER password:
� The DESCRIBE statement does not execute.
� In batch mode, the EXECUTE statement has no effect.
� In interactive mode, SAS prompts you for a READ password. If the

READ password is valid, SAS processes the EXECUTE statement.
If it is invalid, SAS does not process the EXECUTE statement.

� If you use a READ password with the DESCRIBE and EXECUTE
statements, the following items apply:

� In interactive mode, SAS prompts you for the ALTER password:
� If you enter a valid ALTER password, SAS executes both the

DESCRIBE and the EXECUTE statements.
� If you enter an invalid ALTER password, SAS processes the

EXECUTE statement but not the DESCRIBE statement.

� In batch mode, SAS processes the EXECUTE statement but not the
DESCRIBE statement.

� In both interactive and batch modes, if you specify an invalid READ
password SAS does not process the EXECUTE statement.

� An ALTER password is required if the stored compiled DATA step program or
DATA step view contains a DESCRIBE statement.

� An ALTER password is required to replace the stored compiled DATA step
program or DATA step view.

1424 DATA Statement � Chapter 6

uCreating an Output Data Set Use the DATA statement to create one or more output
data sets. You can use data set options to customize the output data set. The following
DATA step creates two output data sets, example1 and example2. It uses the data set
option DROP to prevent the variable IDnumber from being written to the example2
data set.

data example1 example2 (drop=IDnumber);
set sample;
. . .more SAS statements. . .

run;

vWhen Not Creating a Data Set Usually, the DATA statement specifies at least one
data set name that SAS uses to create an output data set. However, when the purpose
of a DATA step is to write a report or to write data to an external file, you might not
want to create an output data set. Using the keyword _NULL_ as the data set name
causes SAS to execute the DATA step without writing observations to a data set. This
example writes to the SAS log the value of Name for each observation. SAS does not
create an output data set.

data _NULL_;
set sample;
put Name ID;

run;

wCreating a DATA Step View You can create DATA step views and execute them at a
later time. The following DATA step example creates a DATA step view. It uses the
SOURCE=ENCRYPT option to both save and encrypt the source code.

data phone_list / view=phone_list (source=encrypt);
set customer_list;
. . .more SAS statements. . .

run;

For more information about DATA step views, see “SAS Data Views” in SAS
Language Reference: Concepts.

xCreating a Stored Compiled DATA Step Program The ability to compile and store
DATA step programs allows you to execute the stored programs later. Stored compiled
DATA step programs can reduce processing costs by eliminating the need to compile
DATA step programs repeatedly. The following DATA step example compiles and stores
a DATA step program. It uses the ALTER password option, which allows the user to
replace an existing stored program, and to protect the stored compiled program from
being replaced.

data testfile / pgm=stored.test_program (alter=sales);
set sales_data;
. . .more SAS statements. . .

run;

For more information about stored compiled DATA step programs, see “Stored
Compiled DATA Step Programs” in SAS Language Reference: Concepts.

yDescribing a DATA Step View The following example uses the DESCRIBE
statement in a DATA step view to write a copy of the source code to the SAS log.

data view=inventory;
describe;

run;

Statements � DATA Statement 1425

For information about the DESCRIBE statement, see the “DESCRIBE Statement” on
page 1440.

UExecuting a Stored Compiled DATA Step Program The following example executes a
stored compiled DATA step program. It uses the DESCRIBE statement to write a copy
of the source code to the SAS log.

libname stored ’SAS library’;

data pgm=stored.employee_list;
describe;
execute;

run;

For information about the DESCRIBE statement, see the “DESCRIBE Statement” on
page 1440. For information about the EXECUTE statement, see the “EXECUTE
Statement” on page 1456.

Examples

Example 1: Creating Multiple Data Files and Using Data Set Options This DATA
statement creates more than one data set, and it changes the contents of the output
data sets:

data error (keep=subject date weight)
fitness(label=’Exercise Study’

rename=(weight=pounds));

The ERROR data set contains three variables. SAS assigns a label to the FITNESS
data set and renames the variable weight to pounds.

Example 2: Creating Input DATA Step Views This DATA step creates an input DATA
step view instead of a SAS data file:

libname ourlib ’SAS-library’;

data ourlib.test / view=ourlib.test;
set ourlib.fittest;
tot=sum(of score1-score10);

run;

Example 3: Creating a View and a Data File This DATA step creates an input DATA
step view named THEIRLIB.TEST and an additional temporary SAS data set named
SCORETOT:

libname ourlib ’SAS-library-1’;
libname theirlib ’SAS-library-2’;

data theirlib.test scoretot
/ view=theirlib.test;
set ourlib.fittest;
tot=sum(of score1-score10);

run;

SAS does not create the data file SCORETOT until a subsequent DATA or PROC
step processes the view THEIRLIB.TEST.

1426 DATA Statement � Chapter 6

Example 4: Storing and Executing a Compiled Program The first DATA step produces
a stored compiled program named STORED.SALESFIG:

libname in ’SAS-library-1 ’;
libname stored ’SAS-library-2 ’;

data salesdata / pgm=stored.salesfig;
set in.sales;
qtr1tot=jan+feb+mar;

run;

SAS creates the data set SALESDATA when it executes the stored compiled program
STORED.SALESFIG.

data pgm=stored.salesfig;
run;

Example 5: Creating a Custom Report The second DATA step in this program
produces a custom report and uses the _NULL_ keyword to execute the DATA step
without creating a SAS data set:

data sales;
input dept : $10. jan feb mar;
datalines;

shoes 4344 3555 2666
housewares 3777 4888 7999
appliances 53111 7122 41333
;

data _null_;
set sales;
qtr1tot=jan+feb+mar;
put ’Total Quarterly Sales: ’

qtr1tot dollar12.;
run;

Example 6: Using a Password with a Stored Compiled DATA Step Program The first
DATA step creates a stored compiled DATA step program called STORED.ITEMS. This
program includes the ALTER password, which limits access to the program.

libname stored ’SAS-library’;

data employees / pgm=stored.items (alter=klondike);
set sample;
if TotalItems > 200 then output;
run;

This DATA step executes the stored compiled DATA step program STORED.ITEMS.
It uses the DESCRIBE statement to print the source code to the SAS log. Because the
program was created with the ALTER password, you must use the password if you use
the DESCRIBE statement. If you do not enter the password, SAS will prompt you for it.

data pgm=stored.items (alter=klondike);
describe;
execute;

run;

Statements � DATALINES Statement 1427

Example 7: Displaying Nesting Levels The following program has two nesting levels.
SAS will generate four log messages, one begin and end message for each nesting level.

data _null_ /nesting;
do i = 1 to 10;

do j = 1 to 5;
put i= j=;

end;
end;

run;

Output 6.4 Nesting Level Debug (partial SAS log)

6 data _null_ /nesting;
7 do i = 1 to 10;

-
719

NOTE 719-185: *** DO begin level 1 ***.

8 do j = 1 to 5;
-
719

NOTE 719-185: *** DO begin level 2 ***.

9 put i= j=;
10 end;

720

NOTE 720-185: *** DO end level 2 ***.

11 end;

720

NOTE 720-185: *** DO end level 1 ***.

12 run;

See Also

Statements:

“DESCRIBE Statement” on page 1440
“EXECUTE Statement” on page 1456
“LINK Statement” on page 1619

“Definition of Data Set Options” on page 10

DATALINES Statement

Specifies that data lines follow.

Valid: in a DATA step
Category: File-handling

1428 DATALINES Statement � Chapter 6

Type: Declarative
Aliases: CARDS, LINES
Restriction: Data lines cannot contain semicolons. Use “DATALINES4 Statement” on
page 1429 when your data contain semicolons.

Syntax
DATALINES;

Without Arguments
Use the DATALINES statement with an INPUT statement to read data that you

enter directly in the program, rather than data stored in an external file.

Details

Using the DATALINES Statement The DATALINES statement is the last statement in
the DATA step and immediately precedes the first data line. Use a null statement (a
single semicolon) to indicate the end of the input data.

You can use only one DATALINES statement in a DATA step. Use separate DATA
steps to enter multiple sets of data.

Reading Long Data Lines SAS handles data line length with the CARDIMAGE
system option. If you use CARDIMAGE, SAS processes data lines exactly like 80–byte
punched card images padded with blanks. If you use NOCARDIMAGE, SAS processes
data lines longer than 80 columns in their entirety. Refer to “CARDIMAGE System
Option” on page 1804 for details.

Using Input Options with In-stream Data The DATALINES statement does not provide
input options for reading data. However, you can access some options by using the
DATALINES statement in conjunction with an INFILE statement. Specify DATALINES
in the INFILE statement to indicate the source of the data and then use the options
you need. See Example 2 on page 1429.

Comparisons
� Use the DATALINES statement whenever data do not contain semicolons. If your

data contain semicolons, use the DATALINES4 statement.
� The following SAS statements also read data or point to a location where data are

stored:
� The INFILE statement points to raw data lines stored in another file. The

INPUT statement reads those data lines.
� The %INCLUDE statement brings SAS program statements or data lines

stored in SAS files or external files into the current program.
� The SET, MERGE, MODIFY, and UPDATE statements read observations

from existing SAS data sets.

Examples

Example 1: Using the DATALINES Statement In this example, SAS reads a data line
and assigns values to two character variables, NAME and DEPT, for each observation
in the DATA step:

Statements � DATALINES4 Statement 1429

data person;
input name $ dept $;
datalines;

John Sales
Mary Acctng
;

Example 2: Reading In-stream Data with Options This example takes advantage of
options available with the INFILE statement to read in-stream data lines. With the
DELIMITER= option, you can use list input to read data values that are delimited by
commas instead of blanks.

data person;
infile datalines delimiter=’,’;
input name $ dept $;
datalines;

John,Sales
Mary,Acctng
;

See Also

Statements:
“DATALINES4 Statement” on page 1429
“INFILE Statement” on page 1543

System Option:
“CARDIMAGE System Option” on page 1804

DATALINES4 Statement
Indicates that data lines that contain semicolons follow.

Valid: in a DATA step
Category: File-handling
Type: Declarative
Aliases: CARDS4, LINES4

Syntax
DATALINES4;

Without Arguments
Use the DATALINES4 statement together with an INPUT statement to read data

that contain semicolons that you enter directly in the program.

Details
The DATALINES4 statement is the last statement in the DATA step and immediately
precedes the first data line. Follow the data lines with four consecutive semicolons that
are located in columns 1 through 4.

1430 DECLARE Statement, Hash and Hash Iterator Objects � Chapter 6

Comparisons
Use the DATALINES4 statement when data contain semicolons. If your data do not
contain semicolons, use the DATALINES statement.

Examples

In this example, SAS reads data lines that contain internal semicolons until it
encounters a line of four semicolons. Execution continues with the rest of the program.

data biblio;
input number citation $50.;
datalines4;
KIRK, 1988

2 LIN ET AL., 1995; BRADY, 1993
3 BERG, 1990; ROA, 1994; WILLIAMS, 1992
;;;;

See Also

Statements:
“DATALINES Statement” on page 1427

DECLARE Statement, Hash and Hash Iterator Objects

Declares a hash or hash iterator object; creates an instance of and initializes data for a hash or
hash iterator object.

Valid: in a DATA step
Category: Action
Type: Executable
Alias: DCL

Syntax
uDECLARE object object-reference;

vDECLARE object object-reference<(<argument_tag-1: value-1<, …argument_tag-n:
value-n>>)>;

Arguments

object
specifies the component object. It can be one of the following values:

hash
specifies a hash object. The hash object provides a mechanism for quick data
storage and retrieval. The hash object stores and retrieves data based on lookup
keys.

Statements � DECLARE Statement, Hash and Hash Iterator Objects 1431

See Also: “Using the Hash Object” in SAS Language Reference: Concepts

hiter
specifies a hash iterator object. The hash iterator object enables you to retrieve the
hash object’s data in forward or reverse key order.

See Also: “Using the Hash Iterator Object” in SAS Language Reference: Concepts

object-reference
specifies the object reference name for the hash or hash iterator object.

argument_tag
specifies the information that is used to create an instance of the hash object.

There are five valid hash object argument tags:

dataset: ’dataset_name <(datasetoption)>’
Specifies the name of a SAS data set to load into the hash object.

The name of the SAS data set can be a literal or character variable. The data
set name must be enclosed in single or double quotation marks. Macro variables
must be enclosed in double quotation marks.

You can use SAS data set options when declaring a hash object in the DATASET
argument tag. Data set options specify actions that apply only to the SAS data set
with which they appear. They enable you to perform the following operations:

� renaming variables

� selecting a subset of observations based on observation number for processing
� selecting observations using the WHERE option

� dropping or keeping variables from a data set loaded into a hash object, or for
an output data set that is specified in an OUTPUT method call

� specifying a password for a data set.

The following syntax is used:

dcl hash h (dataset: ’x (where = (i > 10))’);

For a list of SAS data set options, see “Data Set Options by Category” on page 12.

Note: If the data set contains duplicate keys, the default is to keep the first
instance in the hash object; subsequent instances are ignored. To store the last
instance in the hash object or an error message written to the SAS log if there is a
duplicate key, use the DUPLICATE argument tag. �

duplicate: ’option’
determines whether to ignore duplicate keys when loading a data set into the hash
object. The default is to store the first key and ignore all subsequent duplicates.
Option can be one of the following values:

’replace’ | ’r’
stores the last duplicate key record.

’error’ | ’e’
reports an error to the log if a duplicate key is found.
The following example that uses the REPLACE option storesbrown for the key

620 and blue for the key 531. If you use the default, green would be stored for
620 and yellow would be stored for 531.

data table;
input key data $;
datalines;
531 yellow
620 green

1432 DECLARE Statement, Hash and Hash Iterator Objects � Chapter 6

531 blue
908 orange
620 brown
143 purple
run;

data _null_;
length key 8 data $ 8;
if (_n_ = 1) then do;

declare hash myhash(dataset: "table", duplicate: "r");
rc = myhash.definekey(’key’);
rc = myhash.definedata(’data’);
myhash.definedone();

end;

rc = myhash.output(dataset:"otable");
run;

hashexp: n
The hash object’s internal table size, where the size of the hash table is 2n.

The value of HASHEXP is used as a power-of-two exponent to create the hash
table size. For example, a value of 4 for HASHEXP equates to a hash table size of
24, or 16. The maximum value for HASHEXP is 20.

The hash table size is not equal to the number of items that can be stored.
Imagine the hash table as an array of ’buckets.’ A hash table size of 16 would have
16 ’buckets.’ Each bucket can hold an infinite number of items. The efficiency of
the hash table lies in the ability of the hashing function to map items to and
retrieve items from the buckets.

You should specify the hash table size relative to the amount of data in the hash
object in order to maximize the efficiency of the hash object lookup routines. Try
different HASHEXP values until you get the best result. For example, if the hash
object contains one million items, a hash table size of 16 (HASHEXP = 4) would
work, but not very efficiently. A hash table size of 512 or 1024 (HASHEXP = 9 or
10) would result in the best performance.
Default: 8, which equates to a hash table size of 28 or 256

ordered: ’option’
Specifies whether or how the data is returned in key-value order if you use the
hash object with a hash iterator object or if you use the hash object OUTPUT
method.

option can be one of the following values:

’ascending’ | ’a’ Data is returned in ascending key-value order. Specifying
’ascending’ is the same as specifying ’yes’.

’descending’ | ’d’ Data is returned in descending key-value order.

’YES’ | ’Y’ Data is returned in ascending key-value order. Specifying ’yes’
is the same as specifying ’ascending’.

’NO’ | ’N’ Data is returned in some undefined order.
Default: NO

The argument can also be enclosed in double quotation marks.

multidata: ’option’
specifies whether multiple data items are allowed for each key.

option can be one of the following values:

Statements � DECLARE Statement, Hash and Hash Iterator Objects 1433

’YES’ | ’Y’ Multiple data items are allowed for each key.

’NO’ | ’N’ Only one data item is allowed for each key.
Default: NO
See Also: “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

The argument value can also be enclosed in double quotation marks.

suminc: ’variable-name’
maintains a summary count of hash object keys. The SUMINC argument tag is
given a DATA step variable, which holds the sum increment—that is, how much to
add to the key summary for each reference to the key. The SUMINC value treats a
missing value as zero, like the SUM function. For example, a key summary
changes using the current value of the DATA step variable.

dcl hash myhash(suminc: ’count’);

See Also: ”Maintaining Key Summaries” in SAS Language Reference: Concepts.
See Also: “Initializing Hash Object Data Using a Constructor” and “Declaring and

Instantiating a Hash Iterator Object” in SAS Language Reference: Concepts.

Details

The Basics To use a DATA step component object in your SAS program, you must
declare and create (instantiate) the object. The DATA step component interface provides
a mechanism for accessing predefined component objects from within the DATA step.

For more information about the predefined DATA step component objects, see “Using
DATA Step Component Objects” in SAS Language Reference: Concepts.

uDeclaring a Hash or Hash Iterator Object You use the DECLARE statement to
declare a hash or hash iterator object.

declare hash h;

The DECLARE statement tells SAS that the object reference H is a hash object.
After you declare the new hash or hash iterator object, use the _NEW_ operator to

instantiate the object. For example, in the following line of code, the _NEW_ operator
creates the hash object and assigns it to the object reference H:

h = _new_ hash();

vUsing the DECLARE Statement to Instantiate a Hash or Hash Iterator Object As an
alternative to the two-step process of using the DECLARE statement and the _NEW_
operator to declare and instantiate a hash or hash iterator object, you can use the
DECLARE statement to declare and instantiate the hash or hash iterator object in one
step. For example, in the following line of code, the DECLARE statement declares and
instantiates a hash object and assigns it to the object reference H:

declare hash h();

The previous line of code is equivalent to using the following code:

declare hash h;
h = _new_ hash();

A constructor is a method that you can use to instantiate a hash object and initialize
the hash object data. For example, in the following line of code, the DECLARE
statement declares and instantiates a hash object and assigns it to the object reference
H. In addition, the hash table size is initialized to a value of 16 (24) using the argument
tag, HASHEXP.

1434 DECLARE Statement, Hash and Hash Iterator Objects � Chapter 6

declare hash h(hashexp: 4);

Using SAS Data Set Options When Loading a Hash Object SAS data set options can be
used when declaring a hash object that uses the DATASET argument tag. Data set
options specify actions that apply only to the SAS data set with which they appear.
They enable you to perform the following operations:

� renaming variables
� selecting a subset of observations based on observation number for processing

� selecting observations using the WHERE option
� dropping or keeping variables from a data set loaded into a hash object, or for an

output data set that is specified in an OUTPUT method call
� specifying a password for a data set.

The following syntax is used:

dcl hash h(dataset: ’x (where = (i > 10))’);

For more examples of using data set options, see Example 4 on page 1436. For a list of
data set options, see “Data Set Options by Category” on page 12.

Comparisons
You can use the DECLARE statement and the _NEW_ operator, or the DECLARE
statement alone to declare and instantiate an instance of a hash or hash iterator object.

Examples

Example 1: Declaring and Instantiating a Hash Object by Using the DECLARE Statement
and _NEW_ Operator This example uses the DECLARE statement to declare a hash
object. The _NEW_ operator is used to instantiate the hash object.

data _null_;
length k $15;
length d $15;
if _N_ = 1 then do;

/* Declare and instantiate hash object "myhash" */
declare hash myhash;
myhash = _new_ hash();
/* Define key and data variables */
rc = myhash.defineKey(’k’);
rc = myhash.defineData(’d’);
rc = myhash.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;
/* Create constant key and data values */
rc = myhash.add(key: ’Labrador’, data: ’Retriever’);
rc = myhash.add(key: ’Airedale’, data: ’Terrier’);
rc = myhash.add(key: ’Standard’, data: ’Poodle’);
/* Find data associated with key and write data to log */
rc = myhash.find(key: ’Airedale’);
if (rc = 0) then

put d=;

Statements � DECLARE Statement, Hash and Hash Iterator Objects 1435

else
put ’Key Airedale not found’;

run;

Example 2: Declaring and Instantiating a Hash Object by Using the DECLARE
Statement This example uses the DECLARE statement to declare and instantiate a
hash object in one step.

data _null_;
length k $15;
length d $15;
if _N_ = 1 then do;

/* Declare and instantiate hash object "myhash" */
declare hash myhash();
rc = myhash.defineKey(’k’);
rc = myhash.defineData(’d’);
rc = myhash.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;
/* Create constant key and data values */
rc = myhash.add(key: ’Labrador’, data: ’Retriever’);
rc = myhash.add(key: ’Airedale’, data: ’Terrier’);
rc = myhash.add(key: ’Standard’, data: ’Poodle’);
/* Find data associated with key and write data to log*/
rc = myhash.find(key: ’Airedale’);
if (rc = 0) then

put d=;
else

put ’Key Airedale not found’;
run;

Example 3: Instantiating and Sizing a Hash Object This example uses the DECLARE
statement to declare and instantiate a hash object. The hash table size is set to 16 (24).

data _null_;
length k $15;
length d $15;
if _N_ = 1 then do;

/* Declare and instantiate hash object "myhash". */
/* Set hash table size to 16. */
declare hash myhash(hashexp: 4);
rc = myhash.defineKey(’k’);
rc = myhash.defineData(’d’);
rc = myhash.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;
/* Create constant key and data values */
rc = myhash.add(key: ’Labrador’, data: ’Retriever’);
rc = myhash.add(key: ’Airedale’, data: ’Terrier’);
rc = myhash.add(key: ’Standard’, data: ’Poodle’);
rc = myhash.find(key: ’Airedale’);
/* Find data associated with key and write data to log*/
if (rc = 0) then

put d=;

1436 DECLARE Statement, Hash and Hash Iterator Objects � Chapter 6

else
put ’Key Airedale not found’;

run;

Example 4: Using SAS Data Set Options When Loading a Hash Object The following
examples use various SAS data set options when declaring a hash object:

data x;
retain j 999;
do i = 1 to 20;

output;
end;
run;

/* Using the WHERE option. */
data _null_;

length i 8;
dcl hash h(dataset: ’x (where =(i > 10))’, ordered: ’a’);
h.definekey(’i’);
h.definedone();
h.output(dataset: ’out’);
run;

/* Using the DROP option. */
data _null_;

length i 8;
dcl hash h(dataset: ’x (drop = j)’, ordered: ’a’);
h.definekey(all: ’y’);
h.definedone();
h.output(dataset: ’out (where =(i < 8))’);
run;

/* Using the FIRSTOBS option. */
data _null_;

length i j 8;
dcl hash h(dataset: ’x (firstobs=5)’, ordered: ’a’);
h.definekey(all: ’y’);
h.definedone();
h.output(dataset: ’out’);
run;

/* Using the OBS option. */
data _null_;

length i j 8;
dcl hash h(dataset: ’x (obs=5)’, ordered: ’d’);
h.definekey(all: ’y’);
h.definedone();
h.output(dataset: ’out (rename =(j=k))’);
run;

For a list of SAS data set options, see “Data Set Options by Category” on page 12.

See Also

Statements � DECLARE Statement, Java Object 1437

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Chapter 9, “Hash and Hash Iterator Object Language Elements,” on page 2025
“Using DATA Step Component Objects” in SAS Language Reference: Concepts

DECLARE Statement, Java Object

Declares a Java object; creates an instance of and initializes data for a Java object.

Valid: in a DATA step
Category: Action
Type: Executable
Alias: DCL

Syntax
uDECLARE JAVAOBJ object-reference;

vDECLARE JAVAOBJ object-reference ("java-class", <argument-1 , … argument-n>);

Arguments

object-reference
specifies the object reference name for the Java object.

java-class
specifies the name of the Java class to be instantiated.
Requirement: The Java class name must be enclosed in either double or single

quotation marks.
Requirement: If you specify a Java package path, you must use forward slashes (/)

and not periods (.) in the path. For example, an incorrect classname is
"java.util.Hashtable". The correct classname is "java/util/Hashtable".

argument
specifies the information that is used to create an instance of the Java object. Valid
values for argument depend on the Java object.
See also: “vUsing the DECLARE Statement to Instantiate a Java Object” on page

1438

Details

The Basics To use a DATA step component object in your SAS program, you must
declare and create (instantiate) the object. The DATA step component interface provides
a mechanism for accessing predefined component objects from within the DATA step.

For more information, see “Using DATA Step Component Objects” in SAS Language
Reference: Concepts.

uDeclaring a Java Object You use the DECLARE statement to declare a Java object.

1438 DECLARE Statement, Java Object � Chapter 6

declare javaobj j;

The DECLARE statement tells SAS that the object reference J is a Java object.
After you declare the new Java object, use the _NEW_ operator to instantiate the

object. For example, in the following line of code, the _NEW_ operator creates the Java
object and assigns it to the object reference J:

j = _new_ javaobj("somejavaclass");

vUsing the DECLARE Statement to Instantiate a Java Object Instead of the two-step
process of using the DECLARE statement and the _NEW_ operator to declare and
instantiate a Java object, you can use the DECLARE statement to declare and
instantiate the Java object in one step. For example, in the following line of code, the
DECLARE statement declares and instantiates a Java object and assigns the Java
object to the object reference J:

declare javaobj j("somejavaclass");

The preceding line of code is equivalent to using the following code:

declare javaobj j;
j = _new_ javaobj("somejavaclass");

A constructor is a method that you can use to instantiate a component object and
initialize the component object data. For example, in the following line of code, the
DECLARE statement declares and instantiates a Java object and assigns the Java
object to the object reference J. Note that the only required argument for a Java object
constructor is the name of the Java class to be instantiated. All other arguments are
constructor arguments for the Java class itself. In the following example, the Java class
name, testjavaclass, is the constructor, and the values 100 and .8 are constructor
arguments.

declare javaobj j("testjavaclass", 100, .8);

Comparisons

You can use the DECLARE statement and the _NEW_ operator, or the DECLARE
statement alone to declare and instantiate an instance of a Java object.

Examples

Example 1: Declaring and Instantiating a Java Object by Using the DECLARE Statement
and the _NEW_ Operator In the following example, a simple Java class is created.
The DECLARE statement and the _NEW_ operator are used to create an instance of
this class.

/* Java code */
import java.util.*;
import java.lang.*;

public class simpleclass
{

public int i;
public double d;

}

Statements � DELETE Statement 1439

/* DATA step code
data _null_;

declare javaobj myjo;
myjo = _new_ javaobj("simpleclass");

run;

Example 2: Using the DECLARE Statement to Create and Instantiate a Java Object In
the following example, a Java class is created for a hash table. The DECLARE
statement is used to create and instantiate an instance of this class by specifying the
capacity and load factor. In this example, a wrapper class, mhash, is necessary because
the DATA step’s only numeric type is equivalent to the Java type DOUBLE.

/* Java code */
import java.util.*;

public class mhash extends Hashtable;
{

mhash (double size, double load)
{

super ((int)size, (float)load);
}

}

/* DATA step code */
data _null_;

declare javaobj h("mhash", 100, .8);
run;

See Also

Operator:

“_NEW_ Operator, Java Object” on page 2101

Chapter 9, “Hash and Hash Iterator Object Language Elements,” on page 2025

“Using DATA Step Component Objects” in SAS Language Reference: Concepts

DELETE Statement

Stops processing the current observation.

Valid: in a DATA step

Category: Action

Type: Executable

Syntax
DELETE;

1440 DESCRIBE Statement � Chapter 6

Without Arguments
When DELETE executes, the current observation is not written to a data set, and

SAS returns immediately to the beginning of the DATA step for the next iteration.

Details
The DELETE statement is often used in a THEN clause of an IF-THEN statement or
as part of a conditionally executed DO group.

Comparisons
� Use the DELETE statement when it is easier to specify a condition that excludes

observations from the data set or when there is no need to continue processing the
DATA step statements for the current observation.

� Use the subsetting IF statement when it is easier to specify a condition for
including observations.

� Do not confuse the DROP statement with the DELETE statement. The DROP
statement excludes variables from an output data set; the DELETE statement
excludes observations.

Examples

Example 1: Using the DELETE Statement as Part of an IF-THEN Statement When the
value of LEAFWT is missing, the current observation is deleted:

if leafwt=. then delete;

Example 2: Using the DELETE Statement to Subset Raw Data

data topsales;
infile file-specification;
input region office product yrsales;
if yrsales<100000 then delete;

run;

See Also

Statements:
“DO Statement” on page 1444
“DROP Statement” on page 1452
“IF Statement, Subsetting” on page 1533
“IF-THEN/ELSE Statement” on page 1535

DESCRIBE Statement

Retrieves source code from a stored compiled DATA step program or a DATA step view.

Valid: in a DATA step
Category: Action
Type: Executable

Statements � DISPLAY Statement 1441

Restriction: Use DESCRIBE only with stored compiled DATA step programs and DATA
step views.

Requirement: You must specify the PGM= or the VIEW= option in the DATA statement.

Syntax
DESCRIBE;

Without Arguments
Use the DESCRIBE statement to retrieve program source code from a stored

compiled DATA step program or a DATA step view. SAS writes the source statements to
the SAS log.

Details
Use the DESCRIBE statement without the EXECUTE statement to retrieve source code
from a stored compiled DATA step program or a DATA step view. Use the DESCRIBE
statement with the EXECUTE statement to retrieve source code and execute a stored
compiled DATA step program. For information about how to use these statements with
the DATA statement, see “DATA Statement” on page 1420.

See Also

Statements:
“DATA Statement” on page 1420
“EXECUTE Statement” on page 1456

DISPLAY Statement

Displays a window that is created with the WINDOW statement.

Valid: in a DATA step
Category: Window Display

Type: Executable

Syntax
DISPLAY window< .group> <NOINPUT > <BLANK> <BELL > <DELETE>;

Arguments

window< .group>
names the window and group of fields to be displayed. This field is preceded by a
period (.).

1442 DISPLAY Statement � Chapter 6

Tip: If the window has more than one group of fields, give the complete
window.group specification. If a window contains a single unnamed group, use
only window.

NOINPUT
specifies that you cannot input values into fields that are displayed in the window.
Default: If you omit NOINPUT, you can input values into unprotected fields that

are displayed in the window.
Restriction: If you use NOINPUT in all DISPLAY statements in a DATA step, you

must include a STOP statement to stop processing the DATA step.
Tip: The NOINPUT option is useful when you want to allow values to be entered

into a window at some times but not others. For example, you can display a
window once for entering values and a second time for verifying them.

BLANK
clears the window.
Tip: Use the BLANK option when you want to display different groups of fields in a

window and you do not want text from the previous group to appear in the current
display.

BELL
produces an audible alarm, beep, or bell sound when the window is displayed if your
personal computer is equipped with a speaker device that provides sound.

DELETE
deletes the display of the window after processing passes from the DISPLAY
statement on which the option appears.

Details
You must create a window in the same DATA step that you use to display it. Once you
display a window, the window remains visible until you display another window over it
or until the end of the DATA step. When you display a window that contains fields
where you enter values, either enter a value or press ENTER at each unprotected field
to cause SAS to proceed to the next display. You cannot skip any fields.

While a window is being displayed, use commands and function keys to view other
windows, to change the size of the current window, and so on.

A DATA step that contains a DISPLAY statement continues execution until the last
observation that is read by a SET, MERGE, UPDATE, MODIFY, or INPUT statement
has been processed or until a STOP or ABORT statement is executed. You can also
issue the END command on the command line of the window to stop the execution of
the DATA step.

You must create a window before you can display it. See the “WINDOW Statement”
on page 1745 for a description of how to create windows. A window that is displayed
with the DISPLAY statement does not become part of the SAS log or output file.

Examples

This DATA step creates and displays a window named START. The START window
fills the entire screen. Both lines of text are centered.

data _null_;
window start

#5 @28 ’WELCOME TO THE SAS SYSTEM’
#12 @30 ’PRESS ENTER TO CONTINUE’;

display start;

Statements � DM Statement 1443

stop;
run;

Although the START window in this example does not require you to input any
values, you must press ENTER to cause the execution to proceed to the STOP
statement. If you omit the STOP statement, the DATA step executes endlessly unless
you enter END on the command line of the window.

Note: Because this DATA step does not read any observations, SAS cannot detect an
end-of-file to cause DATA step execution to cease. If you add the NOINPUT option to
the DISPLAY statement, the window displays quickly and is removed. �

See Also

Statement:
“WINDOW Statement” on page 1745

DM Statement

Submits SAS Program Editor, Log, Procedure Output or text editor commands as SAS statements.

Valid: anywhere
Category: Program Control

Syntax
DM <window> ’command(s)’ <window> <CONTINUE>;

Arguments

window
specifies the active window. For more information, see “Details” on page 1444.
Default: If you omit the window name, SAS uses the Program Editor window as the

default.

’command(s)’
can be any windowing command or text editor command and must be enclosed in
single quotation marks. If you want to issue several commands, separate them with
semicolons.

CONTINUE
causes SAS to execute any SAS statements that follow the DM statement in the
Program Editor window and, if a windowing command in the DM statement called a
window, makes that window active.
Tip: Any windows that are activated by the SAS statements (such as the Output

window) appear before the window that is to be made active.
Note: For example, if you specify Log as the active window and have other SAS

statements that follow the DM statement (for example, in an autoexec file), those
statements are not submitted to SAS until control returns to the SAS interface.

1444 DO Statement � Chapter 6

Details
Execution occurs when the DM statement is submitted to SAS. You can use this
statement to modify the windowing environment:

� Change SAS interface features during a SAS session.
� Change SAS interface features at the beginning of each SAS session by placing the

DM statement in an autoexec file.
� Perform utility functions in windowing applications, such as saving a file with the

FILE command or clearing a window with the CLEAR command.

Window placement affects the outcome of the statement:
� If you name a window before the commands, those commands apply to that

window.
� If you name a window after the commands, SAS executes the commands and then

makes that window the active window. The active window is opened and contains
the cursor.

Examples

Example 1: Using the DM Statement
� dm ’color text cyan; color command red’;

� dm log ’clear; pgm; color numbers green’
output;

� dm ’caps on’;

� dm log ’clear’ output;

Example 2: Using the CONTINUE Option with SAS Statements That Do Not Activate a
Window This example causes SAS to display the first window of the SAS/AF
application, executes the DATA step, moves the cursor to the first field of the SAS/AF
application window, and makes that window active.

dm ’af c=your-program’ continue;

data temp;
. . . more SAS statements . . .

run;

Example 3: Using the CONTINUE Option with SAS Statements That Activate a
Window This example displays the first window of the SAS/AF application and
executes the PROC PRINT step, which activates the OUTPUT window. Closing the
OUTPUT window moves the cursor to the last active window..

dm ’af c=your-program’ continue;

proc print data=temp;
run;

DO Statement

Specifies a group of statements to be executed as a unit.

Valid: in a DATA step

Statements � DO Statement 1445

Category: Control
Type: Executable

Syntax
DO;

...more SAS statements...

END;

Without Arguments
Use the DO statement for simple DO group processing.

Details
The DO statement is the simplest form of DO group processing. The statements
between the DO and END statements are called a DO group. You can nest DO
statements within DO groups.

Note: The memory capabilities of your system can limit the number of nested DO
statements you can use. For details, see the SAS documentation about how many levels
of nested DO statements your system’s memory can support. �

A simple DO statement is often used within IF-THEN/ELSE statements to designate
a group of statements to be executed depending on whether the IF condition is true or
false.

Comparisons
There are three other forms of the DO statement:

� The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable. The iterative DO statement
can contain a WHILE or UNTIL clause.

� The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop.

� The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop.

Examples

In this simple DO group, the statements between DO and END are performed only
when YEARS is greater than 5. If YEARS is less than or equal to 5, statements in the
DO group do not execute, and the program continues with the assignment statement
that follows the ELSE statement.

if years>5 then
do;

months=years*12;
put years= months=;

end;
else yrsleft=5-years;

See Also

1446 DO Statement, Iterative � Chapter 6

Statements:
“DO Statement, Iterative” on page 1446
“DO UNTIL Statement” on page 1449
“DO WHILE Statement” on page 1451

DO Statement, Iterative

Executes statements between the DO and END statements repetitively, based on the value of an
index variable.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
DO index-variable=specification-1 <, . . . specification-n>;

. . . more SAS statements . . .

END;

Arguments

index-variable
names a variable whose value governs execution of the DO group. The index
-variable argument is required.
Tip: Unless you specify to drop it, the index variable is included in the data set that

is being created.

CAUTION:
Avoid changing the index variable within the DO group. If you modify the index
variable within the iterative DO group, you might cause infinite looping. �

specification
denotes an expression or a series of expressions in this form

start <TO stop> <BY increment>
<WHILE(expression) | UNTIL(expression)>

Requirement: The iterative DO statement requires at least one specification
argument.

Tip: The order of the optional TO and BY clauses can be reversed.
Tip: When you use more than one specification, each one is evaluated before its

execution.

start
specifies the initial value of the index variable.
Restriction: When it is used with TO stop or BY increment, start must be a

number or an expression that yields a number.

Statements � DO Statement, Iterative 1447

Explanation: When it is used without TO stop or BY increment, the value of start
can be a series of items expressed in this form:

item-1 <, . . . item-n >;

The items can be either all numeric or all character constants, or they can be
variables. Enclose character constants in quotation marks. The DO group is
executed once for each value in the list. If a WHILE condition is added, it applies
only to the item that it immediately follows.

The DO group is executed first with index-variable equal to start. The value of
start is evaluated before the first execution of the loop.
Featured in: Example 1 on page 1448

TO stop
specifies the ending value of the index variable. This argument is optional.
Restriction: Stop must be a number or an expression that yields a number.
Explanation: When both start and stop are present, execution continues (based on

the value of increment) until the value of index-variable passes the value of stop.
When only start and increment are present, execution continues (based on the
value of increment) until a statement directs execution out of the loop, or until a
WHILE or UNTIL expression that is specified in the DO statement is satisfied.
If neither stop nor increment is specified, the group executes according to the
value of start. The value of stop is evaluated before the first execution of the
loop.

Tip: Any changes to stop made within the DO group do not affect the number of
iterations. To stop iteration of a loop before it finishes processing, change the
value of index-variable so that it passes the value of stop, or use a LEAVE
statement to go to a statement outside the loop.

Featured in: Example 1 on page 1448

BY increment
specifies a positive or negative number (or an expression that yields a number) to
control the incrementing of index-variable. This argument is optional.
Explanation: The value of increment is evaluated before the execution of the loop.

Any changes to the increment that are made within the DO group do not affect
the number of iterations. If no increment is specified, the index variable is
increased by 1. When increment is positive, start must be the lower bound and
stop, if present, must be the upper bound for the loop. If increment is negative,
start must be the upper bound and stop, if present, must be the lower bound for
the loop.

Featured in: Example 1 on page 1448

WHILE(expression) | UNTIL(expression)
evaluates, either before or after execution of the DO group, any SAS expression
that you specify. Enclose the expression in parentheses. This argument is optional.
Restriction: A WHILE or UNTIL specification affects only the last item in the

clause in which it is located.
Explanation: A WHILE expression is evaluated before each execution of the loop,

so that the statements inside the group are executed repetitively while the
expression is true. An UNTIL expression is evaluated after each execution of
the loop, so that the statements inside the group are executed repetitively until
the expression is true.

Featured in: Example 1 on page 1448
See Also: “DO WHILE Statement” on page 1451 and “DO UNTIL Statement” on

page 1449 for more information.

1448 DO Statement, Iterative � Chapter 6

Comparisons
There are three other forms of the DO statement:

� The DO statement, the simplest form of DO-group processing, designates a group
of statements to be executed as a unit, usually as a part of IF-THEN/ELSE
statements.

� The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop.

� The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop.

Examples

Example 1: Using Various Forms of the Iterative DO Statement
� These iterative DO statements use a list of items for the value of start:

� do month=’JAN’,’FEB’,’MAR’;

� do count=2,3,5,7,11,13,17;

� do i=5;

� do i=var1, var2, var3;

� do i=’01JAN2001’d,’25FEB2001’d,’18APR2001’d;

� These iterative DO statements use the start TO stop syntax:
� do i=1 to 10;

� do i=1 to exit;

� do i=1 to x-5;

� do i=1 to k-1, k+1 to n;

� do i=k+1 to n-1;

� These iterative DO statements use the BY increment syntax:
� do i=n to 1 by -1;

� do i=.1 to .9 by .1, 1 to 10 by 1,
20 to 100 by 10;

� do count=2 to 8 by 2;

� These iterative DO statements use WHILE and UNTIL clauses:
� do i=1 to 10 while(x<y);

� do i=2 to 20 by 2 until((x/3)>y);

� do i=10 to 0 by -1 while(month=’JAN’);

� In this example, the DO loop is executed when I=1 and I=2; the WHILE condition is evaluated whe
loop is executed if the WHILE condition is true. DO I=1,2,3 WHILE (condition);

Example 2: Using the Iterative DO Statement without Infinite Looping In each of the
following examples, the DO group executes ten times. The first example demonstrates
the preferred approach.

/* correct coding */
do i=1 to 10;

...more SAS statements...
end;

Statements � DO UNTIL Statement 1449

The next example uses the TO and BY arguments.

do i=1 to n by m;
...more SAS statements...
if i=10 then leave;

end;
if i=10 then put ’EXITED LOOP’;

Example 3: Stopping the Execution of the DO Loop In this example, setting the value
of the index variable to the current value of EXIT causes the loop to terminate.

data iterate1;
input x;
exit=10;
do i=1 to exit;

y=x*normal(0);
/* if y>25, */
/* changing i’s value */
/* stops execution */

if y>25 then i=exit;
output;

end;
datalines;

5
000
2500
;

See Also

Statements:
“ARRAY Statement” on page 1395
“Array Reference Statement” on page 1400
“DO Statement” on page 1444
“DO UNTIL Statement” on page 1449
“DO WHILE Statement” on page 1451
“GO TO Statement” on page 1532

DO UNTIL Statement

Executes statements in a DO loop repetitively until a condition is true.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
DO UNTIL (expression);

1450 DO UNTIL Statement � Chapter 6

...more SAS statements...

END;

Arguments

(expression)
is any SAS expression, enclosed in parentheses. You must specify at least one
expression.

Details
The expression is evaluated at the bottom of the loop after the statements in the DO
loop have been executed. If the expression is true, the DO loop does not iterate again.

Note: The DO loop always iterates at least once. �

Comparisons
There are three other forms of the DO statement:

� The DO statement, the simplest form of DO-group processing, designates a group
of statements to be executed as a unit, usually as a part of IF-THEN/ELSE
statements.

� The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable.

� The DO WHILE statement executes statements in a DO loop repetitively while a
condition is true, checking the condition before each iteration of the DO loop. The
DO UNTIL statement evaluates the condition at the bottom of the loop; the DO
WHILE statement evaluates the condition at the top of the loop.

Note: The statements in a DO UNTIL loop always execute at least one time,
whereas the statements in a DO WHILE loop do not iterate even once if the
condition is false. �

Examples

These statements repeat the loop until N is greater than or equal to 5. The
expression N>=5 is evaluated at the bottom of the loop. There are five iterations in all
(0, 1, 2, 3, 4).

n=0;
do until(n>=5);

put n=;
n+1;

end;

See Also

Statements:

“DO Statement” on page 1444
“DO Statement, Iterative” on page 1446

“DO WHILE Statement” on page 1451

Statements � DO WHILE Statement 1451

DO WHILE Statement

Executes statements in a DO-loop repetitively while a condition is true.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
DO WHILE (expression);

...more SAS statements...

END;

Arguments

(expression)
is any SAS expression, enclosed in parentheses. You must specify at least one
expression.

Details
The expression is evaluated at the top of the loop before the statements in the DO loop
are executed. If the expression is true, the DO loop iterates. If the expression is false
the first time it is evaluated, the DO loop does not iterate even once.

Comparisons
There are three other forms of the DO statement:

� The DO statement, the simplest form of DO-group processing, designates a group
of statements to be executed as a unit, usually as a part of IF-THEN/ELSE
statements.

� The iterative DO statement executes statements between DO and END statements
repetitively based on the value of an index variable.

� The DO UNTIL statement executes statements in a DO loop repetitively until a
condition is true, checking the condition after each iteration of the DO loop. The
DO WHILE statement evaluates the condition at the top of the loop; the DO
UNTIL statement evaluates the condition at the bottom of the loop.

Note: If the expression is false, the statements in a DO WHILE loop do not
execute. However, because the DO UNTIL expression is evaluated at the bottom of
the loop, the statements in the DO UNTIL loop always execute at least once. �

Examples

These statements repeat the loop while N is less than 5. The expression N<5 is
evaluated at the top of the loop. There are five iterations in all (0, 1, 2, 3, 4).

n=0;
do while(n<5);

1452 DROP Statement � Chapter 6

put n=;
n+1;

end;

See Also

Statements:

“DO Statement” on page 1444

“DO Statement, Iterative” on page 1446

“DO UNTIL Statement” on page 1449

DROP Statement

Excludes variables from output SAS data sets.

Valid: in a DATA step

Category: Information

Type: Declarative

Syntax
DROP variable-list;

Arguments

variable-list
specifies the names of the variables to omit from the output data set.

Tip: You can list the variables in any form that SAS allows.

Details
The DROP statement applies to all the SAS data sets that are created within the same
DATA step and can appear anywhere in the step. The variables in the DROP statement
are available for processing in the DATA step. If no DROP or KEEP statement appears,
all data sets that are created in the DATA step contain all variables. Do not use both
DROP and KEEP statements within the same DATA step.

Comparisons
� The DROP statement differs from the DROP= data set option in the following

ways:

� You cannot use the DROP statement in SAS procedure steps.

� The DROP statement applies to all output data sets that are named in the
DATA statement. To exclude variables from some data sets but not from
others, use the DROP= data set option in the DATA statement.

Statements � END Statement 1453

� The KEEP statement is a parallel statement that specifies a list of variables to
write to output data sets. Use the KEEP statement instead of the DROP
statement if the number of variables to include is significantly smaller than the
number to omit.

� Do not confuse the DROP statement with the DELETE statement. The DROP
statement excludes variables from output data sets; the DELETE statement
excludes observations.

Examples
� These examples show the correct syntax for listing variables with the DROP

statement:

� drop time shift batchnum;

� drop grade1-grade20;

� In this example, the variables PURCHASE and REPAIR are used in processing
but are not written to the output data set INVENTRY:

data inventry;
drop purchase repair;
infile file-specification;
input unit part purchase repair;
totcost=sum(purchase,repair);

run;

See Also

Data Set Option:

“DROP= Data Set Option” on page 22

Statements:

“DELETE Statement” on page 1439

“KEEP Statement” on page 1600

END Statement

Ends a DO group or SELECT group processing.

Valid: in a DATA step

Category: Control

Type: Declarative

Syntax
END;

Without Arguments
Use the END statement to end DO group or SELECT group processing.

1454 ENDSAS Statement � Chapter 6

Details
The END statement must be the last statement in a DO group or a SELECT group.

Examples

This example shows a simple DO group and a simple SELECT group:

� do;
. . .more SAS statements. . .

end;

� select(expression);
when(expression) SAS statement;
otherwise SAS statement;

end;

See Also

Statements:

“DO Statement” on page 1444

“SELECT Statement” on page 1708

ENDSAS Statement

Terminates a SAS job or session after the current DATA or PROC step executes.

Valid: anywhere

Category: Program Control

Syntax
ENDSAS;

Without Arguments

The ENDSAS statement terminates a SAS job or session.

Details
ENDSAS is most useful in interactive or windowing sessions.

Note: ENDSAS statements are always executed at the point that they are
encountered in a DATA step. Use the ABORT RETURN statement to stop processing
when an error condition occurs—for example, in the clause of an IF-THEN statement or
a SELECT statement. �

Statements � ERROR Statement 1455

Comparisons
You can also terminate a SAS job or session by using the BYE or the ENDSAS
command from any SAS window command line. For details, refer to the online Help for
SAS windows.

See Also

“SYSSTARTID Automatic Macro Variable” in SAS Macro Language: Reference

ERROR Statement

Sets _ERROR_ to 1. A message written to the SAS log is optional.

Valid: in a DATA step

Category: Action

Type: Executable

Syntax
ERROR <message>;

Without Arguments
Using ERROR without an argument sets the automatic variable _ERROR_ to 1 writes a
blank message to the log.

Arguments
message

writes a message to the log.

Tip: Message can include character literals (enclosed in quotation marks),
variable names, formats, and pointer controls.

Details
The ERROR statement sets the automatic variable _ERROR_ to 1. Writing a message
that you specify to the SAS log is optional. When _ERROR_ = 1, SAS writes the data
lines that correspond to the current observation in the SAS log.

Using ERROR is equivalent to using these statements in combination:

� an assignment statement setting _ERROR_ to 1

� a FILE LOG statement

� a PUT statement (if you specify a message)

� a PUT; statement (if you do not specify a message)

� another FILE statement resetting FILE to any previously specified setting.

1456 EXECUTE Statement � Chapter 6

Examples

In the following examples, SAS writes the error message and the variable name and
value to the log for each observation that satisfies the condition in the IF-THEN
statement.

� In this example, the ERROR statement automatically resets the FILE statement
specification to the previously specified setting.

file file-specification;
if type=’teen’ & age > 19 then

error ’type and age don"t match ’ age=;

� This example uses a series of statements to produce the same results.file file-specification;
if type=’teen’ & age > 19 then

do;
file log;
put ’type and age don"t match ’ age=;
error=1;
file file-specification;

end;

See Also

Statement:
“PUT Statement” on page 1657

EXECUTE Statement

Executes a stored compiled DATA step program .

Valid: in a DATA step
Category: Action
Type: Executable
Restriction: Use EXECUTE with stored compiled DATA step programs only.
Requirement: You must specify the PGM= option in the DATA step.

Syntax
EXECUTE;

Without Arguments
The EXECUTE statement executes a stored compiled DATA step program.

Details
Use the DESCRIBE statement with the EXECUTE statement in the same DATA step
to retrieve the source code and execute a stored compiled DATA step program. If you do
not specify either statement, EXECUTE is assumed. The order in which you use the
statements is interchangeable. The DATA step program executes when it reaches a step

Statements � FILE Statement 1457

boundary. For information about how to use these statements with the DATA
statement, see “DATA Statement” on page 1420.

See Also

Statements:
“DATA Statement” on page 1420
“DESCRIBE Statement” on page 1440

FILE Statement

Specifies the current output file for PUT statements.

Valid: in a DATA step
Category: File-handling
Type: Executable
See: FILE Statement in the documentation for your operating environment.

Syntax
FILE file-specification <device-type> <options> <operating-environment-options>;

Arguments
file-specification

identifies an external file that the DATA step uses to write output from a PUT
statement. File-specification can have these forms:

’external-file’
specifies the physical name of an external file, which is enclosed in quotation
marks. The physical name is the name by which the operating environment
recognizes the file.

fileref
specifies the fileref of an external file.
Requirement: You must have previously associated fileref with an external

file in a FILENAME statement or function, or in an appropriate operating
environment command. There is only one exception to this rule: when you
use the FILEVAR= option, the fileref is simply a placeholder.

See Also: “FILENAME Statement” on page 1473

fileref(file)
specifies a fileref that is previously assigned to an external file that is an
aggregate grouping of files. Follow the fileref with the name of a file or
member, which is enclosed in parentheses.

Note: A file that is located in an aggregate storage location and has a
name that is not a valid SAS name must have its name enclosed in quotation
marks. �

1458 FILE Statement � Chapter 6

Requirement: You must previously associate fileref with an external file in a
FILENAME statement or function, or in an appropriate operating
environment command.

See Also: “FILENAME Statement” on page 1473

Operating Environment Information: Different operating environments call
an aggregate grouping of files by different names, such as a directory, a
MACLIB, or a partitioned data set. For details, see the SAS documentation
for your operating environment. �

LOG
is a reserved fileref that directs the output that is produced by any PUT
statements to the SAS log.

At the beginning of each execution of a DATA step, the fileref that
indicates where the PUT statements write is automatically set to LOG.
Therefore, the first PUT statement in a DATA step always writes to the SAS
log, unless it is preceded by a FILE statement that specifies otherwise.

Tip: Because output lines are by default written to the SAS log, use a FILE
LOG statement to restore the default action or to specify additional FILE
statement options.

PRINT
is a reserved fileref that directs the output that is produced by any PUT
statements to the same file as the output that is produced by SAS procedures.

Interaction: When you write to a file, the value of the N= option must be
either 1 or PAGESIZE.

Tip: When PRINT is the fileref, SAS uses carriage-control characters and
writes the output with the characteristics of a print file.

See Also: A complete discussion of print files in SAS Language Reference:
Concepts

Operating Environment Information: The carriage-control characters that
are written to a file can be specific to the operating environment. For details,
see the SAS documentation for your operating environment. �

Tip: If the file does not exist in the directory that you specify for file-specification,
SAS creates the file. If the directory specified in file-specification does not exist,
SAS sets the SYSERR macro variable, which can be checked if the
ERRORCHECK option is set to STRICT.

device-type
specifies the type of device or the access method that is used if the fileref points to
an input or output device or a location that is not a physical file:

DISK specifies that the device is a disk drive.

Tip: When you assign a fileref to a file on disk, you are not
required to specify DISK.

DUMMY specifies that the output to the file is discarded.

Tip: Specifying DUMMY can be useful for testing.

GTERM indicates that the output device type is a graphics device that
will receive graphics data.

PIPE specifies an unnamed pipe.

Statements � FILE Statement 1459

Note: Some operating environments do not support pipes. �

PLOTTER specifies an unbuffered graphics output device.

PRINTER specifies a printer or printer spool file.

TAPE specifies a tape drive.

TEMP creates a temporary file that exists only as long as the filename
is assigned. The temporary file can be accessed only through
the logical name and is available only while the logical name
exists.
Restriction: Do not specify a physical pathname. If you do,

SAS returns an error.
Tip: Files manipulated by the TEMP device can have the same

attributes and behave identically to DISK files.

TERMINAL specifies the user’s terminal.

UPRINTER specifies a Universal Printing printer definition name.

Tip: If you do not specify the printer name in the FILENAME
statement, the PRINTERPATH options control which
Universal Printer is used and the destination of the output.

Alias: DEVICE=
Requirement: device-type must appear right after the physical path.

DEVICE=device-type can appear anywhere in the statement.

Operating Environment Information: Additional specifications might be required
when you specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments. �

Options
BLKSIZE=block-size

specifies the block size of the output file.
Default: Dependent on your operating environment.

Operating Environment Information: For details, see the FILE Statement in
the SAS documentation for your operating environment. �

COLUMN=variable
specifies a variable that SAS automatically sets to the current column location of
the pointer. This variable, like automatic variables, is not written to the data set.
Alias: COL=
See Also: LINE= on page 1463

DELIMITER= delimiter(s)
specifies an alternate delimiter (other than blank) to be used for LIST output
where delimiter is

’list-of-delimiting-characters’
specifies one or more characters to write as delimiters.
Requirement: Enclose the list of characters in quotation marks.

character-variable
specifies a character variable whose value becomes the delimiter.

1460 FILE Statement � Chapter 6

Alias: DLM=
Default: blank space
Restriction: Even though a character string or character variable is accepted,

only the first character of the string or variable is used as the output delimiter.
The FILE DLM= processing differs from INFILE DELIMITER= processing.

Interaction: Output that contains embedded delimiters requires the delimiter
sensitive data (DSD) option.

Tip: DELIMITER= can be used with the colon (:) modifier (modified LIST output).
Tip: The delimiter is case sensitive.
See Also: DLMSTR= on page 1460, DSD (delimiter sensitive data) on page 1461

DLMSTR= delimiter
specifies a character string as an alternate delimiter (other than a blank) to be
used for LIST output, where delimiter is

’delimiting-string’
specifies a character string to write as a delimiter.
Requirement: Enclose the string in quotation marks.

character-variable
specifies a character variable whose value becomes the delimiter.

Default: blank space
Interaction: If you specify more than one DLMSTR= option in the FILE

statement, the DLMSTR= option that is specified last will be used. If you
specify both the DELIMITER= and DLMSTR= options, the option that is
specified last will be used.

Interaction: If you specify RECFM=N, make sure that the LRECL is large
enough to hold the largest input item. Otherwise, it might be possible for the
delimiter to be split across the record boundary.

See Also: DELIMITER= on page 1459, DLMSOPT= on page 1460, DSD
(delimiter sensitive data) on page 1461

DLMSOPT= ’T’ |’t’
specifies a parsing option for the DLMSTR= T option that removes trailing blanks
of the string delimiter.
Requirement: The DLMSOPT=T option has an effect only when used with the

DLMSTR= option.
Tip: The DLMSOPT=T option is useful when you use a variable as the delimiter

string
See Also: DLMSTR= on page 1460

DROPOVER
discards data items that exceed the output line length (as specified by the
LINESIZE= or LRECL= options in the FILE statement).
Default: FLOWOVER
Explanation: By default, data that exceeds the current line length is written on

a new line. When you specify DROPOVER, SAS drops (or ignores) an entire
item when there is not enough space in the current line to write it. When an
entire item is dropped, the column pointer remains positioned after the last
value that is written in the current line. Thus, the PUT statement might write
other items in the current output line if they fit in the space that remains or if
the column pointer is repositioned. When a data item is dropped, the DATA step
continues normal execution (_ERROR_=0). At the end of the DATA step, a
message is printed for each file from which data was lost.

Statements � FILE Statement 1461

Tip: Use DROPOVER when you want the DATA step to continue executing if the
PUT statement attempts to write past the current line length, but you do not
want the data item that exceeds the line length to be written on a new line.

See Also: FLOWOVER on page 1462 and STOPOVER on page 1466

DSD (delimiter sensitive data)
specifies that data values that contain embedded delimiters, such as tabs or
commas, be enclosed in quotation marks. The DSD option enables you to write
data values that contain embedded delimiters to LIST output. This option is
ignored for other types of output (for example, formatted, column, and named).
Any double quotation marks that are included in the data value are repeated.
When a variable value contains the delimiter and DSD is used in the FILE
statement, the variable value will be enclosed in double quotation marks when the
output is generated. For example, the following code

DATA _NULL_;
FILE log dsd;
x=’"lions, tigers, and bears"’;
put x ’ "Oh, my!"’;

run;

will result in the following output:

"""lions, tigers, and bears""", "Oh, my!"

If a quoted (text) string contains the delimiter and DSD is used in the FILE
statement, then the quoted string will not be enclosed in double quotation marks
when used in a PUT statement. For example, the following code

DATA _NULL_;
FILE log dsd;
PUT ’lions, tigers, and bears’;

run;

will result in the following output:

lions, tigers, and bears

Interaction: If you specify DSD, the default delimiter is assumed to be the
comma (,). Specify the DELIMITER= or DLMSTR= option if you want to use a
different delimiter.

Tip: By default, data values that do not contain the delimiter that you specify are
not enclosed in quotation marks. However, you can use the tilde (~) modifier to
force any data value, including missing values, to be enclosed in quotation
marks, even if it contains no embedded delimiter.

See Also: DELIMITER= on page 1459, DLMSTR= on page 1460

ENCODING= ’encoding-value’
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the
current session encoding.

When you write data to the output file, SAS transcodes the data from the
session encoding to the specified encoding.
Default: SAS uses the current session encoding.
See Also: “Encoding Values in SAS Language Elements” in the SAS National

Language Support (NLS): Reference Guide
Featured in: Example 8 on page 1472

1462 FILE Statement � Chapter 6

FILENAME=variable
defines a character variable, whose name you supply, that SAS sets to the value of
the physical name of the file currently open for PUT statement output. The
physical name is the name by which the operating environment recognizes the file.
Tip: This variable, like automatic variables, is not written to the data set.
Tip: Use a LENGTH statement to make the variable length long enough to

contain the value of the physical filename if it is longer than eight characters
(the default length of a character variable).

See Also: FILEVAR= on page 1462
Featured in: Example 4 on page 1470

FILEVAR=variable
defines a variable whose change in value causes the FILE statement to close the
current output file and open a new one the next time the FILE statement
executes. The next PUT statement that executes writes to the new file that is
specified as the value of the FILEVAR= variable.
Restriction: The value of a FILEVAR= variable is expressed as a character

string that contains a physical filename.
Interaction: When you use the FILEVAR= option, the file-specification is just a

placeholder, not an actual filename or a fileref that has been previously assigned
to a file. SAS uses this placeholder for reporting processing information to the
SAS log. It must conform to the same rules as a fileref.

Tip: This variable, like automatic variables, is not written to the data set.
Tip: If any of the physical filenames is longer than eight characters (the default

length of a character variable), assign the FILEVAR= variable a longer length
with another statement, such as a LENGTH statement or an INPUT statement.

See Also: FILENAME= on page 1462
Featured in: Example 5 on page 1471

FLOWOVER
causes data that exceeds the current line length to be written on a new line. When
a PUT statement attempts to write beyond the maximum allowed line length (as
specified by the LINESIZE= option in the FILE statement), the current output line
is written to the file and the data item that exceeds the current line length is
written to a new line.
Default: FLOWOVER
Interaction: If the PUT statement contains a trailing @, the pointer is positioned

after the data item on the new line, and the next PUT statement writes to that
line. This process continues until the end of the input data is reached or until a
PUT statement without a trailing @ causes the current line to be written to the
file.

See Also: DROPOVER on page 1460 and STOPOVER on page 1466

FOOTNOTES | NOFOOTNOTES
controls whether currently defined footnotes are printed.
Alias: FOOTNOTE | NOFOOTNOTE
Requirement: In order to print footnotes in a DATA step report, you must set

the FOOTNOTE option in the FILE statement.
Default: NOFOOTNOTES

HEADER=label
defines a statement label that identifies a group of SAS statements that you want
to execute each time SAS begins a new output page.

Statements � FILE Statement 1463

Restriction: The first statement after the label must be an executable statement.
Thereafter you can use any SAS statement.

Restriction: Use the HEADER= option only when you write to print files.
Tip: To prevent the statements in this group from executing with each iteration

of the DATA step, use two RETURN statements: one precedes the label and the
other appears as the last statement in the group.

Featured in: Example 1 on page 1469

LINE=variable
defines a variable whose value is the current relative line number within the
group of lines available to the output pointer. You supply the variable name; SAS
automatically assigns the value.
Range: 1 to the value that is specified by the N= option or with the #n line

pointer control. If neither is specified, the LINE= variable has a value of 1.
Tip: This variable, like automatic variables, is not written to the data set.
Tip: The value of the LINE= variable is set at the end of PUT statement

execution to the number of the next available line.

LINESIZE=line-size
sets the maximum number of columns per line for reports and the maximum
record length for data files.
Alias: LS=
Default: The default LINESIZE= value is determined by one of two options:

� the LINESIZE= system option when you write to a file that contains
carriage-control characters or to the SAS log.

� the LRECL= option in the FILE statement when you write to a file.

Range: From 64 to the maximum logical record length that is allowed in your
operating environment.

Operating Environment Information: The highest value allowed for
LINESIZE= is dependent on your operating environment. For details, see the
SAS documentation for your operating environment. �

Interaction: If a PUT statement tries to write a line that is longer than the
value that is specified by the LINESIZE= option, the action that is taken is
determined by whether FLOWOVER, DROPOVER, or STOPOVER is in effect.
By default (FLOWOVER), SAS writes the line as two or more separate records.

Comparisons: LINESIZE= tells SAS how much of the line to use. LRECL=
specifies the physical record length of the file.

See Also: LRECL= on page 1463, DROPOVER on page 1460, FLOWOVER on
page 1462, and STOPOVER on page 1466

Featured in: Example 6 on page 1471

LINESLEFT=variable
defines a variable whose value is the number of lines left on the current page. You
supply the variable name; SAS assigns the value of the number of lines left on the
current page to that variable. The value of the LINESLEFT= variable is set at the
end of PUT statement execution.
Alias: LL=
Tip: This variable, like automatic variables, is not written to the data set.
Featured in: Example 2 on page 1470

LRECL=logical-record-length
specifies the logical record length of the output file.

1464 FILE Statement � Chapter 6

Operating Environment Information: Values for logical-record-length are
dependent on the operating environment. For details, see the SAS documentation
for your operating environment. �

Default: If you omit the LRECL= option, SAS chooses a value based on the
operating environment’s file characteristics.

Comparisons: LINESIZE= tells SAS how much of the line to use; LRECL=
specifies the physical line length of the file.

Interaction: Alternatively, you can specify a global logical record length by using
the LRECL= system option“LRECL= System Option” on page 1883.

See Also: LINESIZE= on page 1463, PAD on page 1465, and PAGESIZE= on
page 1465

MOD
writes the output lines after any existing lines in the file.

Default: OLD

Restriction: MOD is not accepted under all operating environments.

Operating Environment Information: For more information, see the SAS
documentation for your operating environment. �

Restriction: Do not use the MOD option with any ODS destination other than
the Listing destination. Otherwise, you might receive unexpected output.

See Also: OLD on page 1465

N=available-lines
specifies the number of lines that you want available to the output pointer in the
current iteration of the DATA step. Available-lines can be expressed as a number
(n) or as the keyword PAGESIZE or PS.

n
specifies the number of lines that are available to the output pointer. The
system can move back and forth between the number of lines that are
specified while composing them before moving on to the next set.

PAGESIZE
specifies that the entire page is available to the output pointer.

Alias: PS

Restriction: N=PAGESIZE is valid only when output is printed.

Restriction: If the current output file is a file that is to be printed,
available-lines must have a value of either 1 or PAGESIZE.

Interactions: There are two ways to control the number of lines available to
the output pointer:

� the N= option

� the #n line pointer control in a PUT statement.

Interaction: If you omit the N= option and no # pointer controls are used,
one line is available; that is, by default, N=1. If N= is not used but there
are # pointer controls, N= is assigned the highest value that is specified for
a # pointer control in any PUT statement in the current DATA step.

Tip: Setting N=PAGESIZE enables you to compose a page of multiple
columns one column at a time.

Featured in: Example 3 on page 1470

ODS < = (ODS-suboptions) >

Statements � FILE Statement 1465

specifies to use the Output Delivery System to format the output from a DATA
step. It defines the structure of the data component and holds the results of the
DATA step and binds that component to a table definition to produce an output
object. ODS sends this object to all open ODS destinations, each of which formats
the output appropriately. For information about the ODS-suboptions, see the
“FILE Statement for ODS”. For general information about the Output Delivery
System, see SAS Output Delivery System: User’s Guide.
Default: If you omit the ODS suboptions, the DATA step uses a default table

definition (base.datastep.table) that is stored in the SASHELP.TMPLMST
template store. This definition defines two generic columns: one for character
variables, and one for numeric variables. ODS associates each variable in the
DATA step with one of these columns and displays the variables in the order in
which they are defined in the DATA step.

Without suboptions, the default table definition uses the variable’s label as
its column heading. If no label exists, the definition uses the variable’s name as
the column heading.

Requirement: The ODS option is valid only when you use the fileref PRINT in
the FILE statement.

Restriction: You cannot use _FILE_=, FILEVAR=, HEADER=, and PAD with the
ODS option.

Interaction: The DELIMITER= and DSD options have no effect on the ODS
option. The FOOTNOTES|NOFOOTNOTES, LINESIZE, PAGESIZE, and
TITLES | NOTITLES options have an effect only on the LISTING destination.

OLD
replaces the previous contents of the file.
Default: OLD
Restriction: OLD is not accepted under all operating environments.

Operating Environment Information: For details, see the SAS documentation
for your operating environment. �

See Also: MOD on page 1464

PAD | NOPAD
controls whether records written to an external file are padded with blanks to the
length that is specified in the LRECL= option.
Default: NOPAD is the default when writing to a variable-length file; PAD is the

default when writing to a fixed-length file.
Tip: PAD provides a quick way to create fixed-length records in a variable-length

file.
See Also: LRECL= on page 1463

PAGESIZE=value
sets the number of lines per page for your reports.
Alias: PS=
Default: the value of the PAGESIZE= system option.
Range: The value can range from 15 to 32767.
Interaction: If any TITLE statements are currently defined, the lines they

occupy are included in counting the number of lines for each page.
Tip: After the value of the PAGESIZE= option is reached, the output pointer

advances to line 1 of a new page.
Tip: If you specify FILE LOG, the number of lines that are output on the first

page is reduced by the number of lines in the SAS startup notes. For example,

1466 FILE Statement � Chapter 6

if PAGESIZE=20 and there are nine lines of SAS startup notes, only 11 lines
are available for output on the first page.

See Also: “PAGESIZE= System Option” on page 1899

PRINT | NOPRINT
controls whether carriage-control characters are placed in the output lines.

Operating Environment Information: The carriage-control characters that are
written to a file can be specific to the operating environment. For details, see the
SAS documentation for your operating environment. �

Restriction: When you write to a file, the value of the N= option must be either 1
or PAGESIZE.

Tip: The PRINT option is not necessary if you are using fileref PRINT.

Tip: If you specify FILE PRINT in an interactive SAS session, then the Output
window interprets the form-feed control characters as page breaks, and blank
lines that are output before the form feed are removed from the output. Writing
the results from the Output window to a flat file produces a file without page
break characters. If a file needs to contain the form-feed characters, then the
FILE statement should include a physical file location and the PRINT option.

RECFM=record-format
specifies the record format of the output file.

Range: Values are dependent on the operating environment.

Operating Environment Information: For details, see the SAS documentation
for your operating environment. �

STOPOVER
stops processing the DATA step immediately if a PUT statement attempts to write
a data item that exceeds the current line length. In such a case, SAS discards the
data item that exceeds the current line length, writes the portion of the line that
was built before the error occurred, and issues an error message.
Default: FLOWOVER
See Also: FLOWOVER on page 1462 and DROPOVER on page 1460

TITLES | NOTITLES
controls the printing of the current title lines on the pages of files. When
NOTITLES is omitted, or when TITLES is specified, SAS prints any titles that are
currently defined.
Alias: TITLE | NOTITLE
Default: TITLES

FILE=variable
names a character variable that references the current output buffer of this FILE
statement. You can use the variable in the same way as any other variable, even
as the target of an assignment. The variable is automatically retained and
initialized to blanks. Like automatic variables, the _FILE_= variable is not
written to the data set.

Restriction: variable cannot be a previously defined variable. Make sure that
the _FILE_= specification is the first occurrence of this variable in the DATA
step. Do not set or change the length of _FILE_= variable with the LENGTH or
ATTRIB statements. However, you can attach a format to this variable with the
ATTRIB or FORMAT statement.

Interaction: The maximum length of this character variable is the logical record
length (LRECL) for the specified FILE statement. However, SAS does not open

Statements � FILE Statement 1467

the file to know the LRECL until before the execution phase. Therefore, the
designated size for this variable during the compilation phase is 32,767.

Tip: Modification of this variable directly modifies the FILE statement’s current
output buffer. Any subsequent PUT statement for this FILE statement outputs
the contents of the modified buffer. The _FILE_= variable accesses only the
current output buffer of the specified FILE statement even if you use the N=
option to specify multiple output buffers.

Tip: To access the contents of the output buffer in another statement without
using the _FILE_= option, use the automatic variable _FILE_.

Main Discussion: “Updating the _FILE_ Variable” on page 1468

Operating Environment Options
Operating Environment Information: For descriptions of
operating-environment-specific options in the FILE statement, see the SAS
documentation for your operating environment. �

Details

Overview By default, PUT statement output is written to the SAS log. Use the FILE
statement to route this output to either the same external file to which procedure
output is written or to a different external file. You can indicate whether
carriage-control characters should be added to the file. See the PRINT | NOPRINT
option on page 1466.

You can use the FILE statement in conditional (IF-THEN) processing because it is
executable. You can also use multiple FILE statements to write to more than one
external file in a single DATA step.

Operating Environment Information: Using the FILE statement requires
operating-environment-specific information. See the SAS documentation for your
operating environment before you use this statement. �

You can now use the Output Delivery System with the FILE statement to write
DATA step results. This functionality is briefly discussed here. For details, see the
“FILE Statement for ODS” in SAS Output Delivery System: User’s Guide.

Updating an External File in Place You can use the FILE statement with the INFILE
and PUT statements to update an external file in place, updating either an entire
record or only selected fields within a record. Follow these guidelines:

� Always place the INFILE statement first.
� Specify the same fileref or physical filename in the INFILE and FILE statements.
� Use options that are common to both the INFILE and FILE statements in the

INFILE statement. (Any such options that are used in the FILE statement are
ignored.)

� Use the SHAREBUFFERS option in the INFILE statement to allow the INFILE
and FILE statements to use the same buffer, which saves CPU time and enables
you to update individual fields instead of entire records.

Accessing the Contents of the Output Buffer In addition to the _FILE_= variable, you
can use the automatic _FILE_ variable to reference the contents of the current output
buffer for the most recent execution of the FILE statement. This character variable is
automatically retained and initialized to blanks. Like other automatic variables,
FILE is not written to the data set.

1468 FILE Statement � Chapter 6

When you specify the _FILE_= option in a FILE statement, this variable is also
indirectly referenced by the automatic _FILE_ variable. If the automatic _FILE_
variable is present and you omit _FILE_= in a particular FILE statement, then SAS
creates an internal _FILE_= variable for that FILE statement. Otherwise, SAS does not
create the _FILE_= variable for a particular FILE.

During execution and at the point of reference, the maximum length of this character
variable is the maximum length of the current _FILE_= variable. However, because
FILE merely references other variables whose lengths are not known until before the
execution phase, the designated length is 32,767 during the compilation phase. For
example, if you assign _FILE_ to a new variable whose length is undefined, the default
length of the new variable is 32,767. You cannot use the LENGTH statement and the
ATTRIB statement to set or override the length of _FILE_. You can use the FORMAT
statement and the ATTRIB statement to assign a format to _FILE_.

Updating the _FILE_ Variable Like other SAS variables, you can update the _FILE_
variable. The following two methods are available:

� Use _FILE_ in an assignment statement.

� Use a PUT statement.

You can update the _FILE_ variable by using an assignment statement that has the
following form.

FILE = < ’string-in-quotation-marks’ | character-expression>

The assignment statement updates the contents of the current output buffer and sets
the buffer length to the length of ’string-in-quotation-marks’ or character-expression.
However, using an assignment statement does not affect the current column pointer of
the PUT statement. The next PUT statement for this FILE statement begins to update
the buffer at column 1 or at the last known location when you use the trailing @ in the
PUT statement.

In the following example, the assignment statement updates the contents of the
current output buffer. The column pointer of the PUT statement is not affected:

file print;
file = ’_FILE_’;
put ’This is PUT’;

SAS creates the following output: This is PUT
In this example,

file print;
file = ’This is from FILE, sir.’;
put @14 ’both’;

SAS creates the following output: This is from both, sir.
You can also update the _FILE_ variable by using a PUT statement. The PUT

statement updates the _FILE_ variable because the PUT statement formats data in the
output buffer and _FILE_ points to that buffer. However, by default SAS clears the
output buffers after a PUT statement executes and outputs the current record (or N=
block of records). Therefore, if you want to examine or further modify the contents of
FILE before it is output, include a trailing @ or @@ in any PUT statement (when
N=1). For other values of N=, use a trailing @ or @@ in any PUT statement where the
last line pointer location is on the last record of the record block. In the following
example, when N=1

file ABC;
put ’Something’ @;
Y = _file_||’ is here’;

Statements � FILE Statement 1469

file ABC;
put ’Nothing’ ;
Y = _file_||’ is here’;

Y is first assigned Something is here then Y is assigned is here.
Any modification of _FILE_ directly modifies the current output buffer for the

current FILE statement. The execution of any subsequent PUT statements for this
FILE statement will output the contents of the modified buffer.

FILE only accesses the contents of the current output buffer for a FILE statement,
even when you use the N= option to specify multiple buffers. You can access all the N=
buffers, but you must use a PUT statement with the # line pointer control to make the
desired buffer the current output buffer.

Comparisons
� The FILE statement specifies the output file for PUT statements. The INFILE

statement specifies the input file for INPUT statements.
� Both the FILE and INFILE statements allow you to use options that provide SAS

with additional information about the external file being used.
� In the Program Editor, Log, and Output windows, the FILE command specifies an

external file and writes the contents of the window to the file.

Examples

Example 1: Executing Statements When Beginning a New Page This DATA step
illustrates how to use the HEADER= option:

� Write a report. Use DATA _NULL_ to write a report rather than create a data set.

data _null_;
set sprint;
by dept;

� Route output to the SAS output window. Point to the header information. The
PRINT fileref routes output to the same location as procedure output. HEADER=
points to the label that precedes the statements that create the header for each
page:

file print header=newpage;

� Start a new page for each department:

if first.dept then put _page_;
put @22 salesrep @34 salesamt;

� Write a header on each page. These statements execute each time a new page is
begun. RETURN is necessary before the label and as the final statement in a
labeled group:

return;
newpage:

put @20 ’Sales for 1989’ /
@20 dept=;

return;
run;

1470 FILE Statement � Chapter 6

Example 2: Determining New Page by Lines Left on the Current Page This DATA step
demonstrates using the LINESLEFT= option to determine where the page break should
occur, according to the number of lines left on the current page.

� Write a report. Use DATA _NULL_ to write a report rather than create a data set:

data _null_;
set info;

� Route output to the standard SAS output window. The PRINT fileref routes output
to the same location as procedure output. LINESLEFT indicates that the variable
REMAIN contains the number of lines left on the current page:

file print linesleft=remain pagesize=20;
put @5 name @30 phone

@35 bldg @37 room;

� Begin a new page when there are fewer than seven lines left on the current page.
Under this condition, PUT _PAGE_ begins a new page and positions the pointer at
line 1:

if remain<7 then put _page_ ;
run;

Example 3: Arranging the Contents of an Entire Page This example shows how to use
N=PAGESIZE in a DATA step to produce a two-column telephone book listing, each
column containing a name and a phone number:

� Create a report and write it to a SAS output window. Use DATA _NULL_ to write
a report rather than create a data set. PRINT is the fileref. SAS uses
carriage-control characters to write the output with the characteristics of a print
file. N=PAGESIZE makes the entire page available to the output pointer:

data _null_;
file ’external-file’ print n=pagesize;

� Specify the columns for the report. This DO loop iterates twice on each DATA step
iteration. The COL value is 1 on the first iteration and 40 on the second:

do col=1, 40;

� Write 20 lines of data. This DO loop iterates 20 times to write 20 lines in column
1. When finished, the outer loop sets COL equal to 40, and this DO loop iterates
20 times again, writing 20 lines of data in the second column. The values of LINE
and COL, which are set and incremented by the DO statements, control where the
PUT statement writes the values of NAME and PHONE on the page:

do line=1 to 20;
set info;
put #line @col name $20. +1 phone 4.;

end;

� After composing two columns of data, write the page. This END statement ends
the outer DO loop. The PUT _PAGE_ writes the current page and moves the
pointer to the top of a new page:

end;
put _page_;

run;

Example 4: Identifying the Current Output File This DATA step causes a file
identification message to print in the log and assigns the value of the current output file

Statements � FILE Statement 1471

to the variable MYOUT. The PUT statement, demonstrating the assignment of the
proper value to MYOUT, writes the value of that variable to the output file:

data _null_;
length myout $ 200;
file file-specification filename=myout;
put myout=;
stop;

run;

The PUT statement writes a line to the current output file that contains the physical
name of the file:

MYOUT=your-output-file

Example 5: Dynamically Changing the Current Output File This DATA step uses the
FILEVAR= option to dynamically change the currently opened output file to a new
physical file.

� Write a report. Create a long character variable. Use DATA _NULL_ to write a
report rather than create a data set. The LENGTH statement creates a variable
with length long enough to contain the name of an external file:

data _null_;
length name $ 200;

� Read an in-stream data line and assign a value to the NAME variable:

input name $;

� Close the current output file and open a new one when the NAME variable changes.
The file-specification is just a place holder; it can be any valid SAS name:

file file-specification filevar=name mod;
date = date();

� Append a log record to currently open output file:

put ’records updated ’ date date.;

� Supply the names of the external files:

datalines;
external-file-1
external-file-2
external-file-3
;

Example 6: When the Output Line Exceeds the Line Length of the Output File Because
the combined lengths of the variables are longer than the output line (80 characters),
this PUT statement automatically writes three separate records:

file file-specification linesize=80;
put name $ 1-50 city $ 71-90 state $ 91-104;

The value of NAME appears in the first record, CITY begins in the first column of
the second record, and STATE in the first column of the third record.

Example 7: Reading Data and Writing Text through a TCP/IP Socket This example
shows reading raw data from a file through a TCP/IP socket. The NBYTE= option is
used in the INFILE statement:

1472 FILE Statement � Chapter 6

/* Start this first as the server */

filename serve socket ’:5205’ server
recfm=s
lrecl=25 blocksize=2500;

data _null_;
nb=25;
infile serve nbyte=nb;
input text $char25.;
put _all_;

run;

This example shows writing text to a file through a TCP/IP socket:

/* While the server test is running,*/
/*continue with this as the client. */

filename client socket "&hstname:5205"
recfm=s
lrecl=25 blocksize=2500;

data _null_;
file client;
put ’Some text to length 25...’;

run;

Example 8: Specifying an Encoding When Writing to an Output File

This example creates an external file from a SAS data set. The current session
encoding is Wlatin1, but the external file’s encoding needs to be UTF-8. By default, SAS
writes the external file using the current session encoding.

To tell SAS what encoding to use when writing data to the external file, specify the
ENCODING= option. When you tell SAS that the external file is to be in UTF-8
encoding, SAS then transcodes the data from Wlatin1 to the specified UTF-8 encoding
when writing to the external file.

libname myfiles ’SAS-library’;

filename outfile ’external-file’;

data _null_;
set myfiles.cars;
file outfile encoding="utf-8";
put Make Model Year;

run;

See Also

Statements:

“FILE Statement for ODS” in SAS Output Delivery System: User’s Guide

“FILENAME Statement” on page 1473

Statements � FILENAME Statement 1473

“INFILE Statement” on page 1543
“LABEL Statement” on page 1601
“PUT Statement” on page 1657
“RETURN Statement” on page 1700
“TITLE Statement” on page 1726

FILENAME Statement

Associates a SAS fileref with an external file or an output device, disassociates a fileref and
external file, or lists attributes of external files.

Valid: anywhere
Category: Data Access
See: FILENAME Statement in the documentation for your operating environment

Syntax
uFILENAME fileref <device-type> ’external-file’ <ENCODING=’encoding-value’>

<options><operating-environment-options>;

vFILENAME fileref <device-type><options> <operating-environment-options>;

wFILENAME fileref CLEAR | _ALL_ CLEAR;

xFILENAME fileref LIST | _ALL_ LIST;

Arguments
fileref

is any SAS name that you use when you assign a new fileref. When you
disassociate a currently assigned fileref or when you list file attributes with the
FILENAME statement, specify a fileref that was previously assigned with a
FILENAME statement or an operating environment-level command.
Tip: The association between a fileref and an external file lasts only for the

duration of the SAS session or until you change it or discontinue it by using
another FILENAME statement. Change the fileref for a file as often as you
want.

’external-file’
is the physical name of an external file. The physical name is the name that is
recognized by the operating environment.

Operating Environment Information: For details about specifying the physical
names of external files, see the SAS documentation for your operating
environment. �

Tip: Specify external-file when you assign a fileref to an external file.
Tip: You can associate a fileref with a single file or with an aggregate file storage

location.

ENCODING= ’encoding-value’

1474 FILENAME Statement � Chapter 6

specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.
Default: SAS assumes that an external file is in the same encoding as the

session encoding.
Featured in: Example 5 on page 1478 and Example 6 on page 1478

device-type
specifies the type of device or the access method that is used if the fileref points to
an input or output device or location that is not a physical file:

DISK specifies that the device is a disk drive.
Tip: When you assign a fileref to a file on disk, you are not

required to specify DISK.

DUMMY specifies that the output to the file is discarded.
Tip: Specifying DUMMY can be useful for testing.

GTERM indicates that the output device type is a graphics device that
will receive graphics data.

PIPE specifies an unnamed pipe.

Note: Some operating environments do not support pipes. �

PLOTTER specifies an unbuffered graphics output device.

PRINTER specifies a printer or printer spool file.

TAPE specifies a tape drive.

TEMP creates a temporary file that exists only as long as the filename
is assigned. The temporary file can be accessed only through
the logical name and is available only while the logical name
exists.
Restriction: Do not specify a physical pathname. If you do,

SAS returns an error.
Tip: Files manipulated by the TEMP device can have the same

attributes and behave identically to DISK files.

TERMINAL specifies the user’s terminal.

UPRINTER specifies a Universal Printing printer definition name.
Tip: If you do not specify the printer name in the FILENAME

statement, the PRINTERPATH options control which
Universal Printer is used and the destination of the output.

Operating Environment Information: Additional specifications might be required
when you specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments. �

CLEAR
disassociates one or more currently assigned filerefs.

Statements � FILENAME Statement 1475

Tip: Specify fileref to disassociate a single fileref. Specify _ALL_ to disassociate
all currently assigned filerefs.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned
filerefs.

LIST
writes the attributes of one or more files to the SAS log.
Interaction: Specify fileref to list the attributes of a single file. Specify _ALL_ to

list the attributes of all files that have filerefs in your current session.

Options
RECFM=record-format

specifies the record format of the external file.

Operating Environment Information: Values for record-format are dependent on
the operating environment. For details, see the SAS documentation for your
operating environment. �

Operating Environment Options
Operating environment options specify details, such as file attributes and processing
attributes, that are specific to your operating environment.

Operating Environment Information: For a list of valid specifications, see the SAS
documentation for your operating environment. �

Details

Operating Environment Information

Operating Environment Information: Using the FILENAME statement requires
operating environment-specific information. See the SAS documentation for your
operating environment before using this statement. Note also that commands are
available in some operating environments that associate a fileref with a file and that
break that association. �

Definitions

external file
is a file that is created and maintained in the operating environment from which
you need to read data, SAS programming statements, or autocall macros, or to
which you want to write output. An external file can be a single file or an
aggregate storage location that contains many individual external files. See
Example 3 on page 1477.

Operating Environment Information: Different operating environments call an
aggregate grouping of files by different names, such as a directory, a MACLIB, or a
partitioned data set. For details about specifying external files, see the SAS
documentation for your operating environment. �

fileref
(a file reference name) is a shorthand reference to an external file. After you
associate a fileref with an external file, you can use it as a shorthand reference for
that file in SAS programming statements (such as INFILE, FILE, and
%INCLUDE) and in other commands and statements in SAS software that access
external files.

1476 FILENAME Statement � Chapter 6

Reading Delimited Data from an External File Any time a text file originates from
anywhere other than the local encoding environment, it might be necessary to specify
the ENCODING= option in either EBCDIC or ASCII environments.

For example, when you read an EBCDIC text file on an ASCII platform, it is
recommended that you specify the ENCODING= option in the FILENAME statement.
However, if you use the DSD and DLM options in the FILENAME statement, the
ENCODING= option is a requirement because these options require certain characters
in the session encoding (such as quotation marks, commas, and blanks).

The use of encoding-specific informats should be reserved for use with true binary
files. That is, they contain both character and non-character fields.

uAssociating a Fileref with an External File Use this form of the FILENAME
statement to associate a fileref with an external file on disk:

FILENAME fileref ’external-file’ <operating-environment-options>;

To associate a fileref with a file other than a disk file, you might need to specify a
device type, depending on your operating environment, as shown in this form:

FILENAME fileref <device-type> <operating-environment-options>;

The association between a fileref and an external file lasts only for the duration of
the SAS session or until you change it or discontinue it with another FILENAME
statement. Change the fileref for a file as often as you want.

To specify a character-set encoding, use the following form:

FILENAME fileref <device-type> <operating-environment-options>;

vAssociating a Fileref with a Terminal, Printer, Universal Printer, or Plotter To
associate a fileref with an output device, use this form:

FILENAME fileref device-type <operating-environment-options>;

wDisassociating a Fileref from an External File To disassociate a fileref from a file,
use a FILENAME statement, specifying the fileref and the CLEAR option.

xWriting File Attributes to the SAS Log Use a FILENAME statement to write the
attributes of one or more external files to the SAS log. Specify fileref to list the
attributes of one file; use _ALL_ to list the attributes of all the files that have been
assigned filerefs in your current SAS session.

FILENAME fileref LIST | _ALL_ LIST;

Comparisons
The FILENAME statement assigns a fileref to an external file. The LIBNAME
statement assigns a libref to a SAS data set or to a DBMS file that can be accessed like
a SAS data set.

Examples

Example 1: Specifying a Fileref or a Physical Filename You can specify an external
file either by associating a fileref with the file and then specifying the fileref or by
specifying the physical filename in quotation marks:

filename sales ’your-input-file’;

Statements � FILENAME Statement 1477

data jansales;
/* specifying a fileref */

infile sales;
input salesrep $20. +6 jansales febsales

marsales;
run;

data jansales;
/* physical filename in quotation marks */

infile ’your-input-file’;
input salesrep $20. +6 jansales febsales

marsales;
run;

Example 2: Using a FILENAME and a LIBNAME Statement

This example reads data from a file that has been associated with the fileref GREEN
and creates a permanent SAS data set stored in a SAS library that has been associated
with the libref SAVE.

filename green ’your-input-file’;
libname save ’SAS-library’;

data save.vegetable;
infile green;
input lettuce cabbage broccoli;

run;

Example 3: Associating a Fileref with an Aggregate Storage Location If you associate
a fileref with an aggregate storage location, use the fileref, followed in parentheses by
an individual filename, to read from or write to any of the individual external files that
are stored there.

Operating Environment Information: Some operating environments allow you to read
from but not write to members of aggregate storage locations. For details, see the SAS
documentation for your operating environment. �

In this example, each DATA step reads from an external file (REGION1 and
REGION2, respectively) that is stored in the same aggregate storage location and that
is referenced by the fileref SALES.

filename sales ’aggregate-storage-location’;

data total1;
infile sales(region1);
input machine $ jansales febsales marsales;
totsale=jansales+febsales+marsales;

run;

data total2;
infile sales(region2);
input machine $ jansales febsales marsales;
totsale=jansales+febsales+marsales;

run;

1478 FILENAME Statement � Chapter 6

Example 4: Routing PUT Statement Output In this example, the FILENAME
statement associates the fileref OUT with a printer that is specified with an operating
environment-dependent option. The FILE statement directs PUT statement output to
that printer.

filename out printer operating-environment-option;

data sales;
file out print;
input salesrep $20. +6 jansales

febsales marsales;
put _infile_;
datalines;

Jones, E. A. 124357 155321 167895
Lee, C. R. 111245 127564 143255
Desmond, R. T. 97631 101345 117865
;

You can use the FILENAME and FILE statements to route PUT statement output to
several devices during the same session. To route PUT statement output to your display
monitor, use the TERMINAL option in the FILENAME statement, as shown here:

filename show terminal;

data sales;
file show;
input salesrep $20. +6 jansales

febsales marsales;
put _infile_;
datalines;

Jones, E. A. 124357 155321 167895
Lee, C. R. 111245 127564 143255
Desmond, R. T. 97631 101345 117865
;

Example 5: Specifying an Encoding When Reading an External File This example
creates a SAS data set from an external file. The external file is in UTF-8 character-set
encoding, and the current SAS session is in the Wlatin1 encoding. By default, SAS
assumes that an external file is in the same encoding as the session encoding, which
causes the character data to be written to the new SAS data set incorrectly.

To tell SAS what encoding to use when reading the external file, specify the
ENCODING= option. When you tell SAS that the external file is in UTF-8, SAS then
transcodes the external file from UTF-8 to the current session encoding when writing to
the new SAS data set. Therefore, the data is written to the new data set correctly in
Wlatin1.

libname myfiles ’SAS-library’;

filename extfile ’external-file’ encoding="utf-8";

data myfiles.unicode;
infile extfile;
input Make $ Model $ Year;

run;

Example 6: Specifying an Encoding When Writing to an External File This example
creates an external file from a SAS data set. The current session encoding is Wlatin1,

Statements � FILENAME Statement, CATALOG Access Method 1479

but the external file’s encoding needs to be UTF-8. By default, SAS writes the external
file using the current session encoding.

To tell SAS what encoding to use when writing data to the external file, specify the
ENCODING= option. When you tell SAS that the external file is to be in UTF-8
encoding, SAS then transcodes the data from Wlatin1 to the specified UTF-8 encoding
when writing to the external file.

libname myfiles ’SAS-library’;

filename outfile ’external-file’ encoding="utf-8";

data _null_;
set myfiles.cars;
file outfile;
put Make Model Year;

run;

See Also

Statements:
“FILE Statement” on page 1457
“%INCLUDE Statement” on page 1536
“INFILE Statement” on page 1543
“FILENAME Statement, CATALOG Access Method” on page 1479
“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485
“FILENAME Statement, FTP Access Method” on page 1495
“FILENAME Statement, SOCKET Access Method” on page 1512
“FILENAME Statement, SFTP Access Method” on page 1506
“FILENAME Statement, URL Access Method” on page 1515
“LIBNAME Statement” on page 1607

SAS Windowing Interface Commands:
FILE and INCLUDE

FILENAME Statement, CATALOG Access Method

Enables you to reference a SAS catalog as an external file.

Valid: anywhere
Category: Data Access

Syntax
FILENAME fileref CATALOG ’catalog’ <catalog-options>;

Arguments
fileref

1480 FILENAME Statement, CATALOG Access Method � Chapter 6

is a valid fileref.

CATALOG
specifies the access method that enables you to reference a SAS catalog as an
external file. You can then use any SAS commands, statements, or procedures that
can access external files to access a SAS catalog.
Tip: This access method makes it possible for you to invoke an autocall macro

directly from a SAS catalog.
Tip: With this access method you can read any type of catalog entry, but you can

write only to entries of type LOG, OUTPUT, SOURCE, and CATAMS.
Tip: If you want to access an entire catalog (instead of a single entry), you must

specify its two-level name in the catalog parameter.
Alias: LIBRARY

’catalog’
is a valid two-, three-, or four-part SAS catalog name, where the parts represent
library.catalog.entry.entrytype.
Default: The default entry type is CATAMS.
Restriction: The CATAMS entry type is used only by the CATALOG access

method. The CPORT and CIMPORT procedures do not support this entry type.

Catalog Options
Catalog-options can be any of the following:

LRECL=lrecl
where lrecl is the maximum record length for the data in bytes.
Default: For input, the actual LRECL value of the file is the default. For output,

the default is 132.
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL= system option“LRECL= System Option” on page 1883.

RECFM=recfm
where recfm is one of four record formats:

F is fixed-record format. Data is transferred in image (binary)
mode.

P is print format.

S is stream-record format. Data is transferred in image (binary)
mode.
Interaction: The amount of data that is read is controlled by

the value of the NBYTE= variable in the INFILE statement.
The NBYTE= option specifies a variable that is equal to the
amount of data to be read. This amount must be less than or
equal to LRECL.

See Also: The NBYTE= option on page 1550 in the INFILE
statement.

V is variable-record format (the default). In this format, records
have varying lengths, and they are separated by newlines.
Data is transferred in image (binary) mode.

Default: V

DESC=description
where description is a text description of the catalog.

Statements � FILENAME Statement, CATALOG Access Method 1481

MOD
specifies to append to the file.
Default: If you omit MOD, the file is replaced.

Details
The CATALOG access method in the FILENAME statement enables you to reference a
SAS catalog as an external file. You can then use any SAS commands, statements, or
procedures that can access external files to access a SAS catalog. As an example, the
catalog access method makes it possible for you to invoke an autocall macro directly
from a SAS catalog. See Example 5 on page 1482.

With the CATALOG access method you can read any type of catalog entry, but you
can write to only entries of type LOG, OUTPUT, SOURCE, and CATAMS. If you want
to access an entire catalog (instead of a single entry), you must specify its two-level
name in the catalog argument.

Examples

Example 1: Using %INCLUDE with a Catalog Entry This example submits the source
program that is contained in SASUSER.PROFILE.SASINP.SOURCE:

filename fileref1
catalog ’sasuser.profile.sasinp.source’;

%include fileref1;

Example 2: Using %INCLUDE with Several Entries in a Single Catalog This example
submits the source code from three entries in the catalog MYLIB.INCLUDE. When no
entry type is specified, the default is CATAMS.

filename dir catalog ’mylib.include’;
%include dir(mem1);
%include dir(mem2);
%include dir(mem3);

Example 3: Reading and Writing a CATAMS Entry This example uses a DATA step to
write data to a CATAMS entry, and another DATA step to read it back in:

filename mydata
catalog ’sasuser.data.update.catams’;

/* write data to catalog entry update.catams */
data _null_;

file mydata;
do i=1 to 10;

put i;
end;

run;

/* read data from catalog entry update.catams */
data _null_;

infile mydata;
input;
put _INFILE_;

run;

1482 FILENAME, CLIPBOARD Access Method � Chapter 6

Example 4: Writing to a SOURCE Entry This example writes code to a catalog
SOURCE entry and then submits it for processing:

filename incit
catalog ’sasuser.profile.sasinp.source’;

data _null_;
file incit;
put ’proc options; run;’;

run;

%include incit;

Example 5: Executing an Autocall Macro from a SAS Catalog If you store an autocall
macro in a SOURCE entry in a SAS catalog, you can point to that entry and invoke the
macro in a SAS job. Use these steps:

1 Store the source code for the macro in a SOURCE entry in a SAS catalog. The
name of the entry is the macro name.

2 Use a LIBNAME statement to assign a libref to that SAS library.
3 Use a FILENAME statement with the CATALOG specification to assign a fileref to

the catalog: libref.catalog.
4 Use the SASAUTOS= option and specify the fileref so that the system knows where

to locate the macro. Also set MAUTOSOURCE to activate the autocall facility.
5 Invoke the macro as usual: %macro-name.

This example points to a SAS catalog named MYSAS.MYCAT. It then invokes a
macro named REPORTS, which is stored as a SAS catalog entry named
MYSAS.MYCAT.REPORTS.SOURCE:

libname mysas ’SAS-library’;
filename mymacros catalog ’mysas.mycat’;
options sasautos=mymacros mautosource;

%reports

See Also

Statements:
“FILENAME Statement” on page 1473
“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485
“FILENAME Statement, FTP Access Method” on page 1495
“FILENAME Statement, SOCKET Access Method” on page 1512
“FILENAME Statement, SFTP Access Method” on page 1506
“FILENAME Statement, URL Access Method” on page 1515

FILENAME, CLIPBOARD Access Method

Enables you to read text data from and write text data to the clipboard on the host computer.

Valid: anywhere

Statements � FILENAME, CLIPBOARD Access Method 1483

Category: Data Access

Syntax
FILENAME fileref CLIPBRD <BUFFER=paste-buffer-name>;

Arguments

fileref
is a valid fileref.

CLIPBRD
specifies the access method that enables you to read data from or write data to the
clipboard on the host computer.

BUFFER=paste-buffer-name
creates and names the paste buffer. You can create any number of paste buffers by
naming them with the BUFFER= argument in the STORE command.

Details
The FILENAME statement, CLIPBOARD Access Method enables you to share data
within SAS and between SAS and applications other than SAS.

Comparisons
The STORE command copies marked text in the current window and stores the copy in
a paste buffer.

You can also copy data to the clipboard by using the Explorer pop-up menu item Copy
Contents to Clipboard.

Examples

Example 1: Using ODS to Write a Data Set as HTML to the Clipboard This example
uses the Sashelp.Air data set as the input file. The ODS is used to write the data set in
HTML format to the clipboard.

filename _temp_ clipbrd;
ods noresults;
ods listing close;
ods html file=_temp_ rs=none style=minimal;
proc print data=Sashelp.’Air’N noobs;

run;
ods html close;
ods results;
ods listing;
filename _temp_;

Example 2: Using the DATA Step to Write a Data Set As Comma-separated Values to the
Clipboard This example uses the Sashelp.Air data set as the input file. The data is
written in the DATA step as comma-separated values to the clipboard.

filename _temp1_ temp;
filename _temp2_ clipbrd;

1484 FILENAME, CLIPBOARD Access Method � Chapter 6

proc contents data=Sashelp."Air"N out=info noprint;
proc sort data=info;

by npos;
run;

data _null_;
set info end=eof;
;
file _temp1_ dsd;
put name @@;
if _n_=1 then do;

call execute("data _null_; set Sashelp.""Air""N; file _temp1_ dsd mod; put");
end;
call execute(trim(name));
if eof then call execute(’; run;’);

run;

data _null_;
infile _temp1_;
file _temp2_;
input;
put _infile_;

run;

filename _temp1_ clear;
filename _temp2_ clear;

Example 3: Using the DATA Step to Write Text to the Clipboard This example writes
three lines to the clipboard.

filename clippy clipbrd;

data _null_;
file clippy;
put ’Line 1’;
put ’Line 2’;
put ’Line 3’;

run;

Example 4: Using the DATA Step to Retrieve Text from the Clipboard This example
writes three lines to the clipboard and then retrieves them.

filename clippy clipbrd;

data _null_;
file clippy;
put ’Line 1’;
put ’Line 2’;
put ’Line 3’;

run;

data _null_;
infile clippy;
input;
put _infile_;

run;

Statements � FILENAME Statement, EMAIL (SMTP) Access Method 1485

See Also

Command:

The STORE command in the Base SAS Help and Documentation.

FILENAME Statement, EMAIL (SMTP) Access Method

Enables you to send electronic mail programmatically from SAS using the SMTP (Simple Mail
Transfer Protocol) e-mail interface.

Valid: Anywhere

Category: Data Access

Syntax
FILENAME fileref EMAIL <’address’ ><email-options>;

Arguments

fileref
is a valid file reference. The fileref is a name that is temporarily assigned to an
external file or to a device type. Note that the fileref cannot exceed eight characters.

EMAIL
specifies the EMAIL device type, which provides the access method that enables you
to send electronic mail programmatically from SAS. In order to use SAS to send a
message to an SMTP server, you must enable SMTP e-mail. For more information,
see “The SMTP E-Mail Interface” in SAS Language Reference: Concepts.

’address’
is the e-mail address to which you want to send the message. You must enclose the
address in quotation marks. Specifying an address as a FILENAME statement
argument is optional if you specify the TO= e-mail option or the PUT statement
!EM_TO! directive, which will override an address specification.

E-mail Options
You can use any of the following e–mail options in the FILENAME statement to specify
attributes for the electronic message.

Note: You can also specify these options in the FILE statement. E-mail options that
you specify in the FILE statement override any corresponding e-mail options that you
specified in the FILENAME statement. �

ATTACH=’filename.ext’ | ATTACH= (’filename.ext’ attachment-options)
specifies the physical name of the file or files to be attached to the message and
any options to modify attachment specifications. The physical name is the name
that is recognized by the operating environment. Enclose the physical name in
quotation marks. To attach more than one file, enclose the group of files in

1486 FILENAME Statement, EMAIL (SMTP) Access Method � Chapter 6

parentheses, enclose each file in quotation marks, and separate each with a space.
Here are examples:

attach="/u/userid/opinion.txt"

attach=(’C:\Status\June2001.txt’ ’C:\Status\July2001.txt’)

attach="user.misc.pds(member)"

The attachment-options include the following:

CONTENT_TYPE=’content/type’
specifies the content type for the attached file. You must enclose the value in
quotation marks. If you do not specify a content type, SAS tries to determine
the correct content type based on the filename. For example, if you do not
specify a content type, a filename of home.html is sent with a content type of
text/html.

Aliases: CT= and TYPE=

Default: If SAS cannot determine a content type based on the filename and
extension, the default value is text/plain.

ENCODING=’encoding-value’
specifies the text encoding of the attachment that is read into SAS. You must
enclose the value in quotation marks.

See Also: “Encoding Values in SAS Language Elements” in the SAS National
Language Support (NLS): Reference Guide

EXTENSION=’extension’
specifies a different file extension to be used for the specified attachment. You
must enclose the value in quotation marks. This extension is used by the
recipient’s e-mail program for selecting the appropriate utility to use for
displaying the attachment. For example, the following results in the
attachment home.html being received as index.htm:

attach=("home.html" name="index" ext="htm")

Note: If you specify extension="", the specified attachment will have no
file extension. �

Alias: EXT=

NAME=’filename’
specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. For example, the following results in
the attachment home.html being received as index.html:

attach=("home.html" name="index")

OUTENCODING=’encoding-value’
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.

Restriction: Do not specify EBCDIC encoding values, because the SMTP
e-mail interface does not support EBCDIC.

See Also: “Encoding Values in SAS Language Elements” in the SAS National
Language Support (NLS): Reference Guide

BCC=’bcc-address’
specifies the recipient or recipients that you want to receive a blind copy of the
electronic mail. Individuals that are listed in the bcc field will receive a copy of

Statements � FILENAME Statement, EMAIL (SMTP) Access Method 1487

the e-mail. The BCC field does not appear in the e-mail header, so that these
e-mail addresses cannot be viewed by other recipients.

If a BCC address contains more than one word, then enclose it in quotation
marks. To specify more than one address, you must enclose the group of addresses
in parentheses, enclose each address in quotation marks, and separate each
address with a space. To specify a real name as well as an address, enclose the
address in angle brackets (< >). Here are examples:

bcc="joe@site.com"

bcc=("joe@site.com" "jane@home.net")

bcc="Joe Smith <joe@site.com>"

CC=’cc-address’
specifies the recipient or recipients to receive a copy of the e-mail message. You
must enclose an address in quotation marks. To specify more than one address,
enclose the group of addresses in parentheses, enclose each address in quotation
marks, and separate each address with a space. To specify a real name as well as
an address, enclose the address in angle brackets (< >). Here are examples:

cc=’joe@site.com’

cc=("joe@site.com" "jane@home.net")

cc="Joe Smith <joe@site.com>"

CONTENT_TYPE=’content/type’
specifies the content type for the message body. If you do not specify a content
type, SAS tries to determine the correct content type. You must enclose the value
in quotation marks.
Aliases: CT= and TYPE=
Default: text/plain

ENCODING=’encoding-value’
specifies the text encoding to use for the message body. For valid encoding values,
see “Encoding Values in SAS Language Elements” in the SAS National Language
Support (NLS): Reference Guide.

FROM=’from-address’
specifies the e-mail address of the author of the message that is being sent. The
default value for FROM= is the e-mail address of the user who is running SAS.
For example, specify this option when the person who is sending the message from
SAS is not the author. You must enclose an address in quotation marks. You can
specify only one e-mail address. To specify the author’s real name along with the
address, enclose the address in angle brackets (< >). Here are examples:

from=’martin@home.com’

from="Brad Martin <martin@home.com>"

Requirement: The FROM option is required if the EMAILFROM system option
is set.

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the “LRECL= System Option” on page 1883.

1488 FILENAME Statement, EMAIL (SMTP) Access Method � Chapter 6

IMPORTANCE=’LOW’ | ’NORMAL’ | ’HIGH’
specifies the priority of the e-mail message. You must enclose the value in
quotation marks. You can specify the priority in the language that matches your
session encoding. However, SAS will translate the priority into English because
the actual message header must contain English in accordance with the RFC-2076
specification (Common Internet Message Headers). Here are examples:

filename inventory email ’name@mycompany.com’ importance=’high’;

filename inventory email ’name@mycompany.com’ importance=’hoch’;

Default: NORMAL

REPLYTO=’replyto-address’
specifies the e-mail address(es) for who will receive replies. You must enclose an
address in quotation marks. To specify more than one address, enclose the group
of addresses in parentheses, enclose each address in quotation marks, and
separate each address with a space. To specify a real name along with an address,
enclose the address in angle brackets (< >). Here are examples:

replyto=’hiroshi@home.com’

replyto=(’hiroshi@home.com’ ’akiko@site.com’)

replyto="Hiroshi Mori <mori@site.com>"

SUBJECT=subject
specifies the subject of the message. If the subject contains special characters or
more than one word (that is, it contains at least one blank space), you must
enclose the text in quotation marks. Here are examples:

subject=Sales

subject="June Sales Report"

Note: If you do not enclose a one-word subject in quotation marks, it is
converted to uppercase. �

TO=’to-address’
specifies the primary recipient or recipients of the e-mail message. You must
enclose the address in quotation marks. To specify more than one address, enclose
the group of addresses in parentheses, enclose each address in quotation marks,
and separate each address with a space. To specify a real name as well as an
address, enclose the address in angle brackets (< >). Here are examples:

to=’joe@site.com’

to=("joe@site.com" "jane@home.net")

to="Joe Smith <joe@site.com>"

Tip: Specifying TO= overrides the ’address’ argument.

PUT Statement Syntax for EMAIL (SMTP) Access Method
In the DATA step, after using the FILE statement to define your e-mail fileref as the
output destination, use PUT statements to define the body of the message. For example,

filename mymail email ’martin@site.com’ subject=’Sending Email’;

Statements � FILENAME Statement, EMAIL (SMTP) Access Method 1489

data _null_;
file mymail;
put ’Hi’;
put ’This message is sent from SAS...’;

run;

You can also use PUT statements to specify e-mail directives that override the
attributes of your message (the e-mail options like TO=, CC=, SUBJECT=,
CONTENT_TYPE=, ATTACH=), or to perform actions such as send, end abnormally, or
start a new message. Specify only one directive in each PUT statement; each PUT
statement can contain only the text that is associated with the directive that it specifies.

The directives that change the attributes of a message are as follows:

’!EM_ATTACH! ’filename.ext’ | ATTACH=(’filename.ext’ attachment-options)’
replaces the physical name of the file or files to be attached to the message and
any options to modify attachment specifications. The physical name is the name
that is recognized by the operating environment. The directive must be enclosed in
quotation marks, and the physical name must be enclosed in quotation marks. To
attach more than one file, enclose the group of files in parentheses, enclose each
file in quotation marks, and separate each with a space. Here are examples:

put ’!em_attach! /u/userid/opinion.txt’;

put ’!em_attach! ("C:\Status\June2001.txt" "C:\Status\July2001.txt")’;

put ’!em_attach! user.misc.pds(member)’;

The attachment-options include the following:

CONTENT_TYPE=’content/type’
specifies the content type for the attached file. You must enclose the value in
quotation marks. If you do not specify a content type, SAS tries to determine
the correct content type based on the filename. For example, if you do not
specify a content type, a filename of home.html is sent with a content type of
text/html.

Aliases: CT= and TYPE=

Default: If SAS cannot determine a content type based on the filename and
extension, the default value is text/plain.

ENCODING=’encoding-value’
specifies the text encoding to use for the attachment as it is read into SAS.
You must enclose the value in quotation marks. For valid encoding values,
see “Encoding Values in SAS Language Elements” in the SAS National
Language Support (NLS): Reference Guide.

EXTENSION=’extension’
specifies a different file extension to be used for the specified attachment. You
must enclose the value in quotation marks. This extension is used by the
recipient’s e-mail program for selecting the appropriate utility to use for
displaying the attachment. For example, the following results in the
attachment home.html being received as index.htm:

put ’!em_attach! ("home.html" name="index" ext="htm")’;

Alias: EXT=

Default: TXT

NAME=’filename’

1490 FILENAME Statement, EMAIL (SMTP) Access Method � Chapter 6

specifies a different name to be used for the specified attachment. You must
enclose the value in quotation marks. For example, the following results in
the attachment home.html being received as index.html:

put ’!em_attach! ("home.html" name="index")’;

OUTENCODING=’encoding-value’
specifies the resulting text encoding for the attachment to be sent. You must
enclose the value in quotation marks.

Restriction: Do not specify EBCDIC encoding values, because the SMTP
e-mail interface does not support EBCDIC.

See Also: “Encoding Values in SAS Language Elements” in the SAS National
Language Support (NLS): Reference Guide

’!EM_BCC! bcc-address’
replaces the current blind copied recipient address(es) with addresses. These
recipients are not visible to the recipients in the !EM_TO! or !EM_CC! addresses.
If you want to specify more than one address, then you must enclose the group of
addresses in parentheses, enclose each address in quotation marks, and separate
each address with a space. To specify real names along with addresses, enclose the
address in angle brackets (< >). Here are examples:

put ’!em_bcc! joe@site.com’;

put ’!em_bcc! ("joe@site.com" "jane@home.net")’;

put ’!em_bcc! Joe Smith <joe@site.com>’;

’!EM_CC! cc-address’
replaces the current copied recipient address(es). The directive must be enclosed
in quotation marks. To specify more than one address, enclose the group of
addresses in parentheses, enclose each address in quotation marks, and separate
each address with a space. To specify real names along with addresses, enclose the
address in angle brackets (< >). Here are examples:

put ’!em_cc! joe@site.com’;

put ’!em_cc! ("joe@site.com" "jane@home.com")’;

put ’!em_cc! Joe Smith <joe@site.com>’;

’!EM_FROM! from-address’
replaces the current address of the author of the message being sent, which could
be either the default or the one specified by the FROM= e-mail option. The
directive must be enclosed in quotation marks. You can specify only one e-mail
address. To specify the author’s real name along with the address, enclose the
address in angle brackets (< >). Here are examples:

put ’!em_from! martin@home.com’;

put ’!em_from! Brad Martin <martin@home.com>’;

’!EM_IMPORTANCE! LOW | NORMAL | HIGH’
specifies the priority of the e-mail message. The directive must be enclosed in
quotation marks. You can specify the priority in the language that matches your
session encoding. However, SAS will translate the priority into English because
the actual message header must contain English in accordance with the RFC-2076
specification (Common Internet Message Headers). Here are examples:

Statements � FILENAME Statement, EMAIL (SMTP) Access Method 1491

put ’!em_importance! high’;

put ’!em_importance! haut’;

Default: NORMAL

’!EM_REPLYTO! replyto-address’
replaces the current address(es) of who will receive replies. The directive must be
enclosed in quotation marks. To specify more than one address, enclose the group
of addresses in parentheses, enclose each address in quotation marks, and
separate each address with a space. To specify a real name along with an address,
enclose the address in angle brackets (< >). Here are examples:

put ’!em_replyto! hiroshi@home.com’;

put ’!em_replyto! ("hiroshi@home.com" "akiko@site.com")’;

put ’!em_replyto! Hiroshi Mori <mori@site.com>’;

’!EM_SUBJECT! subject’
replaces the current subject of the message. The directive must be enclosed in
quotation marks. If the subject contains special characters or more than one word
(that is, it contains at least one blank space), you must enclose the text in
quotation marks. Here are examples:

put ’!em_subject! Sales’;

put ’!em_subject! "June Sales Report"’;

’!EM_TO! to-address’
replaces the current primary recipient address(es). The directive must be enclosed
in quotation marks. To specify more than one address, enclose the group of
addresses in parentheses, enclose each address in quotation marks, and separate
each address with a space. To specify a real name along with an address, enclose
the address in angle brackets (< >). Here are examples:

put ’!em_to! joe@site.com’;

put ’!em_to! ("joe@site.com" "jane@home.net")’;

put ’!em_to! Joe Smith <joe@site.com>’;

Tip: Specifying !EM_TO! overrides the ’address’ argument and the TO= e-mail
option.

Here are the directives that perform actions:

’!EM_SEND!’
sends the message with the current attributes. By default, SAS sends a message
when the fileref is closed. The fileref closes when the next FILE statement is
encountered or the DATA step ends. If you use this directive, SAS sends the
message when it encounters the directive, and again at the end of the DATA step.
This directive is useful for writing DATA step programs that conditionally send
messages or use a loop to send multiple messages.

’!EM_ABORT!’
abnormally end the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step. By default, SAS
sends a message for each FILE statement.

1492 FILENAME Statement, EMAIL (SMTP) Access Method � Chapter 6

’!EM_NEWMSG!’
clears all attributes of the current message that were set using PUT statement
directives.

Details
You can send electronic mail programmatically from SAS using the EMAIL (SMTP)
access method. To send e-mail to an SMTP server, you first specify the SMTP e-mail
interface with the EMAILSYS system option, use the FILENAME statement to specify
the EMAIL device type, and then submit SAS statements in a DATA step or in SCL
code. The e-mail access method has several advantages:

� You can use the logic of the DATA step or SCL to subset e-mail distribution based
on a large data set of e-mail addresses.

� You can automatically send e-mail upon completion of a SAS program that you
submitted for batch processing.

� You can direct output through e-mail based on the results of processing.

In general, DATA step or SCL code that sends e-mail has the following components:
� a FILENAME statement with the EMAIL device-type keyword

� e-mail options specified in the FILENAME or FILE statement that indicate e-mail
recipients, subject, attached file or files, and so on

� PUT statements that define the body of the message

� PUT statements that specify e-mail directives (of the form !EM_directive!) that
override the e-mail options (for example, TO=, CC=, SUBJECT=, ATTACH=) or
perform actions such as send, end abnormally, or start a new message.

You can use encoded e-mail passwords. When a password is encoded with PROC
PWENCODE, the output string includes a tag that identifies the string as having been
encoded. An example of a tag is {sas001}. The tag indicates the encoding method.
Encoding a password enables you to avoid e-mail access authentication with a password
in plaintext. Passwords that start with “{sas” trigger an attempt to be decoded. If the
decoding succeeds, then that decoded password is used. If the decoding fails, then the
password is used as is. For more information, see PROC PWENCODE in the Base SAS
Procedures Guide.

Examples

Example 1: Sending E-mail with an Attachment Using a DATA Step In order to share a
copy of your SAS configuration file with another user, you could send it by submitting
the following program. The e-mail options are specified in the FILENAME statement:

filename mymail email "JBrown@site.com"
subject="My SAS Configuration File"
attach="/u/sas/sasv8.cfg";

data _null_;
file mymail;
put ’Jim,’;
put ’This is my SAS configuration file.’;
put ’I think you might like the’;
put ’new options I added.’;

run;

Statements � FILENAME Statement, EMAIL (SMTP) Access Method 1493

The following program sends a message and two file attachments to multiple
recipients. For this example, the e-mail options are specified in the FILE statement
instead of the FILENAME statement.

filename outbox email "ron@acme.com";

data _null_;
file outbox

to=("ron@acme.com" "humberto@acme.com")
/* Overrides value in */
/* filename statement */

cc=("miguel@acme.com" "loren@acme.com")
subject="My SAS Output"
attach=("C:\sas\results.out" "C:\sas\code.sas")

;
put ’Folks,’;
put ’Attached is my output from the SAS’;
put ’program I ran last night.’;
put ’It worked great!’;

run;

Example 2: Using Conditional Logic in a DATA Step You can use conditional logic in a
DATA step in order to send multiple messages and control which recipients get which
message. For example, in order to send customized reports to members of two different
departments, the following program produces an e-mail message and attachments that
are dependent on the department to which the recipient belongs. In the program, the
following occurs:

1 In the first PUT statement, the !EM_TO! directive assigns the TO attribute.
2 The second PUT statement assigns the SUBJECT attribute using the

!EM_SUBJECT! directive.
3 The !EM_SEND! directive sends the message.
4 The !EM_NEWMSG! directive clears the message attributes, which must be used

to clear message attributes between recipients.
5 The !EM_ABORT! directive abnormally ends the message before the RUN

statement causes it to be sent again. The !EM_ABORT! directive prevents the
message from being automatically sent at the end of the DATA step.

filename reports email "Jim.Smith@work.com";

data _null_;
file reports;
length name dept $ 21;
input name dept;
put ’!EM_TO! ’ name;
put ’!EM_SUBJECT! Report for ’ dept;
put name ’,’;
put ’Here is the latest report for ’ dept ’.’ ;
if dept=’marketing’ then

put ’!EM_ATTACH! c:\mktrept.txt’;
else /* ATTACH the appropriate report */

put ’!EM_ATTACH! c:\devrept.txt’;
put ’!EM_SEND!’;
put ’!EM_NEWMSG!’;
put ’!EM_ABORT!’;

datalines;

1494 FILENAME Statement, EMAIL (SMTP) Access Method � Chapter 6

Susan marketing
Peter marketing
Alma development
Andre development
;
run;

Example 3: Sending Procedure Output in E-mail You can use e-mail to send procedure
output. This example illustrates how to send ODS HTML in the body of an e-mail
message. Note that ODS HTML procedure output must be sent with the
RECORD_SEPARATOR (RS) option set to NONE.

filename outbox email
to=’susan@site.com’
type=’text/html’
subject=’Temperature Conversions’;

data temperatures;
do centigrade = -40 to 100 by 10;

fahrenheit = centigrade*9/5+32;
output;

end;
run;

ods html
body=outbox /* Mail it! */
rs=none;

title ’Centigrade to Fahrenheit Conversion Table’;

proc print;
id centigrade;
var fahrenheit;

run;

ods html close;

Example 4: Creating and E-mailing an Image The following example illustrates how to
create a GIF image and send it from SAS in an e-mail message:

filename gsasfile email
to=’Jim@acme.com’
type=’image/gif’
subject="SAS/GRAPH Output";

goptions dev=gif gsfname=gsasfile;

proc gtestit pic=1;
run;

See Also

Statements:

“FILENAME Statement” on page 1473

Statements � FILENAME Statement, FTP Access Method 1495

“FILENAME Statement, CATALOG Access Method” on page 1479

“FILENAME Statement, FTP Access Method” on page 1495

“FILENAME Statement, SOCKET Access Method” on page 1512

“FILENAME Statement, SFTP Access Method” on page 1506

“FILENAME Statement, URL Access Method” on page 1515

The SMTP E-Mail Interface in SAS Language Reference: Concepts

FILENAME Statement, FTP Access Method

Enables you to access remote files by using the FTP protocol.

Valid: anywhere

Category: Data Access

Syntax
FILENAME fileref FTP ’external-file’ <ftp-options>;

Arguments

fileref
is a valid fileref.

Tip: The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

FTP
specifies the access method that enables you to use File Transfer Protocol (FTP) to
read from or write to a file from any host computer that you can connect to on a
network with an FTP server running.

Tip: Use FILENAME with FTP when you want to connect to the host computer, to
log in to the FTP server, to make records in the specified file available for reading
or writing, and to disconnect from the host computer.

’external-file’
specifies the physical name of an external file that you want to read from or write to.
The physical name is the name that is recognized by the operating environment.

If the file has an IBM 370 format and a record format of FB or FBA, and if the
ENCODING= option is specified, then you must also specify the LRECL= option. If
the length of a record is shorter than the value of LRECL, then SAS pads the record
with blanks until the record length is equal to the value of LRECL.

Operating Environment Information: For details about specifying the physical
names of external files, see the SAS documentation for your operating environment. �

Tip: If you are not transferring a file but performing a task such as retrieving a
directory listing, then you do not need to specify a filename. Instead, put empty
quotation marks in the statement. See Example 1 on page 1502.

1496 FILENAME Statement, FTP Access Method � Chapter 6

Tip: You can associate a fileref with a single file or with an aggregate file storage
location.

Tip: If you use the DIR option, specify the directory in this argument.

ftp-options
specifies details that are specific to your operating environment such as file
attributes and processing attributes.

Operating Environment Information: For more information about some of these
FTP options, see the SAS documentation for your operating environment. �

FTP Options
AUTHDOMAIN="auth-domain"

specifies the name of an authentication domain metadata object in order to
connect to the FTP server. The authentication domain references credentials (user
ID and password) without your having to explicitly specify the credentials. The
auth-domain name is case sensitive, and it must be enclosed in double quotation
marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects that
provide access to the FTP server and is resolved by the BASE engine calling the
SAS Metadata Server and returning the authentication credentials.

Requirement: The authentication domain and the associated login definition
must be stored in a metadata repository, and the metadata server must be
running in order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See also: For more information about creating and using authentication domains,
see the discussion on credential management in the SAS Intelligence Platform:
Security Administration Guide.

BINARY
is fixed-record format. Thus, all records are of size LRECL with no line delimiters.
Data is transferred in image (binary) mode.

The BINARY option overrides the value of RECFM= in the FILENAME FTP
statement, if specified, and forces a binary transfer.

Alias: RECFM=F

Interaction: If you specify the BINARY option and the S370V or S370VS option,
then SAS ignores the BINARY option.

BLOCKSIZE=blocksize
where blocksize is the size of the data buffer in bytes.

Default: 32768

CD=’directory’
issues a command that changes the working directory for the file transfer to the
directory that you specify.

Interaction: The CD and DIR options are mutually exclusive. If both are
specified, FTP ignores the CD option and SAS writes an informational note to
the log.

DEBUG

Statements � FILENAME Statement, FTP Access Method 1497

writes to the SAS log informational messages that are sent to and received from
the FTP server.

DIR
enables you to access directory files or PDS/PDSE members. Specify the directory
name in the external-file argument. You must use valid directory syntax for the
specified host.
Tip: If you want FTP to append a file extension of DATA to the member name

that is specified in the FILE or INFILE statement, then use the FILEEXT
option in conjunction with the DIR option. The FILEEXT option is ignored if
you specify a file extension in the FILE or INFILE statement.

Tip: If you want FTP to create the directory, then use the NEW option in
conjunction with the DIR option. The NEW option will be ignored if the
directory exists.

Tip: If the NEW option is omitted and you specify an invalid directory, then a
new directory will not be created and you will receive an error message.

Tip: The maximum number of directory or z/OS PDSE members that can be open
simultaneously is limited by the number of sockets that can be open
simultaneously on an FTP server. The number of sockets that can be open
simultaneously is proportional to the number of connections that are set up
during the installation of the FTP server. You might want to limit the number
of sockets that are open simultaneously to avoid performance degradation.

Interaction: The CD and DIR options are mutually exclusive. If both are
specified, FTP ignores the CD option and SAS writes an informational note to
the log.

Featured in: Example 10 on page 1505

ENCODING=encoding-value
specifies the encoding to use when reading from or writing to the external file. The
value for ENCODING= indicates that the external file has a different encoding
from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified encoding.
Default: SAS assumes that an external file is in the same encoding as the

session encoding.
Tip: The data is transferred in image or binary format and is in local data format.

Thus, you must use appropriate SAS informats to read the data correctly.
See Also: “Encoding Values in SAS Language Elements” in the SAS National

Language Support (NLS): Reference Guide

FILEEXT
specifies that the member type of DATA is automatically appended to the member
name in the FILE or INFILE statement when you use the DIR option.
Tip: The FILEEXT option is ignored if you specify a file extension in the FILE or

INFILE statement.
See Also: LOWCASE_MEMNAME option on page 1498
Featured in: Example 10 on page 1505

HOST=’host’
where host is the network name of the remote host with the FTP server running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

1498 FILENAME Statement, FTP Access Method � Chapter 6

HOSTRESPONSELEN=’size’
where size is the length of the FTP server response message.

Default: 2048 bytes

Range: 2048 to 16384 bytes

Restriction: If you specify a size that is less than 2048 or is greater than 16384,
the size will be set to 2048.

LIST
issues the LIST command to the FTP server. LIST returns the contents of the
working directory as records that contain all of the file attributes that are listed
for each file.

Tip: The file attributes that are returned will vary, depending on the FTP server
that is being accessed.

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
FTP servers.
Restriction: SAS autocall macro retrieval always searches for uppercase

directory member names. Mixed case directory or member names are not
supported.

Interaction: If you access files off FTP servers by using the %INCLUDE, FILE,
INFILE, or other DATA step I/O statements, case sensitivity will be preserved.

See Also: FILEEXT option on page 1497

LRECL=lrecl
where lrecl is the logical record length of the data.

Default: 256

Interaction: Alternatively, you can specify a global logical record length by using
the LRECL= system option“LRECL= System Option” on page 1883.

LS
issues the LS command to the FTP server. LS returns the contents of the working
directory as records with no file attributes.

Tip: The file attributes that are returned will vary, depending on the FTP server
that is being accessed.

Tip: To return a listing of a subset of files, use the LSFILE= option in addition to
LS.

LSFILE=’character-string’
in combination with the LS option, specifies a character string that enables you to
request a listing of a subset of files from the working directory. Enclose the
character string in quotation marks.

Restriction: LSFILE= can be used only if LS is specified.

Tip: You can specify a wildcard as part of ’character-string ’.

Tip: The file attributes that are returned will vary, depending on the FTP server
that is being accessed.

Example: This statement lists all of the files that start with sales and end with
sas:

filename myfile ftp ’’ ls lsfile=’sales*.sas’
other-ftp-options;

MGET
transfers multiple files, similar to the FTP command MGET.

Statements � FILENAME Statement, FTP Access Method 1499

Tip: The whole transfer is treated as one file. However, as the transfer of each
new file is started, the EOV= variable is set to 1.

Tip: Specify MPROMPT to prompt the user before each file is sent.

MPROMPT
specifies whether to prompt for confirmation that a file is to be read, if necessary,
when the user executes the MGET option.

Restriction: The MPROMPT option is not available on z/OS for batch processing.

NEW
specifies that you want FTP to create the directory when you use the DIR option.

Tip: The NEW option will be ignored if the directory exists.

Restriction: The NEW option is not available under z/OS.

PASS=’password’
where password is the password to use with the user name specified in the USER=
option.

Tip: You can specify the PROMPT option instead of the PASS option, which tells
the system to prompt you for the password.

Tip: If the user name is anonymous, then the remote host might require that you
specify your e-mail address as the password.

Tip: To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see the“PWENCODE Procedure” in the Base SAS
Procedures Guide.

Featured in: Example 6 on page 1503

PORT=portno
where portno is the port that the FTP daemon monitors on the respective host.

The portno can be any number between 0 and 65535 that uniquely identifies a
service.

Tip: In the Internet community, there is a list of predefined port numbers for
specific services. For example, the default port for FTP is 21. A partial list of
port numbers is usually available in the /etc/services file on any UNIX
computer.

PROMPT
specifies to prompt for the user login password, if necessary.

Restriction: The PROMPT option is not available for batch processing under
z/OS.

Interaction: If PROMPT is specified without USER=, then the user is prompted
for an ID, as well as a password.

Tip: You can use the SAVEUSER on page 1501 option to save the user ID and
password after the user ID and password prompt is successfully executed.

RCMD= ’command ’
where command is the FTP ’SITE’ or ’service’ command to send to the FTP server.

FTP servers use SITE commands to provide services that are specific to a
system and are essential to file transfer but not common enough to be included in
the protocol.

For example, rcmd=’site rdw’ preserves the record descriptor word (RDW) of a
z/OS variable blocked data set as a part of the data. See S370V and S370VS below.

Interaction: Some FTP service commands might not run at a particular client
site depending on the security permissions and the availability of the commands.

1500 FILENAME Statement, FTP Access Method � Chapter 6

Tip: If you transfer a file with the FTP access method and then cannot read the
file, you might need to change the FTP server’s UMASK setting.

If the FTP server supports a SITE UMASK setting, you can change the
permissions of the file as shown in the following example:

filename in ftp ’/mydir/accounting/file2.dat’
host="xxx.fyi.xxx.com"
user="john"
rcmd=’site umask 022’
prompt;

data _null;
file in;
put a $80;
run;

Tip: You can specify multiple FTP service commands if you separate them by
semicolons. Some examples are as follows:

rcmd=’ascii;site umask 002’

rcmd=’stat;site chmod 0400 ~mydir/abc.txt’

RECFM=recfm
where recfm is one of three record formats:

F is fixed-record format. Thus, all records are of size LRECL with
no line delimiters. Data is transferred in image (binary) mode.
Alias: BINARY

The BINARY option overrides the value of RECFM= in
the FILENAME FTP statement, if specified, and forces a
binary transfer.

S is stream-record format. Data is transferred in image (binary)
mode.
Interaction: The amount of data that is read is controlled by

the current LRECL value or by the value of the NBYTE=
variable in the INFILE statement. The NBYTE= option
specifies a variable that is equal to the amount of data to be
read. This amount must be less than or equal to LRECL.

See Also: The NBYTE= option on page 1550 in the INFILE
statement.

V is variable-record format (the default). In this format, records
have varying lengths, and they are transferred in text (stream)
mode.
Interaction: Any record larger than LRECL is truncated.
Tip: If you are using files with the IBM 370 Variable format or

the IBM 370 Spanned Variable format, then you might want
to use the S370V or S370VS options instead of the RECFM=
option. See S370V and S370VS below.

Default: V
Interaction: If you specify the RECFM= option and the S370V or S370VS

option, then SAS ignores the RECFM= option.

RHELP

Statements � FILENAME Statement, FTP Access Method 1501

issues the HELP command to the FTP server. The results of this command are
returned as records.

RSTAT
issues the RSTAT command to the FTP server. The results of this command are
returned as records.

SAVEUSER
saves the user ID and password after the user ID and password prompt are
successfully executed.

Interaction: The user ID and password are saved only for the duration of the
SAS session or until you change the association between the fileref and the
external file, or discontinue it with another FILENAME statement.

S370V
indicates that the file being read is in IBM 370 variable format.

Interaction: If you specify this option and the RECFM= option, then SAS
ignores the RECFM= option.

Tip: The data is transferred in image or binary format and is in local data
format. Thus, you must use appropriate SAS informats to read the data
correctly on non-EBCDIC hosts.

Tip: Use the rcmd=’site rdw’ option when you transfer a z/OS data set with a
variable-record format to another z/OS data set with a variable-record format to
preserve the record descriptor word (rdw) of each record. By default, most FTP
servers remove the rdw that exists in each record before it is transferred.

Typically, the ’SITE RDW’ command is not necessary when you transfer a
data set with a z/OS variable-record format to ASCII, or when you transfer an
ASCII file to a z/OS variable-record format.

S370VS
indicates that the file that is being read is in IBM 370 variable-spanned format.

Interaction: If you specify this option and the RECFM= option, then SAS
ignores the RECFM= option.

Tip: The data is transferred in image or binary format and is in local data
format. Thus, you must use appropriate SAS informats to read the data
correctly on non-EBCDIC hosts.

Tip: Use the rcmd=’site rdw’ option when you transfer a z/OS data set with a
variable-record format to another z/OS data set with a variable-record format to
preserve the record descriptor word (rdw) of each record. By default, most FTP
servers remove the rdw that exists in each record before it is transferred.

Typically, the ’SITE RDW’ command is not necessary when you transfer a
data set with a z/OS variable-record format to ASCII, or when you transfer an
ASCII file to a z/OS variable-record format.

USER=’username’
where username is used to log in to the FTP server.

Restriction: The FTP access method does not support FTP proxy servers that
require user ID authentication.

Interaction: If PROMPT is specified, but USER= is not, then the user is
prompted for an ID.

Tip: You can specify a proxy server and credentials for an FTP server when using
the FTP access method. The user ID and password that you need to log in to
the FTP server is sent via the proxy server by using the
user="userid@ftpservername" pass="password"

1502 FILENAME Statement, FTP Access Method � Chapter 6

host="proxy.server.xxx.com" syntax. Both anonymous and user ID
validation are supported.

Featured in:

TERMSTR=’eol-char’
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).
Default: LF
Restriction: Use this option only when RECFM=V.

WAIT_MILLISECONDS=milliseconds
specifies the FTP response time in milliseconds.
Default: 1,000 milliseconds

Tip: If you receive a “connection closed; transfer aborted” or “network name is no
longer available” message in the log, use the WAIT_MILLISECONDS option to
increase the response time.

Comparisons
As with the FTP get and put commands, the FTP access method lets you download and
upload files. However, this method directly reads files into your SAS session without
first storing them on your system.

Examples

Example 1: Retrieving a Directory Listing This example retrieves a directory listing
from a host named mvshost1 for user smythe, and prompts smythe for a password:

filename dir ftp ’’ ls user=’smythe’
host=’mvshost1.mvs.sas.com’ prompt;

data _null_;
infile dir;
input;
put _INFILE_;

run;

Note: The quotation marks are empty because no file is being transferred. Because
quotation marks are required by the syntax, however, you must include them. �

Example 2: Reading a File from a Remote Host This example reads a file called sales
in the directory /u/kudzu/mydata from the remote UNIX host hp720:

filename myfile ftp ’sales’ cd=’/u/kudzu/mydata’
user=’guest’ host=’hp720.hp.sas.com’
recfm=v prompt;

data mydata / view=mydata; /* Create a view */
infile myfile;

Statements � FILENAME Statement, FTP Access Method 1503

input x $10. y 4.;
run;

proc print data=mydata; /* Print the data */
run;

Example 3: Creating a File on a Remote Host This example creates a file called
test.dat in a directory called c:\remote for the user bbailey on the host winnt.pc:

filename create ftp ’c:\remote\test.dat’
host=’winnt.pc’
user=’bbailey’ prompt recfm=v;

data _null_;
file create;
do i=1 to 10;

put i=;
end;

run;

Example 4: Reading an S370V-Format File on z/OS This example reads an
S370V-format file from a z/OS system. See RCMD= on page 1499 for more information
about RCMD=’site rdw’.

filename viewdata ftp ’sluggo.stat.data’
user=’sluggo’ host=’zoshost1’
s370v prompt rcmd=’site rdw’;

data mydata / view=mydata; /* Create a view */
infile viewdata;
input x $ebcdic8.;

run;

proc print data=mydata; /* Print the data */
run;

Example 5: Anonymously Logging In to FTP This example shows how to log in to FTP
anonymously, if the host accepts anonymous logins.

Note: Some anonymous FTP servers require a password. If required, your e-mail
address is usually used. See PASS= on page 1499 under “FTP Options.” �

filename anon ftp ’’ ls host=’130.96.6.1’
user=’anonymous’;

data _null_;
infile anon;
input;
list;

run;

Note: The quotation marks following the argument FTP are empty. A filename is
needed only when transferring a file, not when routing a command. The quotation
marks, however, are required. �

Example 6: Using an Encoded Password This example shows you how to use an
encoded password in the FILENAME statement.

1504 FILENAME Statement, FTP Access Method � Chapter 6

In a separate SAS session, use the PWENCODE procedure to encode your password
and make note of the output.

proc pwencode in= "MyPass1";
run;

The following output appears in the SAS log:

(sas001)TX1QYXNzMQ==

You can now use the entire encoded password string in your batch program.

filename myfile ftp ’sales’ cd=’/u/kudzu/mydata’
user=’tjbarry’ host=’hp720.hp.mycompany.com’
pass="(sas001)TX1QYXMZ==";

Example 7: Importing a Transport Data Set

This example uses the CIMPORT procedure to import a transport data set from a host
named myshost1for user calvin. The new data set will reside locally in the SASUSER
library. Note that user and password can be SAS macro variables. If you specify a fully
qualified data set name, then use double quotation marks and single quotation marks.
Otherwise, the system will append the profile prefix to the name that you specify.

%let user=calvin;
%let pw=xxxxx;
filename inp ftp "’calvin.mat1.cpo’" user="&user"

pass="&pw" rcmd=’binary’
host=’mvshost1’;

proc cimport library=sasuser infile=inp;
run;

Example 8: Transporting a SAS Library This example uses the CPORT procedure to
transport a SAS library to a host named mvshost1 for user calvin. It will create a new
sequential file on the host called userid.mat64.cpo with the recfm of fb, lrecl of 80,
and blocksize of 8000.

filename inp ftp ’mat64.cpo’ user=’calvin’
pass="xxxx" host=’mvshost1’
lrecl=80 recfm=f blocksize=8000
rcmd=’site blocksize=800 recfm=fb lrecl=80’;

proc cport library=mylib file=inp;
run;

Example 9: Creating a Transport Library with Transport Engine This example creates a
new SAS library on host mvshost1. The FILENAME statement assigns a fileref to the
new data set. Note the use of the RCMD= option to specify important file attributes.
The LIBNAME statement uses a libref that is the same as the fileref and assigns it to
the XPORT engine. The PROC COPY step copies all data sets from the SAS library
that are referenced by MYLIB to the XPORT engine. Output from the PROC
CONTENTS step confirms that the copy was successful:

filename inp ftp ’mat65.cpo’ user=’calvin’
pass="xxxx" host=’mvshost1’
lrecl=80 recfm=f blocksize=8000

rcmd=’site blocksize=8000 recfm=fb lrecl=80’;

Statements � FILENAME Statement, FTP Access Method 1505

libname mylib ’SAS-library’;
libname inp xport;

proc copy in=mylib out=inp mt=data;
run;

proc contents data=inp._all_;
run;

Note: For more information about the XPORT engine, see “The Transport Engine”
in SAS Language Reference: Concepts and “XPORT Engine Limitations” in Moving and
Accessing SAS Files. �

Example 10: Reading and Writing from Directories This example reads the file
ftpmem1 from a directory on a UNIX host, and writes the file ftpout1 to a different
directory on another UNIX host.

filename indir ftp ’/usr/proj2/dir1’ DIR
host="host1.mycompany.com"
user="xxxx" prompt;

filename outdir ftp ’/usr/proj2/dir2’ DIR FILEEXT
host="host2.mycompany.com"
user="xxxx" prompt;

data _null_;
infile indir(ftpmem1) truncover;
input;
file outdir(ftpout1);
put _infile_;

run;

The file ftpout1 is written to /usr/proj2/dir2/ftpout1.DATA. Note that a
member type of DATA is appended to the ftpout1 file because the FILEEXT option
was specified in the output file’s FILENAME statement. For more information, see
FILEEXT on page 1497 .

Note: The DIR option is not needed for some ODS destinations. �

The following example writes an output file and transfers it to an ODS-specified
destination. The DIR option is not needed.

filename output ftp "~user/ftpdir/" host="host.fyi.company.com" user="userid"
pass="userpass" recfm=s debug;

ods listing close;
ods html body=’body.html’ path=output;
proc print data=sashelp.class;run;
ods html close;
ods listing;

To export multiple graph files to a remote directory location, the DIR option must be
specified in the FILENAME statement. Accordingly, when creating external graph files
with the ODS HTML destination, two FILENAME statements are needed: one for the
HTML files, and one for the graph files. The following example illustrates the need for
two FILENAME statements.

filename output1 ftp "~user/dir" fileext host="host.unx.company.com"
user="userid" pass="userpass" recfm=s debug;

1506 FILENAME Statement, SFTP Access Method � Chapter 6

filename output2 ftp "~user/dir" dir fileext host="host.unx.company.com"
user="userid" pass="userpass" recfm=s debug;

ods listing close;
ods html body=’body.html’ path=output1 gpath=output2

frame=’frames.html’ contents=’contents.html’;
proc gtestit;run;quit;
ods html close;
ods listing;

Example 11: Using a Proxy Server This example uses a proxy server with the FTP
access method. The user ID and password are sent via the proxy server.

filename test ftp ’ ’ ls
host=’proxy.server.xxx.com’
user=’userid@ftpservername’
pass=’xxxxxx’
cd=’pubsdir/’;

data _null_;
infile test truncover;
input a $256.;
put a=;

run;

See Also

Statements:
“FILENAME Statement” on page 1473
“FILENAME Statement, CATALOG Access Method” on page 1479
“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485
“FILENAME Statement, SOCKET Access Method” on page 1512
“FILENAME Statement, SFTP Access Method” on page 1506
“FILENAME Statement, URL Access Method” on page 1515
“LIBNAME Statement” on page 1607

FILENAME Statement, SFTP Access Method

Enables you to access remote files by using the SFTP protocol.

Valid: anywhere
Category: Data Access

Syntax
FILENAME fileref SFTP ’external-file’ <sftp-options>;

Arguments

Statements � FILENAME Statement, SFTP Access Method 1507

fileref
is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the

duration of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

SFTP
specifies the access method that enables you to use Secure File Transfer Protocol
(SFTP) to read from or write to a file from any host computer that you can connect to
on a network with an OpenSSH SSHD server running.

’external-file’
specifies the physical name of an external file that you want to read from or write to.
The physical name is the name that is recognized by the operating environment.

Operating Environment Information: For details about specifying the physical
names of external files, see the SAS documentation for your operating environment. �

Tip: If you are not transferring a file but performing a task such as retrieving a
directory listing, then you do not need to specify an external filename. Instead, put
empty quotation marks in the statement.

Tip: You can associate a fileref with a single file or with an aggregate file storage
location.

sftp-options
specifies details that are specific to your operating environment such as file
attributes and processing attributes.

Operating Environment Information: For more information about some of these
SFTP options, see the SAS documentation for your operating environment. �

SFTP Options
BATCHFILE=’path’

specifies the fully qualified pathname and the filename of the batch file that
contains the SFTP commands. These commands are submitted when the SFTP
access method is executed. After the batch file processing ends, the SFTP
connection is closed.
Requirement: The path must be enclosed in quotation marks.
Tip: After the batch file processing ends, the SFTP connection is closed and the

filename assignment is no longer available. If subsequent DATA step processing
requires the FILENAME SFTP statement, then another FILENAME SFTP
statement is required.

Featured in: Example 5 on page 1511

CD=’directory’
issues a command that changes the working directory for the file transfer to the
directory that you specify.

DEBUG
writes informational messages to the SAS log.

DIR
enables you to access directory files. Specify the directory name in the external-file
argument. You must use valid directory syntax for the specified host.
Interaction: The CD and DIR options are mutually exclusive. If both are

specified, SFTP ignores the CD option and SAS writes an informational note to
the log.

1508 FILENAME Statement, SFTP Access Method � Chapter 6

Tip: If you want SFTP to create the directory, then use the NEW option in
conjunction with the DIR option. The NEW option will be ignored if the
directory exists.

Tip: If the NEW option is omitted and you specify an invalid directory, then a
new directory will not be created and you will receive an error message.

HOST=’host’
where host is the network name of the remote host with the OpenSSH SSHD
server running.

You can specify either the name of the host (for example,
server.pc.mydomain.com) or the IP address of the computer (for example,
2001:db8::).

LRECL=lrecl
where lrecl is the logical record length of the data.
Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL= system option“LRECL= System Option” on page 1883.

LS
issues the LS command to the SFTP server. LS returns the contents of the
working directory as records with no file attributes.
Restriction: The LS option will not display files with leading periods, for

example .xAuthority.
Interaction: The LS and LSA options are mutually exclusive. If you specify both

options, the LSA option takes precedence.
Tip: To return a listing of a subset of files, use the LSFILE= option in addition to

LS.

LSA
issues the LS command to the SFTP server. LSA returns all the contents of the
working directory as records with no file attributes.
Interaction: The LS and LSA options are mutually exclusive. If you specify both

options, the LSA option takes precedence.
Interaction: To display files without leading periods, for example .xAuthority, use

the LS= option.
Tip: To return a listing of a subset of files, use the LSFILE= option in addition to

LSA.

LSFILE=’character-string’
in combination with the LS option, specifies a character string that enables you to
request a listing of a subset of files from the working directory. Enclose the
character string in quotation marks.
Restriction: LSFILE= can be used only if LS or LSA is specified.
Tip: You can specify a wildcard as part of ’character-string ’.
Example: This statement lists all of the files that start with sales and end with

sas:

filename myfile sftp ’’ ls lsfile=’sales*.sas’
other-sftp-options;

MGET
transfers multiple files, similar to the SFTP command MGET.
Tip: The whole transfer is treated as one file. However, as the transfer of each

new file is started, the EOV= variable is set to 1.

Statements � FILENAME Statement, SFTP Access Method 1509

NEW
specifies that you want SFTP to create the directory when you use the DIR option.
Restriction: The NEW option is not available under z/OS.
Tip: The NEW option will be ignored if the directory exists.

OPTIONS=
specifies SFTP configuration options such as port numbers.

PATH
specifies the location of the SFTP executable if it is not installed in the PATH or
$PATH search path.
Tip: It is recommended that the OpenSSH “SFTP” executable or PUTTY

“PSFTP” executable be installed in a directory that is accessible via the PATH
or $PATH search path.

RECFM=recfm
where recfm is one of two record formats:

F
is fixed-record format. Thus, all records are of size LRECL with no line
delimiters.

V
is variable-record format (the default). In this format, records have varying
lengths, and they are separated by newlines. Data is transferred in image
(binary) mode.

Default: V

USER=’username’
specifies the user name.
Requirement: The username is required by the PUTTY client on the Windows

host.
Tip: The username is not typically required on LINUX or UNIX hosts when using

public key authentication.
Tip: Public key authentication using an SSH agent is the recommended way to

connect to a remote SSHD server.

WAIT_MILLISECONDS=milliseconds
specifies the SFTP response time in milliseconds.
Default: 1,500 milliseconds
Tip: If you receive a timeout message in the log, use the WAIT_MILLISECONDS

option to increase the response time.

Details

The Basics
The Secure File Transfer Protocol (SFTP) provides a secure connection and file
transfers between two hosts (client and server) over a network. Both commands and
data are encrypted. The client machine initiates a connection with the remote host
(OpenSSH SSHD server).

With the SFTP access method, you can read from or write to any host computer that
you can connect to on a network with an OpenSSH SSHD server running. The client
and server applications can reside on the same computer or on different computers that
are connected by a network.

Specific implementation details are dependent on the OpenSSH SSHD server version
and how that site is configured.

1510 FILENAME Statement, SFTP Access Method � Chapter 6

The SFTP access method relies on default send and reply messages to OpenSSH
commands. Custom installs of OpenSSH that modify these messages will disable the
SFTP access method.

You must have the applicable client software installed to use the SFTP access
method. The SFTP access method supports only the following SSH clients.

� OpenSSH - UNIX
� PUTTY – Windows

Note: Password validation is not supported for the SFTP access method. �

Note: Public key authentication using an SSH agent is the recommended way to
connect to a remote SSHD server. �

Note: If you have trouble running the SFTP access method try to manually validate
SFTP client access to an OpenSSH SSHD server without involving the SAS system.
Manually validating SFTP client access without involving the SAS system will ensure
that your SSH/SSHD configuration and key authentication is setup correctly. �

SFTP Access Methods and SFTP Prompts
The SFTP access method supports only the following prompts. Changing the prompt
will disable the SFTP access method.

� For OpenSSH:
sftp>
sftp >

� For PUTTY:
psftp>

Comparisons
As with the SFTP get and put commands, the SFTP access method lets you download
and upload files. However, this method directly reads files into your SAS session
without first storing them on your system.

Examples

Example 1: Connecting to an SSHD Server at a Standard Port This example reads a
file called test.dat using the SFTP access method after connecting to the SSHD server
a standard port:

filename myfile sftp ’/users/xxxx/test.dat’ host="unixhost1";

data _null_;
infile myfile truncover;
input a $25.;

run;

Example 2: Connecting to an SSHD Server at a Nonstandard Port This example reads
a file called test.dat using the SFTP access method after connecting to the SSHD
server at port 4117:

filename myfile sftp ’/users/xxxx/test.dat’ host="unixhost1" options="-oPort=4117";

data _null_;
infile myfile truncover;

Statements � FILENAME Statement, SFTP Access Method 1511

input a $25.;;
run;

Example 3: Connecting a Windows PUTTY Client to an SSHD Server This example
writes a file called test.dat using the SFTP access method after connecting a Windows
PUTTY client to the SSHD server with a userid of userid:

filename outfile sftp ’/users/xxxx/test.dat’ host="unixhost1" user="userid";

data _null_;
file outfile;
do i=1 to 10;

put i=;
end;

run;

Example 4: Reading Files from a Directory on the Remote Host This example reads
the files test.dat and test2.dat from a directory on the remote host.

filename infile sftp ’/users/xxxx/’ host="unixhost1" dir;

data _null_;
infile infile(test.dat) truncover;
input a $25.;

infile infile(test2.dat) truncover;
input b $25.;

run;

Example 5: Using a Batch File In this example, when the INFILE statement is
processed, the batch file associated with the FILENAME SFTP statement, sftpcmds, is
executed.

filename process sftp ’ ’ host="unixhost1" user="userid"
batchfile="c:/stfpdir/sftpcmds.bat";

data _null_;
infile process;

run;

See Also

Statements:

“FILENAME Statement” on page 1473

“FILENAME Statement, CATALOG Access Method” on page 1479

“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485

“FILENAME Statement, FTP Access Method” on page 1495

“FILENAME Statement, SOCKET Access Method” on page 1512

“FILENAME Statement, URL Access Method” on page 1515

“LIBNAME Statement” on page 1607

Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. 2005. SSH, The
Secure Shell: A Definitive Guide. Sebastopol, CA: O’Reilly

1512 FILENAME Statement, SOCKET Access Method � Chapter 6

FILENAME Statement, SOCKET Access Method

Enables you to read from or write to a TCP/IP socket.

Valid: anywhere

Category: Data Access

Syntax
uFILENAME fileref SOCKET ’hostname:portno’

<tcpip-options>;

vFILENAME fileref SOCKET ’:portno’ SERVER
<tcpip-options>;

Arguments
fileref

is a valid fileref.

Tip: The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

SOCKET
specifies the access method that enables you to read from or write to a
Transmission Control Protocol/Internet Protocol (TCP/IP) socket.

’hostname:portno’
is the name or IP address of the host and the TCP/IP port number to connect to.
Tip: Use this specification for client access to the socket.

’:portno’
is the port number to create for listening.

Tip: Use this specification for server mode.

Tip: If you specify :0, the system will choose a number.

SERVER
sets the TCP/IP socket to be a listening socket, thereby enabling the system to act
as a server that is waiting for a connection.

Tip: The system accepts all connections serially; only one connection is active at
any one time.

See Also: The RECONN= option description on page 1513 under TCPIP-Options.

TCPIP-Options
BLOCKSIZE=blocksize

where blocksize is the size of the socket data buffer in bytes.

Default: 8192

ENCODING=encoding-value

Statements � FILENAME Statement, SOCKET Access Method 1513

specifies the encoding to use when reading from or writing to the socket. The
value for ENCODING= indicates that the socket has a different encoding from the
current session encoding.

When you read data from a socket, SAS transcodes the data from the specified
encoding to the session encoding. When you write data to a socket, SAS transcodes
the data from the session encoding to the specified encoding.

For valid encoding values, see “Encoding Values for SAS Language Elements” in
SAS National Language Support (NLS): Reference Guide.

LRECL=lrecl
where lrecl is the logical record length.

Default: 256

Interaction: Alternatively, you can specify a global logical record length by using
the LRECL= system option“LRECL= System Option” on page 1883.

RECFM=recfm
where recfm is one of three record formats:

F is fixed record format. Thus, all records are of size LRECL with
no line delimiters. Data are transferred in image (binary) mode.

S is stream record format.

Tip: Data are transferred in image (binary) mode.

Interactions: The amount of data that is read is controlled by
the current LRECL value or the value of the NBYTE=
variable in the INFILE statement. The NBYTE= option
specifies a variable equal to the amount of data to be read.
This amount must be less than or equal to LRECL.

See Also: The NBYTE= option on page 1550 in the INFILE
statement.

V is variable record format (the default).

Tip: In this format, records have varying lengths, and they are
transferred in text (stream) mode.

Tip: Any record larger than LRECL is truncated.

Default: V

RECONN=conn-limit
where conn-limit is the maximum number of connections that the server will
accept.

Explanation: Because only one connection can be active at a time, a connection
must be disconnected before the server can accept another connection. When a
new connection is accepted, the EOV= variable is set to 1. The server will
continue to accept connections, one at a time, until conn-limit has been reached.

TERMSTR=’eol-char’
where eol-char is the line delimiter to use when RECFM=V. There are three valid
values:

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).

Default: LF

Restriction: Use this option only when RECFM=V.

1514 FILENAME Statement, SOCKET Access Method � Chapter 6

Details

The Basics A TCP/IP socket is a communication link between two applications. The
server application creates the socket and waits for a connection. The client application
connects to the socket. With the SOCKET access method, you can use SAS to
communicate with another application over a socket in either client or server mode.
The client and server applications can reside on the same computer or on different
computers that are connected by a network.

As an example, you can develop an application using Microsoft Visual Basic that
communicates with a SAS session that uses the TCP/IP sockets. Note that Visual Basic
does not provide inherent TCP/IP support. You can obtain a custom control (VBX) from
SAS Technical Support (free of charge) that allows a Visual Basic application to
communicate through the sockets.

uUsing the SOCKET Access Method in Client Mode
In client mode, a local SAS application can use the SOCKET access method to
communicate with a remote application that acts as a server (and waits for a
connection). Before you can connect to a server, you must know:

� the network name or IP address of the host computer running the server.
� the port number that the remote application is listening to for new connections.

The remote application can be another SAS application, but it does not need to be.
When the local SAS application connects to the remote application through the TCP/IP
socket, the two applications can communicate by reading from and writing to the socket
as if it were an external file. If at any time the remote side of the socket is
disconnected, the local side will also automatically terminate.

vUsing the SOCKET Access Method in Server Mode When the local SAS application
is in server mode, it remains in a wait state until a remote application connects to it. To
use the SOCKET access method in server mode, you need to know only the port number
that you want the server to listen to for a connection. Typically, servers use well-known
ports to listen for connections. These port numbers are reserved by the system for
specific server applications. For more information about how well-known ports are
defined on your system, refer to the documentation for your TCP/IP software or ask
your system administrator.

If the server application does not use a well-known port, then the system assigns a
port number when it establishes the socket from the local application. However,
because any client application that waits to connect to the server must know the port
number, you should try to use a well-known port.

While a local SAS server application is waiting for a connection, SAS is in a wait
state. Each time a new connection is established, the EOV= variable in the DATA step
is set to 1. Because the server accepts only one connection at a time, no new
connections can be established until the current connection is closed. The connection
closes automatically when the remote client application disconnects. The SOCKET
access method continues to accept new connections until it reaches the limit set in the
RECONN option.

Examples

Example 1: Communicating between Two SAS Applications Over a TCP/IP Socket This
example shows how two SAS applications can talk over a TCP/IP socket. The local
application is in server mode; the remote application is the client that connects to the
server. This example assumes that the server host name is hp720.unx.sas.com, that

Statements � FILENAME Statement, URL Access Method 1515

the well-known port number is 5000, and that the server allows a maximum of three
connections before closing the socket.

Here is the program for the server application:

filename local socket ’:5000’ server reconn=3;
/*The server is using a reserved */
/*port number of 5000. */

data tcpip;
infile local eov=v;
input x $10;
if v=1 then

do; /* new connection when v=1 */
put ’new connection received’;

end;
output;

run;

Here is the program for the remote client application:

filename remote socket ’hp720.unx.sas.com:5000’;

data _null_;
file remote;
do i=1 to 10;

put i;
end;

run;

See Also

Statements:

“FILENAME Statement” on page 1473

“FILENAME Statement, CATALOG Access Method” on page 1479

“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485

“FILENAME Statement, FTP Access Method” on page 1495

“FILENAME Statement, URL Access Method” on page 1515

FILENAME Statement, URL Access Method

Enables you to access remote files by using the URL access method.

Valid: anywhere

Category: Data Access

Syntax
FILENAME fileref URL ’external-file’

<url-options>;

1516 FILENAME Statement, URL Access Method � Chapter 6

Arguments

fileref
is a valid fileref.
Tip: The association between a fileref and an external file lasts only for the

duration of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

URL
specifies the access method that enables you to read a file from any host computer
that you can connect to on a network with a URL server running.
Alias: HTTP

’external-file’
specifies the name of the file that you want to read from on a URL server. The
Secure Socket Layer (SSL) protocol, https, can also be used to access the files. The
file must be specified in one of these formats:

http://hostname/file
https://hostname/file
http://hostname:portno/file
https://hostname:portno/file

Operating Environment Information: For details about specifying the physical
names of external files, see the SAS documentation for your operating environment. �

url-options
can be any of the following:

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain metadata object in order to
connect to the proxy or Web server. The authentication domain references
credentials (user ID and password) without your having to explicitly specify the
credentials. The auth-domain name is case sensitive, and it must be enclosed in
double quotation marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects that
provide access to the proxy or Web server and is resolved by the BASE engine
calling the SAS Metadata Server and returning the authentication credentials.
Requirement: The authentication domain and the associated login definition

must be stored in a metadata repository, and the metadata server must be
running in order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASS=.

See also: For more information about creating and using authentication domains,
see the discussion on credential management in the SAS Intelligence Platform:
Security Administration Guide.

BLOCKSIZE=blocksize
where blocksize is the size of the URL data buffer in bytes.
Default: 8K

DEBUG
writes debugging information to the SAS log.

Statements � FILENAME Statement, URL Access Method 1517

Tip: The result of the HELP command is returned as records.

HEADERS=fileref
specifies the fileref to which the header information is written when a file is
opened by using the URL access method. The header information is the same
information that is written to the SAS log.

Requirement: The fileref must be defined in a previous FILENAME statement.

Interaction: If you specify the HEADERS= option without specifying the DEBUG
option, the DEBUG option is automatically turned on.

Interaction: By default, log information is overwritten. To append the log
information, you must specify the MOD option in the FILENAME statement
that creates the fileref.

LRECL=lrecl
where lrecl is the logical record length of the data.

Default: 256

Interaction: Alternatively, you can specify a global logical record length by using
the LRECL= system option“LRECL= System Option” on page 1883.

PASS=’password’
where password is the password to use with the user name that is specified in the
USER option.

Tip: You can specify the PROMPT option instead of the PASS option, which tells
the system to prompt you for the password.

Tip: To use an encoded password, use the PWENCODE procedure in order to
disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see the PWENCODE Procedure in the Base SAS
Procedures Guide.

PPASS=’password’
where password is the password to use with the user name that is specified in the
PUSER option. The PPASS option is used to access the proxy server.

Tip: You can specify the PROMPT option instead of the PPASS option, which tells
the system to prompt you for the password.

Tip: To use an encoded password, use the PWENCODE procedure to disguise the
text string, and then enter the encoded password for the PASS= option. For
more information, see the PWENCODE procedure in the Base SAS Procedures
Guide.

PROMPT
specifies to prompt for the user login password if necessary.

Tip: If you specify PROMPT, you do not need to specify PASS= or PPASS=.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

http://hostname/

http://hostname:portno/

PUSER=’username’
where username is used to log on to the URL proxy server.

Tip: If you specify puser=’*’, then the user is prompted for an ID.

Interaction: If you specify the PUSER option, the USER option goes to the Web
server regardless of whether you specify a proxy server.

1518 FILENAME Statement, URL Access Method � Chapter 6

Interaction: If PROMPT is specified, but PUSER is not, the user is prompted for
an ID as well as a password.

RECFM=recfm
where recfm is one of three record formats:

F is fixed-record format. Thus, all records are of size LRECL with
no line delimiters. Data is transferred in image (binary) mode.

S is stream-record format. Data is transferred in image (binary)
mode.
Alias: N
Tip: The amount of data that is read is controlled by the

current LRECL value or the value of the NBYTE= variable
in the INFILE statement. The NBYTE= option specifies a
variable that is equal to the amount of data to be read. This
amount must be less than or equal to LRECL.

See Also: The NBYTE= option on page 1550 in the INFILE
statement.

V is variable-record format (the default). In this format, records
have varying lengths, and they are transferred in text (stream)
mode.
Tip: Any record larger than LRECL is truncated.

Default: V

TERMSTR=’eol-char’
where eol-char is the line delimiter to use when RECFM=V. There are four valid
values:

CR carriage return (CR).

CRLF carriage return (CR) followed by line feed (LF).

LF line feed only (the default).

NULL NULL character (0x00).
Default: LF
Restriction: Use this option only when RECFM=V.

USER=’username’
where username is used to log on to the URL server.
Tip: If you specify user=’*’, then the user is prompted for an ID.
Interaction: If you specify the USER option but do not specify the PUSER option,

where the USER option goes depends on whether you specify a proxy server. If
you do not specify a proxy server, USER goes to the Web server. If you do
specify a proxy server, USER will go to the proxy server.

If you specify the PUSER option, the USER option goes to the Web server
regardless of whether you specify a proxy server.

Interaction: If PROMPT is specified, but USER or PUSER is not, the user is
prompted for an ID as well as a password.

Details
The Secure Sockets Layer (SSL) protocol is used when the URL begins with “https”

instead of “http”. The SSL protocol provides network security and privacy. Developed
by Netscape Communications, SSL uses encryption algorithms that include RC2, RC4,
DES, tripleDES, IDEA, and MD5. Not limited to providing only encryption services,

Statements � FILENAME Statement, URL Access Method 1519

SSL can also perform client and server authentication and use message authentication
codes. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web
sites use the protocol to provide confidential user information such as credit card
numbers. The SSL protocol is application independent, enabling protocols such as
HTTP, FTP, and Telnet to be layered transparently above it. SSL is optimized for HTTP.

Operating Environment Information: Using the FILENAME statement requires
information that is specific to your operating environment. The URL access method is
fully documented here, but for more information about how to specify filenames, see the
SAS documentation for your operating environment. �

Examples

Example 1: Accessing a File at a Web Site This example accesses document
test.datat site www.a.com:

filename foo url ’http://www.a.com/test.dat’
proxy=’http://www.gt.sas.com’;

Example 2: Specifying a User ID and a Password This example accesses document
file1.html at site www.b.com using the SSL protocol and requires a user ID and
password:

filename foo url ’https://www.b.com/file1.html’
user=’jones’ prompt;

Example 3: Reading the First 15 Records from a URL File This example reads the first
15 records from a URL file and writes them to the SAS log with a PUT statement:

filename foo url
’http://support.sas.com/techsup/service_intro.html’;

data _null_;
infile foo length=len;
input record $varying200. len;
put record $varying200. len;
if _n_=15 then stop;

run;

See Also

Statements:

“FILENAME Statement” on page 1473

“FILENAME Statement, CATALOG Access Method” on page 1479

“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485

“FILENAME Statement, FTP Access Method” on page 1495

“FILENAME Statement, SOCKET Access Method” on page 1512

“FILENAME Statement, SFTP Access Method” on page 1506

“Secure Sockets Layer (SSL)r” in Encryption in SAS

1520 FILENAME Statement, WebDAV Access Method � Chapter 6

FILENAME Statement, WebDAV Access Method

Enables you to access remote files by using the WebDAV protocol.

Valid: Anywhere

Category: Data Access

Restriction: Access to WebDAV servers is not supported on Open VMS.

Syntax
FILENAME filref WEBDAV ’external-file’ <webdav-options>;

Arguments
fileref

is a valid fileref.

Tip: The association between a fileref and an external file lasts only for the
duration of the SAS session or until you change it or discontinue it with another
FILENAME statement. You can change the fileref for a file as often as you want.

WEBDAV
specifies the access method that enables you to use WebDAV (Web Distributed
Authoring and Versioning) to read from or write to a file from any host machine
that you can connect to on a network with a WebDAV server running.

’external-file’
specifies the name of the file that you want to read from or write to a WebDAV
server. The external file must be in one of these forms:

http://hostname/path-to-the-file

https://hostname/path-to-the-file

http://hostname:port/path-to-the-file

https://hostname:port/path-to-the-file

Requirement: When using the HTTPS communication protocol, you must use
the SSL (Secure Sockets Layer) protocol that provides secure network
communications. For more information, see Encryption in SAS.

Operating Environment Information: For details about specifying the physical
names of external files, see the SAS documentation for your operating
environment. �

WebDAV Options
webdav-options can be any of the following:

DEBUG
writes debugging information to the SAS log.

DIR
enables you to access directory files. Specify the directory name in the external-file
argument. You must use valid directory syntax for the specified host.

Statements � FILENAME Statement, WebDAV Access Method 1521

Tip: See the FILEEXT option on page 1521 for information about specifying
filename extensions.

ENCODING=’encoding-value’
specifies the encoding to use when SAS is reading from or writing to an external
file. The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified encoding.
Default: SAS assumes that an external file is in the same encoding as the

session encoding.
See Also: “Encoding Values in SAS Language Elements” in the SAS National

Language Support (NLS): Reference Guide

FILEEXT
specifies that a file extension is automatically appended to the filename when you
use the DIR option.
Interaction: The autocall macro facility always passes the extension .SAS to the

file access method as the extension to use when opening files in the autocall
library. The DATA step always passes the extension .DATA. If you define a
fileref for an autocall macro library and the files in that library have a file
extension of .SAS, use the FILEEXT option. If the files in that library do not
have an extension, do not use the FILEEXT option. For example, if you define a
fileref for an input file in the DATA step and the file X has an extension of
.DATA, you would use the FILEEXT option to read the file X.DATA. If you use
the INFILE or FILE statement, enclose the member name and extension in
quotation marks to preserve case.

Tip: The FILEEXT option will be ignored if you specify a file extension in the
FILE or INFILE statement.

See Also: LOWCASE_MEMNAME option on page 1521

LOCALCACHE=”directory name”
specifies a directory where a temporary subdirectory is created to hold local copies
of the server files. Each fileref has its own unique subdirectory. If a directory is
not specified, then the subdirectories are created in the SAS Work directory. SAS
deletes the temporary files when the SAS program completes.
Default: SAS Work directory

LOCKDURATION=n
specifies the number of minutes that the files that are written through the
WebDAV fileref are locked. SAS unlocks the files when the SAS program
successfully finishes executing. If the SAS program fails, then the locks expire
after the time allotted.
Default: 30 minutes

LOWCASE_MEMNAME
enables autocall macro retrieval of lowercase directory or member names from
WebDAV servers.
Restriction: SAS autocall macro retrieval always searches for uppercase

directory member names. Mixed-case directory or member names are not
supported.

See Also: FILEEXT option on page 1521

LRECL=lrecl
where lrecl is the logical record length of the data.

1522 FILENAME Statement, WebDAV Access Method � Chapter 6

Default: 256
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL= system option“LRECL= System Option” on page 1883.

MOD
Places the file in update mode and appends updates to the bottom of the file.

PASS=’password’
where password is the password to use with the user name that is specified in the
USER option. The password is case sensitive and it must be enclosed in single or
double quotation marks.
Alias: PASSWORD=, PW=, PWD=
Tip: To use an encoded password, use the PWENCODE procedure in order to

disguise the text string, and then enter the encoded password for the PASS=
option. For more information, see “The PWENCODE Procedure” in the Base
SAS Procedures Guide.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

http://hostname/
http://hostname:port/

RECFM=recfm
where recfm is one of two record formats:

S is stream-record format. Data is transferred in image (binary)
mode.
Tip: The amount of data that is read is controlled by the

current LRECL value or the value of the NBYTE= variable
in the INFILE statement. The NBYTE= option specifies a
variable that is equal to the amount of data to be read. This
amount must be less than or equal to LRECL.

See Also: The NBYTE= option on page 1550 in the INFILE
statement.

V is variable-record format (the default). In this format, records
have varying lengths, and they are transferred in text (stream)
mode.
Tip: Any record larger than LRECL is truncated.

Default: V

USER=’username’
where username is used to log on to the URL server. The user ID is case sensitive
and it must be enclosed in single or double quotation marks.
Alias: UID=

Details
When you access a WebDAV server to update a file, the file is pulled from the WebDAV
server to your local disk storage for processing. When this processing is complete, the
file is pushed back to the WebDAV server for storage. The file is removed from the local
disk storage when it is pushed back.

The Secure Sockets Layer (SSL) protocol is used when the URL begins with “https”
instead of “http”. The SSL protocol provides network security and privacy. Developed
by Netscape Communications, SSL uses encryption algorithms that include RC2, RC4,

Statements � FILENAME Statement, WebDAV Access Method 1523

DES, tripleDES, IDEA, and MD5. Not limited to providing only encryption services,
SSL can also perform client and server authentication and use message authentication
codes. SSL is supported by both Netscape Navigator and Internet Explorer. Many Web
sites use the protocol to provide confidential user information such as credit card
numbers. The SSL protocol is application independent, which enables protocols such as
HTTP, FTP, and Telnet to be layered transparently above it. SSL is optimized for HTTP.

Note: WebDAV servers have defined levels of permissions at both the directory and
file level. The WebDAV access method honors those permissions. For example, if a file
is available as read-only, the user will not be able to modify it. �

Operating Environment Information: Using the FILENAME statement requires
information that is specific to your operating environment. The WebDAV access method
is fully documented here, but for more information about how to specify filenames, see
the SAS documentation for your operating environment. �

Examples

Example 1: Accessing a File at a Web Site This example accesses the file
rawFile.txt at site www.mycompany.com.

filename foo webdav ’https://www.mycompany.com/production/files/rawFile.txt’
user=’wong’ pass=’jd75ld’;

data _null_;
infile foo;
input a $80.;
run;

Example 2: Using a Proxy Server This example accesses the file acctgfile.dat by
using the proxy server otherwebsvr:80.

filename foo webdav ’https://webserver.com/webdav/acctgfile.dat’
user=’sanchez’ pass=’239sk349exz’
proxy=’http://otherwebsvr.com:80’;

data _null_;
infile foo;
input a $80.;
run;

Example 3: Writing to a New Member of a Directory This example writes the file
SHOES to the directory TESTING.

filename writeit webdav
"https://webserver.com:8443/webdav/testing/"
dir user="webuser" pass=XXXXXXXXX;

data _null_;
file writeit(shoes);
set sashelp.shoes;
put region $25. product $14.;

run;

1524 FILENAME Statement, WebDAV Access Method � Chapter 6

Example 4: Reading from a Member of a Directory This example reads the file SHOES
from the directory TESTING1.

filename readit webdav
"https://webserver.com:8443/webdav/testing1/"
dir user="webuser" pass=XXXXXXXXX;

data shoes;
length region $25 product $14;
infile readit(shoes);
input region $25. product $14.;

run;

Example 5: Using a WebDAV Location as an Autocall Macro Library By default, the
autocall macro facility expects uppercase filenames. This example accesses the file
MYTEST in the autocall macro library WRITEIT.

filename writeit webdav
"https://webserver.com/webdav/macrolib"

dir fileext user="webuser" pass=XXXXXXXXX;
options SASAUTOS=(writeit);

/* expects a file called MYTEST.SAS */
%MYTEST;

Example 6: Accessing a Lowercased Autocall Macro Member The following example
accesses the file testmem.sas in the autocall macro library LIST. The
LOWCASE_MEMNAME option is used to access the file, which is in lowercase.

filename list webdav "https://t1234.na.fyi.com:8443/accounting/"
dir fileext user="xxxxx" pass="xxxxx" LOWCASE_MEMNAME;

options sasautos=(list);
%testmem;

Example 7: Using a %INCLUDE Statement and Macro Invocation to Access a Lowercased
Autocall Macro Member The following example accesses the file testmem.sas in the
autocall macro library MYTEST. Because the file is accessed by using the %INCLUDE
statement, case sensitivity is preserved.

filename mytest webdav "https://t1234.na.fyi.com:8443/payroll/"
dir user="xxxxxx" pass="xxxxx";

%include mytest(testmem.sas) /source2;
%testmem;

If the filename was in uppercase, the reference to the filename in the %INCLUDE
statement and macro call needs to be uppercase.

%include mytest(TESTMEM.SAS) /source2;
%TESTMEM;

Example 8: Accessing a File with a Mixed-Case Name The following example accesses
the file fileNOext from the production directory. Because the file is quoted in the
INFILE statement, case sensitivity is preserved and the file extension is ignored.

filename test webdav "https://t1234.na.fyi.com:8443/production"
dir user="xxxxxx" pass="xxxxx";

data _null_;
infile test(’fileNOext’);

Statements � FOOTNOTE Statement 1525

input;
list;

run;

Example 9: Using the FILEEXT Option to Automatically Attach a File Extension The
following example accesses the file testmem.sas from the sales directory. The
FILEEXT option automatically adds .DATA as the file extension. The member name
that is read is testmem.DATA.

filename listing webdav "https://t1234.na.fyi.com:8443/sales"
dir fileext user="xxxxxx" pass="xxxxx";

data _null_;
infile listing(testmem);
input;
list;

run;

See Also

Statements:
“FILENAME Statement” on page 1473
“FILENAME Statement, CATALOG Access Method” on page 1479
“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485
“FILENAME Statement, FTP Access Method” on page 1495
“FILENAME Statement, SOCKET Access Method” on page 1512
“FILENAME Statement, URL Access Method” on page 1515
“LIBNAME Statement for WebDAV Server Access” on page 1616

FOOTNOTE Statement

Writes up to 10 lines of text at the bottom of the procedure or DATA step output.

Valid: anywhere
Category: Output Control
Requirement: You must specify the FOOTNOTE option if you use a FILE statement.
See: FOOTNOTE Statement in the documentation for your operating environment.

Syntax
FOOTNOTE<n > <ods-format-options> <’text’ | “text” >;

Without Arguments
Using FOOTNOTE without arguments cancels all existing footnotes.

Arguments
n

1526 FOOTNOTE Statement � Chapter 6

specifies the relative line to be occupied by the footnote.
Tip: For footnotes, lines are pushed up from the bottom. The FOOTNOTE

statement with the highest number appears on the bottom line.
Range: n can range from 1 to 10.
Default: If you omit n, SAS assumes a value of 1.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER(PDF)
destinations.

BOLD
specifies that the footnote text is bold font weight.
ODS Destinations: HTML, RTF, PRINTER

COLOR=color
specifies the footnote text color.
Alias: C
ODS Destinations: HTML, RTF, PRINTER
Featured in: Example 3 on page 1730

BCOLOR=color
specifies the background color of the footnote block.
ODS Destinations: HTML, RTF, PRINTER

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination
device uses the first one that is installed on your system.
Alias: F
ODS Destinations: HTML, RTF, PRINTER

HEIGHT=size
specifies the point size.
Alias: H
ODS Destinations: HTML, RTF, PRINTER
Featured in: Example 3 on page 1730

ITALIC
specifies that the footnote text is in italic style.
ODS Destinations: HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER
specifies center justification.
Alias: C

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

Alias: J
ODS Destinations: HTML, RTF, PRINTER

Statements � FOOTNOTE Statement 1527

Featured in: Example 3 on page 1730

LINK=’url’
specifies a hyperlink.

Tip: The visual properties for LINK= always come from the current style.

ODS Destinations: HTML, RTF, PRINTER

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. 0 indicates no
underlining. 1, 2, and 3 indicates underlining.

Alias: U

Tip: ODS generates the same type of underline for values 1, 2, and 3.
However, SAS/GRAPH uses values 1, 2, and 3 to generate increasingly
thicker underlines.

ODS Destinations: HTML, RTF, PRINTER

Note: The defaults for how ODS renders the FOOTNOTE statement come from
style elements that relate to system footnotes in the current style. The
FOOTNOTE statement syntax with ods-format-options is a way to override the
settings that are provided by the current style.

The current style varies according to the ODS destination. For more information
about how to determine the current style, see “What Are Style Definitions, Style
Elements, and Style Attributes?” and “Concepts: Style Definitions and the
TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide. �

Tip: You can specify these options by letter, word, or words by preceding each
letter or word of the text by the option.

For example, this code will make the footnote “Red, White, and Blue” appear
in different colors.

footnote color=red "Red," color=white "White, and" color=blue "Blue";

’text’ | “text”
specifies the text of the footnote in single or double quotation marks

Tip: For compatibility with previous releases, SAS accepts some text without
quotation marks. When you write new programs or update existing programs,
always enclose text in quotation marks.

Tip: If you use an automatic macro variable in the title text, you must enclose
the title text in double quotation marks. The SAS macro facility will resolve the
macro variable only if the text is in double quotation marks.

Tip: If you use single quotation marks (") or double quotation marks ("")
together (with no space in between them) as the string of text, SAS will output
a single quotation mark (’) or double quotation mark ("), respectively.

Details
A FOOTNOTE statement takes effect when the step or RUN group with which it is
associated executes. After you specify a footnote for a line, SAS repeats the same
footnote on all pages until you cancel or redefine the footnote for that line. When a
FOOTNOTE statement is specified for a given line, it cancels the previous FOOTNOTE
statement for that line and for all footnote lines with higher numbers.

Operating Environment Information: The maximum footnote length that is allowed
depends on the operating environment and the value of the LINESIZE= system option.
Refer to the SAS documentation for your operating environment for more information. �

1528 FORMAT Statement � Chapter 6

Comparisons
You can also create footnotes with the FOOTNOTES window. For more information,
refer to the online Help for the window.

You can modify footnotes with the Output Delivery System. See Example 3 on page
1730.

Examples

These examples of a FOOTNOTE statement result in the same footnote:
� footnote8 "Managers’ Meeting";

� footnote8 ’Managers’’ Meeting’;

These are examples of FOOTNOTE statements that use some of the formatting
options for the ODS HTML, RTF, and PRINTER(PDF) destinations. For the complete
example, see Example 3 on page 1730.

footnote j=left height=20pt
color=red "Prepared "
c=’#FF9900’ "on";

footnote2 j=center color=blue
height=24pt "&SYSDATE9";

footnote3 link=’http://support.sas.com’ "SAS";

See Also

Statement:
“TITLE Statement” on page 1726

“The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide

FORMAT Statement

Associates formats with variables.

Valid: in a DATA step or PROC step
Category: Information
Type: Declarative

Syntax
FORMAT variable-1 < . . . variable-n> <format> <DEFAULT=default-format>;

FORMAT variable-1 < . . . variable-n> format <DEFAULT=default-format>;

FORMAT variable-1 < . . . variable-n> format variable-1 < . . . variable-n> format;

Arguments

Statements � FORMAT Statement 1529

variable
names one or more variables for SAS to associate with a format. You must specify at
least one variable.

Tip: To disassociate a format from a variable, use the variable in a FORMAT
statement without specifying a format in a DATA step or in PROC DATASETS. In
a DATA step, place this FORMAT statement after the SET statement. See
Example 3 on page 1531. You can also use PROC DATASETS.

format
specifies the format that is listed for writing the values of the variables.

Tip: Formats that are associated with variables by using a FORMAT statement
behave like formats that are used with a colon modifier in a subsequent PUT
statement. For details on using a colon modifier, see “PUT Statement, List” on
page 1679.

See also: “Formats by Category” on page 99

DEFAULT=default-format
specifies a temporary default format for displaying the values of variables that are
not listed in the FORMAT statement. These default formats apply only to the current
DATA step; they are not permanently associated with variables in the output data set.

A DEFAULT= format specification applies to

� variables that are not named in a FORMAT or ATTRIB statement

� variables that are not permanently associated with a format within a SAS data
set

� variables that are not written with the explicit use of a format.

Default: If you omit DEFAULT=, SAS uses BESTw. as the default numeric format
and $w. as the default character format.

Restriction: Use this option only in a DATA step.

Tip: A DEFAULT= specification can occur anywhere in a FORMAT statement. It
can specify either a numeric default, a character default, or both.

Featured in: Example 1 on page 1530

Details
The FORMAT statement can use standard SAS formats or user-written formats that
have been previously defined in PROC FORMAT. A single FORMAT statement can
associate the same format with several variables, or it can associate different formats
with different variables. If a variable appears in multiple FORMAT statements, SAS
uses the format that is assigned last.

You use a FORMAT statement in the DATA step to permanently associate a format
with a variable. SAS changes the descriptor information of the SAS data set that
contains the variable. You can use a FORMAT statement in some PROC steps, but the
rules are different. For more information, see Base SAS Procedures Guide.

Comparisons
Both the ATTRIB and FORMAT statements can associate formats with variables, and
both statements can change the format that is associated with a variable. You can use
the FORMAT statement in PROC DATASETS to change or remove the format that is
associated with a variable. You can also associate, change, or disassociate formats and
variables in existing SAS data sets through the windowing environment.

1530 FORMAT Statement � Chapter 6

Examples

Example 1: Assigning Formats and Defaults This example uses a FORMAT statement
to assign formats and default formats for numeric and character variables. The default
formats are not associated with variables in the data set but affect how the PUT
statement writes the variables in the current DATA step.

data tstfmt;
format W $char3.

Y 10.3
default=8.2 $char8.;

W=’Good morning.’;
X=12.1;
Y=13.2;
Z=’Howdy-doody’;
put W/X/Y/Z;

run;

proc contents data=tstfmt;
run;

proc print data=tstfmt;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report that PROC PRINT generates.

Output 6.5 Partial Listing from PROC CONTENTS and the PROC PRINT Report

The SAS System 3

CONTENTS PROCEDURE

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format
--
1 W Char 3 16 $CHAR3.
3 X Num 8 8
2 Y Num 8 0 10.3
4 Z Char 11 19

Output 6.6 PROC PRINT Report

The SAS System 4

OBS W Y X Z

1 Goo 13.200 12.1 Howdy-doody

The default formats apply to variables X and Z while the assigned formats apply to
the variables W and Y.

The PUT statement produces this result:

----+----1----+----2
Goo
12.10

Statements � FORMAT Statement 1531

13.200
Howdy-do

Example 2: Associating Multiple Variables with a Single Format This example uses
the FORMAT statement to assign a single format to multiple variables.

data report;
input Item $ 1--6 Material $ 8--14 Investment 16--22 Profit 24--31;
format Item Material $upcase9. Investment Profit dollar15.2;
datalines;

shirts cotton 2256354 83952175
ties silk 498678 2349615
suits silk 9482146 69839563
belts leather 7693 14893
shoes leather 7936712 22964
;
run;
options pageno=1 nodate ls=80 ps=64;

proc print data=report;
title ’Profit Summary: Kellam Manufacturing Company’;

run;

Output 6.7 Results from Associating Multiple Variables with a Single Format

Profit Summary: Kellam Manufacturing Company 1

Obs Item Material Investment Profit

1 SHIRTS COTTON $2,256,354.00 $83,952,175.00
2 TIES SILK $498,678.00 $2,349,615.00
3 SUITS SILK $9,482,146.00 $69,839,563.00
4 BELTS LEATHER $7,693.00 $14,893.00
5 SHOES LEATHER $7,936,712.00 $22,964.00

Example 3: Removing a Format This example disassociates an existing format from a
variable in a SAS data set. The order of the FORMAT and the SET statements is
important.

data rtest;
set rtest;
format x;

run;

See Also

Statement:
“ATTRIB Statement” on page 1403

“The DATASETS Procedure” in Base SAS Procedures Guide

1532 GO TO Statement � Chapter 6

GO TO Statement

Directs program execution immediately to the statement label that is specified and, if followed by
a RETURN statement, returns execution to the beginning of the DATA step.

Valid: in a DATA step
Category: Control
Type: Executable
Alias: GOTO

Syntax
GO TO label;

Arguments

label
specifies a statement label that identifies the GO TO destination. The destination
must be within the same DATA step. You must specify the label argument.

Comparisons
The GO TO statement and the LINK statement are similar. However, a GO TO
statement is often used without a RETURN statement, whereas a LINK statement is
usually used with an explicit RETURN statement. The action of a subsequent
RETURN statement differs between the GO TO and LINK statements. A RETURN
statement after a LINK statement returns execution to the statement that follows the
LINK statement. A RETURN after a GO TO statement returns execution to the
beginning of the DATA step (unless a LINK statement precedes the GO TO statement.
In that case, execution continues with the first statement after the LINK statement).

GO TO statements can often be replaced by DO-END and IF-THEN/ELSE
programming logic.

Examples

Use the GO TO statement as shown here.
� In this example, if the condition is true, the GO TO statement instructs SAS to

jump to a label called ADD and to continue execution from there. If the condition
is false, SAS executes the PUT statement and the statement that is associated
with the GO TO label:

data info;
input x;
if 1<=x<=5 then go to add;
put x=;
add: sumx+x;
datalines;

7
6
323

Statements � IF Statement, Subsetting 1533

;

Because every DATA step contains an implied RETURN at the end of the step,
program execution returns to the top of the step after the sum statement is
executed. Therefore, an explicit RETURN statement at the bottom of the DATA
step is not necessary.

� If you do not want the sum statement to execute for observations that do not meet
the condition, rewrite the code and include an explicit return statement.

data info;
input x;
if 1<=x<=5 then go to add;
put x=;
return;

/* SUM statement not executed */
/* if x<1 or x>5 */

add: sumx+x;
datalines;

7
6
323
;

See Also

Statements:

“DO Statement” on page 1444

“Labels, Statement” on page 1602

“LINK Statement” on page 1619

“RETURN Statement” on page 1700

IF Statement, Subsetting

Continues processing only those observations that meet the condition of the specified expression.

Valid: in a DATA step

Category: Action

Type: Executable

Syntax
IF expression;

Arguments

expression
is any SAS expression.

1534 IF Statement, Subsetting � Chapter 6

Details
The subsetting IF statement causes the DATA step to continue processing only those
raw data records or those observations from a SAS data set that meet the condition of
the expression that is specified in the IF statement. That is, if the expression is true for
the observation or record (its value is neither 0 nor missing), SAS continues to execute
statements in the DATA step and includes the current observation in the data set. The
resulting SAS data set or data sets contain a subset of the original external file or SAS
data set.

If the expression is false (its value is 0 or missing), no further statements are
processed for that observation or record, the current observation is not written to the
data set, and the remaining program statements in the DATA step are not executed.
SAS immediately returns to the beginning of the DATA step because the subsetting IF
statement does not require additional statements to stop processing observations.

Comparisons
� The subsetting IF statement is equivalent to this IF-THEN statement:

if not (expression)
then delete;

� When you create SAS data sets, use the subsetting IF statement when it is easier
to specify a condition for including observations. When it is easier to specify a
condition for excluding observations, use the DELETE statement.

� The subsetting IF and the WHERE statements are not equivalent. The two
statements work differently and produce different output data sets in some cases.
The most important differences are summarized as follows:

� The subsetting IF statement selects observations that have been read into
the program data vector. The WHERE statement selects observations before
they are brought into the program data vector. The subsetting IF might be
less efficient than the WHERE statement because it must read each
observation from the input data set into the program data vector.

� The subsetting IF statement and WHERE statement can produce different
results in DATA steps that interleave, merge, or update SAS data sets.

� When the subsetting IF statement is used with the MERGE statement, the
SAS System selects observations after the current observations are combined.
When the WHERE statement is used with the MERGE statement, the SAS
System applies the selection criteria to each input data set before combining
the current observations.

� The subsetting IF statement can select observations from an existing SAS
data set or from raw data that are read with the INPUT statement. The
WHERE statement can select observations only from existing SAS data sets.

� The subsetting IF statement is executable; the WHERE statement is not.

Examples
� This example results in a data set that contains only those observations with the

value F for the variable SEX:

if sex=’F’;

� This example results in a data set that contains all observations for which the
value of the variable AGE is not missing or 0:

if age;

Statements � IF-THEN/ELSE Statement 1535

See Also

Data Set Options:
“WHERE= Data Set Option” on page 67

Statements:
“DELETE Statement” on page 1439
“IF-THEN/ELSE Statement” on page 1535
“WHERE Statement” on page 1739

“WHERE-Expression Processing” in SAS Language Reference: Concepts

IF-THEN/ELSE Statement

Executes a SAS statement for observations that meet specific conditions.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
IF expression THEN statement;

<ELSE statement;>

Arguments

expression
is any SAS expression and is a required argument.

statement
can be any executable SAS statement or DO group.

Details
SAS evaluates the expression in an IF-THEN statement to produce a result that is
either non-zero, zero, or missing. A non-zero and nonmissing result causes the
expression to be true; a result of zero or missing causes the expression to be false.

If the conditions that are specified in the IF clause are met, the IF-THEN statement
executes a SAS statement for observations that are read from a SAS data set, for
records in an external file, or for computed values. An optional ELSE statement gives
an alternative action if the THEN clause is not executed. The ELSE statement, if used,
must immediately follow the IF-THEN statement.

Using IF-THEN statements without the ELSE statement causes SAS to evaluate all
IF-THEN statements. Using IF-THEN statements with the ELSE statement causes
SAS to execute IF-THEN statements until it encounters the first true statement.
Subsequent IF-THEN statements are not evaluated.

Note: For greater efficiency, construct your IF-THEN/ELSE statement with
conditions of decreasing probability. �

1536 %INCLUDE Statement � Chapter 6

Comparisons
� Use a SELECT group rather than a series of IF-THEN statements when you have

a long series of mutually exclusive conditions.
� Use subsetting IF statements, without a THEN clause, to continue processing only

those observations or records that meet the condition that is specified in the IF
clause.

Examples

These examples show different ways of specifying the IF-THEN/ELSE statement.
� if x then delete;

� if status=’OK’ and type=3 then count+1;

� if age ne agecheck then delete;

� if x=0 then
if y ne 0 then put ’X ZERO, Y NONZERO’;
else put ’X ZERO, Y ZERO’;

else put ’X NONZERO’;

� if answer=9 then
do;

answer=.;
put ’INVALID ANSWER FOR ’ id=;

end;
else

do;
answer=answer10;
valid+1;

end;

� data region;
input city $ 1-30;
if city=’New York City’

or city=’Miami’ then
region=’ATLANTIC COAST’;

else if city=’San Francisco’
or city=’Los Angeles’ then

region=’PACIFIC COAST’;
datalines;

...more data lines...
;

See Also

Statements:
“DO Statement” on page 1444
“IF Statement, Subsetting” on page 1533
“SELECT Statement” on page 1708

%INCLUDE Statement
Brings a SAS programming statement, data lines, or both, into a current SAS program.

Statements � %INCLUDE Statement 1537

Valid: anywhere
Category: Program Control
Alias: %INC
See: %INCLUDE Statement in the documentation for your operating environment.

Syntax
%INCLUDE source(s)

</<SOURCE2> <S2=length> <operating-environment-options>>;

Arguments

source(s)
describes the location of the information that you want to access with the
%INCLUDE statement. There are three possible sources:

Source Definition

file-specification specifies an external file

internal-lines specifies lines that are entered earlier in the same SAS job or
session

keyboard-entry specifies statements or data lines that you enter directly from
the keyboard

file-specification
identifies an entire external file that you want to bring into your program.
Restriction: You cannot selectively include lines from an external file.
Tip: Including external sources is useful in all types of SAS processing: batch,

windowing, interactive line, and noninteractive.

Operating Environment Information: The character length allowed for filenames
is operating environment specific. For complete details on specifying the physical
names of external files, see the SAS documentation for your operating
environment. �

File-specification can have these forms:

’external-file’
specifies the physical name of an external file that is enclosed in quotation
marks. The physical name is the name by which the operating environment
recognizes the file.

fileref
specifies a fileref that has previously been associated with an external file.
Tip: You can use a FILENAME statement or function or an operating

environment command to make the association.

1538 %INCLUDE Statement � Chapter 6

fileref (filename-1 <, ”filename–2.xxx”, ... filename-n>)
specifies a fileref that has previously been associated with an aggregate storage
location. Follow the fileref with one or more filenames that reside in that
location. Enclose the filenames in one set of parentheses, and separate each
filename with a comma, space.

This example instructs SAS to include the files “testcode1.sas”,
“testcode2.sas” and “testcode3.txt.” These files are located in aggregate storage
location “mylib.” You do not need to specify the file extension for testcode1 and
testcode2 because they are the default .SAS extension. You must enclose
testcode3.txt in quotation marks with the whole filename specified because it
has an extension other than .SAS:

%include mylib(testcode1, testcode2,
"testcode3.txt");

Note: A file that is located in an aggregate storage location and has a name
that is not a valid SAS name must have its name enclosed in quotation marks. �
Tip: You can use a FILENAME statement or function or an operating

environment command to make the association.

Operating Environment Information: Different operating environments call an
aggregate grouping of files by different names, such as a directory, a MACLIB, a
text library, or a partitioned data set. For information about accessing files from
a storage location that contains several files, see the SAS documentation for
your operating environment. �

Tip: You can verify the existence of file-specification by using the SYSERR macro
variable if the ERRORCHECK option is set to STRICT.

internal-lines
includes lines that are entered earlier in the same SAS job or session.

To include internal lines, use any of the following:

n includes line n.

n-m or n:m includes lines n through m.
Tip: Including internal lines is most useful in interactive line mode processing.
Tip: Use a %LIST statement to determine the line numbers that you want to

include.
Tip: Although you can use the %INCLUDE statement to access previously

submitted lines when you run SAS in a windowing environment, it might be
more practical to recall lines in the Program Editor with the RECALL command
and then submit the lines with the SUBMIT command.
Note: The SPOOL system option controls internal access to previously

submitted lines when you run SAS in interactive line mode, noninteractive mode,
and batch mode. By default, the SPOOL system option is set to NOSPOOL. The
SPOOL system option must be in effect in order to use %INCLUDE statements
with internal line references. Use the OPTIONS procedure to determine the
current setting of the SPOOL system option on your system. �

keyboard-entry
is a method for preparing a program so that you can interrupt the current
program’s execution, enter statements or data lines from the keyboard, and then
resume program processing.

Statements � %INCLUDE Statement 1539

Tip: Use this method when you run SAS in noninteractive or interactive line
mode. SAS pauses during processing and prompts you to enter statements from
the keyboard.

Tip: Use this argument to include source from the keyboard:

* prompts you to enter data from the keyboard. Place an asterisk
(*) after the %INCLUDE statement in your code:

proc print;
%include *;

run;

To resume processing the original source program, enter a
%RUN statement from the keyboard.

Restriction: The asterisk (*) cannot be used to specify keyboard entry if you use
the Enhanced Editor in the Microsoft Windows operating environment.

Tip: You can use a %INCLUDE * statement in a batch job by creating a file with
the fileref SASTERM that contains the statements that you would otherwise
enter from the keyboard. The %INCLUDE * statement causes SAS to read from
the file that is referenced by SASTERM. Insert a %RUN statement into the file
that is referenced by SASTERM where you want SAS to resume reading from
the original source.
Note: The fileref SASTERM must have been previously associated with an

external file in a FILENAME statement or function or an operating environment
command. �

SOURCE2
causes the SAS log to show the source statements that are being included in your
SAS program.
Tip: The SAS log also displays the fileref and the filename of the source and the

level of nesting (1, 2, 3, and so on).
Tip: The SAS system option SOURCE2 produces the same results. When you

specify SOURCE2 in a %INCLUDE statement, it overrides the setting of the
SOURCE2 system option for the duration of the include operation.

S2=length
specifies the length of the record to be used for input. Length can have these values:

S sets S2 equal to the current setting of the S= SAS system option.

0 tells SAS to use the setting of the SEQ= system option to
determine whether the line contains a sequence field. If the line
does contain a sequence field, SAS determines line length by
excluding the sequence field from the total length.

n specifies a number greater than zero that corresponds to the
length of the line to be read, when the file contains fixed-length
records. When the file contains variable-length records, n
specifies the column in which to begin reading data.

Tip: Text input from the %INCLUDE statement can be either fixed or variable
length.

� Fixed-length records are either unsequenced or sequenced at the end of each
record. For fixed-length records, the value given in S2= is the ending column
of the data.

� Variable-length records are either unsequenced or sequenced at the beginning
of each record. For variable-length records, the value given in S2= is the
starting column of the data.

1540 %INCLUDE Statement � Chapter 6

Interaction: The S2= system option also specifies the length of secondary source
statements that are accessed by the %INCLUDE statement, and it is effective for
the duration of your SAS session. The S2= option in the %INCLUDE statement
affects only the current include operation. If you use the option in the %INCLUDE
statement, it overrides the system option setting for the duration of the include
operation.

See Also: For a detailed discussion of fixed- and variable-length input records, see
“S= System Option” on page 1927 and “S2= System Option” on page 1931.

operating-environment-options

Operating Environment Information: Operating environments can support various
options for the %INCLUDE statement. See the documentation for your operating
environment for a list of these options and their functions. �

Details

What %INCLUDE Does When you execute a program that contains the %INCLUDE
statement, SAS executes your code, including any statements or data lines that you
bring into the program with %INCLUDE.

Operating Environment Information: Use of the %INCLUDE statement is dependent
on your operating environment. See the documentation for your operating environment
for more information about additional software features and methods of referring to and
accessing your files. See your documentation before you run the examples for this
statement. �

Three Sources of Data The %INCLUDE statement accesses SAS statements and data
lines from three possible sources:

� external files

� lines entered earlier in the same job or session
� lines entered from the keyboard.

When Useful The %INCLUDE statement is most often used when running SAS in
interactive line mode, noninteractive mode, or batch mode. Although you can use the
%INCLUDE statement when you run SAS using windows, it might be more practical to
use the INCLUDE and RECALL commands to access data lines and program
statements, and submit these lines again.

Rules for Using %INCLUDE
� You can specify any number of sources in a %INCLUDE statement, and you can

mix the types of included sources. Note, however, that although it is possible to
include information from multiple sources in one %INCLUDE statement, it might
be easier to understand a program that uses separately coded %INCLUDE
statements for each source.

� The %INCLUDE statement must begin at a statement boundary. That is, it must
be the first statement in a SAS job or must immediately follow a semicolon ending
another statement. A %INCLUDE statement cannot immediately follow a
DATALINES, DATALINES4, CARDS, or CARDS4 statement (or PARMCARDS or
PARMCARDS4 statement in procedures that use those statements). However, you
can include data lines with the %INCLUDE statement using one of these methods:

� Make the DATALINES, DATALINES4, or CARDS, CARDS4 statement the
first line in the file that contains the data.

Statements � %INCLUDE Statement 1541

� Place the DATALINES, DATALINES4, or CARDS, CARDS4 statement in one
file, and the data lines in another file. Use both sources in a single
%INCLUDE statement.

The %INCLUDE statement can be nested within a file that has been accessed
with %INCLUDE. The maximum number of nested %INCLUDE statements that
you can use depends on system-specific limitations of your operating environment
(such as available memory or the number of files you can have open concurrently).

� Because %INCLUDE is a global statement and global statements are not
executable, the %INCLUDE statement cannot be used in conditional logic.

� The maximum line length is 32K bytes.

Comparisons
The %INCLUDE statement executes statements immediately. The INCLUDE command
brings the included lines into the Program Editor window but does not execute them.
You must issue the SUBMIT command to execute those lines.

Examples

Example 1: Including an External File
� This example stores a portion of a program in a file and includes it in a program to

be written later. This program is stored in a file named MYFILE:

data monthly;
input x y month $;
datalines;

1 1 January
2 2 February
3 3 March
4 4 April
;

This program includes an external file named MYFILE and submits the DATA
step that it contains before the PROC PRINT step executes:

%include ’MYFILE’;

proc print;
run;

� To reference a file by using a fileref rather than the actual filename, you can use
the FILENAME statement (or a command recognized by your operating
environment) to assign a fileref:

filename in1 ’MYFILE’;

You can later access MYFILE with the fileref IN1:

%inc in1;

� If you want to use many files that are stored in a directory, PDS, or MACLIB (or
whatever your operating environment calls an aggregate storage location), you can
assign the fileref to the larger storage unit and then specify the filename. For
example, this FILENAME statement assigns the fileref STORAGE to an aggregate
storage location:

1542 %INCLUDE Statement � Chapter 6

filename storage
’aggregate-storage-location’;

You can later include a file using this statement:

%inc storage(MYFILE);

� You can also access several files or members from this storage location by listing
them in parentheses after the fileref in a single %INCLUDE statement. Separate
filenames with a comma or a blank space. The following %INCLUDE statement
demonstrates this method:

%inc storage(file-1,file-2,file-3);

When the file does not have the default .SAS extension, you can access it using
quotation marks around the complete filename listed inside the parentheses.

� %inc storage("file-1.txt","file-2.dat",
"file-3.cat");

Example 2: Including Previously Submitted Lines This %INCLUDE statement causes
SAS to process lines 1, 5, 9 through 12, and 13 through 16 as if you had entered them
again from your keyboard:

%include 1 5 9-12 13:16;

Example 3: Including Input from the Keyboard The method shown in this example is
valid only when you run SAS in noninteractive mode or interactive line mode.

Restriction: The asterisk (*) cannot be used to specify keyboard entry if you use
the Enhanced Editor in the Microsoft Windows operating environment.

This example uses %INCLUDE to add a customized TITLE statement when PROC
PRINT executes:

data report;
infile file-specification;
input month $ salesamt $;

run;

proc print;
%include *;

run;

When this DATA step executes, %INCLUDE with the asterisk causes SAS to issue a
prompt for statements that are entered at the keyboard. You can enter statements such
as

where month= ’January’;

title ’Data for month of January’;

After you enter statements, you can use %RUN to resume processing by typing

%run;

The %RUN statement signals to SAS to leave keyboard-entry mode and resume
reading and executing the remaining SAS statements from the original program.

Example 4: Using %INCLUDE with Several Entries in a Single Catalog This example
submits the source code from three entries in the catalog MYLIB.INCLUDE. When no
entry type is specified, the default is CATAMS.

Statements � INFILE Statement 1543

filename dir catalog ’mylib.include’;
%include dir(mem1);
%include dir(mem2);
%include dir(mem3);

See Also

Statements:

“%LIST Statement” on page 1623

“%RUN Statement” on page 1702

INFILE Statement

Specifies an external file to read with an INPUT statement.

Valid: in a DATA Step

Category: File-handling

Type: Executable

See: INFILE Statement in the documentation for your operating environment.

Syntax
INFILE file-specification <device-type> <options> <operating-environment-options>;

INFILE DBMS-specifications;

Arguments
file-specification

identifies the source of the input data records, which is an external file or instream
data. File-specification can have these forms:

’external-file’
specifies the physical name of an external file. The physical name is the
name that the operating environment uses to access the file.

fileref
specifies the fileref of an external file.

Requirement: You must have previously associated the fileref with an
external file in a FILENAME statement, FILENAME function, or an
appropriate operating environment command.

See: “FILENAME Statement” on page 1473

fileref(file)
specifies a fileref of an aggregate storage location and the name of a file or
member, enclosed in parentheses, that resides in that location.

1544 INFILE Statement � Chapter 6

Requirement: A file that is located in an aggregate storage location and has
a name that is not a valid SAS name must have its name enclosed in
quotation marks.

Requirement: You must have previously associated the fileref with an
external file in a FILENAME statement, a FILENAME function, or an
appropriate operating environment command.

See: “FILENAME Statement” on page 1473

Operating Environment Information: Different operating environments call
an aggregate grouping of files by different names, such as a directory, a
MACLIB, or a partitioned data set. For details about how to specify external
files, see the SAS documentation for your operating environment. �

CARDS | CARDS4
for a definition, see DATALINES.

Alias: DATALINES | DATALINES4

DATALINES | DATALINES4
specifies that the input data immediately follows the DATALINES or
DATALINES4 statement in the DATA step. Using DATALINES allows you to
use the INFILE statement options to control how the INPUT statement reads
instream data lines.

Alias: CARDS | CARDS4

Featured in: Example 1 on page 1557

Tip: You can verify the existence of file-specification by using the SYSERR macro
variable if the ERRORCHECK option is set to STRICT.

device-type
specifies the type of device or the access method that is used if the fileref points to
an input or output device or location that is not a physical file:

DISK specifies that the device is a disk drive.

Tip: When you assign a fileref to a file on disk, you are not
required to specify DISK.

DUMMY specifies that the output to the file is discarded.

Tip: Specifying DUMMY can be useful for testing.

GTERM indicates that the output device type is a graphics device that
will receive graphics data.

PIPE specifies an unnamed pipe.

Note: Some operating environments do not support pipes. �

PLOTTER specifies an unbuffered graphics output device.

PRINTER specifies a printer or printer spool file.

TAPE specifies a tape drive.

TEMP creates a temporary file that exists only as long as the filename
is assigned. The temporary file can be accessed only through
the logical name and is available only while the logical name
exists.

Restriction: Do not specify a physical pathname. If you do,
SAS returns an error.

Statements � INFILE Statement 1545

Tip: Files that are manipulated by the TEMP device can have
the same attributes and behave identically to DISK files.

TERMINAL specifies the user’s terminal.

UPRINTER specifies a Universal Printing printer definition name.
Tip: If you do not specify the printer name in the FILENAME

statement, the PRINTERPATH options control which
Universal Printer is used and the destination of the output.

Alias: DEVICE=
Requirement: device-type must appear immediately after the physical path.

DEVICE=device-type can appear anywhere in the statement.

Operating Environment Information: Additional specifications might be required
when you specify some devices. See the SAS documentation for your operating
environment before specifying a value other than DISK. Values in addition to the
ones listed here might be available in some operating environments. �

Options

BLKSIZE=block-size
specifies the block size of the input file.
Default: Dependent on the operating environment

Operating Environment Information: For details, see the SAS documentation
for your operating environment. �

COLUMN=variable
names a variable that SAS uses to assign the current column location of the input
pointer. Like automatic variables, the COLUMN= variable is not written to the
data set.
Alias: COL=
See Also: LINE= on page 1548
Featured in: Example 8 on page 1562

DELIMITER= delimiter(s)
specifies an alternate delimiter (other than a blank) to be used for LIST input,
where delimiter(s) is

’list-of-delimiting-characters’
specifies one or more characters to read as delimiters.
Requirement: Enclose the list of characters in quotation marks.
Featured in: Example 1 on page 1557

character-variable
specifies a character variable whose value becomes the delimiter.

Alias: DLM=
Default: blank space
Tip: The delimiter is case sensitive.
See: “Reading Delimited Data” on page 1554
See Also: DLMSTR=, DSD (delimiter-sensitive data) on page 1546
Featured in: Example 1 on page 1557

DLMSTR= delimiter
specifies a character string as an alternate delimiter (other than a blank) to be
used for LIST input, where delimiter is

1546 INFILE Statement � Chapter 6

’delimiting-string’
specifies a character string to read as a delimiter.
Requirement: Enclose the string in quotation marks.
Featured in: Example 1 on page 1557

character-variable
specifies a character variable whose value becomes the delimiter.

Default: blank space
Interaction: If you specify more than one DLMSTR= option in the INFILE

statement, the DLMSTR= option that is specified last will be used. If you
specify both the DELIMITER= and DLMSTR= options, the option that is
specified last will be used.

Interaction: If you specify RECFM=N, make sure that the LRECL is large
enough to hold the largest input item. Otherwise, it might be possible for the
delimiter to be split across the record boundary.

Tip: The delimiter is case sensitive. To make the delimiter case insensitive, use
the DLMSOPT=’I’ option.

See: “Reading Delimited Data” on page 1554
See Also: DELIMITER= on page 1545, DLMSOPT= on page 1546, and DSD on

page 1546
Featured in: Example 1 on page 1557

DLMSOPT= ’option(s)’
specifies parsing options for the DLMSTR= option where option(s) can be the
following:

I
specifies that case-insensitive comparisons will be done.

T
specifies that trailing blanks of the string delimiter will be removed.
Tip: The T option is useful when you use a variable as the delimiter string.
Tip: You can specify either I, T, or both.

Requirement: The DLMSOPT= option has an effect only when used with the
DLMSTR= option.

See Also: DLMSTR= on page 1545
Featured in: Example 1 on page 1557

DSD (delimiter-sensitive data)
specifies that when data values are enclosed in quotation marks, delimiters within
the value are treated as character data. The DSD option changes how SAS treats
delimiters when you use LIST input and sets the default delimiter to a comma.
When you specify DSD, SAS treats two consecutive delimiters as a missing value
and removes quotation marks from character values.
Interaction: Use the DELIMITER= or DLMSTR= option to change the delimiter.
Tip: Use the DSD option and LIST input to read a character value that contains

a delimiter within a string that is enclosed in quotation marks. The INPUT
statement treats the delimiter as a valid character and removes the quotation
marks from the character string before the value is stored. Use the tilde (~)
format modifier to retain the quotation marks.

See: “Reading Delimited Data” on page 1554
See Also: DELIMITER= on page 1545, DLMSTR= on page 1545
Featured in: Example 1 on page 1557 and Example 2 on page 1559

Statements � INFILE Statement 1547

ENCODING= ’encoding-value’
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Encoding Values in SAS Language Elements” in
the SAS National Language Support (NLS): Reference Guide.
Default: SAS assumes that an external file is in the same encoding as the

session encoding.
Featured in: Example 11 on page 1565

END=variable
specifies a variable that SAS sets to 1 when the current input data record is the
last in the input file. Until SAS processes the last data record, the END= variable
is set to 0. Like automatic variables, this variable is not written to the data set.

Restriction: You cannot use the END= option with
� the UNBUFFERED option
� the DATALINES or DATALINES4 statement
� an INPUT statement that reads multiple input data records.

Tip: Use the option EOF= on page 1547 when END= is invalid.
Featured in: Example 5 on page 1560

EOF=label
specifies a statement label that is the object of an implicit GO TO when the
INFILE statement reaches end of file. When an INPUT statement attempts to
read from a file that has no more records, SAS moves execution to the statement
label indicated.
Interaction: Use EOF= instead of the END= option with

� the UNBUFFERED option
� the DATALINES or DATALINES4 statement

� an INPUT statement that reads multiple input data records.

Tip: The EOF= option is useful when you read from multiple input files
sequentially.

See Also: END= on page 1547, EOV= on page 1547, and UNBUFFERED on page
1552

EOV=variable
specifies a variable that SAS sets to 1 when the first record in a file in a series of
concatenated files is read. The variable is set only after SAS encounters the next
file. Like automatic variables, the EOV= variable is not written to the data set.
Tip: Reset the EOV= variable back to 0 after SAS encounters each boundary.
See Also: END= on page 1547 and EOF= on page 1547

EXPANDTABS | NOEXPANDTABS
specifies whether to expand tab characters to the standard tab setting, which is
set at 8-column intervals that start at column 9.
Default: NOEXPANDTABS
Tip: EXPANDTABS is useful when you read data that contains the tab character

that is native to your operating environment.

FILENAME=variable

1548 INFILE Statement � Chapter 6

specifies a variable that SAS sets to the physical name of the currently opened
input file. Like automatic variables, the FILENAME= variable is not written to
the data set.
Tip: Use a LENGTH statement to make the variable length long enough to

contain the value of the filename.
See Also: FILEVAR= on page 1548
Featured in: Example 5 on page 1560

FILEVAR=variable
specifies a variable whose change in value causes the INFILE statement to close
the current input file and open a new one. When the next INPUT statement
executes, it reads from the new file that the FILEVAR= variable specifies. Like
automatic variables, this variable is not written to the data set.
Restriction: The FILEVAR= variable must contain a character string that is a

physical filename.
Interaction: When you use the FILEVAR= option, the file-specification is just a

placeholder, not an actual filename or a fileref that has been previously assigned
to a file. SAS uses this placeholder for reporting processing information to the
SAS log. It must conform to the same rules as a fileref.

Tip: Use FILEVAR= to dynamically change the currently opened input file to a
new physical file.

See Also: “Updating External Files in Place” on page 1553
Featured in: Example 5 on page 1560

FIRSTOBS=record-number
specifies a record number that SAS uses to begin reading input data records in the
input file.
Default: 1
Tip: Use FIRSTOBS= with OBS= to read a range of records from the middle of a

file.
Example: This statement processes record 50 through record 100:

infile file-specification firstobs=50 obs=100;

FLOWOVER
causes an INPUT statement to continue to read the next input data record if it
does not find values in the current input line for all the variables in the statement.
FLOWOVER is the default behavior of the INPUT statement.
See: “Reading Past the End of a Line” on page 1556
See Also: MISSOVER on page 1549, STOPOVER on page 1551, and

TRUNCOVER on page 1552

LENGTH=variable
specifies a variable that SAS sets to the length of the current input line. SAS does
not assign the variable a value until an INPUT statement executes. Like
automatic variables, the LENGTH= variable is not written to the data set.
Tip: This option in conjunction with the $VARYING informat on page 1255 is

useful when the field width varies.
Featured in: Example 4 on page 1560 and Example 7 on page 1562

LINE=variable
specifies a variable that SAS sets to the line location of the input pointer in the
input buffer. Like automatic variables, the LINE= variable is not written to the
data set.

Statements � INFILE Statement 1549

Range: 1 to the value of the N= option
Interaction: The value of the LINE= variable is the current relative line number

within the group of lines that is specified by the N= option or by the #n line
pointer control in the INPUT statement.

See Also: COLUMN= on page 1545 and N= on page 1549
Featured in: Example 8 on page 1562

LINESIZE=line-size
specifies the record length that is available to the INPUT statement.

Operating Environment Information: Values for line-size are dependent on the
operating environment record size. For details, see the SAS documentation for
your operating environment. �

Alias: LS=
Range: up to 32767
Interaction: If an INPUT statement attempts to read past the column that is

specified by the LINESIZE= option, then the action that is taken depends on
whether the FLOWOVER, MISSOVER, SCANOVER, STOPOVER, or
TRUNCOVER option is in effect. FLOWOVER is the default.

Tip: Use LINESIZE= to limit the record length when you do not want to read the
entire record.

Example: If your data lines contain a sequence number in columns 73 through
80, then use this INFILE statement to restrict the INPUT statement to the first
72 columns:

infile file-specification linesize=72;

LRECL=logical-record-length
specifies the logical record length.

Operating Environment Information: Values for logical-record-length are
dependent on the operating environment. For details, see the SAS documentation
for your operating environment. �

Default: Dependent on the file characteristics of your operating environment
Restriction: LRECL is not valid when you use the DATALINES file specification.
Interaction: Alternatively, you can specify a global logical record length by using

the LRECL= system option“LRECL= System Option” on page 1883.
Tip: LRECL= specifies the physical line length of the file. LINESIZE= tells the

INPUT statement how much of the line to read.

MISSOVER
prevents an INPUT statement from reading a new input data record if it does not
find values in the current input line for all the variables in the statement. When
an INPUT statement reaches the end of the current input data record, variables
without any values assigned are set to missing.
Tip: Use MISSOVER if the last field or fields might be missing and you want

SAS to assign missing values to the corresponding variable.
See: “Reading Past the End of a Line” on page 1556
See Also: FLOWOVER on page 1548, SCANOVER on page 1551, STOPOVER on

page 1551, and TRUNCOVER on page 1552
Featured in: Example 2 on page 1559

N=available-lines

1550 INFILE Statement � Chapter 6

specifies the number of lines that are available to the input pointer at one time.
Default: The highest value following a # pointer control in any INPUT statement

in the DATA step. If you omit a # pointer control, then the default value is 1.
Interaction: This option affects only the number of lines that the pointer can

access at a time; it has no effect on the number of lines an INPUT statement
reads.

Tip: When you use # pointer controls in an INPUT statement that are less than
the value of N=, you might get unexpected results. To prevent unexpected
results, include a # pointer control that equals the value of the N= option. Here
is an example:

infile ’external file’ n=5;
input #2 name : $25. #3 job : $25. #5;

The INPUT statement includes a #5 pointer control, even though no data is
read from that record.

Featured in: Example 8 on page 1562

NBYTE=variable
specifies the name of a variable that contains the number of bytes to read from a
file when you are reading data in stream record format (RECFM=S in the
FILENAME statement).
Default: The LRECL value of the file
Interaction: If the number of bytes to read is set to -1, then the FTP and

SOCKET access methods return the number of bytes that are currently
available in the input buffer.

See: The RECFM= option on page 1513 in the FILENAME statement, SOCKET
access method, and the RECFM= option on page 1500 in the FILENAME
statement, FTP access method

OBS=record-number | MAX

record-number specifies the record number of the last record to read in an
input file that is read sequentially.

MAX specifies the maximum number of observations to process,
which will be at least as large as the largest signed, 32–bit
integer. The absolute maximum depends on your host
operating environment.

Default: MAX
Tip: Use OBS= with FIRSTOBS= to read a range of records from the middle of a

file.
Example: This statement processes only the first 100 records in the file:

infile file-specification obs=100;

PAD | NOPAD
controls whether SAS pads the records that are read from an external file with
blanks to the length that is specified in the LRECL= option.
Default: NOPAD
See Also: LRECL= on page 1549

PRINT | NOPRINT
specifies whether the input file contains carriage-control characters.
Tip: To read a file in a DATA step without having to remove the carriage-control

characters, specify PRINT. To read the carriage-control characters as data
values, specify NOPRINT.

Statements � INFILE Statement 1551

RECFM=record-format
specifies the record format of the input file.

Operating Environment Information: Values for record-format are dependent on
the operating environment. For details, see the SAS documentation for your
operating environment. �

SCANOVER
causes the INPUT statement to scan the input data records until the character
string that is specified in the @’character-string’ expression is found.

Interaction: The MISSOVER, TRUNCOVER, and STOPOVER options change
how the INPUT statement behaves when it scans for the @’character-string’
expression and reaches the end of the record. By default (FLOWOVER option),
the INPUT statement scans the next record while these other options cause
scanning to stop.

Tip: It is redundant to specify both SCANOVER and FLOWOVER.

See: “Reading Past the End of a Line” on page 1556

See Also: FLOWOVER on page 1548, MISSOVER on page 1549, STOPOVER on
page 1551, and TRUNCOVER on page 1552

Featured in: Example 3 on page 1559

SHAREBUFFERS
specifies that the FILE statement and the INFILE statement share the same
buffer.

CAUTION:
When using SHAREBUFFERS, RECFM=V, and _INFILE_, use caution if you read a
record with one length and update the file with a record of a different length. The
length of the record can change by modifying _INFILE_. One option to avoid
this potential problem is to pad or truncate _INFILE_ so that the original
record length is maintained. �

Alias: SHAREBUFS

Tip: Use SHAREBUFFERS with the INFILE, FILE, and PUT statements to
update an external file in place. Updating an external file in place saves CPU
time because the PUT statement output is written straight from the input
buffer instead of the output buffer.

Tip: Use SHAREBUFFERS to update specific fields in an external file instead of
an entire record.

Featured in: Example 6 on page 1561

START=variable
specifies a variable whose value SAS uses as the first column number of the record
that the PUT _INFILE_ statement writes. Like automatic variables, the START
variable is not written to the data set.

See Also: _INFILE_ option in the PUT statement

STOPOVER
causes the DATA step to stop processing if an INPUT statement reaches the end of
the current record without finding values for all variables in the statement. When
an input line does not contain the expected number of values, SAS sets _ERROR_
to 1, stops building the data set as if a STOP statement has executed, and prints
the incomplete data line.

Tip: Use FLOWOVER to reset the default behavior.

See: “Reading Past the End of a Line” on page 1556

1552 INFILE Statement � Chapter 6

See Also: FLOWOVER on page 1548, MISSOVER on page 1549, SCANOVER on
page 1551, and TRUNCOVER on page 1552

Featured in: Example 2 on page 1559

TRUNCOVER
overrides the default behavior of the INPUT statement when an input data record
is shorter than the INPUT statement expects. By default, the INPUT statement
automatically reads the next input data record. TRUNCOVER enables you to read
variable-length records when some records are shorter than the INPUT statement
expects. Variables without any values assigned are set to missing.

Tip: Use TRUNCOVER to assign the contents of the input buffer to a variable
when the field is shorter than expected.

See: “Reading Past the End of a Line” on page 1556

See Also: FLOWOVER on page 1548, MISSOVER on page 1549, SCANOVER on
page 1551, and STOPOVER on page 1551

Featured in: Example 3 on page 1559

UNBUFFERED
tells SAS not to perform a buffered (“look ahead”) read.

Alias: UNBUF

Interaction: When you use UNBUFFERED, SAS never sets the END= variable
to 1.

Tip: When you read instream data with a DATALINES statement,
UNBUFFERED is in effect.

INFILE=variable
specifies a character variable that references the contents of the current input
buffer for this INFILE statement. You can use the variable in the same way as
any other variable, even as the target of an assignment. The variable is
automatically retained and initialized to blanks. Like automatic variables, the
INFILE= variable is not written to the data set.

Restriction: variable cannot be a previously defined variable. Ensure that the
INFILE= specification is the first occurrence of this variable in the DATA
step. Do not set or change the length of _INFILE_= variable with the LENGTH
or ATTRIB statements. However, you can attach a format to this variable with
the ATTRIB or FORMAT statement.

Interaction: The maximum length of this character variable is the logical record
length for the specified INFILE statement. However, SAS does not open the file
to know the LRECL= until before the execution phase. Therefore, the
designated size for this variable during the compilation phase is 32,767.

Tip: Modification of this variable directly modifies the INFILE statement’s
current input buffer. Any PUT _INFILE_ (when this INFILE is current) that
follows the buffer modification reflects the modified buffer contents. The
INFILE= variable accesses only the current input buffer of the specified
INFILE statement even if you use the N= option to specify multiple buffers.

Tip: To access the contents of the input buffer in another statement without
using the _INFILE_= option, use the automatic variable _INFILE_.

Tip: The _INFILE_ variable does not have a fixed width. When you assign a
value to the _INFILE_ variable, the length of the variable changes to the length
of the value that is assigned.

Main Discussion: “Accessing the Contents of the Input Buffer” on page 1553

Featured in: Example 9 on page 1562 and Example 10 on page 1564

Statements � INFILE Statement 1553

Operating Environment Options

Operating Environment Information: For descriptions of operating
environment-specific options in the INFILE statement, see the SAS documentation for
your operating environment. �

DBMS Specifications

DBMS-Specifications
enable you to read records from some DBMS files. You must license SAS/ACCESS
software to be able to read from DBMS files. See the SAS/ACCESS documentation
for the DBMS that you use.

Details
Operating Environment Information: The INFILE statement contains operating
environment-specific material. See the SAS documentation for your operating
environment before using this statement. �

How to Use the INFILE Statement Because the INFILE statement identifies the file to
read, it must execute before the INPUT statement that reads the input data records.
You can use the INFILE statement in conditional processing, such as an IF-THEN
statement, because it is executable. The INFILE statement enables you to control the
source of the input data records.

Usually, you use an INFILE statement to read data from an external file. When data
is read from the job stream, you must use a DATALINES statement. However, to take
advantage of certain data-reading options that are available only in the INFILE
statement, you can use an INFILE statement with the file-specification DATALINES
and a DATALINES statement in the same DATA step. See “Reading Long Instream
Data Records” on page 1555 for more information.

When you use more than one INFILE statement for the same file specification and
you use options in each INFILE statement, the effect is additive. To avoid confusion,
use all the options in the first INFILE statement for a given external file.

Reading Multiple Input Files You can read from multiple input files in a single
iteration of the DATA step in one of two ways:

� to keep multiple files open and change which file is read, use multiple INFILE
statements.

� to dynamically change the current input file within a single DATA step, use the
FILEVAR= option in an INFILE statement. The FILEVAR= option enables you to
read from one file, close it, and then open another. See Example 5 on page 1560.

Updating External Files in Place You can use the INFILE statement in combination
with the FILE statement to update records in an external file. Follow these steps:

1 Specify the INFILE statement before the FILE statement.
2 Specify the same fileref or physical filename in each statement.
3 Use options that are common to both the INFILE and FILE statements in the

INFILE statement instead of the FILE statement. (Any such options that are used
in the FILE statement are ignored.)

See Example 6 on page 1561.
To update individual fields within a record instead of the entire record, see the term

SHAREBUFFERS under “Arguments” on page 1543.

Accessing the Contents of the Input Buffer In addition to the _INFILE_= variable,
you can use the automatic _INFILE_ variable to reference the contents of the current

1554 INFILE Statement � Chapter 6

input buffer for the most recent execution of the INFILE statement. This character
variable is automatically retained and initialized to blanks. Like other automatic
variables, _INFILE_ is not written to the data set.

When you specify the _INFILE_= option in an INFILE statement, then this variable
is also indirectly referenced by the automatic _INFILE_ variable. If the automatic
INFILE variable is present and you omit _INFILE_= in a particular INFILE
statement, then SAS creates an internal _INFILE_= variable for that INFILE
statement. Otherwise, SAS does not create the _INFILE_= variable for a particular
FILE.

During execution and at the point of reference, the maximum length of this character
variable is the maximum length of the current _INFILE_= variable. However, because
INFILE merely references other variables whose lengths are not known until before
the execution phase, the designated length is 32,767 during the compilation phase. For
example, if you assign _INFILE_ to a new variable whose length is undefined, then the
default length of the new variable is 32,767. You cannot use the LENGTH statement
and the ATTRIB statement to set or override the length of _INFILE_. You can use the
FORMAT statement and the ATTRIB statement to assign a format to _INFILE_.

Like other SAS variables, you can update the _INFILE_ variable in an assignment
statement. You can also use a format with _INFILE_ in a PUT statement. For example,
the following PUT statement writes the contents of the input buffer by using a
hexadecimal format.

put _infile_ $hex100.;

Any modification of the _INFILE_ directly modifies the current input buffer for the
current INFILE statement. The execution of any PUT _INFILE_ statement that follows
this buffer modification will reflect the contents of the modified buffer.

INFILE only accesses the contents of the current input buffer for an INFILE
statement, even when you use the N= option to specify multiple buffers. You can access
all the N= buffers, but you must use an INPUT statement with the # line pointer
control to make the desired buffer the current input buffer.

Reading Delimited Data By default, the delimiter that is used to read input data
records with list input is a blank space. The delimiter-sensitive data (DSD) option, the
DELIMITER= option, the DLMSTR= option, and the DLMSOPT= option affect how list
input handles delimiters. The DELIMITER= or DLMSTR= option specifies that the
INPUT statement use a character other than a blank as a delimiter for data values that
are read with list input. When the DSD option is in effect, the INPUT statement uses a
comma as the default delimiter.

To read a value as missing between two consecutive delimiters, use the DSD option.
By default, the INPUT statement treats consecutive delimiters as a unit. When you use
DSD, the INPUT statement treats consecutive delimiters separately. Therefore, a value
that is missing between consecutive delimiters is read as a missing value. To change the
delimiter from a comma to another value, use the DELIMITER= or DLMSTR= option.

For example, this DATA step program uses list input to read data that is separated
with commas. The second data line contains a missing value. Because SAS allows
consecutive delimiters with list input, the INPUT statement cannot detect the missing
value.

data scores;
infile datalines delimiter=’,’;
input test1 test2 test3;
datalines;

91,87,95
97,,92
,1,1

Statements � INFILE Statement 1555

;

With the FLOWOVER option in effect, the data set SCORES contains two, not three,
observations. The second observation is built incorrectly:

OBS TEST1 TEST2 TEST3

1 91 87 95

2 97 92 1

To correct the problem, use the DSD option in the INFILE statement.

infile datalines dsd;

Now the INPUT statement detects the two consecutive delimiters and therefore
assigns a missing value to variable TEST2 in the second observation.

OBS TEST1 TEST2 TEST3

1 91 87 95

2 97 . 92

3 . 1 1

The DSD option also enables list input to read a character value that contains a
delimiter within a quoted string. For example, if data is separated with commas, DSD
enables you to place the character string in quotation marks and read a comma as a
valid character. SAS does not store the quotation marks as part of the character value.
To retain the quotation marks as part of the value, use the tilde (~) format modifier in
an INPUT statement. See Example 1 on page 1557.

Note: Any time a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option on either
EBCDIC or ASCII environments.

For example, when you read an EBCDIC text file on an ASCII platform, it is
recommended that you specify the ENCODING= option in the INFILE statement.
However, if you use the DSD and DLM options in the INFILE statement, the
ENCODING= option is a requirement because these options require certain characters
in the session encoding (such as quotation marks, commas, and blanks).

The use of encoding-specific informats should be reserved for use with true binary
files. That is, files that contain both character and noncharacter fields. �

Reading Long Instream Data Records You can use the INFILE statement with the
DATALINES file specification to process instream data. An INPUT statement reads the
data records that follow the DATALINES statement. If you use the CARDIMAGE
system option, or if this option is the default for your system, then SAS processes the
data lines exactly like 80-byte punched card images that are padded with blanks. The
default FLOWOVER option in the INFILE statement causes the INPUT statement to
read the next record if it does not find values in the current record for all of the
variables in the statement. To ensure that your data is processed correctly, use an
external file for input when record lengths are greater than 80 bytes.

Note: The NOCARDIMAGE system option (see “CARDIMAGE System Option” on
page 1804) specifies that data lines not be treated as if they were 80-byte card images.

1556 INFILE Statement � Chapter 6

The end of a data line is always treated as the end of the last token, except for strings
that are enclosed in quotation marks. �

Reading Past the End of a Line By default, if the INPUT statement tries to read past
the end of the current input data record, then it moves the input pointer to column 1 of
the next record to read the remaining values. This default behavior is specified by the
FLOWOVER option. A message is written to the SAS log:

NOTE: SAS went to a new line when INPUT
statement reached past the end of a line.

Several options are available to change the INPUT statement behavior when an end
of line is reached. The STOPOVER option treats this condition as an error and stops
building the data set. The MISSOVERand TRUNCOVER options do not allow the input
pointer to go to the next record when the current INPUT statement is not satisfied. The
SCANOVER option, used with @’character-string’ scans the input record until it finds
the specified character-string. The FLOWOVER option restores the default behavior.

The TRUNCOVER and MISSOVER options are similar. The MISSOVER option
causes the INPUT statement to set a value to missing if the statement is unable to read
an entire field because the value is shorter than the field length that is specified in the
INPUT statement. The TRUNCOVER option writes whatever characters are read to
the appropriate variable.

For example, an external file with variable-length records contains these records:

----+----1----+----2
1
22
333
4444
55555

The following DATA step reads this data to create a SAS data set. Only one of the
input records is as long as the informatted length of the variable TESTNUM.

data numbers;
infile ’external-file’;
input testnum 5.;

run;

This DATA step creates the three observations from the five input records because by
default the FLOWOVER option is used to read the input records.

If you use the MISSOVER option in the INFILE statement, then the DATA step
creates five observations. All the values that were read from records that were too short
are set to missing. Use the TRUNCOVER option in the INFILE statement if you prefer
to see what values were present in records that were too short to satisfy the current
INPUT statement.

infile ’external-file’ truncover;

The DATA step now reads the same input records and creates five observations. See
Table 6.5 on page 1556 to compare the SAS data sets.

Table 6.5 The Value of TESTNUM Using Different INFILE Statement Options

OBS FLOWOVER MISSOVER TRUNCOVER

1 22 . 1

2 4444 . 22

Statements � INFILE Statement 1557

OBS FLOWOVER MISSOVER TRUNCOVER

3 55555 . 333

4 . 4444

5 55555 55555

Comparisons

� The INFILE statement specifies the input file for any INPUT statements in the
DATA step. The FILE statement specifies the output file for any PUT statements
in the DATA step.

� An INFILE statement usually identifies data from an external file. A DATALINES
statement indicates that data follows in the job stream. You can use the INFILE
statement with the file specification DATALINES to take advantage of certain
data-reading options that affect how the INPUT statement reads instream data.

Examples

Example 1: Changing How Delimiters Are Treated By default, the INPUT statement
uses a blank as the delimiter. This DATA step uses a comma as the delimiter:

data num;
infile datalines dsd;
input x y z;
datalines;

,2,3
4,5,6
7,8,9
;

The argument DATALINES in the INFILE statement allows you to use an INFILE
statement option to read instream data lines. The DSD option sets the comma as the
default delimiter. Because a comma precedes the first value in the first data line, a
missing value is assigned to variable X in the first observation, and the value 2 is
assigned to variable Y.

If the data uses multiple delimiters or a single delimiter other than a comma, then
simply specify the delimiter values with the DELIMITER= option. In this example, the
characters a and b function as delimiters:

data nums;
infile datalines dsd delimiter=’ab’;
input X Y Z;
datalines;

1aa2ab3
4b5bab6
7a8b9
;

The output that PROC PRINT generates shows the resulting NUM data set. Values
are missing for variables in the first and second observations because DSD causes list
input to detect two consecutive delimiters. If you omit DSD, the characters a, b, aa, ab,
ba, or bb function as the delimiter and no variables are assigned missing values.

1558 INFILE Statement � Chapter 6

Output 6.8 The NUM Data Set

The SAS System 1

OBS X Y Z

1 1 . 2
2 4 5 .
3 7 8 9

If you want to use a string as the delimiter, specify the delimiter values with the
DLMSTR= option. In this example, the string PRD is used as the delimiter. Note that
the string contains uppercase characters. By using the DLMSOPT= option, PRD, Prd,
PRd, PrD, pRd, pRD, prD, and prd are all valid delimiters.

data test;
infile datalines dsd dlmstr=’PRD’ dlmsopt=’i’;
input X Y Z;
datalines;

1PRD2PRd3
4PrD5Prd6
7pRd8pRD9
;

The output from PROC PRINT shows all the observations in the TEST data set.

Output 6.9 The TEST Data Set

The SAS System 1

Obs X Y Z

1 1 2 3
2 4 5 6
3 7 8 9

This DATA step uses modified list input and the DSD option to read data that is
separated by commas and that might contain commas as part of a character value:

data scores;
infile datalines dsd;
input Name : $9. Score

Team : $25. Div $;
datalines;

Joseph,76,"Red Racers, Washington",AAA
Mitchel,82,"Blue Bunnies, Richmond",AAA
Sue Ellen,74,"Green Gazelles, Atlanta",AA
;

The output that PROC PRINT generates shows the resulting SCORES data set. The
delimiter (comma) is stored as part of the value of TEAM while the quotation marks are
not.

Statements � INFILE Statement 1559

Output 6.10 The SCORES Data Set

The SAS System 1

OBS NAME SCORE TEAM DIV

1 Joseph 76 Red Racers, Washington AAA
2 Mitchel 82 Blue Bunnies, Richmond AAA
3 Sue Ellen 74 Green Gazelles, Atlanta AA

Example 2: Handling Missing Values and Short Records with List Input This example
demonstrates how to prevent missing values from causing problems when you read the
data with list input. Some data lines in this example contain fewer than five
temperature values. Use the MISSOVER option so that these values are set to missing.

data weather;
infile datalines missover;
input temp1-temp5;
datalines;

97.9 98.1 98.3
98.6 99.2 99.1 98.5 97.5
96.2 97.3 98.3 97.6 96.5
;

SAS reads the three values on the first data line as the values of TEMP1, TEMP2,
and TEMP3. The MISSOVER option causes SAS to set the values of TEMP4 and
TEMP5 to missing for the first observation because no values for those variables are in
the current input data record.

When you omit the MISSOVER option or use FLOWOVER, SAS moves the input
pointer to line 2 and reads values for TEMP4 and TEMP5. The next time the DATA
step executes, SAS reads a new line which, in this case, is line 3. This message appears
in the SAS log:

NOTE: SAS went to a new line when INPUT statement
reached past the end of a line.

You can also use the STOPOVER option in the INFILE statement. Using the
STOPOVER option causes the DATA step to halt execution when an INPUT statement
does not find enough values in a record of raw data:

infile datalines stopover;

Because SAS does not find a TEMP4 value in the first data record, it sets _ERROR_ to
1, stops building the data set, and prints data line 1.

Example 3: Scanning Variable-Length Records for a Specific Character String This
example shows how to use TRUNCOVER in combination with SCANOVER to pull
phone numbers from a phone book. The phone number is always preceded by the word
“phone:”. Because the phone numbers include international numbers, the maximum
length is 32 characters.

filename phonebk host-specific-path;
data _null_;
file phonebk;
input line $80.;
put line;
datalines;

Jenny’s Phone Book

1560 INFILE Statement � Chapter 6

Jim Johanson phone: 619-555-9340
Jim wants a scarf for the holidays.

Jane Jovalley phone: (213) 555-4820
Jane started growing cabbage in her garden.
Her dog’s name is Juniper.

J.R. Hauptman phone: (49)12 34-56 78-90
J.R. is my brother.

;
run;

Use @’phone:’ to scan the lines of the file for a phone number and position the file
pointer where the phone number begins. Use TRUNCOVER in combination with
SCANOVER to skip the lines that do not contain ’phone:’ and write only the phone
numbers to the log.

data _null_;
infile phonebk truncover scanover;
input @’phone:’ phone $32.;
put phone=;

run;

The program writes the following lines to the SAS log:

phone=619-555-9340
phone=(213) 555-4820
phone=(49)12 34-56 78-90

Example 4: Reading Files That Contain Variable-Length Records
This example shows how to use LENGTH=, in combination with the $VARYING.
informat, to read a file that contains variable-length records:

data a;
infile file-specification length=linelen lrecl=510 pad;
input firstvar 1-10 @; /* assign LINELEN */
varlen=linelen-10; /* Calculate VARLEN */
input @11 secondvar $varying500. varlen;

run;

The following occurs in this DATA step:
� The INFILE statement creates the variable LINELEN but does not assign it a

value.
� When the first INPUT statement executes, SAS determines the line length of the

record and assigns that value to the variable LINELEN. The single trailing @
holds the record in the input buffer for the next INPUT statement.

� The assignment statement uses the two known lengths (the length of FIRSTVAR
and the length of the entire record) to determine the length of VARLEN.

� The second INPUT statement uses the VARLEN value with the informat
$VARYING500. to read the variable SECONDVAR.

See “$VARYINGw. Informat” on page 1254 for more information.

Example 5: Reading from Multiple Input Files The following DATA step reads from
two input files during each iteration of the DATA step. As SAS switches from one file to
the next, each file remains open. The input pointer remains in place to begin reading
from that location the next time an INPUT statement reads from that file.

data qtrtot(drop=jansale febsale marsale
aprsale maysale junsale);

Statements � INFILE Statement 1561

/* identify location of 1st file */
infile file-specification-1;
/* read values from 1st file */

input name $ jansale febsale marsale;
qtr1tot=sum(jansale,febsale,marsale);

/* identify location of 2nd file */
infile file-specification-2;
/* read values from 2nd file */

input @7 aprsale maysale junsale;
qtr2tot=sum(aprsale,maysale,junsale);

run;

The DATA step terminates when SAS reaches an end of file on the shortest input file.
This DATA step uses FILEVAR= to read from a different file during each iteration of

the DATA step:

data allsales;
length fileloc myinfile $ 300;
input fileloc $; /* read instream data */

/* The INFILE statement closes the current file
and opens a new one if FILELOC changes value
when INFILE executes */

infile file-specification filevar=fileloc
filename=myinfile end=done;

/* DONE set to 1 when last input record read */
do while(not done);

/* Read all input records from the currently */
/* opened input file, write to ALLSALES */

input name $ jansale febsale marsale;
output;

end;
put ’Finished reading ’ myinfile=;
datalines;

external-file-1
external-file-2
external-file-3
;

The FILENAME= option assigns the name of the current input file to the variable
MYINFILE. The LENGTH statement ensures that the FILENAME= variable and
FILEVAR= variable have a length that is long enough to contain the value of the
filename. The PUT statement prints the physical name of the currently open input file
to the SAS log.

Example 6: Updating an External File This example shows how to use the INFILE
statement with the SHAREBUFFERS option and the INPUT, FILE, and PUT
statements to update an external file in place:

data _null_;
/* The INFILE and FILE statements */
/* must specify the same file. */

infile file-specification-1 sharebuffers;
file file-specification-1;

1562 INFILE Statement � Chapter 6

input state $ 1-2 phone $ 5-16;
/* Replace area code for NC exchanges */

if state= ’NC’ and substr(phone,5,3)=’333’ then
phone=’910-’||substr(phone,5,8);

put phone 5-16;
run;

Example 7: Truncating Copied Records The LENGTH= option is useful when you copy
the input file to another file with the PUT _INFILE_ statement. Use LENGTH= to
truncate the copied records. For example, these statements truncate the last 20 columns
from each input data record before the input data record is written to the output file:

data _null_;
infile file-specification-1 length=a;
input;
a=a-20;
file file-specification-2;
put _infile_;

run;

The START= option is also useful when you want to truncate what the PUT
INFILE statement copies. For example, if you do not want to copy the first 10
columns of each record, these statements copy from column 11 to the end of each record
in the input buffer:

data _null_;
infile file-specification start=s;
input;
s=11;
file file-specification-2;
put _infile_;

run;

Example 8: Listing the Pointer Location This DATA step assigns the value of the
current pointer location in the input buffer to the variables LINEPT and COLUMNPT:

data _null_;
infile datalines n=2 line=Linept col=Columnpt;
input name $ 1-15 #2 @3 id;
put linept= columnpt=;
datalines;

J. Brooks
40974

T. R. Ansen
4032

;

These statements produce the following line for each execution of the DATA step
because the input pointer is on the second line in the input buffer when the PUT
statement executes:

Linept=2 Columnpt=9
Linept=2 Columnpt=8

Example 9: Working with Data in the Input Buffer The _INFILE_ variable always
contains the most recent record that is read from an INPUT statement. This example
illustrates the use of the _INFILE_ variable to

read an entire record that you want to parse without using the INPUT statement.

Statements � INFILE Statement 1563

read an entire record that you want to write to the SAS log.

modify the contents of the input record before parsing the line with an INPUT
statement.

The example file contains phone bill information. The numeric data, minutes, and
charge are enclosed in angle brackets (< >).

filename phonbill host-specific-filename;
data _null_;

file phonbill;
input line $80.;
put line;
datalines;
City Number Minutes Charge
Jackson 415-555-2384 <25> <2.45>
Jefferson 813-555-2356 <15> <1.62>
Joliet 913-555-3223 <65> <10.32>
;

run;

The following code reads each record and parses the record to extract the minute and
charge values.

data _null_;
infile phonbill firstobs=2;
input;
city = scan(_infile_, 1, ’ ’);
char_min = scan(_infile_, 3, ’ ’);
char_min = substr(char_min, 2, length(char_min)-2);
minutes = input(char_min, BEST12.);
put city= minutes=;

run;

The program writes the following lines to the SAS log:

city=Jackson minutes=25
city=Jefferson minutes=15
city=Joliet minutes=65

The INPUT statement in the following code reads a record from the file. The
automatic _INFILE_ variable is used in the PUT statement to write the record to the
log.

data _null_;
infile phonbill;
input;
put _infile_;

run;

The program writes the following lines to the SAS log:

City Number Minutes Charge
Jackson 415-555-2384 <25> <2.45>
Jefferson 813-555-2356 <15> <1.62>
Joliet 913-555-3223 <65> <10.32>

In the following code, the first INPUT statement reads and holds the record in the
input buffer. The _INFILE_= option removes the angle brackets (< >) from the numeric
data. The second INPUT statement parses the value in the buffer.

1564 INFILE Statement � Chapter 6

data _null_;
length city number $16. minutes charge 8;
infile phonbill firstobs=2;
input @;
infile = compress(_infile_, ’<>’);
input city number minutes charge;
put city= number= minutes= charge=;

run;

The program writes the following lines to the SAS log:

city=Jackson number=415-555-2384 minutes=25 charge=2.45
city=Jefferson number=813-555-2356 minutes=15 charge=1.62
city=Joliet number=913-555-3223 minutes=65 charge=10.32

Example 10: Accessing the Input Buffers of Multiple Files This example uses both the
INFILE automatic variable and the _INFILE_= option to read multiple files and
access the input buffers for each of them. The following code creates four files: three
data files and one file that contains the names of all the data files. The second DATA
step reads the filenames file, opens each data file, and writes the contents to the log.
Because the PUT statement needs _INFILE_ for the filenames file and the data file, one
of the _INFILE_ variables is referenced with fname.

data _null_;
do i = 1 to 3;

fname= ’external-data-file’ || put(i,1.) || ’.dat’;
file datfiles filevar=fname;
do j = 1 to 5;

put i j;
end;

file ’external-filenames-file’;
put fname;

end;
run;

data _null_;
infile ’external-filenames-file’ _infile_=fname;
input;

infile datfiles filevar=fname end=eof;
do while(^eof);

input;
put fname _infile_;

end;
run;

The program writes the following lines to the SAS log:

NOTE: The infile ’external-filenames-file’ is:
File Name=external-filenames-file,
RECFM=V, LRECL=256

NOTE: The infile DATFILES is:
File Name=external-data-file1.dat,
RECFM=V, LRECL=256

Statements � INFILE Statement 1565

external-data-file1.dat 1 1
external-data-file1.dat 1 2
external-data-file1.dat 1 3
external-data-file1.dat 1 4
external-data-file1.dat 1 5

NOTE: The infile DATFILES is
File Name=external-data-file2.dat,
RECFM=V, LRECL=256

external-data-file2.dat 2 1
external-data-file2.dat 2 2
external-data-file2.dat 2 3
external-data-file2.dat 2 4
external-data-file2.dat 2 5

NOTE: The infile DATFILES is
File Name=external-data-file3.dat,
RECFM=V, LRECL=256

external-data-file3.dat 3 1
external-data-file3.dat 3 2
external-data-file3.dat 3 3
external-data-file3.dat 3 4
external-data-file3.dat 3 5

Example 11: Specifying an Encoding When Reading an External File This example
creates a SAS data set from an external file. The external file’s encoding is in UTF-8,
and the current SAS session encoding is Wlatin1. By default, SAS assumes that the
external file is in the same encoding as the session encoding, which causes the
character data to be written to the new SAS data set incorrectly.

To tell SAS what encoding to use when reading the external file, specify the
ENCODING= option. When you tell SAS that the external file is in UTF-8, SAS then
transcodes the external file from UTF-8 to the current session encoding when writing to
the new SAS data set. Therefore, the data is written to the new data set correctly in
Wlatin1.

libname myfiles ’SAS-library’;

filename extfile ’external-file’;

data myfiles.unicode;
infile extfile encoding="utf-8";
input Make $ Model $ Year;

run;

See Also

Statements:

“FILENAME Statement” on page 1473

“INPUT Statement” on page 1569

“PUT Statement” on page 1657

1566 INFORMAT Statement � Chapter 6

INFORMAT Statement

Associates informats with variables.

Valid: in a DATA step or PROC step
Category: Information
Type: Declarative

Syntax
INFORMAT variable-1 <…variable-n> <informat>;

INFORMAT <variable-1> <… variable-n> <DEFAULT=default-informat>;

INFORMAT variable-1 <…variable-n> informat <DEFAULT=default-informat>;

Arguments

variable
specifies one or more variables to associate with an informat. You must specify at
least one variable when specifying an informat or when including no other arguments.
Specifying a variable is optional when using a DEFAULT= informat specification.
Tip: To disassociate an informat from a variable, use the variable’s name in an

INFORMAT statement without specifying an informat. Place the INFORMAT
statement after the SET statement. See Example 3 on page 1569.

informat
specifies the informat for reading the values of the variables that are listed in the
INFORMAT statement.
Tip: If an informat is associated with a variable by using the INFORMAT

statement, and that same informat is not associated with that same variable in
the INPUT statement, then that informat will behave like informats that you
specify with a colon (:) modifier in an INPUT statement. SAS reads the variables
by using list input with an informat. For example, you can use the : modifier with
an informat to read character values that are longer than eight bytes, or numeric
values that contain nonstandard values. For details, see “INPUT Statement, List”
on page 1590.

See Also: “Informats by Category” on page 1232
Featured in: Example 2 on page 1568

DEFAULT= default-informat
specifies a temporary default informat for reading values of the variables that are
listed in the INFORMAT statement. If no variable is specified, then the DEFAULT=
informat specification applies a temporary default informat for reading values of all
the variables of that type included in the DATA step. Numeric informats are applied
to numeric variables, and character informats are applied to character variables.
These default informats apply only to the current DATA step.

A DEFAULT= informat specification applies to
� variables that are not named in an INFORMAT or ATTRIB statement
� variables that are not permanently associated with an informat within a SAS

data set

Statements � INFORMAT Statement 1567

� variables that are not read with an explicit informat in the current DATA step.

Default: If you omit DEFAULT=, SAS uses w.d as the default numeric informat and
$w. as the default character informat.

Restriction: Use this argument only in a DATA step.

Tip: A DEFAULT= specification can occur anywhere in an INFORMAT statement.
It can specify either a numeric default, a character default, or both.

Featured in: Example 1 on page 1568

Details

The Basics An INFORMAT statement in a DATA step permanently associates an
informat with a variable. You can specify standard SAS informats or user-written
informats, previously defined in PROC FORMAT. A single INFORMAT statement can
associate the same informat with several variables, or it can associate different
informats with different variables. If a variable appears in multiple INFORMAT
statements, SAS uses the informat that is assigned last.

CAUTION:
Because an INFORMAT statement defines the length of previously undefined character
variables, you can truncate the values of character variables in a DATA step if an
INFORMAT statement precedes a SET statement. �

How SAS Treats Variables when You Assign Informats with the INFORMAT
Statement Informats that are associated with variables by using the INFORMAT
statement behave like informats that are used with modified list input. SAS reads the
variables by using the scanning feature of list input, but applies the informat. In
modified list input, SAS

� does not use the value of w in an informat to specify column positions or input
field widths in an external file

� uses the value of w in an informat to specify the length of previously undefined
character variables

� ignores the value of w in numeric informats

� uses the value of d in an informat in the same way it usually does for numeric
informats

� treats blanks that are embedded as input data as delimiters unless you change
their status with a DLM= or DLMSTR= option specification in an INFILE
statement.

If you have coded the INPUT statement to use another style of input, such as
formatted input or column input, that style of input is not used when you use the
INFORMAT statement.

Comparisons
� Both the ATTRIB and INFORMAT statements can associate informats with

variables, and both statements can change the informat that is associated with a
variable. You can also use the INFORMAT statement in PROC DATASETS to
change or remove the informat that is associated with a variable. The SAS
windowing environment allows you to associate, change, or disassociate informats
and variables in existing SAS data sets.

� SAS changes the descriptor information of the SAS data set that contains the
variable. You can use an INFORMAT statement in some PROC steps, but the

1568 INFORMAT Statement � Chapter 6

rules are different. See “The FORMAT Procedure” in Base SAS Procedures Guide
for more information.

Examples

Example 1: Specifying Default Informats This example uses an INFORMAT
statement to associate a default numeric informat:

data tstinfmt;
informat default=3.1;
input x;
put x;
datalines;

111
222
333
;

The PUT statement produces these results:

11.1
22.2
33.3

Example 2: Specifying Numeric and Character Informats This example associates a
character informat and a numeric informat with SAS variables. Although the character
variables do not fully occupy 15 column positions, the INPUT statement reads the data
records correctly by using modified list input:

data name;
informat FirstName LastName $15. n1 6.2 n2 7.3;
input firstname lastname n1 n2;
datalines;

Alexander Robinson 35 11
;

proc contents data=name;
run;

proc print data=name;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report PROC PRINT generates.

Output 6.11 Associating Numeric and Character Informats with SAS Variables

The SAS System 3

CONTENTS PROCEDURE

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Informat
--
1 FirstName Char 15 16 $15.
2 LastName Char 15 31 $15.
3 n1 Num 8 0 6.2
4 n2 Num 8 8 7.3

Statements � INPUT Statement 1569

The SAS System 4

OBS FirstName LastName n1 n2

1 Alexander Robinson 0.35 0.011

Example 3: Removing an Informat This example disassociates an existing informat.
The order of the INFORMAT and SET statements is important.

data rtest;
set rtest;
informat x;

run;

See Also

Statements:
“ATTRIB Statement” on page 1403
“INPUT Statement” on page 1569
“INPUT Statement, List” on page 1590

INPUT Statement

Describes the arrangement of values in the input data record and assigns input values to the
corresponding SAS variables.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
INPUT <specification(s)><@|@@>;

Without Arguments
The INPUT statement with no arguments is called a null INPUT statement. The null
INPUT statement

� brings an input data record into the input buffer without creating any SAS
variables

� releases an input data record that is held by a trailing @ or a double trailing @.

For an example, see Example 2 on page 1580.

Arguments
specification(s)

1570 INPUT Statement � Chapter 6

can include

variable
names a variable that is assigned input values.

(variable-list)
specifies a list of variables that are assigned input values.
Requirement: The (variable-list) is followed by an (informat-list).
See Also: “How to Group Variables and Informats” on page 1588

$
specifies to store the variable value as a character value rather than as a
numeric value.
Tip: If the variable is previously defined as character, $ is not required.
Featured in: Example 1 on page 1580

pointer-control
moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 1571 and “Line Pointer Controls” on

page 1572

column-specifications
specifies the columns of the input record that contain the value to read.
Tip: Informats are ignored. Only standard character and numeric data can

be read correctly with this method.
See: “Column Input” on page 1574
Featured in: Example 1 on page 1580

format-modifier
allows modified list input or controls the amount of information that is
reported in the SAS log when an error in an input value occurs.
Tip: Use modified list input to read data that cannot be read with simple list

input.
See: “When to Use List Input” on page 1592
See: “Format Modifiers for Error Reporting” on page 1573
Featured in: Example 6 on page 1582

informat.
specifies an informat to use to read the variable value.
Tip: You can use modified list input to read data with informats. Modified

list input is useful when the data require informats but cannot be read
with formatted input because the values are not aligned in columns.

See: “Formatted Input” on page 1574 and “List Input” on page 1574
Featured in: Example 2 on page 1589

(informat-list)
specifies a list of informats to use to read the values for the preceding list of
variables.
Restriction: The (informat-list) must follow the (variable-list).
See: “How to Group Variables and Informats” on page 1588

@
holds an input record for the execution of the next INPUT statement within the
same iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.

Statements � INPUT Statement 1571

Tip: The trailing @ prevents the next INPUT statement from automatically
releasing the current input record and reading the next record into the input
buffer. It is useful when you need to read from a record multiple times.

See Also: “Using Line-Hold Specifiers” on page 1576
Featured in: Example 3 on page 1580

@@
holds the input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for

several observations, or when a record needs to be reread on the next iteration
of the DATA step.

See Also: “Using Line-Hold Specifiers” on page 1576
Featured in: Example 4 on page 1581

Column Pointer Controls
@n

moves the pointer to column n.
Range: a positive integer
Tip: If n is not an integer, SAS truncates the decimal value and uses only the

integer value. If n is zero or negative, the pointer moves to column 1.
Example: @15 moves the pointer to column 15:

input @15 name $10.;

Featured in: Example 7 on page 1583

@numeric-variable
moves the pointer to the column given by the value of numeric-variable.
Range: a positive integer
Tip: If numeric-variable is not an integer, SAS truncates the decimal value and

only uses the integer value. If numeric-variable is zero or negative, the pointer
moves to column 1.

Example: The value of the variable A moves the pointer to column 15:

a=15;
input @a name $10.;

Featured in: Example 5 on page 1582

@(expression)
moves the pointer to the column that is given by the value of expression.
Restriction: Expression must result in a positive integer.
Tip: If the value of expression is not an integer, SAS truncates the decimal value

and only uses the integer value. If it is zero or negative, the pointer moves to
column 1.

Example: The result of the expression moves the pointer to column 15:

b=5;
input @(b*3) name $10.;

@’character-string’
locates the specified series of characters in the input record and moves the pointer
to the first column after character-string.

1572 INPUT Statement � Chapter 6

@character-variable
locates the series of characters in the input record that is given by the value of
character-variable and moves the pointer to the first column after that series of
characters.

Example: The following statement reads in the WEEKDAY character variable.
The second @1 moves the pointer to the beginning of the input line. The value
for SALES is read from the next non-blank column after the value of WEEKDAY:

input @1 day 1. @5 weekday $10.
@1 @weekday sales 8.2;

Featured in: Example 6 on page 1582

@(character-expression)
locates the series of characters in the input record that is given by the value of
character-expression and moves the pointer to the first column after the series.

Featured in: Example 6 on page 1582

+n
moves the pointer n columns.

Range: a positive integer or zero

Tip: If n is not an integer, SAS truncates the decimal value and uses only the
integer value. If the value is greater than the length of the input buffer, the
pointer moves to column 1 of the next record.

Example: This statement moves the pointer to column 23, reads a value for
LENGTH from columns 23 through 26, advances the pointer five columns, and
reads a value for WIDTH from columns 32 through 35:

input @23 length 4. +5 width 4.;

Featured in: Example 7 on page 1583

+numeric-variable
moves the pointer the number of columns that is given by the value of
numeric-variable.
Range: a positive or negative integer or zero

Tip: If numeric-variable is not an integer, SAS truncates the decimal value and
uses only the integer value. If numeric-variable is negative, the pointer moves
backward. If the current column position becomes less than 1, the pointer
moves to column 1. If the value is zero, the pointer does not move. If the value
is greater than the length of the input buffer, the pointer moves to column 1 of
the next record.

Featured in: Example 7 on page 1583

+(expression)
moves the pointer the number of columns given by expression.

Range: expression must result in a positive or negative integer or zero.
Tip: If expression is not an integer, SAS truncates the decimal value and uses

only the integer value. If expression is negative, the pointer moves backward. If
the current column position becomes less than 1, the pointer moves to column 1.
If the value is zero, the pointer does not move. If the value is greater than the
length of the input buffer, the pointer moves to column 1 of the next record.

Line Pointer Controls
#n

Statements � INPUT Statement 1573

moves the pointer to record n.

Range: a positive integer

Interaction: The N= option in the INFILE statement can affect the number of
records the INPUT statement reads and the placement of the input pointer
after each iteration of the DATA step. See the option N= on page 1549.

Example: The #2 moves the pointer to the second record to read the value for ID
from columns 3 and 4:

input name $10. #2 id 3-4;

#numeric-variable
moves the pointer to the record that is given by the value of numeric-variable.

Range: a positive integer

Tip: If the value of numeric-variable is not an integer, SAS truncates the decimal
value and uses only the integer value.

#(expression)
moves the pointer to the record that is given by the value of expression.

Range: expression must result in a positive integer.

Tip: If the value of expression is not an integer, SAS truncates the decimal value
and uses only the integer value.

/
advances the pointer to column 1 of the next input record.

Example: The values for NAME and AGE are read from the first input record
before the pointer moves to the second record to read the value of ID from
columns 3 and 4:

input name age / id 3-4;

Format Modifiers for Error Reporting
?

suppresses printing the invalid data note when SAS encounters invalid data
values.

See Also: “How Invalid Data is Handled” on page 1579

??
suppresses printing the messages and the input lines when SAS encounters
invalid data values. The automatic variable _ERROR_ is not set to 1 for the
invalid observation.

See Also: “How Invalid Data is Handled” on page 1579

Details

When to Use INPUT Use the INPUT statement to read raw data from an external file
or in-stream data. If your data are stored in an external file, you can specify the file in
an INFILE statement. The INFILE statement must execute before the INPUT
statement that reads the data records. If your data are in-stream, a DATALINES
statement must precede the data lines in the job stream. If your data contain
semicolons, use a DATALINES4 statement before the data lines. A DATA step that
reads raw data can include multiple INPUT statements.

You can also use the INFILE statement to read in-stream data by specifying a
filename of DATALINES in the INFILE statement before the INPUT statement. Using

1574 INPUT Statement � Chapter 6

DATALINES in the INFILE statement allows you to use most of the options available
in the INFILE statement with in-stream data.

To read data that are already stored in a SAS data set, use a SET statement. To read
database or PC file-format data that are created by other software, use the SET
statement after you access the data with the LIBNAME statement. See the
SAS/ACCESS documentation for more information.

Operating Environment Information: LOG files that are generated under z/OS and
captured with PROC PRINTTO contain an ASA control character in column 1. If you
are using the INPUT statement to read a LOG file that was generated under z/OS, you
must account for this character if you use column input or column pointer controls. �

Input Styles
There are four ways to describe a record’s values in the INPUT statement:

� column
� list (simple and modified)
� formatted
� named.

Each variable value is read by using one of these input styles. An INPUT statement
can contain any or all of the available input styles, depending on the arrangement of
data values in the input records. However, once named input is used in an INPUT
statement, you cannot use another input style.

Column Input With column input, the column numbers follow the variable name in
the INPUT statement. These numbers indicate where the variable values are found in
the input data records:

input name $ 1-8 age 11-12;

This INPUT statement can read the following data records:

----+----1----+----2----+
Peterson 21
Morgan 17

Because NAME is a character variable, a $ appears between the variable name and
column numbers. For more information, see “INPUT Statement, Column” on page 1584.

List Input With list input, the variable names are simply listed in the INPUT
statement. A $ follows the name of each character variable:

input name $ age;

This INPUT statement can read data values that are separated by blanks or aligned
in columns (with at least one blank between):

----+----1----+----2----+
Peterson 21
Morgan 17

For more information, see “INPUT Statement, List” on page 1590.

Formatted Input With formatted input, an informat follows the variable name in the
INPUT statement. The informat gives the data type and the field width of an input
value. Informats also allow you to read data that are stored in nonstandard form, such
as packed decimal, or numbers that contain special characters such as commas.

Statements � INPUT Statement 1575

input name $char8. +2 income comma6.;

This INPUT statement reads these data records correctly:

----+----1----+----2----+
Peterson 21,000
Morgan 17,132

The pointer control of +2 moves the input pointer to the field that contains the value
for the variable INCOME. For more information, see “INPUT Statement, Formatted” on
page 1586.

Named Input With named input, you specify the name of the variable followed by an
equal sign. SAS looks for a variable name and an equal sign in the input record:

input name= $ age=;

This INPUT statement reads the following data records correctly:

----+----1----+----2----+
name=Peterson age=21
name=Morgan age=17

For more information, see “INPUT Statement, Named” on page 1596.

Multiple Styles in a Single INPUT Statement
An INPUT statement can contain any or all of the different input styles:

input idno name $18. team $ 25-30 startwght endwght;

This INPUT statement reads the following data records correctly:

----+----1----+----2----+----3----+----
023 David Shaw red 189 165
049 Amelia Serrano yellow 189 165

The value of IDNO, STARTWGHT, and ENDWGHT are read with list input, the
value of NAME with formatted input, and the value of TEAM with column input.

Note: Once named input is used in an INPUT statement, you cannot change input
styles. �

Pointer Controls
As SAS reads values from the input data records into the input buffer, it keeps track of
its position with a pointer. The INPUT statement provides three ways to control the
movement of the pointer:

column pointer controls
reset the pointer’s column position when the data values in the data records are
read.

line pointer controls
reset the pointer’s line position when the data values in the data records are read.

line-hold specifiers
hold an input record in the input buffer so that another INPUT statement can
process it. By default, the INPUT statement releases the previous record and
reads another record.

With column and line pointer controls, you can specify an absolute line number or
column number to move the pointer or you can specify a column or line location relative

1576 INPUT Statement � Chapter 6

to the current pointer position. Table 6.6 on page 1576 lists the pointer controls that
are available with the INPUT statement.

Table 6.6 Pointer Controls Available in the INPUT Statement

Pointer Controls Relative Absolute

column pointer controls +n @n

+numeric-variable @numeric-variable

+(expression) @(expression)

@’character-string’

@character-variable

@(character-expression)

line pointer controls / #n

#numeric-variable

#(expression)

line-hold specifiers @ (not applicable)

@@ (not applicable)

Note: Always specify pointer controls before the variable to which they apply. �

You can use the COLUMN= and LINE= options in the INFILE statement to
determine the pointer’s current column and line location.

Using Column and Line Pointer Controls Column pointer controls indicate the column
in which an input value starts.

Use line pointer controls within the INPUT statement to move to the next input
record or to define the number of input records per observation. Line pointer controls
specify which input record to read. To read multiple data records into the input buffer,
use the N= option in the INFILE statement to specify the number of records. If you
omit N=, you need to take special precautions. For more information, see “Reading
More Than One Record per Observation” on page 1578.

Using Line-Hold Specifiers Line-hold specifiers keep the pointer on the current input
record when

� a data record is read by more than one INPUT statement (trailing @)
� one input line has values for more than one observation (double trailing @)
� a record needs to be reread on the next iteration of the DATA step (double trailing

@).

Use a single trailing @ to allow the next INPUT statement to read from the same
record. Use a double trailing @ to hold a record for the next INPUT statement across
iterations of the DATA step.

Normally, each INPUT statement in a DATA step reads a new data record into the
input buffer. When you use a trailing @, the following occurs:

� The pointer position does not change.
� No new record is read into the input buffer.
� The next INPUT statement for the same iteration of the DATA step continues to

read the same record rather than a new one.

SAS releases a record held by a trailing @ when

Statements � INPUT Statement 1577

� a null INPUT statement executes:

input;

� an INPUT statement without a trailing @ executes
� the next iteration of the DATA step begins.

Normally, when you use a double trailing @ (@@), the INPUT statement for the next
iteration of the DATA step continues to read the same record. SAS releases the record
that is held by a double trailing @

� immediately if the pointer moves past the end of the input record
� immediately if a null INPUT statement executes:

input;

� when the next iteration of the DATA step begins if an INPUT statement with a
single trailing @ executes later in the DATA step:

input @;

Pointer Location After Reading Understanding the location of the input pointer after
a value is read is important, especially if you combine input styles in a single INPUT
statement. With column and formatted input, the pointer reads the columns that are
indicated in the INPUT statement and stops in the next column. With list input,
however, the pointer scans data records to locate data values and reads a blank to
indicate that a value has ended. After reading a value with list input, the pointer stops
in the second column after the value.

For example, you can read these data records with list, column, and formatted input:

----+----1----+----2----+----3
REGION1 49670
REGION2 97540
REGION3 86342

This INPUT statement uses list input to read the data records:

input region $ jansales;

After reading a value for REGION, the pointer stops in column 9.

----+----1----+----2----+----3
REGION1 49670

�

These INPUT statements use column and formatted input to read the data records:
� column input

input region $ 1-7 jansales 12-16;

� formatted input

input region $7. +4 jansales 5.;
input region $7. @12 jansales 5.;

To read a value for the variable REGION, the INPUT statements instruct the pointer
to read seven columns and stop in column 8.

----+----1----+----2----+----3
REGION1 49670

�

1578 INPUT Statement � Chapter 6

Reading More Than One Record per Observation
The highest number that follows the # pointer control in the INPUT statement
determines how many input data records are read into the input buffer. Use the N=
option in the INFILE statement to change the number of records. For example, in this
statement, the highest value after the # is 3:

input @31 age 3. #3 id 3-4 #2 @6 name $20.;

Unless you use N= in the associated INFILE statement, the INPUT statement reads
three input records each time the DATA step executes.

When each observation has multiple input records but values from the last record
are not read, you must use a # pointer control in the INPUT statement or N= in the
INFILE statement to specify the last input record. For example, if there are four
records per observation, but only values from the first two input records are read, use
this INPUT statement:

input name $ 1-10 #2 age 13-14 #4;

When you have advanced to the next record with the / pointer control, use the #
pointer control in the INPUT statement or the N= option in the INFILE statement to
set the number of records that are read into the input buffer. To move the pointer back
to an earlier record, use a # pointer control. For example, this statement requires the #2
pointer control, unless the INFILE statement uses the N= option, to read two records:

input a / b #1 @52 c #2;

The INPUT statement assigns A a value from the first record. The pointer advances
to the next input record to assign B a value. Then the pointer returns from the second
record to column 1 of the first record and moves to column 52 to assign C a value. The
#2 pointer control identifies two input records for each observation so that the pointer
can return to the first record for the value of C.

If the number of input records per observation varies, use the N= option in the
INFILE statement to give the maximum number of records per observation. For more
information, see the N= option on page 1549.

Reading Past the End of a Line When you use @ or + pointer controls with a value
that moves the pointer to or past the end of the current record and the next value is to
be read from the current column, SAS goes to column 1 of the next record to read it. It
also writes this message to the SAS log:

NOTE: SAS went to a new line when INPUT statement
reached past the end of a line.

You can alter the default behavior (the FLOWOVER option) in the INFILE statement.
Use the STOPOVER option in the INFILE statement to treat this condition as an

error and to stop building the data set.
Use the MISSOVER option in the INFILE statement to set the remaining INPUT

statement variables to missing values if the pointer reaches the end of a record.
Use the TRUNCOVER option in the INFILE statement to read column input or

formatted input when the last variable that is read by the INPUT statement contains
varying-length data.

Positioning the Pointer Before the Record When a column pointer control tries to
move the pointer to a position before the beginning of the record, the pointer is
positioned in column 1. For example, this INPUT statement specifies that the pointer is
located in column −2 after the first value is read:

data test;
input a @(a-3) b;

Statements � INPUT Statement 1579

datalines;
2
;

Therefore, SAS moves the pointer to column 1 after the value of A is read. Both
variables A and B contain the same value.

How Invalid Data is Handled
When SAS encounters an invalid character in an input value for the variable indicated,
it

� sets the value of the variable that is being read to missing or the value that is
specified with the INVALIDDATA= system option. For more information see
“INVALIDDATA= System Option” on page 1874.

� prints an invalid data note in the SAS log.
� prints the input line and column number that contains the invalid value in the

SAS log. Unprintable characters appear in hexadecimal. To help determine
column numbers, SAS prints a rule line above the input line.

� sets the automatic variable _ERROR_ to 1 for the current observation.

The format modifiers for error reporting control the amount of information that is
printed in the SAS log. Both the ? and ?? modifier suppress the invalid data message.
However, the ?? modifier also resets the automatic variable _ERROR_ to 0. For
example, these two sets of statements are equivalent:

� input x ?? 10-12;

� input x ? 10-12;
error=0;

In either case, SAS sets invalid values of X to missing values. For information about
the causes of invalid data, see SAS Language Reference: Concepts.

End-of-File
End-of-file occurs when an INPUT statement reaches the end of the data. If a DATA
step tries to read another record after it reaches an end-of-file then execution stops. If
you want the DATA step to continue to execute, use the END= or EOF= option in the
INFILE statement. Then you can write SAS program statements to detect the
end-of-file, and to stop the execution of the INPUT statement but continue with the
DATA step. For more information, see “INFILE Statement” on page 1543.

Arrays
The INPUT statement can use array references to read input data values. You can use
an array reference in a pointer control if it is enclosed in parentheses. See Example 6
on page 1582.

Use the array subscript asterisk (*) to input all elements of a previously defined
explicit array. SAS allows single or multidimensional arrays. Enclose the subscript in
braces, brackets, or parentheses. The form of this statement is

INPUT array-name{*};

You can use arrays with list, column, or formatted input. However, you cannot input
values to an array that is defined with _TEMPORARY_ and that uses the asterisk
subscript. For example, these statements create variables X1 through X100 and assign
data values to the variables using the 2. informat:

1580 INPUT Statement � Chapter 6

array x{100};
input x{*} 2.;

Comparisons
� The INPUT statement reads raw data in external files or data lines that are

entered in-stream (following the DATALINES statement) that need to be described
to SAS. The SET statement reads a SAS data set, which already contains
descriptive information about the data values.

� The INPUT statement reads data while the PUT statement writes data values,
text strings, or both to the SAS log or to an external file.

� The INPUT statement can read data from external files; the INFILE statement
points to that file and has options that control how that file is read.

Examples

Example 1: Using Multiple Styles of Input in One INPUT Statement This example uses
several input styles in a single INPUT statement:

data club1;
input Idno Name $18.

Team $ 25-30 Startwght Endwght;
datalines;

023 David Shaw red 189 165
049 Amelia Serrano yellow 189 165
... more data lines ...
;

Variable Type of Input

Idno, Startwght, Endwght list input

Name formatted input

Team column input

Example 2: Using a Null INPUT Statement This example uses an INPUT statement
with no arguments. The DATA step copies records from the input file to the output file
without creating any SAS variables:

data _null_;
infile file-specification-1;
file file-specification-2;
input;
put _infile_;

run;

Example 3: Holding a Record in the Input Buffer This example reads a file that
contains two types of input data records and creates a SAS data set from these records.
One type of data record contains information about a particular college course. The
second type of record contains information about the students enrolled in the course.
You need two INPUT statements to read the two records and to assign the values to
different variables that use different formats. Records that contain class information

Statements � INPUT Statement 1581

have a C in column 1; records that contain student information have an S in column 1,
as shown here:

----+----1----+----2----+
C HIST101 Watson
S Williams 0459
S Flores 5423
C MATH202 Sen
S Lee 7085

To know which INPUT statement to use, check each record as it is read. Use an
INPUT statement that reads only the variable that tells whether the record contains
class or student.

data schedule(drop=type);
infile file-specification;
retain Course Professor;
input type $1. @;
if type=’C’ then

input course $ professor $;
else if type=’S’ then

do;
input Name $10. Id;
output schedule;

end;
run;

proc print;
run;

The first INPUT statement reads the TYPE value from column 1 of every line.
Because this INPUT statement ends with a trailing @, the next INPUT statement in
the DATA step reads the same line. The IF-THEN statements that follow check
whether the record is a class or student line before another INPUT statement reads the
rest of the line. The INPUT statements without a trailing @ release the held line. The
RETAIN statement saves the values about the particular college course. The DATA step
writes an observation to the SCHEDULE data set after a student record is read.

The following output that PROC PRINT generates shows the resulting data set
SCHEDULE.

Output 6.12 Data Set Schedule

The SAS System 1

OBS Course Professor Name Id

1 HIST101 Watson Williams 459
2 HIST101 Watson Flores 5423
3 MATH202 Sen Lee 7085

Example 4: Holding a Record Across Iterations of the DATA Step This example shows
how to create multiple observations for each input data record. Each record contains
several NAME and AGE values. The DATA step reads a NAME value and an AGE
value, outputs an observation, and then reads another set of NAME and AGE values to
output, and so on, until all the input values in the record are processed.

1582 INPUT Statement � Chapter 6

data test;
input name $ age @@;
datalines;

John 13 Monica 12 Sue 15 Stephen 10
Marc 22 Lily 17
;

The INPUT statement uses the double trailing @ to control the input pointer across
iterations of the DATA step. The SAS data set contains six observations.

Example 5: Positioning the Pointer with a Numeric Variable This example uses a
numeric variable to position the pointer. A raw data file contains records with the
employment figures for several offices of a multinational company. The input data
records are

----+----1----+----2----+----3----+
8 New York 1 USA 14
5 Cary 1 USA 2274
3 Chicago 1 USA 37
22 Tokyo 5 ASIA 80
5 Vancouver 2 CANADA 6
9 Milano 4 EUROPE 123

The first column has the column position for the office location. The next numeric
column is the region category. The geographic region occurs before the number of
employees in that office.

You determine the office location by combining the @numeric-variable pointer control
with a trailing @. To read the records, use two INPUT statements. The first INPUT
statement obtains the value for the @ numeric-variable pointer control. The second
INPUT statement uses this value to determine the column that the pointer moves to.

data office (drop=x);
infile file-specification;
input x @;
if 1<=x<=10 then

input @x City $9.;
else do;

put ’Invalid input at line ’ _n_;
delete;

end;
run;

The DATA step writes only five observations to the OFFICE data set. The fourth
input data record is invalid because the value of X is greater than 10. Therefore, the
second INPUT statement does not execute. Instead, the PUT statement writes a
message to the SAS log and the DELETE statement stops processing the observation.

Example 6: Positioning the Pointer with a Character Variable This example uses
character variables to position the pointer. The OFFICE data set, created in Example 5
on page 1582, contains a character variable CITY whose values are the office locations.
Suppose you discover that you need to read additional values from the raw data file. By
using another DATA step, you can combine the @character-variable pointer control with
a trailing @ and the @character-expression pointer control to locate the values.

If the observations in OFFICE are still in the order of the original input data
records, you can use this DATA step:

data office2;
set office;

Statements � INPUT Statement 1583

infile file-specification;
array region {5} $ _temporary_

(’USA’ ’CANADA’ ’SA’ ’EUROPE’ ’ASIA’);
input @city Location : 2. @;
input @(trim(region{location})) Population : 4.;

run;

The ARRAY statement assigns initial values to the temporary array elements. These
elements correspond to the geographic regions of the office locations. The first INPUT
statement uses an @character-variable pointer control. Each record is scanned for the
series of characters in the value of CITY for that observation. Then the value of
LOCATION is read from the next non-blank column. LOCATION is a numeric category
for the geographic region of an office. The second INPUT statement uses an array
reference in the @character-expression pointer control to determine the location
POPULATION in the input records. The expression also uses the TRIM function to
trim trailing blanks from the character value. This way an exact match is found
between the character string in the input data and the value of the array element.

The following output that PROC PRINT generates shows the resulting data set
OFFICE2.

Output 6.13 Data Set Office2

The SAS System 1

OBS City Location Population

1 New York 1 14
2 Cary 1 2274
3 Chicago 1 37
4 Vancouver 2 6
5 Milano 4 123

Example 7: Moving the Pointer Backward This example shows several ways to move
the pointer backward.

� This INPUT statement uses the @ pointer control to read a value for BOOK
starting at column 26. Then the pointer moves back to column 1 on the same line
to read a value for COMPANY:

input @26 book $ @1 company;

� These INPUT statements use +numeric-variable or +(expression) to move the
pointer backward one column. These two sets of statements are equivalent.

� m=-1;
input x 1-10 +m y 2.;

� input x 1-10 +(-1) y 2.;

See Also

Statements:
“ARRAY Statement” on page 1395
“INPUT Statement, Column” on page 1584
“INPUT Statement, Formatted” on page 1586
“INPUT Statement, List” on page 1590
“INPUT Statement, Named” on page 1596

1584 INPUT Statement, Column � Chapter 6

INPUT Statement, Column

Reads input values from specified columns and assigns them to the corresponding SAS variables.

Valid: in a DATA step

Category: File-handling

Type: Executable

Syntax
INPUT variable <$> start-column <– end-column>

<.decimals> <@ | @@>;

Arguments

variable
specifies a variable that is assigned input values.

$
indicates that the variable has character values rather than numeric values.

Tip: If the variable is previously defined as character, $ is not required.

start-column
specifies the first column of the input record that contains the value to read.

–end-column
specifies the last column of the input record that contains the value to read.

Tip: If the variable value occupies only one column, omit end-column.

Example: Because end-column is omitted, the values for the character variable
GENDER occupy only column 16:

input name $ 1-10 pulse 11-13 waist 14-15
gender $ 16;

.decimals
specifies the number of digits to the right of the decimal if the input value does not
contain an explicit decimal point.

Tip: An explicit decimal point in the input value overrides a decimal specification in
the INPUT statement.

Example: This INPUT statement reads the input data for a numeric variable using
two decimal places:

Input Data Statement Results

----+---1

2314 input number 1-5 .2; 23.14

2 .02

400 4.00

-140 -1.40

Statements � INPUT Statement, Column 1585

Input Data Statement Results

12.234 12.234
*

12.2 12.2
*

* The decimal specification in the INPUT statement is overridden by the input data value.

@
holds the input record for the execution of the next INPUT statement within the
same iteration of the DATA step. This line-hold specifier is called trailing @.

Restriction: The trailing @ must be the last item in the INPUT statement.

Tip: The trailing @ prevents the next INPUT statement from automatically
releasing the current input record and reading the next record into the input
buffer. It is useful when you need to read from a record multiple times.

See: “Pointer Controls” on page 1575.

@@
holds the input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.

Restriction: The double trailing @ must be the last item in the INPUT statement.

Tip: The double trailing @ is useful when each input line contains values for several
observations.

See: “Using Line-Hold Specifiers” on page 1576.

Details

When to Use Column Input With column input, the column numbers that contain the
value follow a variable name in the INPUT statement. To read with column input, data
values must be in

� the same columns in all the input data records

� standard numeric form or character form.*

Useful features of column input are that

� Character values can contain embedded blanks.

� Character values can be from 1 to 32,767 characters long.

� Input values can be read in any order, regardless of their position in the record.

� Values or parts of values can be read multiple times. For example, this INPUT
statement reads an ID value in columns 10 through 15 and then reads a GROUP
value from column 13:

input id 10-15 group 13;

� Both leading and trailing blanks within the field are ignored. Therefore, if
numeric values contain blanks that represent zeros or if you want to retain
leading and trailing blanks in character values, read the value with an informat.
See “INPUT Statement, Formatted” on page 1586.

* See SAS Language Reference: Concepts for the definition of standard and nonstandard data values.

1586 INPUT Statement, Formatted � Chapter 6

Missing Values Missing data do not require a place-holder. The INPUT statement
interprets a blank field as missing and reads other values correctly. If a numeric or
character field contains a single period, the variable value is set to missing.

Reading Data Lines SAS always pads the data records that follow the DATALINES
statement (in-stream data) to a fixed length in multiples of 80. The CARDIMAGE
system option determines whether to read or to truncate data past the 80th column.

Reading Variable-Length Records By default, SAS uses the FLOWOVER option to
read varying-length data records. If the record contains fewer values than expected, the
INPUT statement reads the values from the next data record. To read varying-length
data, you might need to use the TRUNCOVER option in the INFILE statement. The
TRUNCOVER option is more efficient than the PAD option, which pads the records to a
fixed length. For more information, see “Reading Past the End of a Line” on page 1556.

Examples

This DATA step demonstrates how to read input data records with column input:

data scores;
input name $ 1-18 score1 25-27 score2 30-32

score3 35-37;
datalines;

Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

See Also

Statement:
“INPUT Statement” on page 1569

INPUT Statement, Formatted

Reads input values with specified informats and assigns them to the corresponding SAS variables.

Valid in a DATA step
Category: File-handling
Type: Executable

Syntax
INPUT <pointer-control> variable informat. <@ | @@>;

INPUT<pointer-control> (variable-list) (informat-list)
<@ | @@>;

INPUT <pointer-control> (variable-list) (<n*> informat.)
<@ | @@>;

Statements � INPUT Statement, Formatted 1587

Arguments

pointer-control
moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 1571 and “Line Pointer Controls” on page

1572

variable
specifies a variable that is assigned input values.
Requirement: The (variable-list) is followed by an (informat-list).

Featured in: Example 1 on page 1589

(variable-list)
specifies a list of variables that are assigned input values.

See: “How to Group Variables and Informats” on page 1588
Featured in: Example 2 on page 1589

informat.
specifies a SAS informat to use to read the variable values.

Tip: Decimal points in the actual input values override decimal specifications in a
numeric informat.

See Also: Chapter 5, “Informats,” on page 1215
Featured in: Example 1 on page 1589

(informat-list)
specifies a list of informats to use to read the values for the preceding list of variables

In the INPUT statement, (informat-list) can include

informat.
specifies an informat to use to read the variable values.

pointer-control
specifies one of these pointer controls to use to position a value: @, #, /, or +.

n*
specifies to repeat n times the next informat in an informat list.
Example: This statement uses the 7.2 informat to read GRADES1, GRADES2,

and GRADES3 and the 5.2 informat to read GRADES4 and GRADES5:

input (grades1-grades5)(3*7.2, 2*5.2);

Restriction: The (informat-list) must follow the (variable-list).

See: “How to Group Variables and Informats” on page 1588
Featured in: Example 2 on page 1589

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.

Tip: The trailing @ prevents the next INPUT statement from automatically
releasing the current input record and reading the next record into the input
buffer. It is useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 1576

@@

1588 INPUT Statement, Formatted � Chapter 6

holds an input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 1576

Details

When to Use Formatted Input With formatted input, an informat follows a variable
name and defines how SAS reads the values of this variable. An informat gives the
data type and the field width of an input value. Informats also read data that are
stored in nonstandard form, such as packed decimal, or numbers that contain special
characters such as commas.* See “Definition of Informats” on page 1217 for descriptions
of SAS informats.

Simple formatted input requires that the variables be in the same order as their
corresponding values in the input data. You can use pointer controls to read variables
in any order. For more information, see “INPUT Statement” on page 1569.

Missing Values Generally, SAS represents missing values in formatted input with a
single period for a numeric value and with blanks for a character value. The informat
that you use with formatted input determines how SAS interprets a blank. For example,
$CHAR.w reads the blanks as part of the value, whereas BZ.w converts a blank to zero.

Reading Variable-Length Records By default, SAS uses the FLOWOVER option to
read varying-length data records. If the record contains fewer values than expected, the
INPUT statement reads the values from the next data record. To read varying-length
data. you might need to use the TRUNCOVER option in the INFILE statement. For
more information, see “Reading Past the End of a Line” on page 1556.

How to Group Variables and Informats When the input values are arranged in a
pattern, you can group the informat list. A grouped informat list consists of two lists:

� the names of the variables to read enclosed in parentheses
� the corresponding informats separated by either blanks or commas and enclosed in

parentheses.

Informat lists can make an INPUT statement shorter because the informat list is
recycled until all variables are read and the numbered variable names can be used in
abbreviated form. Using informat lists avoids listing the individual variables.

For example, if the values for the five variables SCORE1 through SCORE5 are stored
as four columns per value without intervening blanks, this INPUT statement reads the
values:

input (score1-score5) (4. 4. 4. 4. 4.);

However, if you specify more variables than informats, the INPUT statement reuses the
informat list to read the remaining variables. A shorter version of the previous
statement is

input (score1-score5) (4.);

You can use as many informat lists as necessary in an INPUT statement, but do not
nest the informat lists. After all the values in the variable list are read, the INPUT

* See SAS Language Reference: Concepts for information about standard and nonstandard data values.

Statements � INPUT Statement, Formatted 1589

statement ignores any directions that remain in the informat list. For an example, see
Example 3 on page 1590.

The n* modifier in an informat list specifies to repeat the next informat n times. For
example,

input (name score1-score5) ($10. 5*4.);

How to Store Informats The informats that you specify in the INPUT statement are
not stored with the SAS data set. Informats that you specify with the INFORMAT or
ATTRIB statement are permanently stored. Therefore, you can read a data value with
a permanently stored informat in a later DATA step without having to specify the
informat or use PROC FSEDIT to enter data in the correct format.

Comparisons
When a variable is read with formatted input, the pointer movement is similar to the
pointer movement of column input. The pointer moves the length that the informat
specifies and stops at the next column. To read data with informats that are not aligned
in columns, use modified list input. Using modified list input allows you to take
advantage of the scanning feature in list input. See “When to Use List Input” on page
1592.

Examples

Example 1: Formatted Input with Pointer Controls This INPUT statement uses
informats and pointer controls:

data sales;
infile file-specification;
input item $10. +5 jan comma5. +5 feb comma5.

+5 mar comma5.;
run;

It can read these input data records:

----+----1----+----2----+----3----+----4
trucks 1,382 2,789 3,556
vans 1,265 2,543 3,987
sedans 2,391 3,011 3,658

The value for ITEM is read from the first 10 columns in a record. The pointer stops
in column 11. The trailing blanks are discarded and the value of ITEM is written to the
program data vector. Next, the pointer moves five columns to the right before the
INPUT statement uses the COMMA5. informat to read the value of JAN. This informat
uses five as the field width to read numeric values that contain a comma. Once again,
the pointer moves five columns to the right before the INPUT statement uses the
COMMA5. informat to read the values of FEB and MAR.

Example 2: Using Informat Lists This INPUT statement uses the character informat
$10. to read the values of the variable NAME and uses the numeric informat 4. to read
the values of the five variables SCORE1 through SCORE5:

data scores;
input (name score1-score5) ($10. 5*4.);
datalines;

Whittaker 121 114 137 156 142
Smythe 111 97 122 143 127

1590 INPUT Statement, List � Chapter 6

;

Example 3: Including More Informat Specifications Than Necessary This informat list
includes more specifications than are necessary when the INPUT statement executes:

data test;
input (x y z) (2.,+1);
datalines;

2 24 36
0 20 30

;

The INPUT statement reads the value of X with the 2. informat. Then, the +1
column pointer control moves the pointer forward one column. Next, the value of Y is
read with the 2. informat. Again, the +1 column pointer moves the pointer forward one
column. Then, the value of Z is read with the 2. informat. For the third iteration, the
INPUT statement ignores the +1 pointer control.

See Also

Statements:
“INPUT Statement” on page 1569
“INPUT Statement, List” on page 1590

INPUT Statement, List

Scans the input data record for input values and assigns them to the corresponding SAS variables.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
INPUT <pointer-control> variable <$> <&> <@ | @@>;

INPUT <pointer-control> variable <:|&|~>
<informat.> <@ | @@>;

Arguments

pointer-control
moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 1571 and “Line Pointer Controls” on page

1572
Featured in: Example 2 on page 1594

variable

Statements � INPUT Statement, List 1591

specifies a variable that is assigned input values.

$
indicates to store a variable value as a character value rather than as a numeric
value.

Tip: If the variable is previously defined as character, $ is not required.

Featured in: Example 1 on page 1594

&
indicates that a character value can have one or more single embedded blanks. This
format modifier reads the value from the next non-blank column until the pointer
reaches two consecutive blanks, the defined length of the variable, or the end of the
input line, whichever comes first.

Restriction: The & modifier must follow the variable name and $ sign that it affects.

Tip: If you specify an informat after the & modifier, the terminating condition for
the format modifier remains two blanks.

See: “Modified List Input” on page 1592

Featured in: Example 2 on page 1594

:
enables you to specify an informat that the INPUT statement uses to read the
variable value. For a character variable, this format modifier reads the value from
the next non-blank column until the pointer reaches the next blank column, the
defined length of the variable, or the end of the data line, whichever comes first. For
a numeric variable, this format modifier reads the value from the next non-blank
column until the pointer reaches the next blank column or the end of the data line,
whichever comes first.

Tip: If the length of the variable has not been previously defined, then its value is
read and stored with the informat length.

Tip: The pointer continues to read until the next blank column is reached.
However, if the field is longer than the formatted length, then the value is
truncated to the length of variable.

See: “Modified List Input” on page 1592

Featured in: Example 3 on page 1594 and Example 5 on page 1595

~
indicates to treat single quotation marks, double quotation marks, and delimiters in
character values in a special way. This format modifier reads delimiters within
quoted character values as characters instead of as delimiters and retains the
quotation marks when the value is written to a variable.

Restriction: You must use the DSD option in an INFILE statement. Otherwise, the
INPUT statement ignores this option.

See: “Modified List Input” on page 1592

Featured in: Example 5 on page 1595

informat.
specifies an informat to use to read the variable values.

Tip: Decimal points in the actual input values always override decimal
specifications in a numeric informat.

See Also: “Definition of Informats” on page 1217

Featured in: Example 3 on page 1594 and Example 5 on page 1595

@

1592 INPUT Statement, List � Chapter 6

holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically

releasing the current input record and reading the next record into the input
buffer. It is useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 1576

@@
holds an input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 1576

Details

When to Use List Input List input requires that you specify the variable names in the
INPUT statement in the same order that the fields appear in the input data records.
SAS scans the data line to locate the next value but ignores additional intervening
blanks. List input does not require that the data are located in specific columns.
However, you must separate each value from the next by at least one blank unless the
delimiter between values is changed. By default, the delimiter for data values is one
blank space or the end of the input record. List input will not skip over any data values
to read subsequent values, but it can ignore all values after a given point in the data
record. However, pointer controls enable you to change the order that the data values
are read.

There are two types of list input:
� simple list input
� modified list input.

Modified list input makes the INPUT statement more versatile because you can use
a format modifier to overcome several of the restrictions of simple list input. See
“Modified List Input” on page 1592.

Simple List Input Simple list input places several restrictions on the type of data that
the INPUT statement can read:

� By default, at least one blank must separate the input values. Use the DLM= or
DLMSTR= option or the DSD option in the INFILE statement to specify a
delimiter other than a blank.

� Represent each missing value with a period, not a blank, or two adjacent
delimiters.

� Character input values cannot be longer than 8 bytes unless the variable is given
a longer length in an earlier LENGTH, ATTRIB, or INFORMAT statement.

� Character values cannot contain embedded blanks unless you change the delimiter.
� Data must be in standard numeric or character format.*

Modified List Input List input is more versatile when you use format modifiers. The
format modifiers are as follows:

* See SAS Language Reference: Concepts for the information about standard and nonstandard data values.

Statements � INPUT Statement, List 1593

Format Modifier Purpose

& reads character values that contain embedded blanks.

: reads data values that need the additional instructions that informats can
provide but that are not aligned in columns. **

~ reads delimiters within quoted character values as characters and retains the
quotation marks.

** Use formatted input and pointer controls to quickly read data values that are aligned in columns.

For example, use the : modifier with an informat to read character values that are
longer than 8 bytes or numeric values that contain nonstandard values.

Because list input interprets a blank as a delimiter, use modified list input to read
values that contain blanks. The & modifier reads character values that contain single
embedded blanks. However, the data values must be separated by two or more blanks.
To read values that contain leading, trailing, or embedded blanks with list input, use
the DLM= or DLMSTR= option in the INFILE statement to specify another character
as the delimiter. See Example 5 on page 1595. If your input data use blanks as
delimiters and they contain leading, trailing, or embedded blanks, you might need to
use either column input or formatted input. If quotation marks surround the delimited
values, you can use list input with the DSD option in the INFILE statement.

Comparisons

How Modified List Input and Formatted Input Differ Modified list input has a scanning
feature that can use informats to read data which are not aligned in columns. Formatted
input causes the pointer to move like that of column input to read a variable value. The
pointer moves the length that is specified in the informat and stops at the next column.

This DATA step uses modified list input to read the first data value and formatted
input to read the second:

data jansales;
input item : $10. amount comma5.;

datalines;
trucks 1,382
vans 1,235
sedans 2,391
;

The value of ITEM is read with modified list input. The INPUT statement stops
reading when the pointer finds a blank space. The pointer then moves to the second
column after the end of the field, which is the correct position to read the AMOUNT
value with formatted input.

Formatted input, on the other hand, continues to read the entire width of the field.
This INPUT statement uses formatted input to read both data values:

input item $10. +1 amount comma5.;

To read this data correctly with formatted input, the second data value must occur
after the 10th column of the first value, as shown here:

----+----1----+----2
trucks 1,382
vans 1,235
sedans 2,391

1594 INPUT Statement, List � Chapter 6

Also, after the value of ITEM is read with formatted input, you must use the pointer
control +1 to move the pointer to the column where the value AMOUNT begins.

When Data Contains Quotation Marks When you use the DSD option in an INFILE
statement, which sets the delimiter to a comma, the INPUT statement removes
quotation marks before a value is written to a variable. When you also use the tilde (~)
modifier in an INPUT statement, the INPUT statement maintains quotation marks as
part of the value.

Examples

Example 1: Reading Unaligned Data with Simple List Input The INPUT statement in
this DATA step uses simple list input to read the input data records:

data scores;
input name $ score1 score2 score3 team $;
datalines;

Joe 11 32 76 red
Mitchel 13 29 82 blue
Susan 14 27 74 green
;

The next INPUT statement reads only the first four fields in the previous data lines,
which demonstrates that you are not required to read all the fields in the record:

input name $ score1 score2 score3;

Example 2: Reading Character Data That Contains Embedded Blanks The INPUT
statement in this DATA step uses the & format modifier with list input to read
character values that contain embedded blanks.

data list;
infile file-specification;
input name $ & score;

run;

It can read these input data records:

----+----1----+----2----+----3----+
Joseph 11 Joergensen red
Mitchel 13 Mc Allister blue
Su Ellen 14 Fischer-Simon green

The & modifier follows the variable it affects in the INPUT statement. Because this
format modifier follows NAME, at least two blanks must separate the NAME field from
the SCORE field in the input data records.

You can also specify an informat with a format modifier, as shown here:

input name $ & +3 lastname & $15. team $;

In addition, this INPUT statement reads the same data to demonstrate that you are
not required to read all the values in an input record. The +3 column pointer control
moves the pointer past the score value in order to read the value for LASTNAME and
TEAM.

Example 3: Reading Unaligned Data with Informats This DATA step uses modified list
input to read data values with an informat:

Statements � INPUT Statement, List 1595

data jansales;
input item : $10. amount;
datalines;

trucks 1382
vans 1235
sedans 2391
;

The $10. informat allows a character variable of up to ten characters to be read.

Example 4: Reading Comma-Delimited Data with List Input and an Informat This
DATA step uses the DELIMITER= option in the INFILE statement to read list input
values that are separated by commas instead of blanks. The example uses an informat
to read the date, and a format to write the date.

options pageno=1 nodate ls=80 ps=64;
data scores2;

length Team $ 14;
infile datalines delimiter=’,’;
input Name $ Score1-Score3 Team $ Final_Date:MMDDYY10.;
format final_date weekdate17.;
datalines;

Joe,11,32,76,Red Racers,2/3/2007
Mitchell,13,29,82,Blue Bunnies,4/5/2007
Susan,14,27,74,Green Gazelles,11/13/2007
;

proc print data=scores2;
var Name Team Score1-Score3 Final_Date;
title ’Soccer Player Scores’;

run;

Output 6.14 Output from Comma-Delimited Data

Soccer Player Scores 1

Obs Name Team Score1 Score2 Score3 Final_Date

1 Joe Red Racers 11 32 76 Mon, Feb 3, 2007
2 Mitchell Blue Bunnies 13 29 82 Sat, Apr 5, 2007
3 Susan Green Gazelles 14 27 74 Thu, Nov 13, 2007

Example 5: Reading Delimited Data with Modified List Input This DATA step uses the
DSD option in an INFILE statement and the tilde (~) format modifier in an INPUT
statement to retain the quotation marks in character data and to read a character in a
string that is enclosed in quotation marks as a character instead of as a delimiter.

data scores;
infile datalines dsd;
input Name : $9. Score1-Score3

Team ~ $25. Div $;
datalines;

Joseph,11,32,76,"Red Racers, Washington",AAA
Mitchel,13,29,82,"Blue Bunnies, Richmond",AAA

1596 INPUT Statement, Named � Chapter 6

Sue Ellen,14,27,74,"Green Gazelles, Atlanta",AA
;

The output that PROC PRINT generates shows the resulting SCORES data set. The
values for TEAM contain the quotation marks.

Output 6.15 SCORES Data Set

The SAS System 1

OBS Name Score1 Score2 Score3 Team Div

1 Joseph 11 32 76 "Red Racers, Washington" AAA
2 Mitchel 13 29 82 "Blue Bunnies, Richmond" AAA
3 Sue Ellen 14 27 74 "Green Gazelles, Atlanta" AA

See Also

Statements:
“INFILE Statement” on page 1543
“INPUT Statement” on page 1569
“INPUT Statement, Formatted” on page 1586

INPUT Statement, Named

Reads data values that appear after a variable name that is followed by an equal sign and assigns
them to corresponding SAS variables.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
INPUT <pointer-control> variable= <$> <@ | @@>;

INPUT <pointer-control> variable= informat. <@ | @@>;

INPUT variable= <$> start-column <-end-column>
<.decimals> <@ | @@>;

Arguments

pointer-control
moves the input pointer to a specified line or column in the input buffer.
See: “Column Pointer Controls” on page 1571 and “Line Pointer Controls” on page

1572

variable=

Statements � INPUT Statement, Named 1597

specifies a variable whose value is read by the INPUT statement. In the input data
record, the field has the form

variable=value

Featured in: Example 3 on page 1599

$
indicates to store a variable value as a character value rather than as a numeric
value.
Tip: If the variable is previously defined as character, $ is not required.
Featured in: Example 3 on page 1599

informat.
specifies an informat that indicates the data type of the input values, but not how
the values are read.
Tip: Use the INFORMAT statement to associate an informat with a variable.
See: Chapter 5, “Informats,” on page 1215
Featured in: Example 3 on page 1599

start-column
specifies the column that the INPUT statement uses to begin scanning in the input
data records for the variable. The variable name does not have to begin here.

-end-column
determines the default length of the variable.

@
holds an input record for the execution of the next INPUT statement within the same
iteration of the DATA step. This line-hold specifier is called trailing @.
Restriction: The trailing @ must be the last item in the INPUT statement.
Tip: The trailing @ prevents the next INPUT statement from automatically

releasing the current input record and reading the next record into the input
buffer. It is useful when you need to read from a record multiple times.

See: “Using Line-Hold Specifiers” on page 1576

@@
holds an input record for the execution of the next INPUT statement across
iterations of the DATA step. This line-hold specifier is called double trailing @.
Restriction: The double trailing @ must be the last item in the INPUT statement.
Tip: The double trailing @ is useful when each input line contains values for several

observations.
See: “Using Line-Hold Specifiers” on page 1576

Details

When to Use Named Input Named input reads the input data records that contain a
variable name followed by an equal sign and a value for the variable. The INPUT
statement reads the input data record at the current location of the input pointer. If the
input data records contain data values at the start of the record that the INPUT
statement cannot read with named input, use another input style to read them.
However, once the INPUT statement starts to read named input, SAS expects that all
the remaining values are in this form. See Example 3 on page 1599.

You do not have to specify the variables in the INPUT statement in the same order
that they occur in the data records. Also, you do not have to specify a variable for each
field in the record. However, if you do not specify a variable in the INPUT statement

1598 INPUT Statement, Named � Chapter 6

that another statement uses (for example, ATTRIB, FORMAT, INFORMAT, LENGTH
statement) and it occurs in the input data record, the INPUT statement automatically
reads the value. SAS writes a note to the log that the variable is uninitialized.

When you do not specify a variable for all the named input data values, SAS sets
ERROR to 1 and writes a note to the log. For example,

data list;
input name=$ age=;
datalines;

name=John age=34 gender=M
;

The note that SAS writes to the log states that GENDER is not defined and
ERROR is set to 1.

Restrictions
� After you start to read with named input, you cannot switch to another input style

or use pointer controls. All the remaining values in the input data record must be
in the form variable=value. SAS treats the values that are not in named input
form as invalid data.

� If named input values continue after the end of the current input line, use a slash
(/) at the end of the input line. The slash tells SAS to move the pointer to the next
line and to continue to read with named input. For example,

input name=$ age=;

can read this input data record:

name=John /
age=34

� If you use named input to read character values that contain embedded blanks,
put two blanks before and after the data value, as you would with list input. See
Example 4 on page 1599.

� You cannot reference an array with an asterisk or an expression subscript.

Examples

Example 1: Using List and Named Input This DATA step uses list input with named
input to read input data records.

data list;
length name $ 20 gender $ 1;
informat dob ddmmyy8.;
input id name= gender= age= dob=;
datalines;

4798 name=COLIN gender=m age=23 dob=16/02/75
2653 name=MICHELE gender=f age=46 dob=17/02/73
;
proc print data=list; run;

The INPUT statement uses list input to read the ID variable. The remaining
variables NAME, GENDER, AGE, and DOB are read with named input. The LENGTH
statement prevents the INPUT statement from truncating the character values for the
variable name to a length of eight.

Example 2: Using Named Input with Variables in Random Order Using the same data
as in the previous example, this DATA step also uses list input and named input to

Statements � INPUT Statement, Named 1599

read input data records. However, in this example, the order of the values in the data is
different for the two rows, except for the ID value, which must come first.

data list;
length name $ 20 gender $ 1;
informat dob ddmmyy8.;
input id dob= name= age= gender=;
datalines;

4798 gender=m name=COLIN age=23 dob=16/02/75
2653 name=MICHELE dob=17/02/73 age=46 gender=f
;
proc print data=list; run;

Example 3: Using Named Input with Another Input Style This DATA step uses list
input and named input to read input data records:

data list;
input id name=$20. gender=$;
informat dob ddmmyy8.;
datalines;

4798 gender=m name=COLIN age=23 dob=16/02/75
2653 name=MICHELE age=46 gender=f
;
proc print data=list; run;

The INPUT statement uses list input to read the first variable, ID. The remaining
variables NAME, GENDER, and DOB are read with named input. These variables are
not read in order. The $20. informat with NAME= prevents the INPUT statement from
truncating the character value to a length of eight. The INPUT statement reads the
DOB= field because the INFORMAT statement refers to this variable. It skips the
AGE= field altogether. SAS writes notes to the log that DOB is uninitialized, AGE is
not defined, and _ERROR_ is set to 1.

Example 4: Reading Character Variables with Embedded Blanks This DATA step reads
character variables that contain embedded blanks with named input:

data list2;
informat header $30. name $15.;
input header= name=;
datalines;

header= age=60 AND UP name=PHILIP
;

Two spaces precede and follow the value of the variable HEADER, which is AGE=60
AND UP. The field also contains an equal sign.

See Also

Statement:
“INPUT Statement” on page 1569

1600 KEEP Statement � Chapter 6

KEEP Statement

Specifies the variables to include in output SAS data sets.

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
KEEP variable-list;

Arguments

variable-list
specifies the names of the variables to write to the output data set.
Tip: List the variables in any form that SAS allows.

Details
The KEEP statement causes a DATA step to write only the variables that you specify to
one or more SAS data sets. The KEEP statement applies to all SAS data sets that are
created within the same DATA step and can appear anywhere in the step. If no KEEP
or DROP statement appears, all data sets that are created in the DATA step contain all
variables.

Note: Do not use both the KEEP and DROP statements within the same DATA
step. �

Comparisons
� The KEEP statement cannot be used in SAS PROC steps. The KEEP= data set

option can.
� The KEEP statement applies to all output data sets that are named in the DATA

statement. To write different variables to different data sets, you must use the
KEEP= data set option.

� The DROP statement is a parallel statement that specifies variables to omit from
the output data set.

� The KEEP and DROP statements select variables to include in or exclude from
output data sets. The subsetting IF statement selects observations.

� Do not confuse the KEEP statement with the RETAIN statement. The RETAIN
statement causes SAS to hold the value of a variable from one iteration of the
DATA step to the next iteration. The KEEP statement does not affect the value of
variables but only specifies which variables to include in any output data sets.

Examples
� These examples show the correct syntax for listing variables in the KEEP

statement:
� keep name address city state zip phone;

Statements � LABEL Statement 1601

� keep rep1-rep5;

� This example uses the KEEP statement to include only the variables NAME
and AVG in the output data set. The variables SCORE1 through SCORE20,
from which AVG is calculated, are not written to the data set AVERAGE. data average;

keep name avg;
infile file-specification;
input name $ score1-score20;
avg=mean(of score1-score20);

run;

See Also

Data Set Option:
“KEEP= Data Set Option” on page 36

Statements:
“DROP Statement” on page 1452
“IF Statement, Subsetting” on page 1533
“RETAIN Statement” on page 1695

LABEL Statement

Assigns descriptive labels to variables.

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
LABEL variable-1=label-1 . . . <variable-n=label-n>;

LABEL variable-1=’ ’ … <variable-n=’ ’>;

Arguments

variable
specifies the variable that you want to label.
Tip: You can specify additional pairs of labels and variables.

label
specifies a label of up to 256 characters, including blanks.
Tip: You can specify additional pairs of labels and variables.
Tip: For more information about including quotation marks as part of the label, see

“Character Constants” in SAS Language Reference: Concepts.
Restriction: If the label includes a semicolon (;) or an equal sign (=), you must

enclose the label in either single or double quotation marks.

1602 Labels, Statement � Chapter 6

Restriction: If the label includes single quotation marks (’), then you must enclose
the label in double quotation marks.

’ ’
removes a label from a variable. Enclose a single blank space in quotation marks to
remove an existing label.

Details
Using a LABEL statement in a DATA step permanently associates labels with variables
by affecting the descriptor information of the SAS data set that contains the variables.
You can associate any number of variables with labels in a single LABEL statement.

You can use a LABEL statement in a PROC step, but the rules are different. See the
Base SAS Procedures Guide for more information.

Comparisons
Both the ATTRIB and LABEL statements can associate labels with variables and
change a label that is associated with a variable.

Examples

Example 1: Specifying Labels Here are several LABEL statements:
� label compound=Type of Drug;

� label date="Today’s Date";

� label n=’Mark’’s Experiment Number’;

� label score1="Grade on April 1 Test"
score2="Grade on May 1 Test";

Example 2: Removing a Label This example removes an existing label:

data rtest;
set rtest;
label x=’ ’;

run;

See Also

Statement:
“ATTRIB Statement” on page 1403

Labels, Statement

Identifies a statement that is referred to by another statement.

Valid: in a DATA step
Category: Control

Type: Declarative

Statements � Labels, Statement 1603

Syntax
label: statement;

Arguments

label
specifies any SAS name, which is followed by a colon (:). You must specify the label
argument.

statement
specifies any executable statement, including a null statement (;). You must specify
the statement argument.

Restriction: No two statements in a DATA step can have the same label.

Restriction: If a statement in a DATA step is labeled, it should be referenced by a
statement or option in the same step.

Tip: A null statement can have a label:

ABC:;

Details
The statement label identifies the destination of either a GO TO statement, a LINK
statement, the HEADER= option in a FILE statement, or the EOF= option in an
INFILE statement.

Comparisons
The LABEL statement assigns a descriptive label to a variable. A statement label
identifies a statement or group of statements that are referred to in the same DATA
step by another statement, such as a GO TO statement.

Examples

In this example, if Stock=0, the GO TO statement causes SAS to jump to the
statement that is labeled reorder. When Stock is not 0, execution continues to the
RETURN statement and then returns to the beginning of the DATA step for the next
observation.

data Inventory Order;
input Item $ Stock @;

/* go to label reorder: */
if Stock=0 then go to reorder;
output Inventory;
return;

/* destination of GO TO statement */
reorder: input Supplier $;
put ’ORDER ITEM ’ Item ’FROM ’ Supplier;
output Order;
datalines;

milk 0 A
bread 3 B
;

1604 LEAVE Statement � Chapter 6

See Also

Statements:
“GO TO Statement” on page 1532
“LINK Statement” on page 1619

Statement Options:
HEADER= option in the FILE statement on page 1462
EOF= option in the INFILE statement on page 1547

LEAVE Statement

Stops processing the current loop and resumes with the next statement in the sequence.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
LEAVE;

Without Arguments
The LEAVE statement stops the processing of the current DO loop or SELECT group

and continues DATA step processing with the next statement following the DO loop or
SELECT group.

Details
You can use the LEAVE statement to exit a DO loop or SELECT group prematurely
based on a condition.

Comparisons
� The LEAVE statement causes processing of the current loop to end. The

CONTINUE statement stops the processing of the current iteration of a loop and
resumes with the next iteration.

� You can use the LEAVE statement in a DO loop or in a SELECT group. You can
use the CONTINUE statement only in a DO loop.

Examples

This DATA step demonstrates using the LEAVE statement to stop the processing of a
DO loop under a given condition. In this example, the IF/THEN statement checks the
value of BONUS. When the value of BONUS reaches 500, the maximum amount
allowed, the LEAVE statement stops the processing of the DO loop.

data week;
input name $ idno start_yr status $ dept $;

Statements � LENGTH Statement 1605

bonus=0;
do year= start_yr to 1991;

if bonus ge 500 then leave;
bonus+50;

end;
datalines;

Jones 9011 1990 PT PUB
Thomas 876 1976 PT HR
Barnes 7899 1991 FT TECH
Harrell 1250 1975 FT HR
Richards 1002 1990 FT DEV
Kelly 85 1981 PT PUB
Stone 091 1990 PT MAIT
;

LENGTH Statement

Specifies the number of bytes for storing variables.

Valid: in a DATA step
Category: Information
Type: Declarative
See: LENGTH Statement in the documentation for your operating environment.

Syntax
LENGTH variable-specification(s)<DEFAULT=n>;

Arguments

variable-specification
is a required argument and has the form

variable(s)<$>length
where

variable
specifies one or more variables that are to be assigned a length. This includes any
variables in the DATA step, including those dropped from the output data set.
Restriction: Array references are not allowed.
Tip: If the variable is character, the length applies to the program data vector and

the output data set. If the variable is numeric, the length applies only to the
output data set.

$
specifies that the preceding variables are character variables.
Default: SAS assumes that the variables are numeric.

length
specifies a numeric constant that is the number of bytes used for storing variable
values.

1606 LENGTH Statement � Chapter 6

Range: For numeric variables, 2 to 8 or 3 to 8, depending on your operating
environment. For character variables, 1 to 32767 under all operating
environments.

DEFAULT=n
changes the default number of bytes that SAS uses to store the values of any newly
created numeric variables.
Default: 8
Range: 2 to 8 or 3 to 8, depending on your operating environment.

CAUTION:
Avoid shortening numeric variables that contain fractions. The precision of a numeric
variable is closely tied to its length, especially when the variable contains fractional
values. You can safely shorten variables that contain integers according to the rules
that are given in the SAS documentation for your operating environment, but
shortening variables that contain fractions might eliminate important precision. �

Details
In general, the length of a variable depends on

� whether the variable is numeric or character
� how the variable was created

� whether a LENGTH or ATTRIB statement is present.

Subject to the rules for assigning lengths, lengths that are assigned with the
LENGTH statement can be changed in the ATTRIB statement and vice versa. See “SAS
Variables” in SAS Language Reference: Concepts for information about assigning
lengths to variables.

Operating Environment Information: Valid variable lengths depend on your operating
environment. For details, see the SAS documentation for your operating environment. �

Comparisons
The ATTRIB statement can assign the length as well as other attributes of variables.

Examples

This example uses a LENGTH statement to set the length of the character variable
NAME to 25. It also changes the default number of bytes that SAS uses to store the
values of newly created numeric variables from 8 to 4. The TRIM function removes
trailing blanks from LASTNAME before it is concatenated with a comma (,) , a blank
space, and the value of FIRSTNAME. If you omit the LENGTH statement, SAS sets the
length of NAME to 32.

data testlength;
informat FirstName LastName $15. n1 6.2;
input firstname lastname n1 n2;
length name $25 default=4;
name=trim(lastname)||’, ’||firstname;
datalines;

Alexander Robinson 35 11
;

proc contents data=testlength;

Statements � LIBNAME Statement 1607

run;

proc print data=testlength;
run;

The following output shows a partial listing from PROC CONTENTS, as well as the
report that PROC PRINT generates.

Output 6.16 Setting the Length of a Variable

The SAS System 3

CONTENTS PROCEDURE

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Informat
--
1 FirstName Char 15 8 $15.
2 LastName Char 15 23 $15.
3 n1 Num 4 0 6.2
4 n2 Num 4 4
5 name Char 25 38

The SAS System 4

OBS FirstName LastName n1 n2 name

1 Alexander Robinson 0.35000 11 Robinson, Alexander

See Also

Statement:
“ATTRIB Statement” on page 1403

For information about the use of the LENGTH statement in PROC steps, see Base
SAS Procedures Guide

LIBNAME Statement

Associates or disassociates a SAS library with a libref (a shortcut name), clears one or all librefs,
lists the characteristics of a SAS library, concatenates SAS libraries, or concatenates SAS catalogs.

Valid: Anywhere
Category: Data Access
See: LIBNAME Statement in the documentation for your operating environment

Syntax
uLIBNAME libref <engine> ’SAS-library’

< options > <engine/host-options>;

1608 LIBNAME Statement � Chapter 6

vLIBNAME libref CLEAR | _ALL_ CLEAR;

wLIBNAME libref LIST | _ALL_ LIST;

xyLIBNAME libref <engine> (library-specification-1 < . . . library-specification-n>)
< options >;

Arguments

libref
is a shortcut name or a “nickname” for the aggregate storage location where your
SAS files are stored. It is any SAS name when you are assigning a new libref. When
you are disassociating a libref from a SAS library or when you are listing attributes,
specify a libref that was previously assigned.
Range: 1 to 8 characters
Tip: The association between a libref and a SAS library lasts only for the duration

of the SAS session or until you change it or discontinue it with another LIBNAME
statement.

’SAS-library’
must be the physical name for the SAS library. The physical name is the name that
is recognized by the operating environment. Enclose the physical name in single or
double quotation marks.

Operating Environment Information: For details about specifying the physical
names of files, see the SAS documentation for your operating environment. �

library-specification
is two or more SAS libraries that are specified by physical names, previously
assigned librefs, or a combination of the two. Separate each specification with either
a blank or a comma and enclose the entire list in parentheses.

’SAS-library’
is the physical name of a SAS library, enclosed in quotation marks.

libref
is the name of a previously assigned libref.

Restriction: When concatenating libraries, you cannot specify options that are
specific to an engine or an operating environment.

Featured in: Example 2 on page 1614
See Also: “Rules for Library Concatenation” on page 1613

engine
is an engine name.
Tip: Usually, SAS automatically determines the appropriate engine to use for

accessing the files in the library. If you want to create a new library with an engine
other than the default engine, then you can override the automatic selection.

See: For a list of valid engines, see the SAS documentation for your operating
environment. For background information about engines, see SAS Language
Reference: Concepts.

CLEAR
disassociates one or more currently assigned librefs.
Tip: Specify libref to disassociate a single libref. Specify _ALL_ to disassociate all

currently assigned librefs.

Statements � LIBNAME Statement 1609

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned librefs.

LIST
writes the attributes of one or more SAS libraries to the SAS log.

Tip: Specify libref to list the attributes of a single SAS library. Specify _ALL_ to list
the attributes of all SAS libraries that have librefs in your current session.

Options
ACCESS=READONLY|TEMP

READONLY assigns a read-only attribute to an entire SAS library. SAS will
not allow you to open a data set in the library in order to
update information or write new information.

TEMP specifies that the SAS library be treated as a scratch library.
That is, the system will not consume CPU cycles to ensure that
the files in a TEMP library do not become corrupted.
Tip: Use ACCESS=TEMP to save resources only when the data

is recoverable.

Operating Environment Information: Some operating environments support
LIBNAME statement options that have similar functions to the ACCESS= option.
See the SAS documentation for your operating environment. �

COMPRESS=NO | YES | CHAR | BINARY
controls the compression of observations in output SAS data sets for a SAS library.

NO
specifies that the observations in a newly created SAS data set be
uncompressed (fixed-length records).

YES | CHAR
specifies that the observations in a newly created SAS data set be compressed
(variable-length records) by SAS using RLE (Run Length Encoding). RLE
compresses observations by reducing repeated consecutive characters
(including blanks) to two-byte or three-byte representations.

Tip: Use this compression algorithm for character data.

BINARY
specifies that the observations in a newly created SAS data set be compressed
(variable-length records) by SAS using RDC (Ross Data Compression). RDC
combines run-length encoding and sliding-window compression to compress
the file.
Tip: This method is highly effective for compressing medium to large (several

hundred bytes or larger) blocks of binary data (numeric variables).
Because the compression function operates on a single record at a time, the
record length needs to be several hundred bytes or larger for effective
compression.

Interaction: For the COPY procedure, the default value CLONE uses the
compression attribute from the input data set for the output data set instead of
the value specified in the COMPRESS= option. For more information about
CLONE and NOCLONE, see the COPY statement in the DATASETS procedure
in the Base SAS Procedures Guide. This interaction does not apply when using
SAS/SHARE or SAS/CONNECT.

1610 LIBNAME Statement � Chapter 6

CVPBYTES=bytes
specifies the number of bytes to expand character variable lengths when
processing a SAS data file that requires transcoding.

See: “CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options” in the SAS
National Language Support (NLS): Reference Guide

CVPENGINE|CVPENG=engine
specifies the engine to use in order to process a SAS data file that requires
transcoding.

See: “CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options” in the SAS
National Language Support (NLS): Reference Guide

CVPMULTIPLIER|CVPMULT=multiplier
specifies a multiplier value in order to expand character variable lengths when
processing a SAS data file that requires transcoding.

See: “CVPBYTES=, CVPENGINE=, and CVPMULTIPLIER= Options” in the SAS
National Language Support (NLS): Reference Guide

INENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value
overrides the encoding when you are reading (input processing) SAS data sets in
the SAS library.

See: “INENCODING= and OUTENCODING= Options” in the SAS National
Language Support (NLS): Reference Guide

OUTENCODING=
OUTENCODING=ANY | ASCIIANY | EBCDICANY | encoding-value

overrides the encoding when you are creating (output processing) SAS data sets
in the SAS library.

See: The “INENCODING= and OUTENCODING= Options” in the SAS National
Language Support (NLS): Reference Guide

OUTREP=format
specifies the data representation for the SAS library, which is the form in which
data is stored in a particular operating environment. Different operating
environments use different standards or conventions for storing floating-point
numbers (for example, IEEE or IBM Mainframe); for character encoding (ASCII or
EBCDIC); for the ordering of bytes in memory (big Endian or little Endian); for
word alignment (4-byte boundaries or 8-byte boundaries); for integer data-type
length (16-bit, 32-bit, or 64-bit); and for doubles (byte-swapped or not).

Native data representation refers to an environment in which the data
representation is comparable to the CPU that is accessing the file. For example, a
file that is in Windows data representation is native to the Windows operating
environment.

By default, SAS creates a new SAS data set by using the native data
representation of the CPU that is running SAS. Specifying the OUTREP= option
enables you to create files within the native environment that use a foreign data
representation. For example, in a UNIX environment, you can create a SAS data
set that uses a Windows data representation. Existing data sets that are written
to the library are given the new data representation.

Interaction: For the COPY procedure, the default value CLONE uses the data
representation from the input data set instead of the value specified in the
OUTREP= option. For more information about CLONE and NOCLONE, see the
COPY statement in the DATASETS procedure in the Base SAS Procedures
Guide. This interaction does not apply when using SAS/SHARE or
SAS/CONNECT.

Statements � LIBNAME Statement 1611

Interaction: The COPY procedure (with NOCLONE) and the MIGRATE
procedure can use the LIBNAME option OUTREP= for DATA, VIEW, ACCESS,
MDDB and DMDB member types. Otherwise, only DATA member types are
affected by the OUTREP= LIBNAME option.

Interaction: Transcoding could result in character data loss when encodings are
incompatible. For information about encoding and transcoding, see SAS
National Language Support (NLS): Reference Guide.

Values for OUTREP= are listed in the following table:

Table 6.7 Data Representation Values for OUTREP= Option

OUTREP= Value Alias* Environment

ALPHA_TRU64 ALPHA_OSF Compaq Tru64 UNIX

ALPHA_VMS_32 ALPHA_VMS OpenVMS on Alpha

ALPHA_VMS_64 OpenVMS on Alpha

HP_IA64 HP_ITANIUM HP UX on Itanium 64-bit platform

HP_UX_32 HP_UX HP UX on 32-bit platform

HP_UX_64 HP UX on 64-bit platform

INTEL_ABI ABI UNIX on Intel 32-bit platform

LINUX_32 LINUX Linux for Intel Architecture on 32-bit
platform

LINUX_IA64 Linux for Itanium-based system on
64-bit platform

LINUX_X86_64 LINUX on x64 64-bit platform

MIPS_ABI ABI UNIX on 32-bit platform

MVS_32 MVS z/OS on 32-bit platform

OS2 OS/2 on Intel 32-bit platform

RS_6000_AIX_32 RS_6000_AIX AIX UNIX on 32-bit RS/6000

RS_6000_AIX_64 AIX UNIX on 64-bit RS/6000

SOLARIS_32 SOLARIS Solaris on SPARC 32-bit platform

SOLARIS_64 Solaris on SPARC 64-bit platform

SOLARIS_X86_64 Solaris on x64 64-bit platform

VAX_VMS OpenVMS VAX

VMS_IA64 OpenVMS for HP Integrity servers
64-bit platform

WINDOWS_32 WINDOWS Microsoft Windows on 32-bit platform

WINDOWS_64 Microsoft Windows 64-bit Edition (for
both Itanium-based systems and x64)

* It is recommended that you use the current values. The aliases are available for
compatibility only.

REPEMPTY=YES|NO
controls replacement of like-named temporary or permanent SAS data sets when
the new one is empty.

1612 LIBNAME Statement � Chapter 6

YES specifies that a new empty data set with a given name replace
an existing data set with the same name. This is the default.
Interaction: When REPEMPTY=YES and REPLACE=NO,

then the data set is not replaced.

NO specifies that a new empty data set with a given name not
replace an existing data set with the same name.
Tip: Use REPEMPTY=NO to prevent the following syntax

error from replacing the existing data set MYLIB.B with the
new empty data set MYLIB.B that is created by mistake:

libname libref SAS-library REPEMPTY=NO;
data mylib.a set mylib.b;

Tip: For both the convenience of replacing existing data sets
with new ones that contain data and the protection of not
overwriting existing data sets with new empty ones that are
created by mistake, set REPLACE=YES and
REPEMPTY=NO.

Comparison: For an individual data set, the REPEMPTY= data set option
overrides the setting of the REPEMPTY= option in the LIBNAME statement.

See Also: “REPEMPTY= Data Set Option” on page 54

Engine Host Options
engine-host-options

are one or more options that are listed in the general form keyword=value.

Operating Environment Information: For a list of valid specifications, see the
SAS documentation for your operating environment. �

Restriction: When concatenating libraries, you cannot specify options that are
specific to an engine or an operating environment.

Details

uAssociating a Libref with a SAS Library The association between a libref and a SAS
library lasts only for the duration of the SAS session or until you change the libref or
discontinue it with another LIBNAME statement. The simplest form of the LIBNAME
statement specifies only a libref and the physical name of a SAS library:

LIBNAME libref ’SAS-library’;

See Example 1 on page 1614.
An engine specification is usually not necessary. If the situation is ambiguous, SAS

uses the setting of the ENGINE= system option to determine the default engine. If all
data sets in the library are associated with a single engine, then SAS uses that engine
as the default. In either situation, you can override the default by specifying another
engine with the ENGINE= system option:

LIBNAME libref engine ’SAS-library’
<options > <engine/host-options>;

Operating Environment Information: Using the LIBNAME statement requires
host-specific information. See the SAS documentation for your operating environment
before using this statement. �

Statements � LIBNAME Statement 1613

vDisassociating a Libref from a SAS Library To disassociate a libref from a SAS
library, use a LIBNAME statement by specifying the libref and the CLEAR option. You
can clear a single, specified libref or all current librefs.

LIBNAME libref CLEAR | _ALL_ CLEAR;

wWriting SAS Library Attributes to the SAS Log Use a LIBNAME statement to write
the attributes of one or more SAS libraries to the SAS log. Specify libref to list the
attributes of one SAS library; use _ALL_ to list the attributes of all SAS libraries that
have been assigned librefs in your current SAS session.

LIBNAME libref LIST | _ALL_ LIST;

xConcatenating SAS Libraries When you logically concatenate two or more SAS
libraries, you can reference them all with one libref. You can specify a library with its
physical filename or its previously assigned libref.

LIBNAME libref <engine> (library–specification–1 < . . . library-specification-n>)
< options >;

In the same LIBNAME statement you can use any combination of specifications:
librefs, physical filenames, or a combination of librefs and physical filenames. See
Example 2 on page 1614.

yConcatenating SAS Catalogs When you logically concatenate two or more SAS
libraries, you also concatenate the SAS catalogs that have the same name. For
example, if three SAS libraries each contain a catalog named CATALOG1, then when
you concatenate them, you create a catalog concatenation for the catalogs that have the
same name. See Example 3 on page 1615.

LIBNAME libref <engine> (library–specification–1 < . . . library-specification-n>)
< options >;

Rules for Library Concatenation After you create a library concatenation, you can
specify the libref in any context that accepts a simple (non-concatenated) libref. These
rules determine how SAS files (that is, members of SAS libraries) are located among
the concatenated libraries:

1 When a SAS file is opened for input or update, the concatenated libraries are
searched and the first occurrence of the specified file is used.

2 When a SAS file is opened for output, it is created in the first library that is listed
in the concatenation.

Note: A new SAS file is created in the first library even if there is a file with
the same name in another part of the concatenation. �

3 When you delete or rename a SAS file, only the first occurrence of the file is
affected.

4 Anytime a list of SAS files is displayed, only one occurrence of a filename is shown.

Note: Even if the name occurs multiple times in the concatenation, only the
first occurrence is shown. �

5 A SAS file that is logically connected to another file (such as an index to a data
set) is listed only if the parent file resides in that same library. For example, if
library ONE contains A.DATA, and library TWO contains A.DATA and A.INDEX,
only A.DATA from library ONE is listed. (See rule 4.)

6 If any library in the concatenation is sequential, then all of the libraries are
treated as sequential.

1614 LIBNAME Statement � Chapter 6

7 The attributes of the first library that is specified determine the attributes of the
concatenation. For example, if the first SAS library that is listed is “read only,”
then the entire concatenated library is “read only.”

8 If you specify any options or engines, they apply only to the libraries that you
specified with the complete physical name, not to any library that you specified
with a libref.

9 If you alter a libref after it has been assigned in a concatenation, it will not affect
the concatenation.

Comparisons
� Use the LIBNAME statement to reference a SAS library. Use the FILENAME

statement to reference an external file. Use the LIBNAME, SAS/ACCESS
statement to access DBMS tables.

� Use the CATNAME statement to concatenate SAS catalogs. Use the LIBNAME
statement to concatenate SAS catalogs. The CATNAME statement enables you to
specify the names of the catalogs that you want to concatenate. The LIBNAME
statement concatenates all like-named catalogs in the specified SAS libraries.

Examples

Example 1: Assigning and Using a Libref This example assigns the libref SALES to an
aggregate storage location that is specified in quotation marks as a physical filename.
The DATA step creates SALES.QUARTER1 and stores it in that location. The PROC
PRINT step references it by its two-level name, SALES.QUARTER1.

libname sales ’SAS-library’;

data sales.quarter1;
infile ’your-input-file’;
input salesrep $20. +6 jansales febsales

marsales;
run;

proc print data=sales.quarter1;
run;

Example 2: Logically Concatenating SAS Libraries
� This example concatenates three SAS libraries by specifying the physical filename

of each:

libname allmine (’file-1’ ’file-2’
’file-3’);

� This example assigns librefs to two SAS libraries, one that contains SAS 6 files
and one that contains SAS 9 files. This technique is useful for updating your files
and applications from SAS 6 to SAS 9, while allowing you to have convenient
access to both sets of files:

libname v6 ’v6--SAS-library’;
libname v9 ’v9--SAS-library’;
libname allmine (v9 v6);

Statements � LIBNAME Statement 1615

� This example shows that you can specify both librefs and physical filenames in the
same concatenation specification:

libname allmine (v9 v6 ’some-filename’);

Example 3: Concatenating SAS Catalogs This example concatenates three SAS
libraries by specifying the physical filename of each and assigns the libref ALLMINE to
the concatenated libraries:

libname allmine (’file-1’ ’file-2’
’file-3’);

If each library contains a SAS catalog named MYCAT, then using ALLMINE.MYCAT
as a libref.catref provides access to the catalog entries that are stored in all three
catalogs named MYCAT. To logically concatenate SAS catalogs with different names,
see “CATNAME Statement” on page 1413.

Example 4: Permanently Storing Data Sets with One-Level Names If you want the
convenience of specifying only a one-level name for permanent, not temporary, SAS
files, then use the USER= system option. This example stores the data set QUARTER1
permanently without using a LIBNAME statement first to assign a libref to a storage
location:

options user=’SAS-library’;

data quarter1;
infile ’your-input-file’;
input salesrep $20. +6 jansales febsales

marsales;
run;

proc print data=quarter1;
run;

See Also

Data Set Options:

ENCODING in the SAS National Language Support (NLS): Reference Guide

Statements:

“CATNAME Statement” on page 1413 for a discussion of concatenating SAS
catalogs

“FILENAME Statement” on page 1473

“LIBNAME Statement” for character variable processing in order to transcode a
SAS file in SAS National Language Support (NLS): Reference Guide

“LIBNAME Statement” for the Output Delivery System (ODS) in SAS Output
Delivery System: User’s Guide

“LIBNAME Statement” for SAS metadata in SAS Language Interfaces to
Metadata

“LIBNAME Statement” for Scalable Performance Data (SPD) in SAS Scalable
Performance Data Engine: Reference

“LIBNAME statement” for XML documents in SAS XML LIBNAME Engine:
User’s Guide

1616 LIBNAME Statement for WebDAV Server Access � Chapter 6

“LIBNAME Statement” for SAS/ACCESS in SAS/ACCESS for Relational
Databases: Reference

“LIBNAME Statement” for SAS/CONNECT in SAS/CONNECT User’s Guide
“LIBNAME Statement” for SAS/CONNECT, TCP/IP pipes in SAS/CONNECT

User’s Guide
“LIBNAME Statement” for SAS/SHARE in SAS/SHARE User’s Guide

System Option:
“USER= System Option” on page 1982

LIBNAME Statement for WebDAV Server Access

Associates a libref with a SAS library and enables access to a WebDAV (Web-based Distributed
Authoring And Versioning) server.

Valid: Anywhere
Category: Data Access
Restriction: Access to WebDAV servers is not supported on OpenVMS or z/OS.
See also: Base SAS LIBNAME Statement

Syntax
LIBNAME libref <engine> ’SAS-library’ < options> WEBDAV USER="user-ID"

PASSWORD="user-password" WEBDAV options;

LIBNAME libref CLEAR | _ALL_ CLEAR;

LIBNAME libref LIST | _ALL_ LIST;

Arguments
libref

specifies a shortcut name for the aggregate storage location where your SAS files
are stored.
Tip: The association between a libref and a SAS library lasts only for the

duration of the SAS session or until you change it or discontinue it with another
LIBNAME statement.

’SAS-library’
specifies the URL location (path) on a WebDAV server. The URL specifies either
HTTP or HTTPS communication protocols.
Restriction: Only one data library is supported when using the WebDAV

extension to the LIBNAME statement.
Requirement: When using the HTTPS communication protocol, you must use

the SSL (Secure Sockets Layer) protocol that provides secure network
communications. For more information, see Encryption in SAS.

engine
specifies the name of a valid SAS engine.
Restriction: REMOTE engines are not supported with the WebDAV options.

Statements � LIBNAME Statement for WebDAV Server Access 1617

See: For a list of valid engines, see the SAS documentation for your operating
environment.

CLEAR
disassociates one or more currently assigned librefs. When a libref using a
WebDAV server is cleared, the cached files stored locally are deleted also.
Tip: Specify libref to disassociate a single libref. Specify _ALL_ to disassociate

all currently assigned librefs.

LIST
writes the attributes of one or more SAS libraries to the SAS log.
Tip: Specify libref to list the attributes of a single SAS library. Specify _ALL_ to

list the attributes of all SAS libraries that have librefs in your current session.

ALL
specifies that the CLEAR or LIST argument applies to all currently assigned
librefs.

Options
For valid LIBNAME statement options, see “LIBNAME Statement” on page 1607.

WebDAV Specific Options
WEBDAV

specifies that the libref access a WebDAV server.

USER="user-ID"
specifies the user name for access to the WebDAV server. The user ID is case
sensitive and it must be enclosed in single or double quotation marks.

Alias: UID
Tip: If PROMPT is specified, but USER= is not, then the user is prompted for an

ID as well as a password.

PASSWORD="user-password"
specifies a password for the user to access the WebDAV server. The password is
case sensitive and it must be enclosed in single or double quotation marks.

Alias: PWD=, PW=, PASS=
Tip: You can specify the PROMPT option instead of the PASSWORD= option.

PROMPT
specifies to prompt for the user login password, if necessary.
Interaction: If PROMPT is specified without USER=, then the user is prompted

for an ID, as well as a password.
Tip: If you specify the PROMPT option, you do not need to specify the

PASSWORD= option.

AUTHDOMAIN="auth-domain"
specifies the name of an authentication domain metadata object in order to
connect to the WebDAV server. The authentication domain references credentials
(user ID and password) without your having to explicitly specify the credentials.
The auth-domain name is case sensitive, and it must be enclosed in double
quotation marks.

An administrator creates authentication domain definitions while creating a
user definition with the User Manager in SAS Management Console. The
authentication domain is associated with one or more login metadata objects that

1618 LIBNAME Statement for WebDAV Server Access � Chapter 6

provide access to the WebDAV server and is resolved by the BASE engine calling
the SAS Metadata Server and returning the authentication credentials.
Requirement: The authentication domain and the associated login definition

must be stored in a metadata repository, and the metadata server must be
running in order to resolve the metadata object specification.

Interaction: If you specify AUTHDOMAIN=, you do not need to specify USER=
and PASSWORD=.

See also: For complete information about creating and using authentication
domains, see the discussion on credential management in the SAS Intelligence
Platform: Security Administration Guide.

PROXY=url
specifies the Uniform Resource Locator (URL) for the proxy server in one of these
forms:

"http://hostname"
"http://hostname:port"

LOCALCACHE="directory name"
specifies a directory where a temporary subdirectory is created to hold local copies
of the server files. Each libref has its own unique subdirectory. If a directory is not
specified, then the subdirectories are created in the SAS WORK directory. SAS
deletes the temporary files when the SAS program completes.
Default: SAS WORK directory

LOCKDURATION=n
specifies the number of minutes that the files written through the WebDAV libref
are locked. SAS unlocks the files when the SAS program successfully completes. If
the SAS program fails, then the locks expire after the time allotted.
Default: 30

Data Set Options That Function Differently with a WebDAV Server
The following table lists the data set options that have different functionality when
using a WebDAV server. All other data set options will function as described in the SAS
Language Reference: Dictionary.

Table 6.8 Data Set Option Functionality with a WebDAV Server

Data Set Option WebDAV Storage Functionality

CNTLLEV= LIB locks all data sets in the library before writing the
data into the local cache. All members are unlocked after
the DATA step has completed and the data set has been
written back to the WebDAV server.

MEM locks the member before writing the data into the
local cache. Member is unlocked after the DATA step has
completed and the data has been written back to the
WebDAV server.

REC is not supported. WebDAV allows updates to the
entire data set only.

FILECLOSE The VxTAPE engine is not supported; therefore this option
is ignored.

GENMAX= This functionality is not supported because the maximum
number of revisions to keep cannot be specified in the
WebDAV server.

Statements � LINK Statement 1619

GENNUM= This functionality is not supported in WebDAV.

IDXNAME= Users can specify an index to use if one exists.

INDEX= Indexes can be created in the local cache and saved on the
WebDAV server.

TOBSNO= Remote engines are not supported; therefore this option is
ignored.

Details

WebDAV File Processing When accessing a WebDAV server, the file is pulled from the
WebDAV server to your local disk storage for processing. When you complete the
updating, the file is pushed back to the WebDAV server for storage. The file is removed
from the local disk storage when it is pushed back.

Multiple Librefs to a WebDAV Library When you assign a libref to a file on a WebDAV
server, the path (URL location), user ID, and password are associated with that libref.
After the first libref has been assigned, the user ID and password will be validated on
subsequent attempts to assign another libref to the same library.

Note: Lock errors that you typically would not see might occur if either a different
user ID or the password, or both, are used in the subsequent attempt to assign a libref
to the same library. �

Locked Files on a WebDAV Server In local libraries, SAS locks a file when you open it
to prevent other users from altering the file while it is being read. WebDAV locks
require write access to a library, and there is no concept of a read lock. In addition,
WebDAV servers can go down, come back up, or go offline at any time. Consequently,
SAS honors a lock request on a file on a WebDAV server only if the file is already locked
by another user.

Example

The following example associates the libref davdata with the WebDAV directory
/users/mydir/datadir on the WebDAV server www.webserver.com:

libname davdata v9 "https://www.webserver.com/users/mydir/datadir"
webdav user="mydir" pw="12345";

See Also

Statements:
“FILENAME Statement, WebDAV Access Method” on page 1520
“LIBNAME Statement” on page 1607

LINK Statement

Directs program execution immediately to the statement label that is specified and, if followed by
a RETURN statement, returns execution to the statement that follows the LINK statement.

1620 LINK Statement � Chapter 6

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
LINK label;

Arguments

label
specifies a statement label that identifies the LINK destination. You must specify the
label argument.

Details
The LINK statement tells SAS to jump immediately to the statement label that is
indicated in the LINK statement and to continue executing statements from that point
until a RETURN statement is executed. The RETURN statement sends program
control to the statement immediately following the LINK statement.

The LINK statement and the destination must be in the same DATA step. The
destination is identified by a statement label in the LINK statement.

The LINK statement can branch to a group of statements that contain another LINK
statement. This arrangement is known as nesting. To avoid infinite looping, SAS has set
a default number of nested LINK statements. You can have up to 10 LINK statements
with no intervening RETURN statements. When more than one LINK statement has
been executed, a RETURN statement tells SAS to return to the statement that follows
the last LINK statement that was executed. However, you can use the /STACK option
in the DATA statement to increase the number of nested LINK statements.

Comparisons
The difference between the LINK statement and the GO TO statement is in the action
of a subsequent RETURN statement. A RETURN statement after a LINK statement
returns execution to the statement that follows LINK. A RETURN statement after a
GO TO statement returns execution to the beginning of the DATA step, unless a LINK
statement precedes GO TO. In that case, execution continues with the first statement
after LINK. In addition, a LINK statement is usually used with an explicit RETURN
statement, whereas a GO TO statement is often used without a RETURN statement.

When your program executes a group of statements at several points in the program,
using the LINK statement simplifies coding and makes program logic easier to follow. If
your program executes a group of statements at only one point in the program, using
DO-group logic rather than LINK-RETURN logic is simpler.

Examples

In this example, when the value of variable TYPE is aluv, the LINK statement
diverts program execution to the statements that are associated with the label CALCU.
The program executes until it encounters the RETURN statement, which sends
program execution back to the first statement that follows LINK. SAS executes the
assignment statement, writes the observation, and then returns to the top of the DATA

Statements � LIST Statement 1621

step to read the next record. When the value of TYPE is not aluv, SAS executes the
assignment statement, writes the observation, and returns to the top of the DATA step.

data hydro;
input type $ depth station $;

/* link to label calcu: */
if type =’aluv’ then link calcu;
date=today();

/* return to top of step */
return;
calcu: if station=’site_1’

then elevatn=6650-depth;
else if station=’site_2’

then elevatn=5500-depth;
/* return to date=today(); */

return;
datalines;

aluv 523 site_1
uppa 234 site_2
aluv 666 site_2
...more data lines...
;

See Also

Statements:

“DATA Statement” on page 1420
“DO Statement” on page 1444

“GO TO Statement” on page 1532

“Labels, Statement” on page 1602
“RETURN Statement” on page 1700

LIST Statement

Writes to the SAS log the input data record for the observation that is being processed.

Valid: in a DATA step
Category: Action

Type: Executable

Syntax
LIST;

Without Arguments
The LIST statement causes the input data record for the observation being processed

to be written to the SAS log.

1622 LIST Statement � Chapter 6

Details
The LIST statement operates only on data that is read with an INPUT statement; it has
no effect on data that is read with a SET, MERGE, MODIFY, or UPDATE statement.

In the SAS log, a ruler that indicates column positions appears before the first record
listed.

For variable-length records (RECFM=V), SAS writes the record length at the end of
the input line. SAS does not write the length for fixed-length records (RECFM=F),
unless the amount of data read does not equal the record length (LRECL).

Comparisons

Action LIST Statement PUT Statement

Writes when at the end of each iteration of the DATA step immediately

Writes what the input data records exactly as they
appear

the variables or literals
specified

Writes where only to the SAS log to the SAS log, the SAS
output destination, or to
any external file

Works with INPUT statement only any data-reading statement

Handles hexadecimal
values

automatically prints a hexadecimal value if
it encounters an unprintable character

represents characters in
hexadecimal only when a
hexadecimal format is given

Examples

Example 1: Listing Records That Contain Missing Data

This example uses the LIST statement to write to the SAS log any input records that
contain missing data. Because of the #3 line pointer control in the INPUT statement,
SAS reads three input records to create a single observation. Therefore, the LIST
statement writes the three current input records to the SAS log each time a value for
W2AMT is missing.

data employee;
input ssn 1-9 #3 w2amt 1-6;
if w2amt=. then list;
datalines;

23456789
JAMES SMITH
356.79
345671234
Jeffrey Thomas
.
;

Statements � %LIST Statement 1623

Output 6.17 Log Listing of Missing Data

RULE:----+----1----+----2----+----3----+----4----+----5----+----
9 345671234
10 Jeffrey Thomas
11 .

The numbers 9, 10, and 11 are line numbers in the SAS log.

Example 2: Listing the Record Length of Variable-Length Records

This example uses as input an external file that contains variable-length ID
numbers. The RECFM=V option is specified in the INFILE statement, and the LIST
statement writes the records to the SAS log. When the file has variable-length records,
as indicated by the RECFM=V option in this example, SAS writes the record length at
the end of each record that is listed in the SAS log.

data employee;
infile ’your-external-file’ recfm=v;
input id $;
list;

run;

Output 6.18 Log Listing of Variable-Length Records and Record Lengths

RULE: ----+----1----+----2----+----3----+----4----+----5---
1 23456789 8
2 123456789 9
3 5555555555 10
4 345671234 9
5 2345678910 10
6 2345678 7

See Also

Statement:

“PUT Statement” on page 1657

%LIST Statement

Displays lines that are entered in the current session.

Valid: anywhere

Category: Program Control

Syntax
%LIST<n <:m | − m>>;

1624 LOCK Statement � Chapter 6

Without Arguments
In interactive line mode processing, if you use the %LIST statement without
arguments, it displays all previously entered program lines.

Arguments
n

displays line n.

n–m
displays lines n through m.
Alias: n:m

Details

Where and When to Use The %LIST statement can be used anywhere in a SAS job
except between a DATALINES or DATALINES4 statement and the matching semicolon
(;) or semicolons (;;;;). This statement is useful mainly in interactive line mode sessions
to display SAS program code on the monitor. It is also useful to determine lines to
include when you use the %INCLUDE statement.

Interactions

CAUTION:
In all modes of execution, the SPOOL system option controls whether SAS statements are
saved.

When the SPOOL system option is in effect in interactive line mode, all SAS
statements and data lines are saved automatically when they are submitted. You can
display them by using the %LIST statement. When NOSPOOL is in effect, %LIST
cannot display previous lines. �

Examples

This %LIST statement displays lines 10 through 20:

%list 10-20;

See Also

Statement:
“%INCLUDE Statement” on page 1536

System Option:
“SPOOL System Option” on page 1945

LOCK Statement

Acquires and releases an exclusive lock on an existing SAS file.

Statements � LOCK Statement 1625

Valid: Anywhere

Category: Program Control

Restriction: You cannot lock a SAS file that another SAS session is currently accessing
(either from an exclusive lock or because the file is open).

Restriction: The LOCK statement syntax is the same whether you issue the statement in
a single-user environment or in a client/server environment. However, some LOCK
statement functionality applies only to a client/server environment.

Syntax
LOCK libref<.member-name<.member-type | .entry-name.entry-type>> <LIST |

QUERY | SHOW | CLEAR> ;

Arguments

libref
is a name that is associated with a SAS library. The libref (library reference) must be
a valid SAS name. If the libref is SASUSER or WORK, you must specify it.

Tip: In a single-user environment, you typically would not issue the LOCK
statement to exclusively lock a library. To lock a library that is accessed via a
multiuser SAS/SHARE server, see the LOCK statement in the SAS/SHARE User’s
Guide.

member-name
is a valid SAS name that specifies a member of the SAS library that is associated
with the libref.

Restriction: The SAS file must be created before you can request a lock. For
information about locking a member of a SAS library when the member does not
exist, see the SAS/SHARE User’s Guide.

member-type
is the type of SAS file to be locked. For example, valid values are DATA, VIEW,
CATALOG, MDDB, and so on. The default is DATA.

entry-name
is the name of the catalog entry to be locked.

Tip: In a single-user environment, if you issue the LOCK statement to lock an
individual catalog entry, the entire catalog is locked; you typically would not issue
the LOCK statement to exclusively lock a catalog entry. To lock a catalog entry in
a library that is accessed via a multiuser SAS/SHARE server, see the LOCK
statement in the SAS/SHARE User’s Guide.

entry-type
is the type of the catalog entry to be locked.

Tip: In a single-user environment, if you issue the LOCK statement to lock an
individual catalog entry, the entire catalog is locked; you typically would not issue
the LOCK statement to exclusively lock a catalog entry. To lock a catalog entry in
a library that is accessed via a multiuser SAS/SHARE server, see the LOCK
statement in the SAS/SHARE User’s Guide.

LIST | QUERY | SHOW
writes to the SAS log whether you have an exclusive lock on the specified SAS file.

1626 LOCK Statement � Chapter 6

Tip: This option provides more information in a client/server environment. To use
this option in a client/server environment, see the LOCK statement in the
SAS/SHARE User’s Guide.

CLEAR
releases a lock on the specified SAS file that was acquired by using the LOCK
statement in your SAS session.

Details

General Information The LOCK statement enables you to acquire and release an
exclusive lock on an existing SAS file. Once an exclusive lock is obtained, no other SAS
session can read or write to the file until the lock is released. You release an exclusive
lock by using the CLEAR option.

Acquiring Exclusive Access to a SAS File in a Single-User Environment Each time you
issue a SAS statement or a procedure to process a SAS file, the file is opened for input,
update, or output processing. At the end of the step, the file is closed. In a program
with multiple tasks, a file could be opened and closed multiple times. Because multiple
SAS sessions in a single-user environment can access the same SAS file, issuing the
LOCK statement to acquire an exclusive lock on the file protects data while it is being
updated in a multistep program.

For example, consider a nightly update process that consists of a DATA step to
remove observations that are no longer useful, a SORT procedure to sort the file, and a
DATASETS procedure to rebuild the file’s indexes. If another SAS session accesses the
file between any of the steps, the SORT and DATASETS procedures would fail, because
they require member-level locking (exclusive) access to the file.

Including the LOCK statement before the DATA step provides the needed protection
by acquiring exclusive access to the file. If the LOCK statement is successful, a SAS
session that attempts to access the file between steps will be denied access, and the
nightly update process runs uninterrupted. See Example 1 on page 1626.

Return Codes for the LOCK Statement The SAS macro variable SYSLCKRC contains
the return code from the LOCK statement. The following actions result in a nonzero
value in SYSLCKRC:

� You try to lock a file but cannot obtain the lock (for example, the file was in use or
is locked by another SAS session).

� You use a LOCK statement with the LIST option to list a lock.
� You use a LOCK statement with the CLEAR option to release a lock that you do

not have.

For more information about the SYSLCKRC SAS macro variable, see SAS Macro
Language: Reference.

Comparisons
� With SAS/SHARE software, you can also use the LOCK statement. Some LOCK

statement functionality applies only to a client/server environment.
� The CNTLLEV= data set option specifies the level at which shared update access

to a SAS data set is denied.

Examples

Example 1: Locking a SAS File The following SAS program illustrates the process of
locking a SAS data set. Including the LOCK statement provides protection for the

Statements � LOSTCARD Statement 1627

multistep program by acquiring exclusive access to the file. Any SAS session that
attempts to access the file between steps will be denied access, which ensures that the
program runs uninterrupted.

libname mydata ’SAS-library’;

lock mydata.census; u

data mydata.census; v

modify mydata.census;
(statements to remove obsolete observations)

run;

proc sort force data=mydata.census; w

by CrimeRate;
run;

proc datasets library=mydata; x

modify census;
index create CrimeRate;

quit;

lock mydata.census clear; y

1 Acquires exclusive access to the SAS data set MYDATA.CENSUS.
2 Opens MYDATA.CENSUS to remove observations that are no longer useful. At

the end of the DATA step, the file is closed. However, because of the exclusive lock,
any other SAS session that attempts to access the file is denied access.

3 Opens MYDATA.CENSUS to sort the file. At the end of the procedure, the file is
closed but not available to another SAS session.

4 Opens MYDATA.CENSUS to rebuild the file’s index. At the end of the procedure,
the file is closed but still not available to another SAS session.

5 Releases the exclusive lock on MYDATA.CENSUS. The data set is now available to
other SAS sessions.

See Also

Data Set Option:
“CNTLLEV= Data Set Option” on page 18

For information about locking a data object in a library that is accessed via a
multiuser SAS/SHARE server, see the LOCK statement in the SAS/SHARE User’s
Guide.

LOSTCARD Statement

Resynchronizes the input data when SAS encounters a missing or invalid record in data that has
multiple records per observation.

Valid: in a DATA step

1628 LOSTCARD Statement � Chapter 6

Category: Action
Type: Executable

Syntax
LOSTCARD;

Without Arguments
The LOSTCARD statement prevents SAS from reading a record from the next group

when the current group has a missing record.

Details

When to Use LOSTCARD When SAS reads multiple records to create a single
observation, it does not discover that a record is missing until it reaches the end of the
data. If there is a missing record in your data, the values for subsequent observations
in the SAS data set might be incorrect. Using LOSTCARD prevents SAS from reading
a record from the next group when the current group has fewer records than SAS
expected.

LOSTCARD is most useful when the input data have a fixed number of records per
observation and when each record for an observation contains an identification variable
that has the same value. LOSTCARD usually appears in conditional processing such as
in the THEN clause of an IF-THEN statement, or in a statement in a SELECT group.

When LOSTCARD Executes When LOSTCARD executes, SAS takes several steps:
1 Writes three items to the SAS log: a lost card message, a ruler, and all the records

that it read in its attempt to build the current observation.
2 Discards the first record in the group of records being read, does not write an

observation, and returns processing to the beginning of the DATA step.
3 Does not increment the automatic variable _N_ by 1. (Normally, SAS increments

N by 1 at the beginning of each DATA step iteration.)
4 Attempts to build an observation by beginning with the second record in the

group, and reads the number of records that the INPUT statement specifies.
5 Repeats steps 1 through 4 when the IF condition for a lost card is still true. To

make the log more readable, SAS prints the message and ruler only once for a
given group of records. In addition, SAS prints each record only once, even if a
record is used in successive attempts to build an observation.

6 Builds an observation and writes it to the SAS data set when the IF condition for
a lost card is no longer true.

Examples

This example uses the LOSTCARD statement in a conditional construct to identify
missing data records and to resynchronize the input data:

data inspect;
input id 1-3 age 8-9 #2 id2 1-3 loc

#3 id3 1-3 wt;
if id ne id2 or id ne id3 then
do;

put ’DATA RECORD ERROR: ’ id= id2= id3=;

Statements � LOSTCARD Statement 1629

lostcard;
end;
datalines;

301 32
301 61432
301 127
302 61
302 83171
400 46
409 23145
400 197
411 53
411 99551
411 139
;

The DATA step reads three input records before writing an observation. If the
identification number in record 1 (variable ID) does not match the identification number
in the second record (ID2) or third record (ID3), a record is incorrectly entered or
omitted. The IF-THEN DO statement specifies that if an identification number is
invalid, SAS prints the message that is specified in the PUT statement message and
executes the LOSTCARD statement.

In this example, the third record for the second observation (ID3=400) is missing.
The second record for the third observation is incorrectly entered (ID=400 while
ID2=409). Therefore, the data set contains two observations with ID values 301 and
411. There are no observations for ID=302 or ID=400. The PUT and LOSTCARD
statements write these statements to the SAS log when the DATA step executes:

Output 6.19

DATA RECORD ERROR: id=302 id2=302 id3=400
NOTE: LOST CARD.
RULE:----+----1----+----2----+----3----+----4----+----5----+----
14 302 61
15 302 83171
16 400 46
DATA RECORD ERROR: id=302 id2=400 id3=409
NOTE: LOST CARD.
17 409 23145
DATA RECORD ERROR: id=400 id2=409 id3=400
NOTE: LOST CARD.
18 400 197
DATA RECORD ERROR: id=409 id2=400 id3=411
NOTE: LOST CARD.
19 411 53
DATA RECORD ERROR: id=400 id2=411 id3=411
NOTE: LOST CARD.
20 411 99551

The numbers 14, 15, 16, 17, 18, 19, and 20 are line numbers in the SAS log.

See Also

Statement:
“IF-THEN/ELSE Statement” on page 1535

1630 MERGE Statement � Chapter 6

MERGE Statement
Joins observations from two or more SAS data sets into a single observation.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
MERGE SAS-data-set-1 <(data-set-options)>

SAS-data-set-2 <(data-set-options) >
<…SAS-data-set-n<(data-set-options)>>
<END=variable>;

Arguments

SAS-data-set
specifies at least two existing SAS data sets from which observations are read. You
can specify individual data sets, data set lists, or a combination of both.
Tip: You can specify additional SAS data sets.
See: “Using Data Set Lists with MERGE” on page 1630

(data-set-options)
specifies one or more SAS data set options in parentheses after a SAS data set name.
Explanation: The data set options specify actions that SAS is to take when it reads

observations into the DATA step for processing. For a list of data set options, see
“Data Set Options by Category” on page 12.

Tip: Data set options that apply to a data set list apply to all of the data sets in the
list.

END=variable
names and creates a temporary variable that contains an end-of-file indicator.
Explanation: The variable, which is initialized to 0, is set to 1 when the MERGE

statement processes the last observation. If the input data sets have different
numbers of observations, the END= variable is set to 1 when MERGE processes
the last observation from all data sets.

Tip: The END= variable is not added to any SAS data set that is being created.

Details

Overview The MERGE statement is flexible and has a variety of uses in SAS
programming. This section describes basic uses of MERGE. Other applications include
using more than one BY variable, merging more than two data sets, and merging a few
observations with all observations in another data set.

For more information, see “How to Prepare Your Data Sets” in SAS Language
Reference: Concepts.

Using Data Set Lists with MERGE You can use data set lists with the MERGE
statement. Data set lists provide a quick way to reference existing groups of data sets.
These data set lists must be either name prefix lists or numbered range lists.

Statements � MERGE Statement 1631

Name prefix lists refer to all data sets that begin with a specified character string.
For example, merge SALES1:; tells SAS to merge all data sets starting with "SALES1"
such as SALES1, SALES10, SALES11, and SALES12.

Numbered range lists require you to have a series of data sets with the same name,
except for the last character or characters, which are consecutive numbers. In a
numbered range list, you can begin with any number and end with any number. For
example, these lists refer to the same data sets:

sales1 sales2 sales3 sales4

sales1-sales4

Note: If the numeric suffix of the first data set name contains leading zeros, the
number of digits in the numeric suffix of the last data set name must be greater than or
equal to the number of digits in the first data set name. Otherwise, an error will occur.
For example, the data set lists sales001–sales99 and sales01–sales9 will cause an error.
The data set list sales001–sales999 is valid. If the numeric suffix of the first data set
name does not contain leading zeros, the number of digits in the numeric suffix of the
first and last data set names do not have to be equal. For example, the data set list
sales1–sales999 is valid. �

Some other rules to consider when using numbered data set lists are as follows:

� You can specify groups of ranges.

merge cost1-cost4 cost11-cost14 cost21-cost24;

� You can mix numbered range lists with name prefix lists.

merge cost1-cost4 cost2: cost33-37;

� You can mix single data sets with data set lists.

merge cost1 cost10-cost20 cost30;

� Quotation marks around data set lists are ignored.

/* these two lines are the same */
merge sales1-sales4;
merge ’sales1’n-’sales4’n;

� Spaces in data set names are invalid. If quotation marks are used, trailing blanks
are ignored.

/* blanks in these statements will cause errors */
merge sales 1-sales 4;
merge ’sales 1’n - ’sales 4’n;

/* trailing blanks in this statement will be ignored */
merge ’sales1 ’n - ’sales4 ’n;

� The maximum numeric suffix is 2147483647.

/* this suffix will cause an error */
merge prod2000000000-prod2934850239;

� Physical pathnames are not allowed.

/* physical pathnames will cause an error */
&let work_path = %sysfunc(pathname(WORK));
merge "&work_path\dept.sas7bdat"-"&work_path\emp.sas7bdat" ;

One-to-One Merging One-to-one merging combines observations from two or more
SAS data sets into a single observation in a new data set. To perform a one-to-one

1632 MERGE Statement � Chapter 6

merge, use the MERGE statement without a BY statement. SAS combines the first
observation from all data sets that are named in the MERGE statement into the first
observation in the new data set, the second observation from all data sets into the
second observation in the new data set, and so on. In a one-to-one merge, the number of
observations in the new data set is equal to the number of observations in the largest
data set named in the MERGE statement. See Example 1 for an example of a
one-to-one merge. For more information, see “Reading, Combining, and Modifying SAS
Data Sets” in SAS Language Reference: Concepts.

CAUTION:
Use care when you combine data sets with a one-to-one merge. One-to-one merges can
sometimes produce undesirable results. Test your program on representative samples
of the data sets before you use this method. �

Match-Merging Match-merging combines observations from two or more SAS data
sets into a single observation in a new data set according to the values of a common
variable. The number of observations in the new data set is the sum of the largest
number of observations in each BY group in all data sets. To perform a match-merge,
use a BY statement immediately after the MERGE statement. The variables in the BY
statement must be common to all data sets. Only one BY statement can accompany
each MERGE statement in a DATA step. The data sets that are listed in the MERGE
statement must be sorted in order of the values of the variables that are listed in the
BY statement, or they must have an appropriate index. See Example 2 for an example
of a match-merge. For more information, see “Reading, Combining, and Modifying SAS
Data Sets” in SAS Language Reference: Concepts.

Note: The MERGE statement does not produce a Cartesian product on a
many-to-many match-merge. Instead it performs a one-to-one merge while there are
observations in the BY group in at least one data set. When all observations in the BY
group have been read from one data set and there are still more observations in
another data set, SAS performs a one-to-many merge until all observations have been
read for the BY group. �

Comparisons
� MERGE combines observations from two or more SAS data sets. UPDATE

combines observations from exactly two SAS data sets. UPDATE changes or
updates the values of selected observations in a master data set as well. UPDATE
also might add observations.

� Like UPDATE, MODIFY combines observations from two SAS data sets by
changing or updating values of selected observations in a master data set.

� The results that are obtained by reading observations using two or more SET
statements are similar to the results that are obtained by using the MERGE
statement with no BY statement. However, with the SET statements, SAS stops
processing before all observations are read from all data sets if the number of
observations are not equal. In contrast, SAS continues processing all observations
in all data sets named in the MERGE statement.

Examples

Example 1: One-to-One Merging This example shows how to combine observations
from two data sets into a single observation in a new data set:

data benefits.qtr1;
merge benefits.jan benefits.feb;

run;

Statements � MISSING Statement 1633

Example 2: Match-Merging This example shows how to combine observations from
two data sets into a single observation in a new data set according to the values of a
variable that is specified in the BY statement:

data inventry;
merge stock orders;
by partnum;

run;

Example 3: Merging with a Data Set List This example uses a data list to define the
data sets that are merged.

data d008; job=3; emp=19; run;
data d009; job=3; sal=50; run;
data d010; job=4; emp=97; run;
data d011; job=4; sal=15; run;
data comb;
merge d008-d011;
by job;
run;
proc print data=comb;
run;

See Also

Statements:

“BY Statement” on page 1407
“MODIFY Statement” on page 1634
“SET Statement” on page 1712
“UPDATE Statement” on page 1734

“Reading, Combining, and Modifying SAS Data Sets” in SAS Language Reference:
Concepts

MISSING Statement

Assigns characters in your input data to represent special missing values for numeric data.

Valid: anywhere

Category: Information

Syntax
MISSING character(s);

Arguments

character

1634 MODIFY Statement � Chapter 6

is the value in your input data that represents a special missing value.
Range: Special missing values can be any of the 26 letters of the alphabet

(uppercase or lowercase) or the underscore (_).
Tip: You can specify more than one character.

Details
The MISSING statement usually appears within a DATA step, but it is global in scope.

Comparisons
The MISSING= system option allows you to specify a character to be printed when
numeric variables contain ordinary missing values (.). If your data contain characters
that represent special missing values, such as a or z, do not use the MISSING= option
to define them; simply define these values in a MISSING statement.

Examples

With survey data, you might want to identify certain types of missing data. For
example, in the data, an A can mean that the respondent is not at home at the time of
the survey; an R can mean that the respondent refused to answer. Use the MISSING
statement to identify to SAS that the values A and R in the input data lines are to be
considered special missing values rather than invalid numeric data values:

data survey;
missing a r;
input id answer;
datalines;

001 2
002 R
003 1
004 A
005 2
;

The resulting data set SURVEY contains exactly the values that are coded in the
input data.

See Also

Statement:
“UPDATE Statement” on page 1734

System Option:
“MISSING= System Option” on page 1886

MODIFY Statement

Replaces, deletes, and appends observations in an existing SAS data set in place but does not
create an additional copy.

Statements � MODIFY Statement 1635

Valid: in a DATA step

Category: File-handling
Type: Executable

Restriction: Cannot modify the descriptor portion of a SAS data set, such as adding a
variable

Syntax
uMODIFY master-data-set <(data-set-option(s))> transaction-data-set

<(data-set-option(s))>
<NOBS=variable> <END=variable> <UPDATEMODE=MISSINGCHECK|
NOMISSINGCHECK>;
BY by-variable;

vMODIFY master-data-set <(data-set-option(s))> KEY=index </ UNIQUE>
<NOBS=variable> <END=variable> ;

wMODIFY master-data-set <(data-set-option(s))> <NOBS=variable> POINT=variable;

xMODIFY master-data-set <(data-set-option(s))> <NOBS=variable> <END=variable>;

CAUTION:
Damage to the SAS data set can occur if the system terminates abnormally during a DATA
step that contains the MODIFY statement. Observations in native SAS data files might
have incorrect data values, or the data file might become unreadable. DBMS tables
that are referenced by views are not affected. �

Note: If you modify a password-protected data set, specify the password with the
appropriate data set option (ALTER= or PW=) within the MODIFY statement, and not
in the DATA statement. �

Arguments

master-data-set
specifies the SAS data set that you want to modify.

Restriction: This data set must also appear in the DATA statement.

Restriction: The following restrictions apply:

� For sequential and matching access, the master data set can be a SAS data
file, a SAS/ACCESS view, an SQL view, or a DBMS engine for the LIBNAME
statement. It cannot be a DATA step view or a pass-through view.

� For random access using POINT=, the master data set must be a SAS data
file or an SQL view that references a SAS data file.

� For direct access using KEY=, the master data set can be a SAS data file or
the DBMS engine for the LIBNAME statement. If it is a SAS file, it must be
indexed and the index name must be specified on the KEY= option.

� For a DBMS, the KEY= is set to the keyword DBKEY and the column names
to use as an index must be specified on the DBKEY= data set option. These
column names are used in constructing a WHERE expression that is passed
to the DBMS.

transaction-data-set

1636 MODIFY Statement � Chapter 6

specifies the SAS data set that provides the values for matching access. These values
are the values that you want to use to update the master data set.

Restriction: Specify this data set only when the DATA step contains a BY
statement.

by-variable
specifies one or more variables by which you identify corresponding observations.

END=variable
creates and names a temporary variable that contains an end-of-file indicator.

Explanation: The variable, which is initialized to zero, is set to 1 when the
MODIFY statement reads the last observation of the data set being modified (for
sequential access x) or the last observation of the transaction data set (for
matching access u). It is also set to 1 when MODIFY cannot find a match for a
KEY= value (random access v w).

This variable is not added to any data set.

Restriction: Do not use this argument in the same MODIFY statement with the
POINT= argument. POINT= indicates that MODIFY uses random access. The
value of the END= variable is never set to 1 for random access.

KEY=index
specifies a simple or composite index of the SAS data file that is being modified. The
KEY= argument retrieves observations from that SAS data file based on index values
that are supplied by like-named variables in another source of information.

Default: If the KEY= value is not found, the automatic variable _ERROR_ is set to
1, and the automatic variable _IORC_ receives the value corresponding to the
SYSRC autocall macro’s mnemonic _DSENOM. See “Automatic Variable _IORC_
and the SYSRC Autocall Macro” on page 1639 .

Restriction: KEY= processing is different for SAS/ACCESS engines. See the
SAS/ACCESS documentation for more information.

Tip: Examples of sources for index values include a separate SAS data set named in
a SET statement and an external file that is read by an INPUT statement.

Tip: If duplicates exist in the master file, only the first occurrence is updated unless
you use a DO-LOOP to execute a SET statement for the data set that is listed on
the KEY=option for all duplicates in the master data set.

If duplicates exist in the transaction data set, and they are consecutive, use the
UNIQUE option to force the search for a match in the master data set to begin at
the top of the index. Write an accumulation statement to add each duplicate
transaction to the observation in master. Without the UNIQUE option, only the
first duplicate transaction observation updates the master.

If the duplicates in the transaction data set are not consecutive, the search
begins at the beginning of the index each time, so that each duplicate is applied to
the master. Write an accumulation statement to add each duplicate to the master.

See Also: UNIQUE on page 1637

Featured in: Example 4 on page 1647, Example 5 on page 1647, and Example 6 on
page 1649

NOBS=variable
creates and names a temporary variable whose value is usually the total number of
observations in the input data set. For certain SAS views, SAS cannot determine the
number of observations. In these cases, SAS sets the value of the NOBS= variable to
the largest positive integer value available in the operating environment.

Explanation: At compilation time, SAS reads the descriptor portion of the data set
and assigns the value of the NOBS= variable automatically. Thus, you can refer to

Statements � MODIFY Statement 1637

the NOBS= variable before the MODIFY statement. The variable is available in
the DATA step but is not added to the new data set.

Tip: The NOBS= and POINT= options are independent of each other.
Featured in: Example 3 on page 1645

POINT=variable
reads SAS data sets using random (direct) access by observation number. variable
names a variable whose value is the number of the observation to read. The POINT=
variable is available anywhere in the DATA step, but it is not added to any SAS data
set.

Requirement: When using the POINT= argument, include one or both of the
following programming constructs:

� a STOP statement
� programming logic that checks for an invalid value of the POINT= variable

Because POINT= reads only the specified observations, SAS cannot detect an
end-of-file condition as it would if the file were being read sequentially. Because
detecting an end-of-file condition terminates a DATA step automatically, failure to
substitute another means of terminating the DATA step when you use POINT=
can cause the DATA step to go into a continuous loop.

Restriction: You cannot use the POINT= option with any of the following:

� BY statement
� WHERE statement
� WHERE= data set option
� transport format data sets
� sequential data sets (on tape or disk)
� a table from another vendor’s relational database management system.

Restriction: You can use POINT= with compressed data sets only if the data set
was created with the POINTOBS= data set option set to YES, the default value.

Restriction: You can use the random access method on compressed files only with
SAS version 7 and beyond.

Tip: If the POINT= value does not match an observation number, SAS sets the
automatic variable _ERROR_ to 1.

Featured in: Example 3 on page 1645

UNIQUE
causes a KEY= search always to begin at the top of the index for the data file being
modified.
Restriction: UNIQUE can appear only with the KEY= option.
Tip: Use UNIQUE when there are consecutive duplicate KEY= values in the

transaction data set, so that the search for a match in the master data set begins
at the top of the index file for each duplicate transaction. You must include an
accumulation statement or the duplicate values overwrite each other causing only
the last transaction value to be the result in the master observation.

Featured in: Example 5 on page 1647

UPDATEMODE=MISSINGCHECK | NOMISSINGCHECK
specifies whether missing variable values in a transaction data set are to be allowed
to replace existing variable values in a master data set.

MISSINGCHECK

1638 MODIFY Statement � Chapter 6

prevents missing variable values in a transaction data set from replacing values in
a master data set.

NOMISSINGCHECK
allows missing variable values in a transaction data set to replace values in a
master data set by preventing the check from being performed.

Default: MISSINGCHECK
Requirement: The UPDATEMODE argument must be accompanied by a BY

statement that specifies the variables by which observations are matched.
Tip: However, special missing values are the exception and they replace values in

the master data set even when MISSINGCHECK is in effect.

Details

uMatching Access The matching access method uses the BY statement to match
observations from the transaction data set with observations in the master data set.
The BY statement specifies a variable that is in the transaction data set and the master
data set.

When the MODIFY statement reads an observation from the transaction data set, it
uses dynamic WHERE processing to locate the matching observation in the master data
set. The observation in the master data set can be either

� replaced in the master data set with the value from the transaction data set
� deleted from the master data set
� appended to the master data set.

Example 2 on page 1644 shows the matching access method.

uDuplicate BY Values Duplicates in the master and transaction data sets affect
processing.

� If duplicates exist in the master data set, only the first occurrence is updated
because the generated WHERE statement always finds the first occurrence in the
master.

� If duplicates exist in the transaction data set, the duplicates are applied one on
top of another unless you write an accumulation statement to add all of them to
the master observation. Without the accumulation statement, the values in the
duplicates overwrite each other so that only the value in the last transaction is the
result in the master observation.

vDirect Access by Indexed Values This method requires that you use the KEY=
option in the MODIFY statement to name an indexed variable from the data set that is
being modified. Use another data source (typically a SAS data set named in a SET
statement or an external file read by an INPUT statement) to provide a like-named
variable whose values are supplied to the index. MODIFY uses the index to locate
observations in the data set that is being modified.

Example 4 on page 1647 shows the direct-access-by-indexed-values method.

vDuplicate Index Values
� If there are duplicate values of the indexed variable in the master data set, only

the first occurrence is retrieved, modified, or replaced. Use a DO LOOP to execute
a SET statement with the KEY= option multiple times to update all duplicates
with the transaction value.

� If there are duplicate, nonconsecutive values in the like-named variable in the data
source, MODIFY applies each transaction cumulatively to the first observation in

Statements � MODIFY Statement 1639

the master data set whose index value matches the values from the data source.
Therefore, only the value in the last duplicate transaction is the result in the
master observation unless you write an accumulation statement to accumulate
each duplicate transaction value in the master observation.

� If there are duplicate, consecutive values in the variable in the data source, the
values from the first observation in the data source are applied to the master data
set, but the DATA step terminates with an error when it tries to locate an
observation in the master data set for the second duplicate from the data source.
To avoid this error, use the UNIQUE option in the MODIFY statement. The
UNIQUE option causes SAS to return to the top of the master data set before
retrieving a match for the index value. You must write an accumulation statement
to accumulate the values from all the duplicates. If you do not, only the last one
applied is the result in the master observation.

Example 5 on page 1647 shows how to handle duplicate index values.
� If there are duplicate index values in both data sets, you can use SQL to apply the

duplicates in the transaction data set to the duplicates in the master data set in a
one-to-one correspondence.

wDirect (Random) Access by Observation Number You can use the POINT= option in
the MODIFY statement to name a variable from another data source (not the master
data set), whose value is the number of an observation that you want to modify in the
master data set. MODIFY uses the values of the POINT= variable to retrieve
observations in the data set that you are modifying. (You can use POINT= on a
compressed data set only if the data set was created with the POINTOBS= data set
option.)

It is good programming practice to validate the value of the POINT= variable and to
check the status of the automatic variable _ERROR_.

Example 3 on page 1645 shows the direct (random) access by observation number
method.

CAUTION:
POINT= can result in infinite looping. Be careful when you use POINT=, as failure to
terminate the DATA step can cause the DATA step to go into a continuous loop. Use
a STOP statement, programming logic that checks for an invalid value of the
POINT= variable, or both. �

xSequential Access The sequential access method is the simplest form of the
MODIFY statement, but it provides less control than the direct access methods. With
the sequential access method, you can use the NOBS= and END= options to modify a
data set; you do not use the POINT= or KEY= options.

Preparing Your Data Sets before Using MODIFY There are a number of things you can
do to improve performance and get the results you want when using the MODIFY
statement. For more information, see “Combining SAS Data Sets: Basic Concepts” in
SAS Language Reference: Concepts.

Automatic Variable _IORC_ and the SYSRC Autocall Macro The automatic variable
IORC contains the return code for each I/O operation that the MODIFY statement
attempts to perform. The best way to test for values of _IORC_ is with the mnemonic
codes that are provided by the SYSRC autocall macro. Each mnemonic code describes
one condition. The mnemonics provide an easy method for testing problems in a DATA
step program. These codes are useful:

_DSENMR
specifies that the transaction data set observation does not exist on the master
data set (used only with MODIFY and BY statements). If consecutive observations

1640 MODIFY Statement � Chapter 6

with different BY values do not find a match in the master data set, both of them
return _DSENMR.

_DSEMTR
specifies that multiple transaction data set observations with a given BY value do
not exist on the master data set (used only with MODIFY and BY statements). If
consecutive observations with the same BY values do not find a match in the
master data set, the first observation returns _DSENMR and the subsequent
observations return _DSEMTR.

_DSENOM
specifies that the data set being modified does not contain the observation that is
requested by the KEY= option or the POINT= option.

_SENOCHN
specifies that SAS is attempting to execute an OUTPUT or REPLACE statement
on an observation that contains a key value which duplicates one already existing
on an indexed data set that requires unique key values.

_SOK
specifies that the observation was located.

Note: The IORCMSG function returns a formatted error message associated with
the current value of _IORC_. �

Example 6 on page 1649 shows how to use the automatic variable _IORC_ and the
SYSRC autocall macro.

Writing Observations When MODIFY Is Used in a DATA Step The way SAS writes
observations to a SAS data set when the DATA step contains a MODIFY statement
depends on whether certain other statements are present. The possibilities are

no explicit statement
writes the current observation to its original place in the SAS data set. The action
occurs as the last action in the step (as if a REPLACE statement were the last
statement in the step).

OUTPUT statement
if no data set is specified in the OUTPUT statement, writes the current
observation to the end of all data sets that are specified in the DATA step. If a
data set is specified, the statement writes the current observation to the end of the
data set that is indicated. The action occurs at the point in the DATA step where
the OUTPUT statement appears.

REPLACE <data-set-name> statement
rewrites the current observation in the specified data set or data sets, or, if no
argument is specified, rewrites the current observation in each data set specified in
the DATA statement. The action occurs at the point of the REPLACE statement.

REMOVE <data-set-name> statement
deletes the current observation in the specified data set or data sets, or, if no
argument is specified, deletes the current observation in each data set specified in
the DATA statement. The deletion can be a physical one or a logical one,
depending on the characteristics of the engine that maintains the data set.

Remember the following as you work with these statements:

� When no OUTPUT, REPLACE, or REMOVE statement is specified, the default
action is REPLACE.

Statements � MODIFY Statement 1641

� The OUTPUT, REPLACE, and REMOVE statements are independent of each
other. You can code multiple OUTPUT, REPLACE, and REMOVE statements to
apply to one observation. However, once an OUTPUT, REPLACE, or REMOVE
statement executes, the MODIFY statement must execute again before the next
REPLACE or REMOVE statement executes.

You can use OUTPUT and REPLACE in the following example of conditional
logic because only one of the REPLACE or OUTPUT statements executes per
observation:

data master;
modify master trans; by key;
if _iorc_=0 then replace;
else

output;
run;

But you should not use multiple REPLACE operations on the same observation
as in this example:

data master;
modify master;
x=1;
replace;
replace;

run;

You can code multiple OUTPUT statements per observation. However, be
careful when you use multiple OUTPUT statements. It is possible to go into an
infinite loop with just one OUTPUT statement.
data master;

modify master;
output;

run;

� Using OUTPUT, REPLACE, or REMOVE in a DATA step overrides the default
replacement of observations. If you use any one of these statements in a DATA
step, you must explicitly program each action that you want to take.

� If both an OUTPUT statement and a REPLACE or REMOVE statement execute
on a given observation, perform the OUTPUT action last to keep the position of
the observation pointer correct.

Example 7 on page 1650 shows how to use the OUTPUT, REMOVE, and REPLACE
statements to write observations.

Missing Values and the MODIFY Statement By default, the
UPDATEMODE=MISSINGCHECK option is in effect, so missing values in the
transaction data set do not replace existing values in the master data set. Therefore, if
you want to update some but not all variables and if the variables that you want to
update differ from one observation to the next, set to missing those variables that are
not changing. If you want missing values in the transaction data set to replace existing
values in the master data set, use UPDATEMODE=NOMISSINGCHECK.

Even when UPDATEMODE=MISSINGCHECK is in effect, you can replace existing
values with missing values by using special missing value characters in the transaction
data set. To create the transaction data set, use the MISSING statement in the DATA
step. If you define one of the special missing values A through Z for the transaction
data set, SAS updates numeric variables in the master data set to that value.

If you want the resulting value in the master data set to be a regular missing value,
use a single underscore (_) to represent missing values in the transaction data set. The

1642 MODIFY Statement � Chapter 6

resulting value in the master data set will be a period (.) for missing numeric values
and a blank for missing character values.

For more information about defining and using special missing value characters, see
“MISSING Statement” on page 1633.

Using MODIFY with Data Set Options If you use data set options (such as KEEP=) in
your program, then use the options in the MODIFY statement for the master data set.
Using data set options in the DATA statement might produce unexpected results.

Using MODIFY in a SAS/SHARE Environment In a SAS/SHARE environment, the
MODIFY statement accesses an observation in update mode. That is, the observation is
locked from the time MODIFY reads it until a REPLACE or REMOVE statement
executes. At that point the observation is unlocked. It cannot be accessed until it is
re-read with the MODIFY statement. The MODIFY statement opens the data set in
update mode, but the control level is based on the statement used. For example, KEY=
and POINT= are member-level locking. Refer to SAS/SHARE User’s Guide for more
information.

Comparisons
� When you use a MERGE, SET, or UPDATE statement in a DATA step, SAS

creates a new SAS data set. The data set descriptor of the new copy can be
different from the old one (variables added or deleted, labels changed, and so on).
When you use a MODIFY statement in a DATA step, however, SAS does not create
a new copy of the data set. As a result, the data set descriptor cannot change.

For information about DBMS replacement rules, see the SAS/ACCESS
documentation.

� If you use a BY statement with a MODIFY statement, MODIFY works much like
the UPDATE statement, except that

� neither the master data set nor the transaction data set needs to be sorted or
indexed. (The BY statement that is used with MODIFY triggers dynamic
WHERE processing.)

Note: Dynamic WHERE processing can be costly if the MODIFY
statement modifies a SAS data set that is not in sorted order or has not been
indexed. Having the master data set in sorted order or indexed and having
the transaction data set in sorted order reduces processing overhead,
especially for large files. �

� both the master data set and the transaction data set can have observations
with duplicate values of the BY variables. MODIFY treats the duplicates as
described in “uDuplicate BY Values” on page 1638.

� MODIFY cannot make any changes to the descriptor information of the data
set as UPDATE can. Thus, it cannot add or delete variables, change variable
labels, and so on.

Input Data Set for Examples
The examples modify the INVTY.STOCK data set. INVTY.STOCK contains these
variables:

PARTNO
is a character variable with a unique value identifying each tool number.

DESC
is a character variable with the text description of each tool.

Statements � MODIFY Statement 1643

INSTOCK
is a numeric variable with a value describing how many units of each tool the
company has in stock.

RECDATE
is a numeric variable containing the SAS date value that is the day for which
INSTOCK values are current.

PRICE
is a numeric variable with a value that describes the unit price for each tool.

In addition, INVTY.STOCK contains a simple index on PARTNO. This DATA step
creates INVTY.STOCK:

libname invty ’SAS-library’;

options yearcutoff= 1920;

data invty.stock(index=(partno));
input PARTNO $ DESC $ INSTOCK @17

RECDATE date7. @25 PRICE;
format recdate date7.;
datalines;

K89R seal 34 27jul95 245.00
M4J7 sander 98 20jun95 45.88
LK43 filter 121 19may96 10.99
MN21 brace 43 10aug96 27.87
BC85 clamp 80 16aug96 9.55
NCF3 valve 198 20mar96 24.50
KJ66 cutter 6 18jun96 19.77
UYN7 rod 211 09sep96 11.55
JD03 switch 383 09jan97 13.99
BV1E timer 26 03jan97 34.50
;

Examples

Example 1: Modifying All Observations This example replaces the date on all of the
records in the data set INVTY.STOCK with the current date. It also replaces the value
of the variable RECDATE with the current date for all observations in INVTY.STOCK:

data invty.stock;
modify invty.stock;
recdate=today();

run;

proc print data=invty.stock noobs;
title ’INVTY.STOCK’;

run;

1644 MODIFY Statement � Chapter 6

Output 6.20 Results of Updating the RECDATE Field

INVTY.STOCK 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 34 14MAR97 245.00
M4J7 sander 98 14MAR97 45.88
LK43 filter 121 14MAR97 10.99
MN21 brace 43 14MAR97 27.87
BC85 clamp 80 14MAR97 9.55
NCF3 valve 198 14MAR97 24.50
KJ66 cutter 6 14MAR97 19.77
UYN7 rod 211 14MAR97 11.55
JD03 switch 383 14MAR97 13.99
BV1E timer 26 14MAR97 34.50

The MODIFY statement opens INVTY.STOCK for update processing. SAS reads one
observation of INVTY.STOCK for each iteration of the DATA step and performs any
operations that the code specifies. In this case, the code replaces the value of RECDATE
with the result of the TODAY function for every iteration of the DATA step. An implicit
REPLACE statement at the end of the step writes each observation to its previous
location in INVTY.STOCK.

Example 2: Modifying Observations Using a Transaction Data Set This example adds
the quantity of newly received stock to its data set INVTY.STOCK as well as updating
the date on which stock was received. The transaction data set ADDINV in the WORK
library contains the new data.

The ADDINV data set is the data set that contains the updated information.
ADDINV contains these variables:

PARTNO
is a character variable that corresponds to the indexed variable PARTNO in
INVTY.STOCK.

NWSTOCK
is a numeric variable that represents quantities of newly received stock for each
tool.

ADDINV is the second data set in the MODIFY statement. SAS uses it as the
transaction data set and reads each observation from ADDINV sequentially. Because
the BY statement specifies the common variable PARTNO, MODIFY finds the first
occurrence of the value of PARTNO in INVTY.STOCK that matches the value of
PARTNO in ADDINV. For each observation with a matching value, the DATA step
changes the value of RECDATE to today’s date and replaces the value of INSTOCK
with the sum of INSTOCK and NWSTOCK (from ADDINV). MODIFY does not add
NWSTOCK to the INVTY.STOCK data set because that would modify the data set
descriptor. Thus, it is not necessary to put NWSTOCK in a DROP statement.

This example specifies ADDINV as the transaction data set that contains information
to modify INVTY.STOCK. A BY statement specifies the shared variable whose values
locate the observations in INVTY.STOCK.

This DATA step creates ADDINV:

data addinv;
input PARTNO $ NWSTOCK;
datalines;

K89R 55
M4J7 21
LK43 43

Statements � MODIFY Statement 1645

MN21 73
BC85 57
NCF3 90
KJ66 2
UYN7 108
JD03 55
BV1E 27
;

This DATA step uses values from ADDINV to update INVTY.STOCK.

libname invty ’SAS-library’;

data invty.stock;
modify invty.stock addinv;
by partno;
RECDATE=today();
INSTOCK=instock+nwstock;
if _iorc_=0 then replace;

run;

proc print data=invty.stock noobs;
title ’INVTY.STOCK’;

run;

Output 6.21 Results of Updating the INSTOCK and RECDATE Fields

INVTY.STOCK 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 89 14MAR97 245.00
M4J7 sander 119 14MAR97 45.88
LK43 filter 164 14MAR97 10.99
MN21 brace 116 14MAR97 27.87
BC85 clamp 137 14MAR97 9.55
NCF3 valve 288 14MAR97 24.50
KJ66 cutter 8 14MAR97 19.77
UYN7 rod 319 14MAR97 11.55
JD03 switch 438 14MAR97 13.99
BV1E timer 53 14MAR97 34.50

Example 3: Modifying Observations Located by Observation Number This example
reads the data set NEWP, determines which observation number in INVTY.STOCK to
update based on the value of TOOL_OBS, and performs the update. This example
explicitly specifies the update activity by using an assignment statement to replace the
value of PRICE with the value of NEWP.

The data set NEWP contains two variables:

TOOL_OBS
contains the observation number of each tool in the tool company’s master data
set, INVTY.STOCK.

NEWP
contains the new price for each tool.

This DATA step creates NEWP:

1646 MODIFY Statement � Chapter 6

data newp;
input TOOL_OBS NEWP;
datalines;

1 251.00
2 49.33
3 12.32
4 30.00
5 15.00
6 25.75
7 22.00
8 14.00
9 14.32
10 35.00
;

This DATA step updates INVTY.STOCK:

libname invty ’SAS-library’;

data invty.stock;
set newp;
modify invty.stock point=tool_obs

nobs=max_obs;
if _error_=1 then

do;
put ’ERROR occurred for TOOL_OBS=’ tool_obs /
’during DATA step iteration’ _n_ /
’TOOL_OBS value might be out of range.’;
error=0;
stop;

end;
PRICE=newp;
RECDATE=today();

run;

proc print data=invty.stock noobs;
title ’INVTY.STOCK’;

run;

Output 6.22 Results of Updating the RECDATE and PRICE Fields

INVTY.STOCK 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 34 14MAR97 251.00
M4J7 sander 98 14MAR97 49.33
LK43 filter 121 14MAR97 12.32
MN21 brace 43 14MAR97 30.00
BC85 clamp 80 14MAR97 15.00
NCF3 valve 198 14MAR97 25.75
KJ66 cutter 6 14MAR97 22.00
UYN7 rod 211 14MAR97 14.00
JD03 switch 383 14MAR97 14.32
BV1E timer 26 14MAR97 35.00

Statements � MODIFY Statement 1647

Example 4: Modifying Observations Located by an Index This example uses the KEY=
option to identify observations to retrieve by matching the values of PARTNO from
ADDINV with the indexed values of PARTNO in INVTY.STOCK. ADDINV is created in
Example 2 on page 1644.

KEY= supplies index values that allow MODIFY to access directly the observations
to update. No dynamic WHERE processing occurs. In this example, you specify that the
value of INSTOCK in the master data set INVTY.STOCK increases by the value of the
variable NWSTOCK from the transaction data set ADDINV.

libname invty ’SAS-library’;

data invty.stock;
set addinv;
modify invty.stock key=partno;
INSTOCK=instock+nwstock;
RECDATE=today();
if _iorc_=0 then replace;

run;

proc print data=invty.stock noobs;
title ’INVTY.STOCK’;

run;

Output 6.23 Results of Updating the INSTOCK and RECDATE Fields by Using an
Index

INVTY.STOCK 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 89 14MAR97 245.00
M4J7 sander 119 14MAR97 45.88
LK43 filter 164 14MAR97 10.99
MN21 brace 116 14MAR97 27.87
BC85 clamp 137 14MAR97 9.55
NCF3 valve 288 14MAR97 24.50
KJ66 cutter 8 14MAR97 19.77
UYN7 rod 319 14MAR97 11.55
JD03 switch 438 14MAR97 13.99
BV1E timer 53 14MAR97 34.50

Example 5: Handling Duplicate Index Values This example shows how MODIFY
handles duplicate values of the variable in the SET data set that is supplying values to
the index on the master data set.

The NEWINV data set is the data set that contains the updated information.
NEWINV contains these variables:

PARTNO
is a character variable that corresponds to the indexed variable PARTNO in
INVTY.STOCK. The NEWINV data set contains duplicate values for PARTNO;
M4J7 appears twice.

NWSTOCK
is a numeric variable that represents quantities of newly received stock for each
tool.

This DATA step creates NEWINV:

data newinv;
input PARTNO $ NWSTOCK;

1648 MODIFY Statement � Chapter 6

datalines;
K89R 55
M4J7 21
M4J7 26
LK43 43
MN21 73
BC85 57
NCF3 90
KJ66 2
UYN7 108
JD03 55
BV1E 27
;

This DATA step terminates with an error when it tries to locate an observation in
INVTY.STOCK to match with the second occurrence of M4J7 in NEWINV:

libname invty ’SAS-library’;

/* This DATA step terminates with an error! */
data invty.stock;

set newinv;
modify invty.stock key=partno;
INSTOCK=instock+nwstock;
RECDATE=today();

run;

This message appears in the SAS log:

ERROR: No matching observation was found in MASTER data set.
PARTNO=K89R NWSTOCK=55 DESC= INSTOCK=. RECDATE=14MAR97 PRICE=.
ERROR=1 _IORC_=1230015 _N_=1
NOTE: Missing values were generated as a result of performing

an operation on missing values.
Each place is given by:
(Number of times) at (Line):(Column).
1 at 689:19

NOTE: The SAS System stopped processing this step because of
errors.

NOTE: The data set INVTY.STOCK has been updated. There were 0
observations rewritten, 0 observations added and 0
observations deleted.

Adding the UNIQUE option to the MODIFY statement avoids the error in the
previous DATA step. The UNIQUE option causes the DATA step to return to the top of
the index each time it looks for a match for the value from the SET data set. Thus, it
finds the M4J7 in the MASTER data set for each occurrence of M4J7 in the SET data
set. The updated result for M4J7 in the output shows that both values of NWSTOCK
from NEWINV for M4J7 are added to the value of INSTOCK for M4J7 in
INVTY.STOCK. An accumulation statement sums the values; without it, only the value
of the last instance of M4J7 would be the result in INVTY.STOCK.

data invty.stock;
set newinv;
modify invty.stock key=partno / unique;
INSTOCK=instock+nwstock;

Statements � MODIFY Statement 1649

RECDATE=today();
if _iorc_=0 then replace;

run;

proc print data=invty.stock noobs;
title ’Results of Using the UNIQUE Option’;

run;

Output 6.24 Results of Updating the INSTOCK and RECDATE Fields by Using the
UNIQUE Option

Results of Using the UNIQUE Option 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 89 14MAR97 245.00
M4J7 sander 145 14MAR97 45.88
LK43 filter 164 14MAR97 10.99
MN21 brace 116 14MAR97 27.87
BC85 clamp 137 14MAR97 9.55
NCF3 valve 288 14MAR97 24.50
KJ66 cutter 8 14MAR97 19.77
UYN7 rod 319 14MAR97 11.55
JD03 switch 438 14MAR97 13.99
BV1E timer 53 14MAR97 34.50

Example 6: Controlling I/O This example uses the SYSRC autocall macro and the
IORC automatic variable to control I/O condition. This technique helps to prevent
unexpected results that could go undetected. This example uses the direct access
method with an index to update INVTY.STOCK. The data in the NEWSHIP data set
updates INVTY.STOCK.

This DATA step creates NEWSHIP:

options yearcutoff= 1920;

data newship;
input PARTNO $ DESC $ NWSTOCK @17

SHPDATE date7. @25 NWPRICE;
datalines;

K89R seal 14 14nov96 245.00
M4J7 sander 24 23aug96 47.98
LK43 filter 11 29jan97 14.99
MN21 brace 9 09jan97 27.87
BC85 clamp 12 09dec96 10.00
ME34 cutter 8 14nov96 14.50
;

Each WHEN clause in the SELECT statement specifies actions for each input/output
return code that is returned by the SYSRC autocall macro:

� _SOK indicates that the MODIFY statement executed successfully.

� _DSENOM indicates that no matching observation was found in INVTY.STOCK.
The OUTPUT statement specifies that the observation be appended to
INVTY.STOCK. See the last observation in the output.

� If any other code is returned by SYSRC, the DATA step terminates and the PUT
statement writes the message to the log.

libname invty ’SAS-library’;

1650 MODIFY Statement � Chapter 6

data invty.stock;
set newship;
modify invty.stock key=partno;
select (_iorc_);

when (%sysrc(_sok)) do;
INSTOCK=instock+nwstock;
RECDATE=shpdate;
PRICE=nwprice;
replace;

end;
when (%sysrc(_dsenom)) do;

INSTOCK=nwstock;
RECDATE=shpdate;
PRICE=nwprice;
output;
error=0;

end;
otherwise do;

put
’An unexpected I/O error has occurred.’/
’Check your data and your program’;
error=0;
stop;

end;
end;

run;

proc print data=invty.stock noobs;
title ’INVTY.STOCK Data Set’;

run;

Output 6.25 The Updated INVTY.STOCK Data Set

INVTY.STOCK Data Set 1

PARTNO DESC INSTOCK RECDATE PRICE

K89R seal 48 14NOV96 245.00
M4J7 sander 122 23AUG96 47.98
LK43 filter 132 29JAN97 14.99
MN21 brace 52 09JAN97 27.87
BC85 clamp 92 09DEC96 10.00
NCF3 valve 198 20MAR96 24.50
KJ66 cutter 6 18JUN96 19.77
UYN7 rod 211 09SEP96 11.55
JD03 switch 383 09JAN97 13.99
BV1E timer 26 03JAN97 34.50
ME34 cutter 8 14NOV96 14.50

Example 7: Replacing and Removing Observations and Writing Observations to Different
SAS Data Sets This example shows that you can replace and remove (delete)
observations and write observations to different data sets. Further, this example shows
that if an OUTPUT, REPLACE, or REMOVE statement is present, you must specify
explicitly what action to take because no default statement is generated.

The parts that were received in 1997 are output to INVTY.STOCK97 and are
removed from INVTY.STOCK. Likewise, the parts that were received in 1995 are
output to INVTY.STOCK95 and are removed from INVTY.STOCK. Only the parts that

Statements � Null Statement 1651

were received in 1996 remain in INVTY.STOCK, and the PRICE is updated only in
INVTY.STOCK.

libname invty ’SAS-library’;

data invty.stock invty.stock95 invty.stock97;
modify invty.stock;
if recdate>’01jan97’d then do;

output invty.stock97;
remove invty.stock;

end;
else if recdate<’01jan96’d then do;

output invty.stock95;
remove invty.stock;

end;
else do;

price=price*1.1;
replace invty.stock;

end;
run;

proc print data=invty.stock noobs;
title ’New Prices for Stock Received in 1996’;

run;

Output 6.26 Output from Writing Observations to a Specific SAS Data Set

New Prices for Stock Received in 1996 1

PARTNO DESC INSTOCK RECDATE PRICE

LK43 filter 121 19MAY96 12.089
MN21 brace 43 10AUG96 30.657
BC85 clamp 80 16AUG96 10.505
NCF3 valve 198 20MAR96 26.950
KJ66 cutter 6 18JUN96 21.747
UYN7 rod 211 09SEP96 12.705

See Also

Statements:
“MISSING Statement” on page 1633
“OUTPUT Statement” on page 1654
“REMOVE Statement” on page 1690
“REPLACE Statement” on page 1693
“UPDATE Statement” on page 1734

“Reading, Combining, and Modifying SAS Data Sets” in SAS Language Reference:
Concepts

“The SQL Procedure” in the Base SAS Procedures Guide

Null Statement
Signals the end of data lines or acts as a placeholder.

1652 Null Statement � Chapter 6

Valid: Anywhere
Category: Action

Type: Executable

Syntax
;

or

;;;;

Without Arguments
The Null statement signals the end of the data lines that occur in your program.

Details
The primary use of the Null statement is to signal the end of data lines that follow a
DATALINES or CARDS statement. In this case, the Null statement functions as a step
boundary. When your data lines contain semicolons, use the DATALINES4 or CARDS4
statement and a Null statement of four semicolons.

Although the Null statement performs no action, it is an executable statement.
Therefore, a label can precede the Null statement, or you can use it in conditional
processing.

Examples
� The Null statement in this program marks the end of data lines and functions as

a step boundary.
data test;

input score1 score2 score3;
datalines;

55 135 177
44 132 169
;

� The input data records in this example contain semicolons. Use the Null statement following
the DATALINES4 statement to signal the end of the data lines.
data test2;

input code1 $ code2 $ code3 $;
datalines4;

55;39;1 135;32;4 177;27;3
78;29;1 149;22;4 179;37;3
;;;;

� The Null statement is useful while you are developing a program. For example,
use it after a statement label to test your program before you code the
statements that follow the label.
data _null_;

set dsn;
file print header=header;
put ’report text’;
...more statements...

return;

Statements � OPTIONS Statement 1653

header:;
run;

See Also

Statements:
“DATALINES Statement” on page 1427
“DATALINES4 Statement” on page 1429
“GO TO Statement” on page 1532
“LABEL Statement” on page 1601

OPTIONS Statement

Specifies or changes the value of one or more SAS system options.

Valid: anywhere
Category: Program Control
See: OPTIONS Statement in the documentation for your operating environment.

Syntax
OPTIONS option(s);

Arguments

option
specifies one or more SAS system options to be changed.

Details
The change that is made by the OPTIONS statement remains in effect for the rest of
the job, session, SAS process, or until you issue another OPTIONS statement to change
the options again. You can specify SAS system options through the OPTIONS
statement, through the OPTIONS window, at SAS invocation, and at the initiation of a
SAS process.

Note: If you want a particular group of options to be in effect for all your SAS jobs
or sessions, store an OPTIONS statement in an autoexec file or list the system options
in a configuration file or custom_option_set. �

Note: For a system option with a null value, the GETOPTION function returns a
value of ’’(single quotation marks with a blank space between them), for example
EMAILID=’ ’. This GETOPTION value can then be used in the OPTIONS statement. �

An OPTIONS statement can appear at any place in a SAS program, except within
data lines.

Operating Environment Information: The system options that are available depend on
your operating environment. Also, the syntax that is used to specify a system option in

1654 OUTPUT Statement � Chapter 6

the OPTIONS statement might be different from the syntax that is used at SAS
invocation. For details, see the SAS documentation for your operating environment. �

Comparisons
The OPTIONS statement requires you to enter the complete statement including
system option name and value, if necessary. The SAS OPTIONS window displays the
options’ names and settings in columns. To change a setting, type over the value that is
displayed and press ENTER or RETURN.

Examples

This example suppresses the date that is normally written to SAS output and sets a
line size of 72:

options nodate linesize=72;

See Also
“Definition of System Options” on page 1769

OUTPUT Statement

Writes the current observation to a SAS data set.

Valid: in a DATA step
Category: Action
Type: Executable

Syntax
OUTPUT<data-set-name(s)>;

Without Arguments
Using OUTPUT without arguments causes the current observation to be written to all
data sets that are named in the DATA statement.

Note: If a MODIFY statement is present, OUTPUT with no arguments writes the
current observation to the end of the data set that is specified in the MODIFY
statement. �

Arguments
data-set-name

specifies the name of a data set to which SAS writes the observation.
Restriction: All names specified in the OUTPUT statement must also appear in

the DATA statement.

Statements � OUTPUT Statement 1655

Tip: You can specify up to as many data sets in the OUTPUT statement as you
specified in the DATA statement for that DATA step.

Details

When and Where the OUTPUT Statement Writes Observations The OUTPUT statement
tells SAS to write the current observation to a SAS data set immediately, not at the end
of the DATA step. If no data set name is specified in the OUTPUT statement, the
observation is written to the data set or data sets that are listed in the DATA statement.

Implicit versus Explicit Output By default, every DATA step contains an implicit
OUTPUT statement at the end of each iteration that tells SAS to write observations to
the data set or data sets that are being created. Placing an explicit OUTPUT statement
in a DATA step overrides the automatic output, and SAS adds an observation to a data
set only when an explicit OUTPUT statement is executed. Once you use an OUTPUT
statement to write an observation to any one data set, however, there is no implicit
OUTPUT statement at the end of the DATA step. In this situation, a DATA step writes
an observation to a data set only when an explicit OUTPUT executes. You can use the
OUTPUT statement alone or as part of an IF-THEN or SELECT statement or in
DO-loop processing.

When Using the MODIFY Statement When you use the MODIFY statement with the
OUTPUT statement, the REMOVE and REPLACE statements override the implicit
write action at the end of each DATA step iteration. See “Comparisons” on page 1655
for more information. If both the OUTPUT statement and a REPLACE or REMOVE
statement execute on a given observation, perform the output action last to keep the
position of the observation pointer correct.

Comparisons
� OUTPUT writes observations to a SAS data set; PUT writes variable values or

text strings to an external file or the SAS log.
� To control when an observation is written to a specified output data set, use the

OUTPUT statement. To control which variables are written to a specified output
data set, use the KEEP= or DROP= data set option in the DATA statement, or use
the KEEP or DROP statement.

� When you use the OUTPUT statement with the MODIFY statement, the following
items apply.
� Using an OUTPUT, REPLACE, or REMOVE statement overrides the default

write action at the end of a DATA step. (OUTPUT is the default action;
REPLACE becomes the default action when a MODIFY statement is used.) If
you use any of these statements in a DATA step, you must explicitly program
output for the new observations that are added to the data set.

� The OUTPUT, REPLACE, and REMOVE statements are independent of each
other. More than one statement can apply to the same observation, as long as
the sequence is logical.

� If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the
observation pointer correct.

Examples

Example 1: Sample Uses of OUTPUT These examples show how you can use an
OUTPUT statement:

1656 OUTPUT Statement � Chapter 6

� This line of code writes the current observation to a SAS data set. output;

� This line of code writes the current observation to a SAS data set when a specified condition is true

� This line of code writes an observation to the data set MARKUP when the PHONE value is missing

Example 2: Creating Multiple Observations from Each Line of Input You can create
two or more observations from each line of input data. This SAS program creates three
observations in the data set RESPONSE for each observation in the data set SULFA:

data response(drop=time1-time3);
set sulfa;
time=time1;
output;
time=time2;
output;
time=time3;
output;

run;

Example 3: Creating Multiple Data Sets from a Single Input File You can create more
than one SAS data set from one input file. In this example, OUTPUT writes
observations to two data sets, OZONE and OXIDES:

options yearcutoff= 1920;

data ozone oxides;
infile file-specification;
input city $ 1-15 date date9.

chemical $ 26-27 ppm 29-30;
if chemical=’O3’ then output ozone;
else output oxides;

run;

Example 4: Creating One Observation from Several Lines of Input You can combine
several input observations into one observation. In this example, OUTPUT creates one
observation that totals the values of DEFECTS in the first ten observations of the input
data set:

data discards;
set gadgets;
drop defects;
reps+1;
if reps=1 then total=0;
total+defects;
if reps=10 then do;

output;
stop;

end;
run;

See Also

Statements:
“DATA Statement” on page 1420
“MODIFY Statement” on page 1634

Statements � PUT Statement 1657

“PUT Statement” on page 1657

“REMOVE Statement” on page 1690

“REPLACE Statement” on page 1693

PAGE Statement

Skips to a new page in the SAS log.

Valid: Anywhere

Category: Log Control

Syntax
PAGE;

Without Arguments
The PAGE statement skips to a new page in the SAS log.

Details
You can use the PAGE statement when you run SAS in a windowing environment,
batch, or noninteractive mode. The PAGE statement itself does not appear in the log.
When you run SAS in interactive line mode, PAGE might print blank lines to the
display monitor (or to the alternate log file).

See Also

Statement:

“LIST Statement” on page 1621

System Options:

“LINESIZE= System Option” on page 1878

“PAGESIZE= System Option” on page 1899

PUT Statement

Writes lines to the SAS log, to the SAS output window, or to an external location that is specified
in the most recent FILE statement.

Valid: in a DATA step

Category: File-handling

Type: Executable

1658 PUT Statement � Chapter 6

Syntax
PUT <specification(s)><_ODS_><@|@@>;

Without Arguments
The PUT statement without arguments is called a null PUT statement. The null PUT
statement

� writes the current output line to the current location, even if the current output
line is blank

� releases an output line that is being held with a trailing @ by a previous PUT
statement.

For an example, see Example 5 on page 1671. For more information, see “Using
Line-Hold Specifiers” on page 1665.

Arguments
specification(s)

specifies what is written, how it is written, and where it is written. The
specification can include

variable
specifies the variable whose value is written.

Note: Beginning with Version 7, you can specify column-mapped Output
Delivery System variables in the PUT statement. This functionality is
described briefly here in _ODS_ on page 1659, but documented more
completely in PUT Statement for ODS in SAS Output Delivery System: User’s
Guide. �

(variable-list)
specifies a list of variables whose values are written.
Requirement: The (format-list) must follow the (variable-list).
See: “PUT Statement, Formatted” on page 1676

’character-string’
specifies a string of text, enclosed in quotation marks, to write.
Tip: To write a hexadecimal string in EBCDIC or ASCII, follow the ending

quotation mark with an x.
Tip: If you use single quotation marks (’’) or double quotation marks ("")

together (with no space in between them) as the string of text, SAS will
output a single quotation mark (’) or double quotation mark ("),
respectively.

See Also: “List Output” on page 1663
Example: This statement writes HELLO when the hexadecimal string is

converted to ASCII characters:

put ’68656C6C6F’x;

n*
specifies to repeat n times the subsequent character string.
Example: This statement writes a line of 132 underscores.

put 132*’_’;

Featured in: Example 4 on page 1671

Statements � PUT Statement 1659

pointer-control
moves the output pointer to a specified line or column in the output buffer.

See: “Column Pointer Controls” on page 1660 and “Line Pointer Controls” on
page 1661

column-specifications
specifies which columns of the output line the values are written.
See: “Column Output” on page 1663

Featured in: Example 2 on page 1668

format.
specifies a format to use when the variable values are written.

See: “Formatted Output” on page 1663
Featured in: Example 1 on page 1667

(format-list)
specifies a list of formats to use when the values of the preceding list of
variables are written.

Restriction: The (format-list) must follow the (variable-list).
See: “PUT Statement, Formatted” on page 1676

INFILE
writes the last input data record that is read either from the current input
file or from the data lines that follow a DATELINES statement.

Tip: _INFILE_ is an automatic variable that references the current INPUT
buffer. You can use this automatic variable in other SAS statements.

Tip: If the most recent INPUT statement uses line-pointer controls to read
multiple input data records, PUT _INFILE_ writes only the record that the
input pointer is positioned on.

Example: This PUT statement writes all the values of the first input data
record:

input #3 score #1 name $ 6-23;
put _infile_;

Featured in: Example 6 on page 1672

ALL
writes the values of all variables, which includes automatic variables, that
are defined in the current DATA step by using named output.
See: “Named Output” on page 1663

ODS
moves data values for all columns (as defined by the ODS option in the FILE
statement) into a special buffer, from which it is eventually written to the data
component. The ODS option in the FILE statement defines the structure of the
data component that holds the results of the DATA step.

Restriction: Use _ODS_ only if you have previously specified the ODS option in
the FILE statement.

Tip: You can use the _ODS_ specification in conjunction with variable
specifications and column pointers, and it can appear anywhere in a PUT
statement.

Interaction: _ODS_ writes data to a specific column only if a PUT statement has
not already specified a variable for that column with a column pointer. That is,
a variable specification for a column overrides the _ODS_ option.

1660 PUT Statement � Chapter 6

See: “PUT Statement for ODS” in SAS Output Delivery System: User’s Guide

@|@@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.

Restriction: The trailing @ or double trailing @ must be the last item in the PUT
statement.

Tip: Use an @ or @@ to hold the pointer at its current location. The next PUT
statement that executes writes to the same output line rather than to a new
output line.

See: “Using Line-Hold Specifiers” on page 1665

Featured in: Example 5 on page 1671

Column Pointer Controls

@n
moves the pointer to column n.

Range: a positive integer

Example: @15 moves the pointer to column 15 before the value of NAME is
written:

put @15 name $10.;

Featured in: Example 2 on page 1668 and Example 4 on page 1671

@numeric-variable
moves the pointer to the column given by the value of numeric-variable.

Range: a positive integer

Tip: If n is not an integer, SAS truncates the decimal portion and uses only the
integer value. If n is zero or negative, the pointer moves to column 1.

Example: The value of the variable A moves the pointer to column 15 before the
value of NAME is written:

a=15;
put @a name $10.;

Featured in: Example 2 on page 1668

@(expression)
moves the pointer to the column that is given by the value of expression.

Range: a positive integer

Tip: If the value of expression is not an integer, SAS truncates the decimal value
and uses only the integer value. If it is zero, the pointer moves to column 1.

Example: The result of the expression moves the pointer to column 15 before the
value of NAME is written:

b=5;
put @(b*3) name $10.;

+n
moves the pointer n columns.

Range: a positive integer or zero

Tip: If n is not an integer, SAS truncates the decimal portion and uses only the
integer value.

Statements � PUT Statement 1661

Example: This statement moves the pointer to column 23, writes a value of
LENGTH in columns 23 through 26, advances the pointer five columns, and
writes the value of WIDTH in columns 32 through 35:

put @23 length 4. +5 width 4.;

+numeric-variable
moves the pointer the number of columns given by the value of numeric-variable.
Range: a positive or negative integer or zero
Tip: If numeric-variable is not an integer, SAS truncates the decimal value and

uses only the integer value. If numeric-variable is negative, the pointer moves
backward. If the current column position becomes less than 1, the pointer
moves to column 1. If the value is zero, the pointer does not move. If the value
is greater than the length of the output buffer, the current line is written out
and the pointer moves to column 1 on the next line.

+(expression)
moves the pointer the number of columns given by expression.
Range: expression must result in an integer
Tip: If expression is not an integer, SAS truncates the decimal value and uses

only the integer value. If expression is negative, the pointer moves backward. If
the current column position becomes less than 1, the pointer moves to column 1.
If the value is zero, the pointer does not move. If the value is greater than the
length of the output buffer, the current line is written out and the pointer
moves to column 1 on the next line.

Featured in: Example 2 on page 1668

Line Pointer Controls

#n
moves the pointer to line n.
Range: a positive integer
Example: The #2 moves the pointer to the second line before the value of ID is

written in columns 3 and 4:

put @12 name $10. #2 id 3-4;

#numeric-variable
moves the pointer to the line given by the value of numeric-variable.
Range: a positive integer
Tip: If the value of numeric-variable is not an integer, SAS truncates the decimal

value and uses only the integer value.

#(expression)
moves the pointer to the line that is given by the value of expression.
Range: Expression must result in a positive integer.
Tip: If the value of expression is not an integer, SAS truncates the decimal value

and uses only the integer value.

/
advances the pointer to column 1 of the next line.
Example: The values for NAME and AGE are written on one line, and then the

pointer moves to the second line to write the value of ID in columns 3 and 4:

put name age / id 3-4;

Featured in: Example 3 on page 1669

1662 PUT Statement � Chapter 6

OVERPRINT
causes the values that follow the keyword OVERPRINT to print on the most
recently written output line.
Requirement: You must direct the output to a file. Set the N= option in the

FILE statement to 1 and direct the PUT statements to a file.
Tip: OVERPRINT has no effect on lines that are written to a display.
Tip: Use OVERPRINT in combination with column pointer and line pointer

controls to overprint text.
Example: This statement overprints underscores, starting in column 15, which

underlines the title:

put @15 ’Report Title’ overprint
@15 ’____________’;

Featured in: Example 4 on page 1671

BLANKPAGE
advances the pointer to the first line of a new page, even when the pointer is
positioned on the first line and the first column of a new page.
Tip: If the current output file contains carriage-control characters,

BLANKPAGE produces output lines that contain the appropriate
carriage-control character.

Featured in: Example 3 on page 1669

PAGE
advances the pointer to the first line of a new page. SAS automatically begins a
new page when a line exceeds the current PAGESIZE= value.
Tip: If the current output file is printed, _PAGE_ produces an output line that

contains the appropriate carriage-control character. _PAGE_ has no effect on a
file that is not printed.

Tip: If you specify FILE PRINT in an interactive SAS session, then the Output
window interprets the form-feed control characters as page breaks, and they are
removed from the output. The resulting file is a flat file without page break
characters. If a file needs to contain the form-feed characters, then the FILE
statement should include a physical file location and the PRINT option.

Featured in: Example 3 on page 1669

Details

When to Use PUT
Use the PUT statement to write lines to the SAS log, to the SAS output window, or to
an external location. If you do not execute a FILE statement before the PUT statement
in the current iteration of a DATA step, SAS writes the lines to the SAS log. If you
specify the PRINT option in the FILE statement, SAS writes the lines to the SAS
output window.

The PUT statement can write lines that contain variable values, character strings,
and hexadecimal character constants. With specifications in the PUT statement, you
specify what to write, where to write it, and how to format it.

Output Styles
There are four ways to write variable values with the PUT statement:

� column
� list (simple and modified)

Statements � PUT Statement 1663

� formatted

� named

A single PUT statement might contain any or all of the available output styles,
depending on how you want to write lines.

Column Output With column output, the column numbers follow the variable in the
PUT statement. These numbers indicate where in the line to write the following value:

put name 6-15 age 17-19;

These lines are written to the SAS log.*

----+----1----+----2----+
Peterson 21
Morgan 17

The PUT statement writes values for NAME and AGE in the specified columns. See
“PUT Statement, Column” on page 1674 for more information.

List Output With list output, list the variables and character strings in the PUT
statement in the order in which you want to write them. For example, this PUT
statement

put name age;

writes the values for NAME and AGE to the SAS log:*

----+----1----+----2----+
Peterson 21
Morgan 17

See “PUT Statement, List” on page 1679 for more information.

Formatted Output With formatted output, specify a SAS format or a user-written
format after the variable name. The format gives instructions on how to write the
variable value. Formats enable you to write in a non-standard form, such as packed
decimal, or numbers that contain special characters such as commas. For example, this
PUT statement

put name $char10. age 2. +1 date mmddyy10.;

writes the values for NAME, AGE, and DATE to the SAS log:*

----+----1----+----2----+
Peterson 21 07/18/1999
Morgan 17 11/12/1999

Using a pointer control of +1 inserts a blank space between the values of AGE and
DATE. See “PUT Statement, Formatted” on page 1676 for more information.

Named Output With named output, list the variable name followed by an equal sign.
For example, this PUT statement

put name= age=;

writes the values for NAME and AGE to the SAS log:*

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.
* The ruled line is for illustrative purposes only; the PUT statement does not generate it.

1664 PUT Statement � Chapter 6

----+----1----+----2----+
name=Peterson age=21
name=Morgan age=17

See “PUT Statement, Named” on page 1684 for more information.

Using Multiple Output Styles in a Single PUT Statement
A PUT statement can combine any or all of the different output styles. For example,

put name ’on ’ date mmddyy8. ’ weighs ’
startwght +(-1) ’.’ idno= 40-45;

See Example 1 on page 1667 for an explanation of the lines written to the SAS log.
When you combine different output styles, it is important to understand the location

of the output pointer after each value is written. For more information about the
pointer location, see “Pointer Location After a Value Is Written” on page 1666.

Avoiding a Common Error When Writing Both a Character Constant and a
Variable
When using a PUT statement to write a character constant that is followed by a
variable name, always put a blank space between the closing quotation mark and the
variable name:

put ’Player:’ name1 ’Player:’ name2 ’Player:’ name3;

Otherwise, SAS might interpret a character constant that is followed by a variable
name as a special SAS constant as illustrated in this table.

Table 6.9 Characters That Cause Misinterpretation When They Follow a Character
Constant

Starting Letter of Variable Represents Examples

b bit testing constant ’00100000’b

d date constant ’01jan04’d

dt datetime constant ’18jan2003:9:27:05am’dt

n name literal ’My Table’n

t time constant ’9:25:19pm’t

x hexadecimal notation ’534153’x

Example 7 on page 1672 shows how to use character constants followed by variables.
For more information about SAS name literals and SAS constants in expressions, see
SAS Language Reference: Concepts.

Pointer Controls
As SAS writes values with the PUT statement, it keeps track of its position with a
pointer. The PUT statement provides three ways to control the movement of the pointer:

column pointer controls
reset the pointer’s column position when the PUT statement starts to write the
value to the output line.

line pointer controls

Statements � PUT Statement 1665

reset the pointer’s line position when the PUT statement writes the value to the
output line.

line-hold specifiers
hold a line in the output buffer so that another PUT statement can write to it. By
default, the PUT statement releases the previous line and writes to a new line.

With column and line pointer controls, you can specify an absolute line number or
column number to move the pointer or you can specify a column or line location that is
relative to the current pointer position. The following table lists all pointer controls
that are available in the PUT statement.

Table 6.10 Pointer Controls Available in the PUT Statement

Pointer Controls Relative Absolute

column pointer
controls

+n @n

+numeric-variable @numeric-variable

+(expression) @(expression)

line pointer controls / , _PAGE_ ,

BLANKPAGE

#n

#numeric-variable

#(expression)

OVERPRINT none

line-hold specifiers @ (not applicable)

@@ (not applicable)

Note: Always specify pointer controls before the variable for which they apply. �

See “Pointer Location After a Value Is Written” on page 1666 for more information
about how SAS determines the pointer position.

Using Line-Hold Specifiers
Line-hold specifiers keep the pointer on the current output line when

� more than one PUT statement writes to the same output line
� a PUT statement writes values from more than one observation to the same

output line.

Without line-hold specifiers, each PUT statement in a DATA step writes a new
output line.

In the PUT statement, trailing @ and double trailing @@ produce the same effect.
Unlike the INPUT statement, the PUT statement does not automatically release a line
that is held by a trailing @ when the DATA step begins a new iteration. SAS releases
the current output line that is held by a trailing @ or double trailing @ when it
encounters

� a PUT statement without a trailing @
� a PUT statement that uses _BLANKPAGE_ or _PAGE_
� the end of the current line (determined by the current value of the LRECL= or

LINESIZE= option in the FILE statement, if specified, or the LINESIZE= system
option)

� the end of the last iteration of the DATA step.

1666 PUT Statement � Chapter 6

Using a trailing @ or double trailing @ can cause SAS to attempt to write past the
current line length because the pointer value is unchanged when the next PUT
statement executes. See “When the Pointer Goes Past the End of a Line” on page 1666.

Pointer Location After a Value Is Written
Understanding the location of the output pointer after a value is written is important,
especially if you combine output styles in a single PUT statement. The pointer location
after a value is written depends on which output style you use and whether a character
string or a variable is written. With column or formatted output, the pointer is located
in the first column after the end of the field that is specified in the PUT statement.
These two styles write only variable values.

With list output or named output, the pointer is located in the second column after a
variable value because PUT skips a column automatically after each value is written.
However, when a PUT statement uses list output to write a character string, the
pointer is located in the first column after the string. If you do not use a line pointer
control or column output after a character string is written, add a blank space to the
end of the character string to separate it from the next value.

After an _INFILE_ specification, the pointer is located in the first column after the
record is written from the current input file.

When the output pointer is in the upper left corner of a page,

� PUT _BLANKPAGE_ writes a blank page and moves the pointer to the top of the
next page.

� PUT _PAGE_ leaves the pointer in the same location.

You can determine the current location of the pointer by examining the variables that
are specified with the COLUMN= option and the LINE= option in the FILE statement.

When the Pointer Goes Past the End of a Line
SAS does not write an output line that is longer than the current output line length.
The line length of the current output file is determined by

� the value of the LINESIZE= option in the current FILE statement
� the value of the LINESIZE= system option (for the SAS output window)

� the LRECL= option in the current FILE statement (for external files).

You can inadvertently position the pointer beyond the current line length with one or
more of these specifications:

� a + pointer control with a value that moves the pointer to a column beyond the
current line length

� a column range that exceeds the current line length (for example, PUT X 90 – 100
when the current line length is 80)

� a variable value or character string that does not fit in the space that remains on
the current output line.

By default, when PUT attempts to write past the end of the current line, SAS
withholds the entire item that overflows the current line, writes the current line, and
then writes the overflow item on a new line, starting in column 1. See the FLOWOVER,
DROPOVER, and STOPOVER options in the statement “FILE Statement” on page 1457.

Arrays
You can use the PUT statement to write an array element. The subscript is any SAS
expression that results in an integer when the PUT statement executes. You can use an

Statements � PUT Statement 1667

array reference in a numeric-variable construction with a pointer control if you enclose
the reference in parentheses, as shown here:

� @(array-name{i})

� +(array-name{i})

� #(array-name{i})

Use the array subscript asterisk (*) to write all elements of a previously defined
array to an external location. SAS allows one-dimensional or multidimensional arrays,
but it does not allow a _TEMPORARY_ array. Enclose the subscript in braces, brackets,
or parentheses, and print the array using list, formatted, column, or named output.
With list output, the form of this statement is

PUT array-name{*};

With formatted output, the form of this statement is

PUT array-name{*}(format|format.list)

The format in parentheses follows the array reference.

Comparisons

� The PUT statement writes variable values and character strings to the SAS log or
to an external location while the INPUT statement reads raw data in external files
or data lines entered instream.

� Both the INPUT and the PUT statements use the trailing @ and double trailing @
line-hold specifiers to hold the current line in the input or output buffer,
respectively. In an INPUT statement, a double trailing @ holds a line in the input
buffer from one iteration of the DATA step to the next. In a PUT statement,
however, a trailing @ has the same effect as a double trailing @; both hold a line
across iterations of the DATA step.

� Both the PUT and OUTPUT statements create output in a DATA step. The PUT
statement uses an output buffer and writes output lines to an external location,
the SAS log, or your monitor. The OUTPUT statement uses the program data
vector and writes observations to a SAS data set.

Examples

Example 1: Using Multiple Output Styles in One PUT Statement This example uses
several output styles in a single PUT statement:

options yearcutoff= 1920;

data club1;
input idno name $ startwght date : date7.;
put name ’on ’ date mmddyy8. ’ weighs ’

startwght +(-1) ’.’ idno= 32-40;
datalines;

032 David 180 25nov99
049 Amelia 145 25nov99
219 Alan 210 12nov99
;

The following table shows the output style used for each variable in the example:

1668 PUT Statement � Chapter 6

Variables Output Style

NAME, STARTWGHT list output

DATE formatted output

IDNO named output

The PUT statement also uses pointer controls and specifies both character strings
and variable names.

The program writes the following lines to the SAS log:*

----+----1----+----2----+----3----+----4
David on 11/25/99 weighs 180. idno=1032
Amelia on 11/25/99 weighs 145. idno=1049
Alan on 11/12/99 weighs 210. idno=1219

Blank spaces are inserted at the beginning and the end of the character strings to
change the pointer position. These spaces separate the value of a variable from the
character string. The +(-1) pointer control moves the pointer backward to remove the
unwanted blank that occurs between the value of STARTWGHT and the period. For
more information about how to position the pointer, see “Pointer Location After a Value
Is Written” on page 1666.

Example 2: Moving the Pointer within a Page These PUT statements show how to use
column and line pointer controls to position the output pointer.

� To move the pointer to a specific column, use @ followed by the column number,
variable, or expression whose value is that column number. For example, this
statement moves the pointer to column 15 and writes the value of TOTAL SALES
using list output:

put @15 totalsales;

This PUT statement moves the pointer to the value that is specified in
COLUMN and writes the value of TOTALSALES with the COMMA6 format:

data _null_;
set carsales;
column=15;
put @column totalsales comma6.;

run;

� This program shows two techniques to move the pointer backward:

data carsales;
input item $10. jan : comma5.

feb : comma5. mar : comma5.;
saleqtr1=sum(jan,feb,mar);

/* an expression moves pointer backward */
put ’1st qtr sales for ’ item

’is ’ saleqtr1 : comma6. +(-1) ’.’;
/* a numeric variable with a negative

value moves pointer backward. */
x=-1;

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.

Statements � PUT Statement 1669

put ’1st qtr sales for ’ item
’is ’ saleqtr1 : comma5. +x ’.’;

datalines;
trucks 1,382 2,789 3,556
vans 1,265 2,543 3,987
sedans 2,391 3,011 3,658
;

Because the value of SALEQTR1 is written with modified list output, the
pointer moves automatically two spaces. For more information, see “How Modified
List Output and Formatted Output Differ” on page 1681. To remove the unwanted
blank that occurs between the value and the period, move the pointer backward by
one space.

The program writes the following lines to the SAS log:*

----+----1----+----2----+----3----+----4
st qtr sales for trucks is 7,727.
st qtr sales for trucks is 7,727.
st qtr sales for vans is 7,795.
st qtr sales for vans is 7,795.
st qtr sales for sedans is 9,060.
st qtr sales for sedans is 9,060.

� This program uses a PUT statement with the / line pointer control to advance to
the next output line:

data _null_;
set carsales end=lastrec;
totalsales+saleqtr1;
if lastrec then

put @2 ’Total Sales for 1st Qtr’
/ totalsales 10-15;

run;

After the DATA step calculates TOTALSALES using all the observations in the
CARSALES data set, the PUT statement executes. It writes a character string
beginning in column 2 and moves to the next line to write the value of
TOTALSALES in columns 10 through 15:**
----+----1----+----2----+----3
Total Sales for 1st Qtr

24582

Example 3: Moving the Pointer to a New Page This example creates a data set called
STATEPOP, which contains information from the 1990 U.S. census about the population
of metropolitan and non-metropolitan areas. It executes the FORMAT procedure to
group the 50 states and the District of Columbia into four regions. It then uses the IF
and PUT statements to control the printed output.

options pagesize=24 linesize=64 nodate pageno=1;

title1;

data statepop;
input state $ cityp90 ncityp90 region @@;

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.
** The ruled line is for illustrative purposes only; the PUT statement does not generate it.

1670 PUT Statement � Chapter 6

label cityp90= ’1990 metropolitan population
(million)’

ncityp90=’1990 nonmetropolitan population
(million)’

region= ’Geographic region’;
datalines;

ME .443 .785 1 NH .659 .450 1
VT .152 .411 1 MA 5.788 .229 1
RI .938 .065 1 CT 3.148 .140 1
NY 16.515 1.475 1 NJ 7.730 .A 1
PA 10.083 1.799 1 DE .553 .113 2
MD 4.439 .343 2 DC .607 . 2
VA 4.773 1.414 2 WV .748 1.045 2
NC 4.376 2.253 2 SC 2.423 1.064 2
GA 4.352 2.127 2 FL 12.023 .915 2
KY 1.780 1.906 2 TN 3.298 1.579 2
AL 2.710 1.331 2 MS .776 1.798 2
AR 1.040 1.311 2 LA 3.160 1.060 2
OK 1.870 1.276 2 TX 14.166 2.821 2
OH 8.826 2.021 3 IN 3.962 1.582 3
IL 9.574 1.857 3 MI 7.698 1.598 3
WI 3.331 1.561 3 MN 3.011 1.364 3
IA 1.200 1.577 3 MO 3.491 1.626 3
ND .257 .381 3 SD .221 .475 3
NE .787 .791 3 KS 1.333 1.145 3
MT .191 .608 4 ID .296 .711 4
WY .134 .319 4 CO 2.686 .608 4
NM .842 .673 4 AZ 3.106 .559 4
UT 1.336 .387 4 NV 1.014 .183 4
WA 4.036 .830 4 OR 1.985 .858 4
CA 28.799 .961 4 AK .226 .324 4
HI .836 .272 4
;

proc format;
value regfmt 1=’Northeast’

2=’South’
3=’Midwest’
4=’West’;

run;

data _null_;
set statepop;
by region;
pop90=sum(cityp90,ncityp90);
file print;
put state 1-2 @5 pop90 7.3 ’ million’;
if first.region then

regioncitypop=0; /* new region */
regioncitypop+cityp90;
if last.region then

do;
put // ’1990 US CENSUS for ’ region regfmt.

/ ’Total Urban Population: ’

Statements � PUT Statement 1671

regioncitypop’ million’ _page_;
end;

run;

Output 6.27 PUT Statement Output for the Northeast Region

1
ME 1.228 million
NH 1.109 million
VT 0.563 million
MA 6.017 million
RI 1.003 million
CT 3.288 million
NY 17.990 million
NJ 7.730 million
PA 11.882 million

1990 US CENSUS for Northeast
Total Urban Population: 45.456 million

PUT _PAGE_ advances the pointer to line 1 of the new page when the value of
LAST.REGION is 1. The example prints a footer message before exiting the page.

Example 4: Underlining Text This example uses OVERPRINT to underscore a value
written by a previous PUT statement:

data _null_;
input idno name $ startwght;
file file-specification print;
put name 1-10 @15 startwght 3.;
if startwght > 200 then
put overprint @15 ’___’;

datalines;
032 David 180
049 Amelia 145
219 Alan 210
;

The second PUT statement underlines weights above 200 on the output line the first
PUT statement prints.

This PUT statement uses OVERPRINT with both a column pointer control and a line
pointer control:

put @5 name $8. overprint @5 8*’_’
/ @20 address;

The PUT statement writes a NAME value, underlines it by overprinting eight
underscores, and moves the output pointer to the next line to write an ADDRESS value.

Example 5: Holding and Releasing Output Lines This DATA step demonstrates how to
hold and release an output line with a PUT statement:

data _null_;
input idno name $ startwght 3.;
put name @;
if startwght ne . then
put @15 startwght;

else put;
datalines;

1672 PUT Statement � Chapter 6

032 David 180
049 Amelia 145
126 Monica
219 Alan 210
;

In this example,

� the trailing @ in the first PUT statement holds the current output line after the
value of NAME is written

� if the condition is met in the IF-THEN statement, the second PUT statement
writes the value of STARTWGHT and releases the current output line

� if the condition is not met, the second PUT never executes. Instead, the ELSE
PUT statement executes. The ELSE PUT statement releases the output line and
positions the output pointer at column 1 in the output buffer.

The program writes the following lines to the SAS log:*

----+----1----+----2
David 180
Amelia 145
Monica
Alan 210

Example 6: Writing the Current Input Record to the Log When a value for ID is less
than 1000, PUT _INFILE_ executes and writes the current input record to the SAS log.
The DELETE statement prevents the DATA step from writing the observation to the
TEAM data set.

data team;
input id team $ score1 score2;
if id le 1000 then
do;

put _infile_;
delete;

end;
datalines;

032 red 180 165
049 yellow 145 124
219 red 210 192
;

The program writes the following line to the SAS log:*

----+----1----+----2
219 red 210 192

Example 7: Avoiding a Common Error When Writing a Character Constant Followed by a
Variable This example illustrates how to use a PUT statement to write character
constants and variable values without causing them to be misinterpreted as SAS name
literals. A SAS name literal is a name token that is expressed as a string within
quotation marks, followed by the letter n. For more information about SAS name
literals, see SAS Language Reference: Concepts.

In the program below, the PUT statement writes the constant ’n’ followed by the
value of the variable NVAR1, and then writes another constant ’n’:

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.

Statements � PUT Statement 1673

data _null_;
n=5;
nvar1=1;
var1=7;
put @1 ’n’ nvar1 ’n’;

run;

This program writes the following line to the SAS log:*

----+----1----+----2
n1 n

If all the spaces between the constants and the variables are removed from the
previous PUT statement, SAS interprets ’n’ as a name literal instead of reading ’n’ as a
constant. The next variable is read as VAR1 instead of NVAR1. The final ’n’ constant is
interpreted correctly.

put @1 ’n’nvar1’n’;

This PUT statement writes the following line to the SAS log:*

----+----1----+----2
5 7 n

To print character constants and variable values without intervening spaces, and
without potential misinterpretation, you can add spaces between them and use pointer
controls where necessary. For example, the following PUT statement uses a pointer
control to write the correct character constants and variable values but does not insert
blank spaces. Note that +(-1) moves the PUT statement pointer backwards by one space.

put @1 ’n’ nvar1 +(-1) ’n’;

This PUT statement writes the following line to the SAS log:**

----+----1----+----2
n1n

See Also

Statements:

“FILE Statement” on page 1457

“PUT Statement, Column” on page 1674

“PUT Statement, Formatted” on page 1676

“PUT Statement, List” on page 1679

“PUT Statement, Named” on page 1684

PUT Statement for ODS

System Options:

“LINESIZE= System Option” on page 1878

“PAGESIZE= System Option” on page 1899

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.
** The ruled line is for illustrative purposes only; the PUT statement does not generate it.

1674 PUT Statement, Column � Chapter 6

PUT Statement, Column

Writes variable values in the specified columns in the output line.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
PUT variable start-column <— end-column>

<.decimal–places> <@ | @@>;

Arguments

variable
specifies the variable whose value is written.

start-column
specifies the first column of the field where the value is written in the output line.

— end-column
specifies the last column of the field for the value.
Tip: If the value occupies only one column in the output line, omit end-column.
Example: Because end-column is omitted, the values for the character variable

GENDER occupy only column 16:

put name 1-10 gender 16;

.decimal-places
specifies the number of digits to the right of the decimal point in a numeric value.
Range: positive integer
Tip: If you specify 0 for d or omit d, the value is written without a decimal point.
Featured in: “Examples” on page 1675

@| @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Requirement: The trailing @ or double trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 1665

Details
With column output, the column numbers indicate the position that each variable value
will occupy in the output line. If a value requires fewer columns than specified, a
character variable is left-aligned in the specified columns, and a numeric variable is
right-aligned in the specified columns.

There is no limit to the number of column specifications you can make in a single
PUT statement. You can write anywhere in the output line, even if a value overwrites

Statements � PUT Statement, Column 1675

columns that were written earlier in the same statement. You can combine column
output with any of the other output styles in a single PUT statement. For more
information, see “Using Multiple Output Styles in a Single PUT Statement” on page
1664.

Examples

Use column output in the PUT statement as shown here.

� This PUT statement uses column output:

data _null_;
input name $ 1-18 score1 score2 score3;
put name 1-20 score1 23-25 score2 28-30

score3 33-35;
datalines;

Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

The program writes the following lines to the SAS log:*

----+----1----+----2----+----3----+----4
Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74

The values for the character variable NAME begin in column 1, the left
boundary of the specified field (columns 1 through 20). The values for the numeric
variables SCORE1 through SCORE3 appear flush with the right boundary of their
field.

� This statement produces the same output lines, but writes the SCORE1 value first
and the NAME value last:

put score1 23-25 score2 28-30
score3 33-35 name $ 1-20;

� This DATA step specifies decimal points with column output:

data _null_;
x=11;
y=15;
put x 10-18 .1 y 20-28 .1;

run;

This program writes the following line to the SAS log:*

----+----1----+----2----+----3----+----4
11.0 15.0

See Also

Statement:

“PUT Statement” on page 1657

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.

1676 PUT Statement, Formatted � Chapter 6

PUT Statement, Formatted

Writes variable values with the specified format in the output line.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
PUT <pointer-control> variable format. <@ | @@>;

PUT <pointer-control> (variable-list) (format-list)
<@ | @@>;

Arguments

pointer-control
moves the output pointer to a specified line or column.
See: “Column Pointer Controls” on page 1660 and “Line Pointer Controls” on page

1661
Featured in: Example 1 on page 1678

variable
specifies the variable whose value is written.

(variable-list)
specifies a list of variables whose values are written.
Requirement: The (format-list) must follow the (variable-list).
See: “How to Group Variables and Formats” on page 1677
Featured in: Example 1 on page 1678

format.
specifies a format to use when the variable values are written. To override the
default alignment, you can add an alignment specification to a format:

-L left aligns the value.

-C centers the value.

-R right aligns the value.
Tip: Ensure that the format width provides enough space to write the value and

any commas, dollar signs, decimal points, or other special characters that the
format includes.

Example: This PUT statement uses the format dollar7.2 to write the value of X:

put x dollar7.2;

When X is 100, the formatted value uses seven columns:

$100.00

Featured in: Example 2 on page 1678

(format-list)

Statements � PUT Statement, Formatted 1677

specifies a list of formats to use when the values of the preceding list of variables are
written. In a PUT statement, a format-list can include

format.
specifies the format to use to write the variable values.
Tip: You can specify either a SAS format or a user-written format. See Chapter 3,

“Formats,” on page 81.

pointer-control
specifies one of these pointer controls to use to position a value: @, #, /, +, and
OVERPRINT.
Example: Example 1 on page 1678

character-string
specifies one or more characters to place between formatted values.
Example: This statement places a hyphen between the formatted values of

CODE1, CODE2, and CODE3:

put bldg $ (code1 code2 code3) (3. ’-’);

See: Example 1 on page 1678

n*
specifies to repeat n times the next format in a format list.
Example: This statement uses the 7.2 format to write GRADES1, GRADES2, and

GRADES3 and the 5.2 format to write GRADES4 and GRADES5:

put (grades1-grades5) (3*7.2, 2*5.2);

Restriction: The (format-list) must follow (variable-list).
See Also: “How to Group Variables and Formats” on page 1677

@| @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.
Restriction: The trailing @ or double trailing @ must be the last item in the PUT

statement.
See: “Using Line-Hold Specifiers” on page 1665

Details

Using Formatted Output The Formatted output describes the output lines by listing
the variable names and the formats to use to write the values. You can use a SAS
format or a user-written format to control how SAS prints the variable values. For a
complete description of the SAS formats, see “Definition of Formats” on page 84.

With formatted output, the PUT statement uses the format that follows the variable
name to write each value. SAS does not automatically add blanks between values. If
the value uses fewer columns than specified, character values are left-aligned and
numeric values are right-aligned in the field that is specified by the format width.

Formatted output, combined with pointer controls, makes it possible to specify the
exact line and column location to write each variable. For example, this PUT statement
uses the dollar7.2 format and centers the value of X starting at column 12:

put @12 x dollar7.2-c;

How to Group Variables and Formats When you want to write values in a pattern on
the output lines, use format lists to shorten your coding time. A format list consists of

1678 PUT Statement, Formatted � Chapter 6

the corresponding formats separated by either blanks or commas and enclosed in
parentheses. It must follow the names of the variables enclosed in parentheses.

For example, this statement uses a format list to write the five variables SCORE1
through SCORE5, one after another, using four columns for each value with no blanks
in between:

put (score1-score5) (4. 4. 4. 4. 4.);

A shorter version of the previous statement is

put (score1-score5) (4.);

You can include any of the pointer controls (@, #, /, +, and OVERPRINT) in the list of
formats, as well as n*, and a character string. You can use as many format lists as
necessary in a PUT statement, but do not nest the format lists. After all the values in
the variable list are written, the PUT statement ignores any directions that remain in
the format list. For an example, see Example 3 on page 1679.

You can also specify a reference to all elements in an array as (array-name {*}),
followed by a list of formats. You cannot, however, specify the elements in a
TEMPORARY array in this way. This PUT statement specifies an array name and a
format list:

put (array1{*}) (4.);

For more information about how to reference an array, see “Arrays” on page 1666.

Examples

Example 1: Writing a Character between Formatted Values This example formats
some values and writes a - (hyphen) between the values of variables BLDG and ROOM:

data _null_;
input name & $15. bldg $ room;
put name @20 (bldg room) ($1. "-" 3.);
datalines;

Bill Perkins J 126
Sydney Riley C 219
;

These lines are written to the SAS log:

Bill Perkins J-126
Sydney Riley C-219

Example 2: Overriding the Default Alignment of Formatted Values This example
includes an alignment specification in the format:

data _null_;
input name $ 1-12 score1 score2 score3;
put name $12.-r +3 score1 3. score2 3.

score3 4.;
datalines;

Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

These lines are written to the log:

Statements � PUT Statement, List 1679

----+----1----+----2----+----3----+----4
Joseph 11 32 76
Mitchel 13 29 82

Sue Ellen 14 27 74

The value of the character variable NAME is right-aligned in the formatted field.
(Left alignment is the default for character variables.)

Example 3: Including More Format Specifications Than Necessary This format list
includes more specifications than are necessary when the PUT statement executes:

data _null_;
input x y z;
put (x y z) (2.,+1);
datalines;

2 24 36
0 20 30
;

The PUT statement writes the value of X using the 2. format. Then, the +1 column
pointer control moves the pointer forward one column. Next, the value of Y is written
with the 2. format. Again, the +1 column pointer moves the pointer forward one
column. Then, the value of Z is written with the 2. format. For the third iteration, the
PUT statement ignores the +1 pointer control.

These lines are written to the SAS log: *

----+----1----+
2 24 36
0 20 30

See Also

Statement:
“PUT Statement” on page 1657

PUT Statement, List

Writes variable values and the specified character strings in the output line.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
PUT <pointer-control> variable <@ | @@>;

PUT <pointer-control> <n*>’character-string’
<@ | @@>;

* The ruled line is for illustrative purposes only; the PUT statement does not generate it.

1680 PUT Statement, List � Chapter 6

PUT <pointer-control> variable <: | ~> format.<@ | @@>;

Arguments

pointer-control
moves the output pointer to a specified line or column.
See: “Column Pointer Controls” on page 1660 and “Line Pointer Controls” on page

1661
Featured in: Example 2 on page 1683

variable
specifies the variable whose value is written.
Featured in: Example 1 on page 1682

n*
specifies to repeat n times the subsequent character string.
Example: This statement writes a line of 132 underscores:

put 132*’_’;

’character-string’
specifies a string of text, enclosed in quotation marks, to write.
Interaction: When insufficient space remains on the current line to write the entire

text string, SAS withholds the entire string and writes the current line. Then it
writes the text string on a new line, starting in column 1. For more information,
see “When the Pointer Goes Past the End of a Line” on page 1666.

Tip: To avoid misinterpretation, always put a space after a closing quotation mark
in a PUT statement.

Tip: If you follow a quotation mark with X, SAS interprets the text string as a
hexadecimal constant.

Tip: If you use single quotation (‘) or double quotes (“) together (with no space in
between them) as the string of text, SAS will output a single quotation mark (’)or
double quotation mark (“), respectively.

See Also: “How List Output Is Spaced” on page 1681
Featured in: Example 2 on page 1683

:
enables you to specify a format that the PUT statement uses to write the variable
value. All leading and trailing blanks are deleted, and each value is followed by a
single blank.
Requirement: You must specify a format.
See: “How Modified List Output and Formatted Output Differ” on page 1681
Featured in: Example 3 on page 1683

~
enables you to specify a format that the PUT statement uses to write the variable
value. SAS displays the formatted value in quotation marks even if the formatted
value does not contain the delimiter. SAS deletes all leading and trailing blanks, and
each value is followed by a single blank. Missing values for character variables are
written as a blank (" ") and, by default, missing values for numeric variables are
written as a period (".").

Statements � PUT Statement, List 1681

Requirement: You must specify the DSD option in the FILE statement.

Featured in: Example 4 on page 1683

format.
specifies a format to use when the data values are written.

Tip: You can specify either a SAS format or a user-written format. See Chapter 3,
“Formats,” on page 81.

Featured in: Example 3 on page 1683

@ | @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.

Restriction: The trailing @ or double-trailing @ must be the last item in the PUT
statement.

See: “Using Line-Hold Specifiers” on page 1665

Details

Using List Output With list output, you list the names of the variables whose values
you want written, or you specify a character string in quotation marks. The PUT
statement writes a variable value, inserts a single blank, and then writes the next
value. Missing values for numeric variables are written as a single period. Character
values are left-aligned in the field; leading and trailing blanks are removed. To include
blanks (in addition to the blank inserted after each value), use formatted or column
output instead of list output.

There are two types of list output:

� simple list output

� modified list output.

Modified list output increases the versatility of the PUT statement because you can
specify a format to control how the variable values are written. See Example 3 on page
1683.

How List Output Is Spaced List output uses different spacing methods when it writes
variable values and character strings. When a variable is written with list output, SAS
automatically inserts a blank space. The output pointer stops at the second column that
follows the variable value. However, when a character string is written, SAS does not
automatically insert a blank space. The output pointer stops at the column that
immediately follows the last character in the string.

To avoid spacing problems when both character strings and variable values are
written, you might want to use a blank space as the last character in a character string.
When a character string that provides punctuation follows a variable value, you need to
move the output pointer backward. Moving the output pointer backward prevents an
unwanted space from appearing in the output line. See Example 2 on page 1683.

Comparisons

How Modified List Output and Formatted Output Differ List output and formatted
output use different methods to determine how far to move the pointer after a variable
value is written. Therefore, modified list output, which uses formats, and formatted
output produce different results in the output lines. Modified list output writes the
value, inserts a blank space, and moves the pointer to the next column. Formatted

1682 PUT Statement, List � Chapter 6

output moves the pointer the length of the format, even if the value does not fill that
length. The pointer moves to the next column; an intervening blank is not inserted.

The following DATA step uses modified list output to write each output line:

data _null_;
input x y;
put x : comma10.2 y : 7.2;
datalines;

2353.20 7.10
6231 121
;

These lines are written to the SAS log:

----+----1----+----2
2,353.20 7.10
6,231.00 121.00

In comparison, the following example uses formatted output:

put x comma10.2 y 7.2;

These lines are written to the SAS log, with the values aligned in columns:

----+----1----+----2
2,353.20 7.10
6,231.00 121.00

Examples

Example 1: Writing Values with List Output

This DATA step uses a PUT statement with list output to write variable values to
the SAS log:

data _null_;
input name $ 1-10 sex $ 12 age 15-16;
put name sex age;
datalines;

Joseph M 13
Mitchel M 14
Sue Ellen F 11
;

These lines are written to the SAS log:

----+----1----+----2----+----3----+----4
Joseph M 13
Mitchel M 14
Sue Ellen F 11

By default, the values of the character variable NAME are left-aligned in the field.

Statements � PUT Statement, List 1683

Example 2: Writing Character Strings and Variable Values This PUT statement adds a
space to the end of a character string and moves the output pointer backward to prevent
an unwanted space from appearing in the output line after the variable STARTWGHT:

data _null_;
input idno name $ startwght;
put name ’weighs ’ startwght +(-1) ’.’;
datalines;

032 David 180
049 Amelia 145
219 Alan 210
;

These lines are written to the SAS log:

David weighs 180.
Amelia weighs 145.
Alan weighs 210.

The blank space at the end of the character string changes the pointer position. This
space separates the character string from the value of the variable that follows. The
+(-1) pointer control moves the pointer backward to remove the unwanted blank that
occurs between the value of STARTWGHT and the period.

Example 3: Writing Values with Modified List Output (:) This DATA step uses modified
list output to write several variable values in the output line using the : argument:

data _null_;
input salesrep : $10. tot : comma6. date : date9.;
put ’Week of ’ date : worddate15.

salesrep : $12. ’sales were ’
tot : dollar9. + (-1) ’.’;

datalines;
Wong 15,300 12OCT2004
Hoffman 9,600 12OCT2004
;

These lines are written to the SAS log:

Week of Oct 12, 2004 Wong sales were $15,300.
Week of Oct 12, 2004 Hoffman sales were $9,600.

Example 4: Writing Values with Modified List Output and ~ This DATA step uses
modified list output to write several variable values in the output line using the ~
argument:

data _null_;
input salesrep : $10. tot : comma6. date : date9.;
file log delimiter=" " dsd;
put ’Week of ’ date ~ worddate15.

salesrep ~ $12. ’sales were ’
tot ~ dollar9. + (-1) ’.’;

datalines;
Wong 15,300 12OCT2004
Hoffman 9,600 12OCT2004
;

These lines are written to the SAS log:

1684 PUT Statement, Named � Chapter 6

Week of "Oct 12, 2004" "Wong" sales were "$15,300".
Week of "Oct 12, 2004" "Hoffman" sales were "$9,600".

See Also

Statements:
“PUT Statement” on page 1657
“PUT Statement, Formatted” on page 1676

PUT Statement, Named

Writes variable values after the variable name and an equal sign.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
PUT <pointer-control> variable= < format.> <@ | @@>;

PUT variable= start-column <— end-column>
< .decimal-places> <@ | @@>;

Arguments

pointer-control
moves the output pointer to a specified line or column in the output buffer.
See: “Column Pointer Controls” on page 1660 and “Line Pointer Controls” on page

1661

variable=
specifies the variable whose value is written by the PUT statement in the form

variable=value

format.
specifies a format to use when the variable values are written.
Tip: Ensure that the format width provides enough space to write the value and

any commas, dollar signs, decimal points, or other special characters that the
format includes.

Example: This PUT statement uses the format DOLLAR7.2 to write the value of X:

put x= dollar7.2;

When X=100, the formatted value uses seven columns:

X=$100.00

See: “Formatting Named Output” on page 1685

Statements � PUT Statement, Named 1685

start-column
specifies the first column of the field where the variable name, equal sign, and value
are to be written in the output line.

— end-column
determines the last column of the field for the value.

Tip: If the variable name, equal sign, and value require more space than the
columns specified, PUT will write past the end column rather than truncate the
value. You must leave enough space before beginning the next value.

.decimal-places
specifies the number of digits to the right of the decimal point in a numeric value. If
you specify 0 for d or omit d, the value is written without a decimal point.

Range: positive integer

@ | @@
holds an output line for the execution of the next PUT statement even across
iterations of the DATA step. These line-hold specifiers are called trailing @ and
double trailing @.

Restriction: The trailing @ or double trailing @ must be the last item in the PUT
statement.

See: “Using Line-Hold Specifiers” on page 1665

Details

Using Named Output With named output, follow the variable name with an equal sign
in the PUT statement. You can use either list output, column output, or formatted
output specifications to indicate how to position the variable name and values. To insert
a blank space between each variable value automatically, use list output. To align the
output in columns, use pointer controls or column specifications.

Formatting Named Output You can specify either a SAS format or a user-written
format to control how SAS prints the variable values. The width of the format does not
include the columns required by the variable name and equal sign. To align a formatted
value, SAS deletes leading blanks and writes the variable value immediately after the
equal sign. SAS does not align on the right side of the formatted length, as in unnamed
formatted output.

For a complete description of the SAS formats, see “Definition of Formats” on page 84.

Examples

Use named output in the PUT statement as shown here.

� This PUT combines named output with column pointer controls to align the output:

data _null_;
input name $ 1-18 score1 score2 score3;
put name = @20 score1= score3= ;
datalines;

Joseph 11 32 76
Mitchel 13 29 82
Sue Ellen 14 27 74
;

The program writes the following lines to the SAS log:

1686 PUTLOG Statement � Chapter 6

----+----1----+----2----+----3----+----4
NAME=Joseph SCORE1=11 SCORE3=76
NAME=Mitchel SCORE1=13 SCORE3=82
NAME=Sue Ellen SCORE1=14 SCORE3=74

� This example specifies an output format for the variable AMOUNT:

put item= @25 amount= dollar12.2;

When the value of ITEM is binders and the value of AMOUNT is 153.25, this
output line is produced:

----+----1----+----2----+----3----+----4
ITEM=binders AMOUNT=$153.25

See Also

Statement:

“PUT Statement” on page 1657

PUTLOG Statement

Writes a message to the SAS log.

Valid: in a DATA step
Category: Action

Type: Executable

Syntax
PUTLOG ’message’;

Arguments
message

specifies the message that you want to write to the SAS log. Message can include
character literals (enclosed in quotation marks), variable names, formats, and
pointer controls.

Tip: You can precede your message text with WARNING, MESSAGE, or NOTE to
better identify the output in the log.

Details
The PUTLOG statement writes a message that you specify to the SAS log. The
PUTLOG statement is also helpful when you use macro-generated code because you can
send output to the SAS log without affecting the current file destination.

Comparisons
The PUTLOG statement is similar to the ERROR statement except that PUTLOG does
not set _ERROR_ to 1.

Statements � PUTLOG Statement 1687

Examples

Example 1: Writing Messages to the SAS Log Using the PUTLOG Statement The
following program creates the computeAverage92 macro, which computes the average
score, validates input data, and uses the PUTLOG statement to write error messages to
the SAS log. The DATA step uses the PUTLOG statement to write a warning message
to the log.

data ExamScores;
input Name $ 1-16 Score1 Score2 Score3;
datalines;

Sullivan, James 86 92 88
Martinez, Maria 95 91 92
Guzik, Eugene 99 98 .
Schultz, John 90 87 93
van Dyke, Sylvia 98 . 91
Tan, Carol 93 85 85
;

options pageno=1 nodate linesize=80 pagesize=60;
filename outfile ’your-output-file’;

/* Create a macro that computes the average score, validates */
/* input data, and uses PUTLOG to write error messages to the */
/* SAS log. */

%macro computeAverage92(s1, s2, s3, avg);
if &s1 < 0 or &s2 < 0 or &s3 < 0 then

do;
putlog ’ERROR: Invalid score data ’ &s1= &s2= &s3=;
&avg = .;

end;
else

&avg = mean(&s1, &s2, &s3);
%mend;

data _null_;
set ExamScores;

file outfile;
%computeAverage92(Score1, Score2, Score3, AverageScore);
put name Score1 Score2 Score3 AverageScore;

/* Use PUTLOG to write a warning message to the SAS log. */
if AverageScore < 92 then

putlog ’WARNING: Score below the minimum ’ name= AverageScore= 5.2;
run;

proc print;
run;

The following lines are written to the SAS log.

1688 REDIRECT Statement � Chapter 6

Output 6.28 SAS Log Results from the PUTLOG Statement

WARNING: Score below the minimum Name=Sullivan, James AverageScore=88.67
ERROR: Invalid score data Score1=99 Score2=98 Score3=.
WARNING: Score below the minimum Name=Guzik, Eugene AverageScore=.
WARNING: Score below the minimum Name=Schultz, John AverageScore=90.00
ERROR: Invalid score data Score1=98 Score2=. Score3=91
WARNING: Score below the minimum Name=van Dyke, Sylvia AverageScore=.
WARNING: Score below the minimum Name=Tan, Carol AverageScore=87.67

SAS creates the following output file.

Output 6.29 Individual Examination Scores

Exam Scores 1

Obs Name Score1 Score2 Score3

1 Sullivan, James 86 92 88
2 Martinez, Maria 95 91 92
3 Guzik, Eugene 99 98 .
4 Schultz, John 90 87 93
5 van Dyke, Sylvia 98 . 91
6 Tan, Carol 93 85 85

See Also

Statement:
“ERROR Statement” on page 1455

REDIRECT Statement

Points to different input or output SAS data sets when you execute a stored program.

Valid: in a DATA step
Category: Action
Type: Executable
Requirement: You must specify the PGM= option in the DATA statement.

Syntax
REDIRECT INPUT | OUTPUT old-name-1 = new-name-1<. . . old-name-n =

new-name-n>;

Arguments

INPUT | OUTPUT

Statements � REDIRECT Statement 1689

specifies whether to redirect input or output data sets. When you specify INPUT, the
REDIRECT statement associates the name of the input data set in the source
program with the name of another SAS data set. When you specify OUTPUT, the
REDIRECT statement associates the name of the output data set with the name of
another SAS data set.

old-name
specifies the name of the input or output data set in the source program.

new-name
specifies the name of the input or output data set that you want SAS to process for
the current execution.

Details

The REDIRECT statement is available only when you execute a stored program. For
more information about stored programs, see “Stored Compiled DATA Step Programs”
in SAS Language Reference: Concepts.

CAUTION:
Use care when you redirect input data sets. The number and attributes of variables in
the input data sets that you read with the REDIRECT statement should match the
number and attributes of variables in the input data sets in the MERGE, SET,
MODIFY, or UPDATE statements of the source code. If the variable type attributes
differ, the stored program stops processing and an appropriate error message is
written to the SAS log. If the variable length attributes differ, the length of the
variable in the source code data set determines the length of the variable in the
redirected data set. Extra variables in the redirected data sets cause the stored
program to stop processing and an error message is written to the SAS log. �

Tip: The DROP or KEEP data set options can be added in the stored program if
the input data set that you read with the REDIRECT statement has more
variables than are in the data set used to compile the program.

Comparison

The REDIRECT statement applies only to SAS data sets. To redirect input and output
stored in external files, include a FILENAME statement to associate the fileref in the
source program with different external files.

Examples

This example executes the stored program called STORED.SAMPLE. The
REDIRECT statement specifies the source of the input data as BASE.SAMPLE. The
output data set from this execution of the program is redirected and stored in a data set
named SUMS.SAMPLE.

libname stored ’SAS-library’;
libname base ’SAS-library’;
libname sums ’SAS-library’;

data pgm=stored.sample;
redirect input in.sample=base.sample;
redirect output out.sample=sums.sample;

run;

1690 REMOVE Statement � Chapter 6

See Also

Statement:
“DATA Statement” on page 1420

“Stored Compiled DATA Step Programs” in SAS Language Reference: Concepts.

REMOVE Statement

Deletes an observation from a SAS data set.

Valid: in a DATA step
Category: Action
Type: Executable
Restriction: Use only with a MODIFY statement.

Syntax
REMOVE <data-set-name(s)>;

Without Arguments

If you specify no argument, the REMOVE statement deletes the current observation
from all data sets that are named in the DATA statement.

Arguments
data-set-name

specifies the data set in which the observation is deleted.
Restriction: The data set name must also appear in the DATA statement and in

one or more MODIFY statements.

Details
The deletion of an observation can be physical or logical, depending on the engine that
maintains the data set. Using REMOVE overrides the default replacement of
observations. If a DATA step contains a REMOVE statement, you must explicitly
program all output for the step.

Comparisons
� Using an OUTPUT, REPLACE, or REMOVE statement overrides the default write

action at the end of a DATA step. (OUTPUT is the default action; REPLACE
becomes the default action when a MODIFY statement is used.) If you use any of
these statements in a DATA step, you must explicitly program all output for new
observations.

� The OUTPUT, REPLACE, and REMOVE statements are independent of each
other. More than one statement can apply to the same observation, as long as the
sequence is logical.

Statements � RENAME Statement 1691

� If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the
observation pointer correct.

� Because the REMOVE statement can perform a physical or a logical deletion,
REMOVE is available with the MODIFY statement for all SAS data set engines.
Both the DELETE and subsetting IF statements perform only physical deletions.
Therefore, they are not available with the MODIFY statement for certain engines.

Examples

This example removes one observation from a SAS data set.

libname perm ’SAS-library’;

data perm.accounts;
input AcctNumber Credit;
datalines;

1001 1500
1002 4900
1003 3000
;

data perm.accounts;
modify perm.accounts;
if AcctNumber=1002 then remove;

run;

proc print data=perm.accounts;
title ’Edited Data Set’;

run;

Here are the results of the PROC PRINT statement:

Edited Data Set 1

Acct
OBS Number Credit

1 1001 1500
3 1003 3000

See Also

Statements:
“DELETE Statement” on page 1439
“IF Statement, Subsetting” on page 1533
“MODIFY Statement” on page 1634
“OUTPUT Statement” on page 1654
“REPLACE Statement” on page 1693

RENAME Statement
Specifies new names for variables in output SAS data sets.

1692 RENAME Statement � Chapter 6

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
RENAME old-name-1=new-name-1 . . . <old-name-n=new-name-n>;

Arguments

old-name
specifies the name of a variable or variable list as it appears in the input data set, or
in the current DATA step for newly created variables.

new-name
specifies the name or list to use in the output data set.

Details
The RENAME statement allows you to change the names of one or more variables,
variables in a list, or a combination of variables and variable lists. The new variable
names are written to the output data set only. Use the old variable names in
programming statements for the current DATA step. RENAME applies to all output
data sets.

Note: The RENAME statement has an effect on data sets opened in output mode
only. �

Comparisons
� RENAME cannot be used in PROC steps, but the RENAME= data set option can.

� The RENAME= data set option allows you to specify the variables you want to
rename for each input or output data set. Use it in input data sets to rename
variables before processing.

� If you use the RENAME= data set option in an output data set, you must continue
to use the old variable names in programming statements for the current DATA
step. After your output data is created, you can use the new variable names.

� The RENAME= data set option in the SET statement renames variables in the
input data set. You can use the new names in programming statements for the
current DATA step.

� To rename variables as a file management task, use the DATASETS procedure or
access the variables through the SAS windowing interface. These methods are
simpler and do not require DATA step processing.

Examples
� These examples show the correct syntax for renaming variables using the

RENAME statement:

� rename street=address;

� rename time1=temp1 time2=temp2 time3=temp3;

� rename name=Firstname score1-score3=Newscore1-Newscore3;

Statements � REPLACE Statement 1693

� This example uses the old name of the variable in program statements. The
variable Olddept is named Newdept in the output data set, and the variable
Oldaccount is named Newaccount.

rename Olddept=Newdept Oldaccount=Newaccount;
if Oldaccount>5000;
keep Olddept Oldaccount items volume;

� This example uses the old name OLDACCNT in the program statements.
However, the new name NEWACCNT is used in the DATA statement because SAS
applies the RENAME statement before it applies the KEEP= data set option.

data market(keep=newdept newaccnt items
volume);

rename olddept=newdept
oldaccnt=newaccnt;

set sales;
if oldaccnt>5000;

run;

� The following example uses both a variable and a variable list to rename
variables. New variable names appear in the output data set.

data temp;
input (score1-score3) (2.,+1) name $;
rename name=Firstname

score1-score3=Newscore1-Newscore3;
datalines;

12 24 36 Lisa
22 44 66 Fran
;

See Also

Data Set Option:

“RENAME= Data Set Option” on page 52

REPLACE Statement

Replaces an observation in the same location.

Valid: in a DATA step

Category: Action

Type: Executable

Restriction: Use only with a MODIFY statement.

Syntax
REPLACE <data-set-name-1><. . .data-set-name-n>;

1694 REPLACE Statement � Chapter 6

Without Arguments
If you specify no argument, the REPLACE statement writes the current observation to
the same physical location from which it was read in all data sets that are named in the
DATA statement.

Arguments
data-set-name

specifies the data set to which the observation is written.
Requirement: The data set name must also appear in the DATA statement and

in one or more MODIFY statements.

Details
Using an explicit REPLACE statement overrides the default replacement of
observations. If a DATA step contains a REPLACE statement, explicitly program all
output for the step.

Comparisons
� Using an OUTPUT, REPLACE, or REMOVE statement overrides the default write

action at the end of a DATA step. (OUTPUT is the default action; REPLACE
becomes the default action when a MODIFY statement is used.) If you use any of
these statements in a DATA step, you must explicitly program output of a new
observation for the step.

� The OUTPUT, REPLACE, and REMOVE statements are independent of each
other. More than one statement can apply to the same observation, as long as the
sequence is logical.

� If both an OUTPUT and a REPLACE or REMOVE statement execute on a given
observation, perform the OUTPUT action last to keep the position of the
observation pointer correct.

� REPLACE writes the observation to the same physical location, while OUTPUT
writes a new observation to the end of the data set.

� REPLACE can appear only in a DATA step that contains a MODIFY statement.
You can use OUTPUT with or without MODIFY.

Examples

This example updates phone numbers in data set MASTER with values in data set
TRANS. It also adds one new observation at the end of data set MASTER. The SYSRC
autocall macro tests the value of _IORC_ for each attempted retrieval from MASTER.
(SYSRC is part of the SAS autocall macro library.) The resulting SAS data set appears
after the code:

data master;
input FirstName $ id $ PhoneNumber;
datalines;

Kevin ABCjkh 904
Sandi defsns 905
Terry ghitDP 951
Jason jklJWM 962
;

data trans;

Statements � RETAIN Statement 1695

input FirstName $ id $ PhoneNumber;
datalines;

. ABCjkh 2904

. defsns 2905
Madeline mnombt 2983
;

data master;
modify master trans;
by id;

/* obs found in master */
/* change info, replace */

if _iorc_ = %sysrc(_sok) then replace;

/* obs not in master */
else if _iorc_ = %sysrc(_dsenmr) then

do;
/* reset _error_ */
error=0;
/* reset _iorc_ */
iorc=0;
/* output obs to master */

output;
end;

run;

proc print data=master;
title ’MASTER with New Phone Numbers’;

run;

MASTER with New Phone Numbers 3

First Phone
OBS Name id Number

1 Kevin ABCjkh 2904
2 Sandi defsns 2905
3 Terry ghitDP 951
4 Jason jklJWM 962
5 Madeline mnombt 2983

See Also

Statements:
“MODIFY Statement” on page 1634
“OUTPUT Statement” on page 1654
“REMOVE Statement” on page 1690

RETAIN Statement
Causes a variable that is created by an INPUT or assignment statement to retain its value from
one iteration of the DATA step to the next.

1696 RETAIN Statement � Chapter 6

Valid: in a DATA step
Category: Information
Type: Declarative

Syntax
RETAIN <element-list(s) <initial-value(s) |

(initial-value-1) | (initial-value-list-1) >
< . . . element-list-n <initial-value-n |

(initial-value-n)| (initial-value-list-n)>>>;

Without Arguments
If you do not specify an argument, the RETAIN statement causes the values of all
variables that are created with INPUT or assignment statements to be retained from
one iteration of the DATA step to the next.

Arguments
element-list

specifies variable names, variable lists, or array names whose values you want
retained.
Tip: If you specify _ALL_, _CHAR_, or _NUMERIC_, only the variables that are

defined before the RETAIN statement are affected.
Tip: If a variable name is specified only in the RETAIN statement and you do not

specify an initial value, the variable is not written to the data set, and a note
stating that the variable is uninitialized is written to the SAS log. If you specify
an initial value, the variable is written to the data set.

initial-value
specifies an initial value, numeric or character, for one or more of the preceding
elements.
Tip: If you omit initial-value, the initial value is missing. Initial-value is

assigned to all the elements that precede it in the list. All members of a
variable list, therefore, are given the same initial value.

See Also: (initial-value) and (initial-value-list)

(initial-value)
specifies an initial value, numeric or character, for a single preceding element or
for the first in a list of preceding elements.

(initial-value-list)
specifies an initial value, numeric or character, for individual elements in the
preceding list. SAS matches the first value in the list with the first variable in the
list of elements, the second value with the second variable, and so on.

Element values are enclosed in quotation marks. To specify one or more initial
values directly, use the following format:

(initial-value(s))
To specify an iteration factor and nested sublists for the initial values, use the

following format:
<constant-iter-value*> <(>constant value | constant-sublist<)>

Restriction: If you specify both an initial-value-list and an element-list, then
element-list must be listed before initial-value-list in the RETAIN statement.

Statements � RETAIN Statement 1697

Tip: You can separate initial values by blank spaces or commas.

Tip: You can also use a shorthand notation for specifying a range of sequential
integers. The increment is always +1.

Tip: You can assign initial values to both variables and temporary data elements.

Tip: If there are more variables than initial values, the remaining variables are
assigned an initial value of missing and SAS issues a warning message.

Details

Default DATA Step Behavior Without a RETAIN statement, SAS automatically sets
variables that are assigned values by an INPUT or assignment statement to missing
before each iteration of the DATA step.

Assigning Initial Values Use a RETAIN statement to specify initial values for
individual variables, a list of variables, or members of an array. If a value appears in a
RETAIN statement, variables that appear before it in the list are set to that value
initially. (If you assign different initial values to the same variable by naming it more
than once in a RETAIN statement, SAS uses the last value.) You can also use RETAIN
to assign an initial value other than the default value of 0 to a variable whose value is
assigned by a sum statement.

Redundancy It is redundant to name any of these items in a RETAIN statement,
because their values are automatically retained from one iteration of the DATA step to
the next:

� variables that are read with a SET, MERGE, MODIFY or UPDATE statement

� a variable whose value is assigned in a sum statement

� the automatic variables _N_, _ERROR_, _I_, _CMD_, and _MSG_

� variables that are created by the END= or IN= option in the SET, MERGE,
MODIFY, or UPDATE statement or by options that create variables in the FILE
and INFILE statements

� data elements that are specified in a temporary array

� array elements that are initialized in the ARRAY statement

� elements of an array that have assigned initial values to any or all of the elements
in the ARRAY statement.

You can, however, use a RETAIN statement to assign an initial value to any of the
previous items, with the exception of _N_ and _ERROR_.

Comparisons
The RETAIN statement specifies variables whose values are not set to missing at the
beginning of each iteration of the DATA step. The KEEP statement specifies variables
that are to be included in any data set that is being created.

Examples

Example 1: Basic Usage
� This RETAIN statement retains the values of variables MONTH1 through

MONTH5 from one iteration of the DATA step to the next:

retain month1-month5;

1698 RETAIN Statement � Chapter 6

� This RETAIN statement retains the values of nine variables and sets their initial
values:

retain month1-month5 1 year 0 a b c ’XYZ’;

The values of MONTH1 through MONTH5 are set initially to 1; YEAR is set to
0; variables A, B, and C are each set to the character value XYZ.

� This RETAIN statement assigns the initial value 1 to the variable MONTH1 only:

retain month1-month5 (1);

Variables MONTH2 through MONTH5 are set to missing initially.
� This RETAIN statement retains the values of all variables that are defined earlier

in the DATA step but not the values that are defined afterwards:

retain _all_;

� All of these statements assign initial values of 1 through 4 to VAR1 through VAR4:
� retain var1-var4 (1 2 3 4);

� retain var1-var4 (1,2,3,4);

� retain var1-var4(1:4);

Example 2: Overview of the RETAIN Operation This example shows how to use
variable names and array names as elements in the RETAIN statement and shows
assignment of initial values with and without parentheses:

data _null_;
array City{3} $ City1-City3;
array cp{3} Citypop1-Citypop3;
retain Year Taxyear 1999 City ’ ’

cp (10000,50000,100000);
file file-specification print;
put ’Values at beginning of DATA step:’

/ @3 _all_ /;
input Gain;
do i=1 to 3;

cp{i}=cp{i}+Gain;
end;
put ’Values after adding Gain to city populations:’

/ @3 _all_;
datalines;

5000
10000
;

Here are the initial values assigned by RETAIN:
� Year and Taxyear are assigned the initial value 1999.
� City1, City2, and City3 are assigned missing values.
� Citypop1 is assigned the value 10000.
� Citypop2 is assigned 50000.
� Citypop3 is assigned 100000.

Here are the lines written by the PUT statements:

Values at beginning of DATA step:
City1= City2= City3= Citypop1=10000
Citypop2=50000 Citypop3=100000

Statements � RETAIN Statement 1699

Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0 _N_=1

Values after adding GAIN to city populations:
City1= City2= City3= Citypop1=15000
Citypop2=55000 Citypop3=105000

Year=1999 Taxyear=1999 Gain=5000 i=4
ERROR=0 _N_=1
Values at beginning of DATA step:
City1= City2= City3= Citypop1=15000
Citypop2=55000 Citypop3=105000

Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0 _N_=2

Values after adding GAIN to city populations:
City1= City2= City3= Citypop1=25000
Citypop2=65000 Citypop3=115000

Year=1999 Taxyear=1999 Gain=10000 i=4
ERROR=0 _N_=2
Values at beginning of DATA step:
City1= City2= City3= Citypop1=25000
Citypop2=65000 Citypop3=115000

Year=1999 Taxyear=1999 Gain=. i=.
ERROR=0 _N_=3

The first PUT statement is executed three times, while the second PUT statement is
executed only twice. The DATA step ceases execution when the INPUT statement
executes for the third time and reaches the end of the file.

Example 3: Selecting One Value from a Series of Observations In this example, the
data set ALLSCORES contains several observations for each identification number and
variable ID. Different observations for a particular ID value might have different values
of the variable GRADE. This example creates a new data set, CLASS.BESTSCORES,
which contains one observation for each ID value. The observation must have the
highest GRADE value of all observations for that ID in BESTSCORES.

libname class ’SAS-library’;

proc sort data=class.allscores;
by id;

run;

data class.bestscores;
drop grade;
set class.allscores;
by id;

/* Prevents HIGHEST from being reset*/
/* to missing for each iteration. */

retain highest;
/* Sets HIGHEST to missing for each */
/* different ID value. */

if first.id then highest=.;
/* Compares HIGHEST to GRADE in */
/* current iteration and resets */
/* value if GRADE is higher. */

1700 RETURN Statement � Chapter 6

highest=max(highest,grade);
if last.id then output;

run;

See Also

Statements:
“Assignment Statement” on page 1402
“BY Statement” on page 1407
“INPUT Statement” on page 1569

RETURN Statement

Stops executing statements at the current point in the DATA step and returns to a predetermined
point in the step.

Valid: in a DATA step
Category: Control
Type: Executable

Syntax
RETURN;

Without Arguments
The RETURN statement causes execution to stop at the current point in the DATA
step, and returns control to a previous DATA step statement.

Details
The point to which SAS returns depends on the order in which statements are executed
in the DATA step.

The RETURN statement is often used with the
� GO TO statement
� HEADER= option in the FILE statement
� LINK statement.

When RETURN causes a return to the beginning of the DATA step, an implicit
OUTPUT statement writes the current observation to any new data sets (unless the
DATA step contains an explicit OUTPUT statement, or REMOVE or REPLACE
statements with MODIFY statements). Every DATA step has an implied RETURN as
its last executable statement.

Examples

In this example, when the values of X and Y are the same, SAS executes the
RETURN statement and adds the observation to the data set. When the values of X

Statements � RUN Statement 1701

and Y are not equal, SAS executes the remaining statements and then adds the
observation to the data set.

data survey;
input x y;
if x=y then return;
put x= y=;
datalines;

21 25
20 20
7 17
;

See Also

Statements:
“FILE Statement” on page 1457
“GO TO Statement” on page 1532
“LINK Statement” on page 1619

RUN Statement

Executes the previously entered SAS statements.

Valid: anywhere
Category: Program Control

Syntax
RUN <CANCEL>;

Without Arguments
Without arguments, the RUN statement executes the previously entered SAS

statements.

Arguments
CANCEL

terminates the current step without executing it. SAS prints a message that
indicates that the step was not executed.

CAUTION:
The CANCEL option does not prevent execution of a DATA step that contains a
DATALINES or DATALINES4 statement. �

CAUTION:
The CANCEL option has no effect when you use the KILL option with PROC DATASETS.
�

1702 %RUN Statement � Chapter 6

Details
Although the RUN statement is not required between steps in a SAS program, using it
creates a step boundary and can make the SAS log easier to read.

Examples
� This RUN statement marks a step boundary and executes this PROC PRINT step:

proc print data=report;
title ’Status Report’;

run;

� This example shows the usefulness of the CANCEL option in a line prompt mode
session. The fourth statement in the DATA step contains an invalid value for PI
(4.13 instead of 3.14). RUN with CANCEL ends the DATA step and prevents it
from executing.

data circle;
infile file-specification;
input radius;
c=2*4.13*radius;

run cancel;

The following message is written to the SAS log:

WARNING: DATA step not executed at user’s request.

%RUN Statement

Ends source statements following a %INCLUDE * statement.

Valid: anywhere
Category: Program Control

Syntax
%RUN;

Without Arguments
The %RUN statement causes SAS to stop reading input from the keyboard (including

subsequent SAS statements on the same line as %RUN) and resume reading from the
previous input source.

Details
Using the %INCLUDE statement with an asterisk specifies that you enter source lines
from the keyboard.

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment. �

Comparisons
The RUN statement executes previously entered DATA or PROC steps. The %RUN
statement ends the prompting for source statements and returns program control to the

Statements � SASFILE Statement 1703

original source program, when you use the %INCLUDE statement to allow data to be
entered from the keyboard.

The type of prompt that you use depends on how you run the SAS session. The
include operation is most useful in interactive line and noninteractive modes, but it can
also be used in windowing and batch mode. When you are running SAS in batch mode,
include the %RUN statement in the external file that is referenced by the SASTERM
fileref.

Examples
� To request keyboard-entry source on a %INCLUDE statement, follow the

statement with an asterisk:

%include *;

Note: The asterisk (*) cannot be used to specify keyboard entry if you use the
Enhanced Editor in the Microsoft Windows operating environment. �

� When it executes this statement, SAS prompts you to enter source lines from the
keyboard. When you finish entering code from the keyboard, type the following
statement to return processing to the program that contains the %INCLUDE
statement.

%run;

See Also

Statements:
“%INCLUDE Statement” on page 1536
“RUN Statement” on page 1701

SASFILE Statement

Opens a SAS data set and allocates enough buffers to hold the entire file in memory.

Valid: Anywhere
Category: Program Control
Restriction: A SAS data set opened by the SASFILE statement can be used for
subsequent input (read) or update processing but not for output or utility processing.

See: SASFILE Statement in the documentation for your operating environment.

Syntax
SASFILE <libref.>member-name<.member-type> <(password-option(s))> OPEN |

LOAD | CLOSE ;

Arguments

libref

1704 SASFILE Statement � Chapter 6

a name that is associated with a SAS library. The libref (library reference) must be a
valid SAS name. The default libref is either USER (if assigned) or WORK (if USER
not assigned).
Restriction: The libref cannot represent a concatenation of SAS libraries that

contain a library in sequential format.

member-name
a valid SAS name that is a SAS data file (a SAS data set with the member type
DATA) that is a member of the SAS library associated with the libref.
Restriction: The SAS data set must have been created with the V7, V8, or V9 Base

SAS engine.

member-type
the type of SAS file to be opened. Valid value is DATA, which is the default.

password-option(s)
specifies one or more of the following password options:

READ=password
enables the SASFILE statement to open a read-protected file. The password must
be a valid SAS name.

WRITE=password
enables the SASFILE statement to use the write password to open a file that is
both read-protected and write-protected. The password must be a valid SAS name.

ALTER=password
enables the SASFILE statement to use the alter password to open a file that is
both read-protected and alter-protected. The password must be a valid SAS name.

PW=password
enables the SASFILE statement to use the password to open a file that is assigned
for all levels of protection. The password must be a valid SAS name.

Tip: When SASFILE is executed, SAS checks whether the file is read-protected.
Therefore, if the file is read-protected, you must include the READ= password in
the SASFILE statement. If the file is either write-protected or alter-protected, you
can use a WRITE=, ALTER=, or PW= password. However, the file is opened only
in input (read) mode. For subsequent processing, you must specify the necessary
password or passwords. See Example 2 on page 1708.

OPEN
opens the file, allocates the buffers, but defers reading the data into memory until a
procedure, statement, or application is executed.

LOAD
opens the file, allocates the buffers, and reads the data into memory.

Note: If the total number of allowed buffers is less than the number of buffers
required for the file based on the number of data set pages and index file pages, SAS
issues a warning to tell you how many pages are read into memory. �

CLOSE
frees the buffers and closes the file.

Details

General Information The SASFILE statement opens a SAS data set and allocates
enough buffers to hold the entire file in memory. Once it is read, data is held in
memory, available to subsequent DATA and PROC steps or applications, until either a

Statements � SASFILE Statement 1705

second SASFILE statement closes the file and frees the buffers or the program ends,
which automatically closes the file and frees the buffers.

Using the SASFILE statement can improve performance by
� reducing multiple open/close operations (including allocation and freeing of

memory for buffers) to process a SAS data set to one open/close operation
� reducing I/O processing by holding the data in memory.

If your SAS program consists of steps that read a SAS data set multiple times and
you have an adequate amount of memory so that the entire file can be held in real
memory, the program should benefit from using the SASFILE statement. Also,
SASFILE is especially useful as part of a program that starts a SAS server such as a
SAS/SHARE server. However, as with most performance-improvement features, it is
suggested that you set up a test in your environment to measure performance with and
without the SASFILE statement.

Processing a SAS Data Set Opened with SASFILE When the SASFILE statement
executes, SAS opens the specified file. Then when subsequent DATA and PROC steps
execute, SAS does not have to open the file for each request; the file remains open until
a second SASFILE statement closes it or the program or session ends.

When a SAS data set is opened by the SASFILE statement, the file is opened for
input processing and can be used for subsequent input or update processing. However,
the file cannot be used for subsequent utility or output processing, because utility and
output processing requires exclusive access to the file (member-level locking). For
example, you cannot replace the file or rename its variables.

Table 6.11 on page 1705 provides a list of some SAS procedures and statements and
specifies whether they are allowed if the file is opened by the SASFILE statement:

Table 6.11 Processing Requests for a File Opened by SASFILE

Processing Request Open Mode Allowed

APPEND procedure update Yes

DATA step that creates or
replaces the file

output No

DATASETS procedure to
rename or add a variable, add
or change a label, or add or
remove integrity constraints or
indexes

utility No

DATASETS procedure with
AGE, CHANGE, or DELETE
statements

does not open the file but
requires exclusive access

No

FSEDIT procedure update Yes

PRINT procedure input Yes

SORT procedure that replaces
original data set with sorted
one

output No

SQL procedure to modify, add,
or delete observations

update Yes

1706 SASFILE Statement � Chapter 6

Processing Request Open Mode Allowed

SQL procedure with CREATE
TABLE or CREATE VIEW
statement

output No

SQL procedure to create or
remove integrity constraints or
indexes

utility No

Buffer Allocation A buffer is a reserved area of memory that holds a segment of data
while it is processed. The number of allocated buffers determines how much data can
be held in memory at one time.

The number of buffers is not a permanent attribute of a SAS file. That is, it is valid
only for the current SAS session or job. When a SAS file is opened, a default number of
buffers for processing the file is set. The default depends on the operating environment
but typically is a small number such as one buffer. To specify a different number of
buffers, you can use the BUFNO= data set option or system option.

When the SASFILE statement is executed, SAS automatically allocates the number
of buffers based on the number of data set pages and index file pages (if an index file
exists). For example:

� If the number of data set pages is five and there is not an index file, SAS allocates
five buffers.

� If the number of data set pages is 500 and the number of index file pages is 200,
SAS allocates 700 buffers.

If a file that is held in memory increases in size during processing, the number of
allocated buffers increases to accommodate the file. Note that if SASFILE is executed
for a SAS data set, the BUFNO= option is ignored.

I/O Processing An I/O (input/output) request reads a segment of data from a storage
device (such as disk) and transfers the data to memory, or conversely transfers the data
from memory and writes it to the storage device. When a SAS data set is opened by the
SASFILE statement, data is read once and held in memory, which should reduce the
number of I/O requests.

CAUTION:
I/O processing can be reduced only if there is sufficient real memory. If the SAS data set
is very large, you might not have sufficient real memory to hold the entire file. If
insufficient memory exists, your operating environment can simulate more memory
than actually exists, which is virtual memory. If virtual memory occurs, data access
I/O requests are replaced with swapping I/O requests, which could result in no
performance improvement. In addition, both SAS and your operating environment
have a maximum amount of memory that can be allocated, which could be exceeded
by the needs of your program. If your program needs exceed the memory that is
available, the number of allocated buffers might be decreased to the default
allocation in order to free memory. �

Tip: To determine how much memory a SAS data set requires, execute the
CONTENTS procedure for the file to list its page size, the number of data set
pages, the index file size, and the number of index file pages.

Using the SASFILE Statement in a SAS/SHARE Environment The following are
considerations for using the SASFILE statement with SAS/SHARE software:

Statements � SASFILE Statement 1707

� You must execute the SASFILE statement before you execute the PROC SERVER
statement.

� If the client (the computer on which you use a SAS session to access a SAS/
SHARE server) executes the SASFILE statement, it is rejected.

� Once the SASFILE statement is executed, all users who subsequently open the file
will access the data held in memory instead of data that is stored on the disk.

� Once the SASFILE statement is executed, you cannot close the file and free the
buffers until the SAS/SHARE server is terminated.

� You can use the ALLOCATE SASFILE command for the PROC SERVER
statement as an alternative that brings part of the file into memory (controlled by
the BUFNO= option).

� If the SASFILE statement is executed and you execute ALLOCATE SASFILE
specifying a value for BUFNO= that is a larger number of buffers than allocated
by SASFILE, performance will not be improved.

Comparisons
� Use the BUFNO= system option or data set option to specify a specific number of

buffers.
� With SAS/SHARE software, you can use the ALLOCATE SASFILE command for

the PROC SERVER statement to bring part of the file into memory (controlled by
the BUFNO= option).

Examples

Example 1: Using SASFILE in a Program with Multiple Steps The following SAS
program illustrates the process of opening a SAS data set, transferring its data to
memory, and reading that data held in memory for multiple tasks. The program is
consists of steps that read the file multiple times.

libname mydata ’SAS-library’;

sasfile mydata.census.data open; u

data test1;
set mydata.census; v

run;

data test2;
set mydata.census; w

run;

proc summary data=mydata.census print; x

run;

data mydata.census; y

modify mydata.census;
.
. (statements to modify data)
.

run;

sasfile mydata.census close; U

1 Opens SAS data set MYDATA.CENSUS, and allocates the number of buffers based
on the number of data set pages and index file pages.

1708 SELECT Statement � Chapter 6

2 Reads all pages of MYDATA.CENSUS, and transfers all data from disk to memory.
3 Reads MYDATA.CENSUS a second time, but this time from memory without

additional I/O requests.
4 Reads MYDATA.CENSUS a third time, again from memory without additional I/O

requests.
5 Reads MYDATA.CENSUS a fourth time, again from memory without additional I/

O requests. If the MODIFY statement successfully changes data in memory, the
changed data is transferred from memory to disk at the end of the DATA step.

6 Closes MYDATA.CENSUS, and frees allocated buffers.

Example 2: Specifying Passwords with the SASFILE Statement The following SAS
program illustrates using the SASFILE statement and specifying passwords for a SAS
data set that is both read-protected and alter-protected:

libname mydata ’SAS-data-data-library’;

sasfile mydata.census (read=gizmo) open; u

proc print data=mydata.census (read=gizmo); v

run;

data mydata.census;
modify mydata.census (alter=luke); w

.

. (statements to modify data)

.
run;

1 The SASFILE statement specifies the read password, which is sufficient to open
the file.

2 In the PRINT procedure, the read password must be specified again.
3 The alter password is used in the MODIFY statement, because the data set is

being updated.

Note: It is acceptable to use the higher-level alter password instead of the read
password in the above example. �

See Also

Data Set Option:
“BUFNO= Data Set Option” on page 15

System Option:
“BUFNO= System Option” on page 1797

“The SERVER Procedure” in SAS/SHARE User’s Guide.

SELECT Statement

Executes one of several statements or groups of statements.

Valid: in a DATA step

Statements � SELECT Statement 1709

Category: Control
Type: Executable

Syntax
SELECT <(select-expression)>;

WHEN-1 (when-expression-1 <..., when-expression-n>) statement;
<... WHEN-n (when-expression-1 <..., when-expression-n>) statement;>

<OTHERWISE statement;>

END;

Arguments

(select-expression)
specifies any SAS expression that evaluates to a single value.
See: “Evaluating the when-expression When a select-expression Is Included” on page

1709

(when-expression)
specifies any SAS expression, including a compound expression. SELECT requires
you to specify at least one when-expression.
Tip: Separating multiple when-expressions with a comma is equivalent to

separating them with the logical operator OR.
Tip: The way a when-expression is used depends on whether a select-expression is

present.
See: “Evaluating the when-expression When a select-expression Is Not Included” on

page 1710

statement
can be any executable SAS statement, including DO, SELECT, and null statements.
You must specify the statement argument.

Details

Using WHEN Statements in a SELECT Group The SELECT statement begins a SELECT
group. SELECT groups contain WHEN statements that identify SAS statements that
are executed when a particular condition is true. Use at least one WHEN statement in
a SELECT group. An optional OTHERWISE statement specifies a statement to be
executed if no WHEN condition is met. An END statement ends a SELECT group.

Null statements that are used in WHEN statements cause SAS to recognize a
condition as true without taking further action. Null statements that are used in
OTHERWISE statements prevent SAS from issuing an error message when all WHEN
conditions are false.

Evaluating the when-expression When a select-expression Is Included If the
select-expression is present, SAS evaluates the select-expression and when-expression.
SAS compares the two for equality and returns a value of true or false. If the
comparison is true, statement is executed. If the comparison is false, execution proceeds
either to the next when-expression in the current WHEN statement, or to the next

1710 SELECT Statement � Chapter 6

WHEN statement if no more expressions are present. If no WHEN statements remain,
execution proceeds to the OTHERWISE statement, if one is present. If the result of all
SELECT-WHEN comparisons is false and no OTHERWISE statement is present, SAS
issues an error message and stops executing the DATA step.

Evaluating the when-expression When a select-expression Is Not Included If no
select-expression is present, the when-expression is evaluated to produce a result of true
or false. If the result is true, statement is executed. If the result is false, SAS proceeds
to the next when-expression in the current WHEN statement, or to the next WHEN
statement if no more expressions are present, or to the OTHERWISE statement if one
is present. (That is, SAS performs the action that is indicated in the first true WHEN
statement.) If the result of all when-expressions is false and no OTHERWISE statement
is present, SAS issues an error message. If more than one WHEN statement has a true
when-expression, only the first WHEN statement is used. Once a when-expression is
true, no other when-expressions are evaluated.

Processing Large Amounts of Data with %INCLUDE Files One way to process large
amounts of data is to use %INCLUDE statements in your DATA step. Using
%INCLUDE statements enables you to perform complex processing while keeping your
main program manageable. The %INCLUDE files that you use in your main program
can contain WHEN statements and other SAS statements to process your data. See
Example 5 on page 1711 for an example.

Comparisons

Use IF-THEN/ELSE statements for programs with few statements. Use subsetting IF
statements without a THEN clause to continue processing only those observations or
records that meet the condition that is specified in the IF clause.

Examples

Example 1: Using Statements

select (a);
when (1) x=x*10;
when (2);
when (3,4,5) x=x*100;
otherwise;

end;

Example 2: Using DO Groups

select (payclass);
when (’monthly’) amt=salary;
when (’hourly’)

do;
amt=hrlywage*min(hrs,40);
if hrs>40 then put ’CHECK TIMECARD’;

end; /* end of do */
otherwise put ’PROBLEM OBSERVATION’;

end; /* end of select */

Statements � SELECT Statement 1711

Example 3: Using a Compound Expression

select;
when (mon in (’JUN’, ’JUL’, ’AUG’)
and temp>70) put ’SUMMER ’ mon=;
when (mon in (’MAR’, ’APR’, ’MAY’))
put ’SPRING ’ mon=;
otherwise put ’FALL OR WINTER ’ mon=;

end;

Example 4: Making Comparisons for Equality

/* INCORRECT usage to select value of 2 */
select (x);

/* evaluates T/F and compares for */
/* equality with x */
when (x=2) put ’two’;

end;

/* correct usage */
select(x);

/* compares 2 to x for equality */
when (2) put ’two’;

end;

/* correct usage */
select;

/* compares 2 to x for equality */
when (x=2) put ’two’;

end;

Example 5: Processing Large Amounts of Data In the following example, the
%INCLUDE statements contain code that includes WHEN statements to process new
and old items in the inventory. The main program shows the overall logic of the DATA
step.

data test (keep=ItemNumber);
set ItemList;
select;

%include NewItems;
%include OldItems;
otherwise put ’Item ’ ItemNumber ’ is not in the inventory.’;

end;
run;

See Also

Statements:
“DO Statement” on page 1444
“IF Statement, Subsetting” on page 1533
“IF-THEN/ELSE Statement” on page 1535

1712 SET Statement � Chapter 6

SET Statement

Reads an observation from one or more SAS data sets.

Valid: in a DATA step
Category: File-handling
Type: Executable

Syntax
SET<SAS-data-set(s) <(data-set-options(s))>>

<options>;

Without Arguments
When you do not specify an argument, the SET statement reads an observation from

the most recently created data set.

Arguments
SAS-data-set (s)

specifies a one-level name, a two-level name, or one of the special SAS data set
names.
Tip: You can specify data set lists. For more information, see “Using Data Set

Lists with SET” on page 1716.
See Also: See “SAS Data Sets” in SAS Language Reference: Concepts for a

description of the levels of SAS data set names and when to use each level.
Featured in: Example 13 on page 1720

(data-set-options)
specifies actions SAS is to take when it reads variables or observations into the
program data vector for processing.
Tip: Data set options that apply to a data set list apply to all of the data sets in

the list.
See: Refer to “Definition of Data Set Options” on page 10 for a list of the data set

options to use with input data sets.

Options
END=variable

creates and names a temporary variable that contains an end-of-file indicator. The
variable, which is initialized to zero, is set to 1 when SET reads the last
observation of the last data set listed. This variable is not added to any new data
set.
Restriction: END= cannot be used with POINT=. When random access is used,

the END= variable is never set to 1.
Interaction: If you use a BY statement, END= is set to 1 when the SET

statement reads the last observation of the interleaved data set. For more
information, see “BY-Group Processing with SET” on page 1717.

Featured in: Example 11 on page 1720

Statements � SET Statement 1713

KEY=index</UNIQUE>
provides nonsequential access to observations in a SAS data set, which are based
on the value of an index variable or a key.

Range: Specify the name of a simple or a composite index of the data set that is
being read.

Restriction: KEY= cannot be used with POINT=.

Tip: Using the _IORC_ automatic variable in conjunction with the SYSRC
autocall macro provides you with more error-handling information than was
previously available. When you use the SET statement with the KEY= option,
the new automatic variable _IORC_ is created. This automatic variable is set to
a return code that shows the status of the most recent I/O operation that is
performed on an observation in a SAS data set. If the KEY= value is not found,
the _IORC_ variable returns a value that corresponds to the SYSRC autocall
macro’s mnemonic _DSENOM and the automatic variable _ERROR_ is set to 1.

Featured in: Example 7 on page 1719 and Example 8 on page 1719.

See Also: For more information, see the description of the autocall macro SYSRC
in SAS Macro Language: Reference.

See Also: UNIQUE option on page 1715

CAUTION:
Continuous loops can occur when you use the KEY= option. If you use the KEY=
option without specifying the primary data set, you must include either a STOP
statement to stop DATA step processing, or programming logic that uses the
IORC automatic variable in conjunction with the SYSRC autocall macro and
checks for an invalid value of the _IORC_ variable, or both. �

INDSNAME=variable
creates and names a variable that stores the name of the SAS data set from which
the current observation is read. The stored name can be a data set name or a
physical name. The physical name is the name by which the operating
environment recognizes the file.

Tip: For data set names, SAS will add the library name to the variable value (for
example, WORK.PRICE) and convert the two-level name to uppercase.

Tip: Unless previously defined, the length of the variable is set to 41 characters.
Use a LENGTH statement to make the variable length long enough to contain
the value of the physical filename if it is longer than 41 characters.

If the variable is previously defined as a character variable with a specific
length, that length is not changed. If the value placed into the INDSNAME
variable is longer than that length, then the value is truncated.

If the variable is previously defined as a numeric variable, an error will occur.

Featured in: Example 12 on page 1720

NOBS=variable
creates and names a temporary variable whose value is usually the total number
of observations in the input data set or data sets. If more than one data set is
listed in the SET statement, NOBS= the total number of observations in the data
sets that are listed. The number of observations includes those observations that
are marked for deletion but are not yet deleted.

Restriction: For certain SAS views, SAS cannot determine the number of
observations. In these cases, SAS sets the value of the NOBS= variable to the
largest positive integer value that is available in your operating environment.

Tip: At compilation time, SAS reads the descriptor portion of each data set and
assigns the value of the NOBS= variable automatically. Thus, you can refer to

1714 SET Statement � Chapter 6

the NOBS= variable before the SET statement. The variable is available in the
DATA step but is not added to any output data set.

Interaction: The NOBS= and POINT= options are independent of each other.
Featured in: Example 10 on page 1719

OPEN=(IMMEDIATE | DEFER)
allows you to delay the opening of any concatenated SAS data sets until they are
ready to be processed.

IMMEDIATE
during the compilation phase, opens all data sets that are listed in the SET
statement.
Restriction: When you use the IMMEDIATE option KEY=, POINT=, and BY

statement processing are mutually exclusive.
Tip: If a variable on a subsequent data set is of a different type (character

versus numeric, for example) than the type of the same-named variable on
the first data set, the DATA step will stop processing and produce an error
message.

DEFER
opens the first data set during the compilation phase, and opens subsequent
data sets during the execution phase. When the DATA step reads and
processes all observations in a data set, it closes the data set and opens the
next data set in the list.
Restriction: When you specify the DEFER option, you cannot use the KEY=

statement option, the POINT= statement option, or the BY statement.
These constructs imply either random processing or interleaving of
observations from the data sets, which is not possible unless all data sets
are open.

Requirement: You can use the DROP=, KEEP=, or RENAME= data set
options to process a set of variables, but the set of variables that are
processed for each data set must be identical. In most cases, if the set of
variables defined by any subsequent data set differs from the variables
defined by the first data set, SAS prints a warning message to the log but
does not stop execution. SAS stops execution for some conditions:

1 If a variable on a subsequent data set is of a different type (character
versus numeric, for example) than the type of the same-named
variable on the first data set, the DATA step will stop processing and
produce an error message.

2 If a variable on a subsequent data set was not defined by the first
data set in the SET statement, but was defined previously in the
DATA step program, the DATA step will stop processing and produce
an error message. In this case, the value of the variable in previous
iterations might be incorrect because the semantic behavior of SET
requires this variable to be set to missing when processing the first
observation of the first data set.

Default: IMMEDIATE

POINT=variable
specifies a temporary variable whose numeric value determines which observation
is read. POINT= causes the SET statement to use random (direct) access to read a
SAS data set.
Requirement: a STOP statement
Restriction: You cannot use POINT= with a BY statement, a WHERE statement,

or a WHERE= data set option. In addition, you cannot use it with transport

Statements � SET Statement 1715

format data sets, data sets in sequential format on tape or disk, and
SAS/ACCESS views or the SQL procedure views that read data from external
files.

Restriction: You cannot use POINT= with KEY=.

Tip: You must supply the values of the POINT= variable. For example, you can
use the POINT= variable as the index variable in some form of the DO
statement.

Tip: The POINT= variable is available anywhere in the DATA step, but it is not
added to any new SAS data set.

Featured in: Example 6 on page 1719 and Example 9 on page 1719

CAUTION:
Continuous loops can occur when you use the POINT= option. When you use the
POINT= option, you must include a STOP statement to stop DATA step
processing, programming logic that checks for an invalid value of the POINT=
variable, or both. Because POINT= reads only those observations that are
specified in the DO statement, SAS cannot read an end-of-file indicator as it
would if the file were being read sequentially. Because reading an end-of-file
indicator ends a DATA step automatically, failure to substitute another means
of ending the DATA step when you use POINT= can cause the DATA step to go
into a continuous loop. If SAS reads an invalid value of the POINT= variable, it
sets the automatic variable _ERROR_ to 1. Use this information to check for
conditions that cause continuous DO-loop processing, or include a STOP
statement at the end of the DATA step, or both. �

UNIQUE
causes a KEY= search always to begin at the top of the index for the data set that
is being read.

Restriction: UNIQUE can appear only with the KEY= argument and must be
preceded by a slash.

Explanation: By default, SET begins searching at the top of the index only when
the KEY= value changes.

If the KEY= value does not change on successive executions of the SET
statement, the search begins by following the most recently retrieved
observation. In other words, when consecutive duplicate KEY= values appear,
the SET statement attempts a one-to-one match with duplicate indexed values
in the data set that is being read. If more consecutive duplicate KEY= values
are specified than exist in the data set that is being read, the extra duplicates
are treated as not found.

When KEY= is a unique value, only the first attempt to read an observation
with that key value succeeds; subsequent attempts to read the observation with
that value of the key will fail. The _IORC_ variable returns a value that
corresponds to the SYSRC autocall macro’s mnemonic _DSENOM. If you add
the /UNIQUE option, subsequent attempts to read the observation with the
unique KEY= value will succeed. The _IORC_ variable returns a 0.

Featured in: Example 8 on page 1719

See Also: For extensive examples, see Combining and Modifying SAS Data Sets:
Examples.

Details

What SET Does Each time the SET statement is executed, SAS reads one observation
into the program data vector. SET reads all variables and all observations from the

1716 SET Statement � Chapter 6

input data sets unless you tell SAS to do otherwise. A SET statement can contain
multiple data sets; a DATA step can contain multiple SET statements. See Combining
and Modifying SAS Data Sets: Examples.

Uses The SET statement is flexible and has a variety of uses in SAS programming.
These uses are determined by the options and statements that you use with the SET
statement:

� reading observations and variables from existing SAS data sets for further
processing in the DATA step

� concatenating and interleaving data sets, and performing one-to-one reading of
data sets

� reading SAS data sets by using direct access methods.

Using Data Set Lists with SET You can use data set lists with the SET statement.
Data set lists provide a quick way to reference existing groups of data sets. These data
set lists must be either name prefix lists or numbered range lists.

Name prefix lists refer to all data sets that begin with a specified character string.
For example, set SALES1:; tells SAS to read all data sets starting with "SALES1"
such as SALES1, SALES10, SALES11, and SALES12.

Numbered range lists require you to have a series of data sets with the same name,
except for the last character or characters, which are consecutive numbers. In a
numbered range list, you can begin with any number and end with any number. For
example, these lists refer to the same data sets:

sales1 sales2 sales3 sales4

sales1-sales4

Note: If the numeric suffix of the first data set name contains leading zeros, the
number of digits in the numeric suffix of the last data set name must be greater than or
equal to the number of digits in the first data set name. Otherwise, an error will occur.
For example, the data set lists sales001–sales99 and sales01–sales9 will cause an error.
The data set list sales001–sales999 is valid. If the numeric suffix of the first data set
name does not contain leading zeros, the number of digits in the numeric suffix of the
first and last data set names do not have to be equal. For example, the data set list
sales1–sales999 is valid. �

Some other rules to consider when using numbered data set lists are as follows:
� You can specify groups of ranges.

set cost1-cost4 cost11-cost14 cost21-cost24;

� You can mix numbered range lists with name prefix lists.

set cost1-cost4 cost2: cost33-37;

� You can mix single data sets with data set lists.

set cost1 cost10-cost20 cost30;

� Quotation marks around data set lists are ignored.

/* these two lines are the same */
set sales1 - sales4;
set ’sales1’n - ’sales4’n;

� Spaces in data set names are invalid. If quotation marks are used, trailing blanks
are ignored.

/* blanks in these statements will cause errors */
set sales 1 - sales 4;

Statements � SET Statement 1717

set ’sales 1’n - ’sales 4’n;

/* trailing blanks in this statement will be ignored */
set ’sales1 ’n - ’sales4 ’n;

� The maximum numeric suffix is 2147483647.

/* this suffix will cause an error */
set prod2000000000-prod2934850239;

� Physical pathnames are not allowed.

/* physical pathnames will cause an error */
&let work_path = %sysfunc(pathname(WORK));
set "&work_path\dept.sas7bdat";

BY-Group Processing with SET Only one BY statement can accompany each SET
statement in a DATA step. The BY statement should immediately follow the SET
statement to which it applies. The data sets that are listed in the SET statement must
be sorted by the values of the variables that are listed in the BY statement, or they
must have an appropriate index. SET, when it is used with a BY statement, interleaves
data sets. The observations in the new data set are arranged by the values of the BY
variable or variables, and within each BY group, by the order of the data sets in which
they occur. See Example 2 on page 1718 for an example of BY-group processing with
the SET statement.

Combining SAS Data Sets Use a single SET statement with multiple data sets to
concatenate the specified data sets. That is, the number of observations in the new data
set is the sum of the number of observations in the original data sets, and the order of
the observations is all the observations from the first data set followed by all the
observations from the second data set, and so on. See Example 1 on page 1718 for an
example of concatenating data sets.

Use a single SET statement with a BY statement to interleave the specified data
sets. The observations in the new data set are arranged by the values of the BY
variable or variables, and within each BY group, by the order of the data sets in which
they occur. See Example 2 on page 1718 for an example of interleaving data sets.

Use multiple SET statements to perform one-to-one reading (also called one-to-one
matching) of the specified data sets. The new data set contains all the variables from
all the input data sets. The number of observations in the new data set is the number
of observations in the smallest original data set. If the data sets contain common
variables, the values that are read in from the last data set replace the values that
were read in from earlier ones. See Example 6 on page 1719, Example 7 on page 1719,
and Example 8 on page 1719 for examples of one-to-one reading of data sets.

For extensive examples, see Combining and Modifying SAS Data Sets: Examples.
For more information about how to prepare your data sets, see “Combining SAS Data

Sets: Basic Concepts” in SAS Language Reference: Concepts.

Comparisons

� SET reads an observation from an existing SAS data set. INPUT reads raw data
from an external file or from in-stream data lines in order to create SAS variables
and observations.

� Using the KEY= option with SET enables you to access observations
nonsequentially in a SAS data set according to a value. Using the POINT= option
with SET enables you to access observations nonsequentially in a SAS data set
according to the observation number.

1718 SET Statement � Chapter 6

Examples

Example 1: Concatenating SAS Data Sets If more than one data set name appears in
the SET statement, the resulting output data set is a concatenation of all the data sets
that are listed. SAS reads all observations from the first data set, then all from the
second data set, and so on, until all observations from all the data sets have been read.
This example concatenates the three SAS data sets into one output data set named
FITNESS:

data fitness;
set health exercise well;

run;

Example 2: Interleaving SAS Data Sets To interleave two or more SAS data sets, use a
BY statement after the SET statement:

data april;
set payable recvable;
by account;

run;

Example 3: Reading a SAS Data Set In this DATA step, each observation in the data
set NC.MEMBERS is read into the program data vector. Only those observations whose
value of CITY is Raleigh are output to the new data set RALEIGH.MEMBERS:

data raleigh.members;
set nc.members;
if city=’Raleigh’;

run;

Example 4: Merging a Single Observation with All Observations in a SAS Data Set An
observation to be merged into an existing data set can be one that is created by a SAS
procedure or another DATA step. In this example, the data set AVGSALES has only
one observation:

data national;
if _n_=1 then set avgsales;
set totsales;

run;

Example 5: Reading from the Same Data Set More Than Once In this example, SAS
treats each SET statement independently. That is, it reads from one data set as if it
were reading from two separate data sets:

data drugxyz;
set trial5(keep=sample);
if sample>2;
set trial5;

run;

For each iteration of the DATA step, the first SET statement reads one observation.
The next time the first SET statement is executed, it reads the next observation. Each
SET statement can read different observations with the same iteration of the DATA
step.

Statements � SET Statement 1719

Example 6: Combining One Observation with Many You can subset observations from
one data set and combine them with observations from another data set by using direct
access methods, as follows:

data south;
set revenue;
if region=4;
set expense point=_n_;

run;

Example 7: Performing a Table Lookup This example illustrates using the KEY=
option to perform a table lookup. The DATA step reads a primary data set that is
named INVTORY and a lookup data set that is named PARTCODE. It uses the index
PARTNO to read PARTCODE nonsequentially, by looking for a match between the
PARTNO value in each data set. The purpose is to obtain the appropriate description,
which is available only in the variable DESC in the lookup data set, for each part that
is listed in the primary data set:

data combine;
set invtory(keep=partno instock price);
set partcode(keep=partno desc) key=partno;

run;

Example 8: Performing a Table Lookup When the Master File Contains Duplicate
Observations This example uses the KEY= option to perform a table lookup. The
DATA step reads a primary data set that is named INVTORY, which is indexed on
PARTNO, and a lookup data set named PARTCODE. PARTCODE contains quantities of
new stock (variable NEW_STK). The UNIQUE option ensures that, if there are any
duplicate observations in INVTORY, values of NEW_STK are added only to the first
observation of the group:

data combine;
set partcode(keep=partno new_stk);
set invtory(keep=partno instock price)
key=partno/unique;
instock=instock+new_stk;

run;

Example 9: Reading a Subset by Using Direct Access These statements select a
subset of 50 observations from the data set DRUGTEST by using the POINT= option to
access observations directly by number:

data sample;
do obsnum=1 to 100 by 2;

set drugtest point=obsnum;
if _error_ then abort;
output;

end;
stop;

run;

Example 10: Performing a Function Until the Last Observation Is Reached These
statements use NOBS= to set the termination value for DO-loop processing. The value
of the temporary variable LAST is the sum of the observations in SURVEY1 and
SURVEY2:

do obsnum=1 to last by 100;
set survey1 survey2 point=obsnum nobs=last;

1720 SET Statement � Chapter 6

output;
end;
stop;

Example 11: Writing an Observation Only After All Observations Have Been Read This
example uses the END= variable LAST to tell SAS to assign a value to the variable
REVENUE and write an observation only after the last observation of RENTAL has
been read:

set rental end=last;
totdays + days;
if last then

do;
revenue=totdays*65.78;
output;

end;

Example 12: Retrieving the Name of the Data Set from Which the Current Observation Is
Read This example creates three data sets and stores the data set name in a variable
named dsn. The name is split into three parts and the example prints out the results.

/* Create some data sets to read */
data gas_price_option; value=395; run;
data gas_rbid_option; value=840; run;
data gas_price_forward; value=275; run;
/* Create a data set D */
data d;

set gas_price_option gas_rbid_option gas_price_forward indsname=dsn;
/* split the data set names into 3 parts */
commodity = scan (dsn, 2, "._");
type = scan (dsn, 3, "._");
instrument = scan (dsn, 4, "._");
run;

proc print data=d;
run;

Output 6.30 Data Set Name Split into Three Parts

The SAS System 1

Obs value commodity type instrument

1 395 GAS PRICE OPTION
2 840 GAS RBID OPTION
3 275 GAS PRICE FORWARD

Example 13: Using Data Set Lists This example uses a numbered range list to input
the data sets.

data dept008; emp=13; run;
data dept009; emp=9; run;
data dept010; emp=4; run;
data dept011; emp=33; run;

Statements � SET Statement 1721

data _null_;
set dept008-dept010;
put _all_;

run;

The following lines are written to the SAS log.

Output 6.31 Using a Data Set List with the SET Statement

1 data dept008; emp=13; run;
NOTE: The data set WORK.DEPT008 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.06 seconds
cpu time 0.03 seconds

2 data dept009; emp=9; run;
NOTE: The data set WORK.DEPT009 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

3 data dept010; emp=4; run;
NOTE: The data set WORK.DEPT010 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

4 data dept011; emp=33; run;
NOTE: The data set WORK.DEPT011 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

5
6 data _null_;
7 set dept008-dept010;
8 put _all_;
9 run;
emp=13 _ERROR_=0 _N_=1
emp=9 _ERROR_=0 _N_=2
emp=4 _ERROR_=0 _N_=3
NOTE: There were 1 observations read from the data set WORK.DEPT008.
NOTE: There were 1 observations read from the data set WORK.DEPT009.
NOTE: There were 1 observations read from the data set WORK.DEPT010.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

In addition, you could use data set lists to find missing data sets. This example uses
a numbered range list to locate the missing data sets. An error occurs for each data set
that does not exist. Once you know which data sets are missing, you can correct the
SET statement to reflect the data sets that actually exist.

data dept008; emp=13; run;
data dept009; emp=9; run;
data dept011; emp=4; run;
data dept014; emp=33; run;

data _null_;
set dept008-dept014;
put _all_;

run;

1722 SET Statement � Chapter 6

The following lines are written to the SAS log.

Output 6.32 Finding Missing Data Sets Using the SET Statement

1 data dept008; emp=13; run;
NOTE: The data set WORK.DEPT008 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.04 seconds

2 data dept009; emp=9; run;
NOTE: The data set WORK.DEPT009 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

3 data dept011; emp=4; run;
NOTE: The data set WORK.DEPT011 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.03 seconds
cpu time 0.01 seconds

4 data dept014; emp=33; run;
NOTE: The data set WORK.DEPT014 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

5 data _null_;
6 set dept008-dept014;
ERROR: File WORK.DEPT010.DATA does not exist.
ERROR: File WORK.DEPT012.DATA does not exist.
ERROR: File WORK.DEPT013.DATA does not exist.
7 put _all_;
8 run;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

See Also

Statements:

“BY Statement” on page 1407

“DO Statement” on page 1444

“INPUT Statement” on page 1569

“MERGE Statement” on page 1630

“STOP Statement” on page 1723

“UPDATE Statement” on page 1734

“Rules for Words and Names” in SAS Language Reference: Concepts

“Reading, Modifying, and Combining SAS Data Sets” in SAS Language Reference:
Concepts

“Definition of Data Set Options” on page 10

SAS Macro Language: Reference

Combining and Modifying SAS Data Sets: Examples

Statements � STOP Statement 1723

SKIP Statement

Creates a blank line in the SAS log.

Valid: Anywhere

Category: Log Control

Syntax
SKIP <n>;

Without Arguments

Using SKIP without arguments causes SAS to create one blank line in the log.

Arguments
n

specifies the number of blank lines that you want to create in the log.

Tip: If the number specified is greater than the number of lines that remain on
the page, SAS goes to the top of the next page.

Details
The SKIP statement itself does not appear in the log. You can use this statement in all
methods of operation.

See Also

Statement:

“PAGE Statement” on page 1657

System Options:

“LINESIZE= System Option” on page 1878

“PAGESIZE= System Option” on page 1899

STOP Statement

Stops execution of the current DATA step.

Valid: in a DATA step

Category: Action

Type: Executable

1724 STOP Statement � Chapter 6

Syntax
STOP;

Without Arguments
The STOP statement causes SAS to stop processing the current DATA step

immediately and resume processing statements after the end of the current DATA step.

Details
SAS outputs a data set for the current DATA step. However, the observation being
processed when STOP executes is not added. The STOP statement can be used alone or
in an IF-THEN statement or SELECT group.

Use STOP with any features that read SAS data sets using random access methods,
such as the POINT= option in the SET statement. Because SAS does not detect an
end-of-file with this access method, you must include program statements to prevent
continuous processing of the DATA step.

Comparisons
� When you use a windowing environment or other interactive methods of operation,

the ABORT statement and the STOP statement both stop processing. The ABORT
statement sets the value of the automatic variable _ERROR_ to 1, but the STOP
statement does not.

� In batch or noninteractive mode, the two statements also have different effects.
Use the STOP statement in batch or noninteractive mode to continue processing
with the next DATA or PROC step.

Examples

Example 1: Basic Usage
� stop;

� if idcode=9999 then stop;

� select (a);
when (0) output;
otherwise stop;

end;

Example 2: Avoiding an Infinite Loop This example shows how to use STOP to avoid
an infinite loop within a DATA step when you are using random access methods:

data sample;
do sampleobs=1 to totalobs by 10;

set master.research point=sampleobs
nobs=totalobs;

output;
end;
stop;

run;

See Also
Statements:
“ABORT Statement” on page 1392

Statements � Sum Statement 1725

POINT= option in the SET statement on page 1714

Sum Statement

Adds the result of an expression to an accumulator variable.

Valid: in a DATA step
Category: Action
Type: Executable

Syntax
variable+expression;

Arguments

variable
specifies the name of the accumulator variable, which contains a numeric value.
Tip: The variable is automatically set to 0 before SAS reads the first observation.

The variable’s value is retained from one iteration to the next, as if it had
appeared in a RETAIN statement.

Tip: To initialize a sum variable to a value other than 0, include it in a RETAIN
statement with an initial value.

expression
is any SAS expression.
Tip: The expression is evaluated and the result added to the accumulator variable.
Tip: SAS treats an expression that produces a missing value as zero.

Comparisons
The sum statement is equivalent to using the SUM function and the RETAIN
statement, as shown here:

retain variable 0;
variable=sum(variable,expression);

Examples

Here are examples of sum statements that illustrate various expressions:
� balance+(-debit);

� sumxsq+x*x;

� nx+(x ne .);

� if status=’ready’ then OK+1;

See Also

1726 SYSECHO Statement � Chapter 6

Function:

“SUM Function” on page 1111

Statement:

“RETAIN Statement” on page 1695

SYSECHO Statement

Fires a global statement complete event and passes a text string back to the IOM client.

Valid: anywhere

Category: Program Control

Restriction: Has an effect only in objectserver mode

Syntax
SYSECHO <"text">;

Without Arguments
Using SYSECHO without arguments sends a global statement complete event to the

IOM client.

Arguments
"text"

specifies a text string that is passed back to the IOM client.

Range: 1–64 characters

Requirement: The text string must be enclosed in double quotation marks.

Details
The SYSECHO statement enables IOM clients to manually track the progress of a
segment of a submitted SAS program.

When the SYSECHO statement is executed, a global statement complete event is
generated and, if specified, the text string is passed back to the IOM client.

TITLE Statement

Specifies title lines for SAS output.

Valid: anywhere

Category: Output Control

See: TITLE Statement in the documentation for your operating environment.

Statements � TITLE Statement 1727

Syntax
TITLE <n> <ods-format-options> <’text’ | “text”>;

Without Arguments
Using TITLE without arguments cancels all existing titles.

Arguments
n

specifies the relative line that contains the title line.
Range: 1 - 10
Tip: The title line with the highest number appears on the bottom line. If you

omit n, SAS assumes a value of 1. Therefore, you can specify TITLE or TITLE1
for the first title line.

Tip: You can create titles that contain blank lines between the lines of text. For
example, if you specify text with a TITLE statement and a TITLE3 statement,
there will be a blank line between the two lines of text.

ods-format-options
specifies formatting options for the ODS HTML, RTF, and PRINTER destinations.

BOLD
specifies that the title text is bold font weight.
ODS Destinations: HTML, RTF, PRINTER

COLOR=color
specifies the title text color.
Alias: C
ODS Destinations: HTML, RTF, PRINTER
Featured in: Example 3 on page 1730

BCOLOR=color
specifies the background color of the title block.
ODS Destinations: HTML, RTF, PRINTER

FONT=font-face
specifies the font to use. If you supply multiple fonts, then the destination
device uses the first one that is installed on your system.
Alias: F
ODS Destinations: HTML, RTF, PRINTER

HEIGHT=size
specifies the point size.
Alias: H
ODS Destinations: HTML, RTF, PRINTER
Featured in: Example 3 on page 1730

ITALIC
specifies that the title text is in italic style.
ODS Destinations: HTML, RTF, PRINTER

JUSTIFY= CENTER | LEFT | RIGHT
specifies justification.

CENTER

1728 TITLE Statement � Chapter 6

specifies center justification.
Alias: C

LEFT
specifies left justification.
Alias: L

RIGHT
specifies right justification.
Alias: R

Alias: J
ODS Destinations: HTML, RTF, PRINTER
Featured in: Example 3 on page 1730

LINK=’url’
specifies a hyperlink.
Tip: The visual properties for LINK= always come from the current style.
ODS Destinations: HTML, RTF, PRINTER

UNDERLIN= 0 | 1 | 2 | 3
specifies whether the subsequent text is underlined. 0 indicates no
underlining. 1, 2, and 3 indicates underlining.
Alias: U
Tip: ODS generates the same type of underline for values 1, 2, and 3.

However, SAS/GRAPH uses values 1, 2, and 3 to generate increasingly
thicker underlines.

ODS Destinations: HTML, RTF, PRINTER
Note: The defaults for how ODS renders the TITLE statement come from style

elements relating to system titles in the current style. The TITLE statement
syntax with ods-format-options is a way to override the settings provided by the
current style.

The current style varies according to the ODS destination. For more information
about how to determine the current style, see “What Are Style Definitions, Style
Elements, and Style Attributes?” and “Concepts: Style Definitions and the
TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide. �
Tip: You can specify these options by letter, word, or words by preceding each

letter or word of the text by the option.
For example, this code will make the title “Red, White, and Blue” appear in

different colors.

title color=red "Red," color=white "White, and" color=blue "Blue";

’text’ | “text”
specifies text that is enclosed in single or double quotation marks.

You can customize titles by inserting BY variable values (#BYVALn), BY
variable names (#BYVARn), or BY lines (#BYLINE) in titles that are specified in
PROC steps. Embed the items in the specified title text string at the position
where you want the substitution text to appear.

#BYVALn | #BYVAL(variable-name)
substitutes the current value of the specified BY variable for #BYVAL in the
text string and displays the value in the title.

Follow these rules when you use #BYVAL in the TITLE statement of a
PROC step:

� Specify the variable that is used by #BYVAL in the BY statement.

Statements � TITLE Statement 1729

� Insert #BYVAL in the specified title text string at the position where
you want the substitution text to appear.

� Follow #BYVAL with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends
the text string.

� If you want the #BYVAL substitution to be followed immediately by
other text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of the following:

n
specifies which variable in the BY statement #BYVAL should use. The
value of n indicates the position of the variable in the BY statement.

Example: #BYVAL2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Example: #BYVAL(YEAR) specifies the BY variable, YEAR.

Tip: Variable-name is not case sensitive.

#BYVARn | #BYVAR(variable-name)
substitutes the name of the BY variable or label that is associated with the
variable (whatever the BY line would normally display) for #BYVAR in the
text string and displays the name or label in the title.

Follow these rules when you use #BYVAR in the TITLE statement of a
PROC step:

� Specify the variable that is used by #BYVAR in the BY statement.

� Insert #BYVAR in the specified title text string at the position where
you want the substitution text to appear.

� Follow #BYVAR with a delimiting character, either a space or other
nonalphanumeric character (for example, a quotation mark) that ends
the text string.

� If you want the #BYVAR substitution to be followed immediately by
other text, with no delimiter, use a trailing dot (as with macro variables).

Specify the variable with one of the following:

n
specifies which variable in the BY statement #BYVAR should use. The
value of n indicates the position of the variable in the BY statement.

Example: #BYVAR2 specifies the second variable in the BY statement.

variable-name
names the BY variable.

Example: #BYVAR(SITES) specifies the BY variable SITES.

Tip: variable-name is not case sensitive.

#BYLINE
substitutes the entire BY line without leading or trailing blanks for
#BYLINE in the text string and displays the BY line in the title.

Tip: #BYLINE produces output that contains a BY line at the top of the page
unless you suppress it by using NOBYLINE in an OPTIONS statement.

See Also: For more information on NOBYLINE, see “BYLINE System
Option” on page 1801.

1730 TITLE Statement � Chapter 6

Tip: For compatibility with previous releases, SAS accepts some text without
quotation marks. When writing new programs or updating existing programs,
always enclose text in quotation marks.

Tip: If you use single quotation marks (’’) or double quotation marks (””) together
(with no space in between them) as the string of text, SAS will output a single
quotation mark (’) or double quotation marks (””), respectively.

Tip: If you use an automatic macro variable in the title text, you must enclose
the title text in double quotation marks. The SAS macro facility will resolve the
macro variable only if the text is in double quotation marks.

See Also: For more information about including quotation marks as part of the
title, see “Expressions” in SAS Language Reference: Concepts.

Details

In a DATA Step or PROC Step A TITLE statement takes effect when the step or RUN
group with which it is associated executes. Once you specify a title for a line, it is used
for all subsequent output until you cancel the title or define another title for that line.
A TITLE statement for a given line cancels the previous TITLE statement for that line
and for all lines with larger n numbers.

Operating Environment Information: The maximum title length that is allowed
depends on your operating environment and the value of the LINESIZE= system option.
Refer to the SAS documentation for your operating environment for more information. �

Comparisons
You can also create titles with the TITLES window.

Examples

Example 1: Using the TITLE Statement The following examples show how you can use
the TITLE statement:

� This statement suppresses a title on line n and all lines after it:

titlen;

� These code lines are examples of TITLE statements:

� title ’First Draft’;

� title2 "Year’s End Report";

� title2 ’Year’’s End Report’;

Example 2: Customizing Titles by Using BY Variable Values You can customize titles
by inserting BY variable values in the titles that you specify in PROC steps. The
following examples show how to use #BYVALn, #BYVARn, and #BYLINE:

� title ’Quarterly Sales for #byval(site)’;

� title ’Annual Costs for #byvar2’;

� title ’Data Group #byline’;

Example 3: Customizing Titles and Footnotes by Using the Output Delivery System You
can customize titles and footnotes with ODS. The following example shows you how to
use PROC TEMPLATE to change the color, justification, and size of the text for the title
and footnote.

Statements � TITLE Statement 1731

/***
*The following program creates the data set *
*grain_production and the $cntry format. *
***/
data grain_production;

length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007
1995 IND Rice 122372
1995 IND Corn 9800
1995 INS Wheat .
1995 INS Rice 49860
1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .
1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
;
run;

proc format;
value $cntry ’BRZ’=’Brazil’

’CHN’=’China’
’IND’=’India’
’INS’=’Indonesia’
’USA’=’United States’;

run;

/***
*This PROC TEMPLATE step creates the *
*table definition TABLE1 that is used *
*in the DATA step. *
***/

1732 TITLE Statement � Chapter 6

proc template;
define table table1;

mvar sysdate9;
dynamic colhd;
classlevels=on;

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

define column num_var;
generic=on;
header=colhd;
style=cellcontents;

end;

define footer table_footer;
end;

end;
run;

/***
*The ODS LISTING CLOSE statement closes the Listing *
*destination to conserve resources. *
* *
*The ODS HTML statement creates HTML output created with *
*the style defintion D3D. *
* *
*The TITLE statement specifies the text for the first title *
*and the attributes that ODS uses to modify it. *
*The J= style attribute left-justifies the title. *
*The COLOR= style attributes change the color of the title text *
*"Leading Grain" to blue and "Producers in" to green. *
* *
*The TITLE2 statement specifies the text for the second title *
*and the attributes that ODS uses to modify it. *
*The J= style attribute center justifies the title. *
*The COLOR= attribute changes the color of the title text "1996" *
*to red. *
* The HEIGHT= attributes change the size of each *
*individual number in "1996". *
* *
*The FOOTNOTE statement specifies the text for the first footnote *
*and the attributes that ODS uses to modify it. *
*The J=left style attribute left-justifies the footnote. *
*The HEIGHT=20 style attribute changes the font size to 20pt. *
*The COLOR= style attributes change the color of the footnote text *
*"Prepared" to red and "on" to green. *
* *
*The FOOTNOTE2 statement specifies the text for the second footnote *
*and the attributes that ODS uses to modify it. *
*The J= style attribute centers the footnote. *
*The COLOR= attribute changes the color of the date *

Statements � TITLE Statement 1733

*to blue, *
*The HEIGHT= attribute changes the font size *
*of the date specified by the sysdate9 macro. *
***/
ods listing close;

ods html body=’newstyle-body.htm’
style=d3d;

title j=left
font= ’Times New Roman’ color=blue bcolor=red "Leading Grain "
c=green bold italic "Producers in";

title2 j=center color=red underlin=1
height=28pt "1"
height=24pt "9"
height=20pt "9"
height=16pt "6";

footnote j=left height=20pt
color=red "Prepared "
c=’#FF9900’ "on";

footnote2 j=center color=blue
height=24pt "&sysdate9";

footnote3 link=’http://support.sas.com’ "SAS";
/***
*This step uses the DATA step and ODS to produce *
*an HTML report. It uses the default table definition *
*(template) for the DATA step and writes an output object *
*to the HTML destination. *
***/
data _null_;

set grain_production;
where type in (’Rice’, ’Corn’) and year=1996;
file print ods=(

template=’table1’
columns=(

char_var=country(generic=on format=$cntry.
dynamic=(colhd=’Country’))

char_var=type(generic dynamic=(colhd=’Year’))
num_var=kilotons(generic=on format=comma12.
dynamic=(colhd=’Kilotons’))

)
);

put _ods_;
run;

ods html close;
ods listing;

1734 UPDATE Statement � Chapter 6

Display 6.1 Output with Customized Titles and Footnotes

See Also

Statement:
“FOOTNOTE Statement” on page 1525

System Option:
“LINESIZE= System Option” on page 1878

“The TEMPLATE Procedure” in the SAS Output Delivery System: User’s Guide

UPDATE Statement

Updates a master file by applying transactions.

Valid: in a DATA step
Category: File-handling
Type: Executable

Statements � UPDATE Statement 1735

Syntax
UPDATE master-data-set<(data-set-options)> transaction-data-set<(data-set-options)>

<END=variable>

<UPDATEMODE=
MISSINGCHECK|NOMISSINGCHECK>;

BY by-variable;

Arguments

master-data-set
specifies the SAS data set used as the master file.

Range: The name can be a one-level name (for example, FITNESS), a two-level
name (for example, IN.FITNESS), or one of the special SAS data set names.

See Also: “SAS Names and Words” in SAS Language Reference: Concepts.

(data-set-options)
specifies actions SAS is to take when it reads variables into the DATA step for
processing.

Requirements: Data-set-options must appear within parentheses and follow a SAS
data set name.

Tip: Dropping, keeping, and renaming variables is often useful when you update a
data set. Renaming like-named variables prevents the second value that is read
from over-writing the first one. By renaming one variable, you make the values of
both of them available for processing, such as comparing.

Featured in: Example 2 on page 1737

See Also: A list of data set options to use with input data sets in “Data Set Options
by Category” on page 12.

transaction-data-set
specifies the SAS data set that contains the changes to be applied to the master data
set.

Range: The name can be a one-level name (for example, HEALTH), a two-level
name (for example, IN.HEALTH), or one of the special SAS data set names.

END=variable
creates and names a temporary variable that contains an end-of-file indicator. This
variable is initialized to 0 and is set to 1 when UPDATE processes the last
observation. This variable is not added to any data set.

UPDATEMODE=MISSINGCHECK
UPDATEMODE=NOMISSINGCHECK

specifies whether missing variable values in a transaction data set are to be allowed
to replace existing variable values in a master data set.

MISSINGCHECK
prevents missing variable values in a transaction data set from replacing values in
a master data set.

NOMISSINGCHECK
allows missing variable values in a transaction data set to replace values in a
master data set.

Default: MISSINGCHECK

1736 UPDATE Statement � Chapter 6

Tip: Special missing values, however, are the exception and will replace values in
the master data set even when MISSINGCHECK (the default) is in effect.

Details

Requirements
� The UPDATE statement must be accompanied by a BY statement that specifies

the variables by which observations are matched.
� The BY statement should immediately follow the UPDATE statement to which it

applies.
� The data sets listed in the UPDATE statement must be sorted by the values of the

variables listed in the BY statement, or they must have an appropriate index.
� Each observation in the master data set should have a unique value of the BY

variable or BY variables. If there are multiple values for the BY variable, only the
first observation with that value is updated. The transaction data set can contain
more than one observation with the same BY value. (Multiple transaction
observations are all applied to the master observation before it is written to the
output file.)

For more information, see “How to Prepare Your Data Sets” in SAS Language
Reference: Concepts.

Transaction Data Sets Usually, the master data set and the transaction data set
contain the same variables. However, to reduce processing time, you can create a
transaction data set that contains only those variables that are being updated. The
transaction data set can also contain new variables to be added to the output data set.

The output data set contains one observation for each observation in the master data
set. If any transaction observations do not match master observations, they become
new observations in the output data set. Observations that are not to be updated can
be omitted from the transaction data set. See “Reading, Combining, and Modifying SAS
Data Sets” in SAS Language Reference: Concepts.

Missing Values By default the UPDATEMODE=MISSINGCHECK option is in effect,
so missing values in the transaction data set do not replace existing values in the
master data set. Therefore, if you want to update some but not all variables and if the
variables you want to update differ from one observation to the next, set to missing
those variables that are not changing. If you want missing values in the transaction
data set to replace existing values in the master data set, use
UPDATEMODE=NOMISSINGCHECK.

Even when UPDATEMODE=MISSINGCHECK is in effect, you can replace existing
values with missing values by using special missing value characters in the transaction
data set. To create the transaction data set, use the MISSING statement in the DATA
step. If you define one of the special missing values A through Z for the transaction
data set, SAS updates numeric variables in the master data set to that value.

If you want the resulting value in the master data set to be a regular missing value,
use a single underscore (_) to represent missing values in the transaction data set. The
resulting value in the master data set will be a period (.) for missing numeric values
and a blank for missing character values.

For more information about defining and using special missing value characters, see
“MISSING Statement” on page 1633.

Comparisons
� Both UPDATE and MERGE can update observations in a SAS data set.

Statements � UPDATE Statement 1737

� MERGE automatically replaces existing values in the first data set with missing
values in the second data set. UPDATE, however, does not do so by default. To
cause UPDATE to overwrite existing values in the master data set with missing
ones in the transaction data set, you must use
UPDATEMODE=NOMISSINGCHECK.

� UPDATE changes or updates the values of selected observations in a master file
by applying transactions. UPDATE can also add new observations.

Examples

Example 1: Basic Updating These program statements create a new data set
(OHIO.QTR1) by applying transactions to a master data set (OHIO.JAN). The BY
variable STORE must appear in both OHIO.JAN and OHIO.WEEK4, and its values in
the master data set should be unique:

data ohio.qtr1;
update ohio.jan ohio.week4;
by store;

run;

Example 2: Updating By Renaming Variables This example shows renaming a variable
in the FITNESS data set so that it will not overwrite the value of the same variable in
the program data vector. Also, the WEIGHT variable is renamed in each data set and a
new WEIGHT variable is calculated. The master data set and the transaction data set
are listed before the code that performs the update:

Master Data Set
HEALTH

OBS ID NAME TEAM WEIGHT

1 1114 sally blue 125
2 1441 sue green 145
3 1750 joey red 189
4 1994 mark yellow 165
5 2304 joe red 170

Transaction Data Set
FITNESS

OBS ID NAME TEAM WEIGHT

1 1114 sally blue 119
2 1994 mark yellow 174
3 2304 joe red 170

options nodate pageno=1 linesize=80 pagesize=60;

/* Sort both data sets by ID */
proc sort data=health;

by id;
run;
proc sort data=fitness;

by id;
run;

1738 UPDATE Statement � Chapter 6

/* Update Master with Transaction */
data health2;

length STATUS $11;
update health(rename=(weight=ORIG) in=a)

fitness(drop=name team in=b);
by id ;
if a and b then

do;
CHANGE=abs(orig - weight);
if weight<orig then status=’loss’;
else if weight>orig then status=’gain’;
else status=’same’;

end;
else status=’no weigh in’;

run;

options nodate ls=78;

proc print data=health2;
title ’Weekly Weigh-in Report’;

run;

Output 6.33 Updating By Renaming Variables

Weekly Weigh-in Report 1

OBS STATUS ID NAME TEAM ORIG WEIGHT CHANGE

1 loss 1114 sally blue 125 119 6
2 no weigh in 1441 sue green 145 . .
3 no weigh in 1750 joey red 189 . .
4 gain 1994 mark yellow 165 174 9
5 same 2304 joe red 170 170 0

Example 3: Updating with Missing Values This example illustrates the DATA steps
used to create a master data set PAYROLL and a transaction data set INCREASE that
contains regular and special missing values:

options nodate pageno=1 linesize=80 pagesize=60;

/* Create the Master Data Set */
data payroll;

input ID SALARY;
datalines;

011 245
026 269
028 374
034 333
057 582
;

/* Create the Transaction Data Set */
data increase;

input ID SALARY;
missing A _;

Statements � WHERE Statement 1739

datalines;
011 376
026 .
028 374
034 A
057 _
;

/* Update Master with Transaction */
data newpay;

update payroll increase;
by id;

run;
proc print data=newpay;

title ’Updating with Missing Values’;
run;

Output 6.34 Updating With Missing Values

Updating with Missing Values 1

OBS ID SALARY

1 1011 376
2 1026 269 <=== value remains 269
3 1028 374
4 1034 A <=== special missing value
5 1057 . <=== regular missing value

See Also

Statements:
“BY Statement” on page 1407
“MERGE Statement” on page 1630
“MISSING Statement” on page 1633
“MODIFY Statement” on page 1634
“SET Statement” on page 1712

System Option:
“MISSING= System Option” on page 1886

“Reading, Combining, and Modifying SAS Data Sets” in SAS Language Reference:
Concepts

“Definition of Data Set Options” on page 10

WHERE Statement

Selects observations from SAS data sets that meet a particular condition.

Valid: in DATA and PROC steps
Category: Action

1740 WHERE Statement � Chapter 6

Type: Declarative

Syntax
WHERE where-expression-1

< logical-operator where-expression-n>;

Arguments

where-expression
is an arithmetic or logical expression that generally consists of a sequence of
operands and operators.
Tip: The operands and operators described in the next several sections are also

valid for the WHERE= data set option.
Tip: You can specify multiple where-expressions.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

Details

The Basics Using the WHERE statement might improve the efficiency of your SAS
programs because SAS is not required to read all observations from the input data set.

The WHERE statement cannot be executed conditionally. That is, you cannot use it
as part of an IF-THEN statement.

WHERE statements can contain multiple WHERE expressions that are joined by
logical operators.

Note: Using indexed SAS data sets can significantly improve performance when you
use WHERE expressions to access a subset of the observations in a SAS data set. See
“Understanding SAS Indexes” in the “SAS Data Files” section of SAS Language
Reference: Concepts for a complete discussion of WHERE-expression processing with
indexed data sets and a list of guidelines to consider before you index your SAS data
sets. �

In DATA Steps The WHERE statement applies to all data sets in the preceding SET,
MERGE, MODIFY, or UPDATE statement, and variables that are used in the WHERE
statement must appear in all of those data sets. You cannot use the WHERE statement
with the POINT= option in the SET and MODIFY statements.

You can apply OBS= and FIRSTOBS= processing to WHERE processing. For more
information, see “Processing a Segment of Data That is Conditionally Selected” in the
“WHERE-Expression Processing” section of SAS Language Reference: Concepts.

You cannot use the WHERE statement to select records from an external file that
contains raw data, nor can you use the WHERE statement within the same DATA step
in which you read in-stream data with a DATALINES statement.

For each iteration of the DATA step, the first operation SAS performs in each
execution of a SET, MERGE, MODIFY, or UPDATE statement is to determine whether
the observation in the input data set meets the condition of the WHERE statement. The
WHERE statement takes effect immediately after the input data set options are applied
and before any other statement in the DATA step is executed. If a DATA step combines
observations using a WHERE statement with a MERGE, MODIFY, or UPDATE
statement, SAS selects observations from each input data set before it combines them.

Statements � WHERE Statement 1741

WHERE and BY in a DATA Step If a DATA step contains both a WHERE statement and
a BY statement, the WHERE statement executes before BY groups are created.
Therefore, BY groups reflect groups of observations in the subset of observations that
are selected by the WHERE statement, not the actual BY groups of observations in the
original input data set.

For a complete discussion of BY-group processing, see “BY-Group Processing in SAS
Programs” in SAS Language Reference: Concepts.

In PROC Steps You can use the WHERE statement with any SAS procedure that reads
a SAS data set. The WHERE statement is useful in order to subset the original data set
for processing by the procedure. The Base SAS Procedures Guide documents the action
of the WHERE statement only in those procedures for which you can specify more than
one data set. In all other cases, the WHERE statement performs as documented here.

Use of Indexes A DATA or PROC step attempts to use an available index to optimize
the selection of data when an indexed variable is used in combination with one of the
following operators and functions:

� the BETWEEN-AND operator

� the comparison operators, with or without the colon modifier

� the CONTAINS operator

� the IS NULL and IS NOT NULL operators

� the LIKE operator

� the TRIM function

� the SUBSTR function, in some cases.

SUBSTR requires the following arguments:

where substr(variable,position,length)
=’character-string’;

An index is used in processing when the arguments of the SUBSTR function meet all of
the following conditions:

� position is equal to 1

� length is less than or equal to the length of variable

� length is equal to the length of character-string.

Operands Used in WHERE Expressions Operands in WHERE expressions can contain
the following values:

� constants

� time and date values

� values of variables that are obtained from the SAS data sets

� values created within the WHERE expression itself.

You cannot use variables that are created within the DATA step (for example,
FIRST.variable, LAST.variable, _N_, or variables that are created in assignment
statements) in a WHERE expression because the WHERE statement is executed before
the SAS System brings observations into the DATA or PROC step. When WHERE
expressions contain comparisons, the unformatted values of variables are compared.

The following are examples of using operands in WHERE expressions:

� where score>50;

� where date>=’01jan1999’d and time>=’9:00’t;

� where state=’Mississippi’;

1742 WHERE Statement � Chapter 6

As in other SAS expressions, the names of numeric variables can stand alone. SAS
treats values of 0 or missing as false; other values are true. These examples are
WHERE expressions that contain the numeric variables EMPNUM and SSN:

� where empnum;

� where empnum and ssn;

Character literals or the names of character variables can also stand alone in
WHERE expressions. If you use the name of a character variable by itself as a WHERE
expression, SAS selects observations where the value of the character variable is not
blank.

Operators Used in the WHERE Expression You can include both SAS operators and
special WHERE-expression operators in the WHERE statement. For a complete list of
the operators, see Table 6.12 on page 1742. For the rules SAS follows when it evaluates
WHERE expressions, see “WHERE-Expression Processing” in SAS Language Reference:
Concepts.

Table 6.12 WHERE Statement Operators

Operator Type Symbol or Mnemonic Description

Arithmetic

* multiplication

/ division

+ addition

− subtraction

** exponentiation

Comparison 4

= or EQ equal to

^=, =, ~=, or NE1 not equal to

> or GT greater than

< or LT less than

>= or GE greater than or equal to

<= or LE less than or equal to

IN equal to one of a list

Logical (Boolean)

& or AND logical and

| or OR2 logical or1

~,^ , , or NOT1 logical not

Other

||3 concatenation of character variables

() indicate order of evaluation

+ prefix positive number

− prefix negative number

WHERE Expression Only

Statements � WHERE Statement 1743

Operator Type Symbol or Mnemonic Description

BETWEEN–AND an inclusive range

? or CONTAINS a character string

IS NULL or IS MISSING missing values

LIKE match patterns

=* sounds-like

SAME-AND add clauses to an existing WHERE
statement without retyping original one

1 The caret (^), tilde (~), and the not sign ()all indicate a logical not. Use the character available
on your keyboard, or use the mnemonic equivalent.

2 The OR symbol (|), broken vertical bar (|), and exclamation point (!) all indicate a logical or.
Use the character available on your keyboard, or use the mnemonic equivalent.

3 Two OR symbols (| |), two broken vertical bars (| |), or two exclamation points (!!) indicate
concatenation. Use the character available on your keyboard.

4 You can use the colon modifier (:) with any of the comparison operators in order to compare only
a specified prefix of a character string.

Comparisons

� You can use the WHERE command in SAS/FSP software to subset data for editing
and browsing. You can use both the WHERE statement and WHERE= data set
option in windowing procedures and in conjunction with the WHERE command.

� To select observations from individual data sets when a SET, MERGE, MODIFY,
or UPDATE statement specifies more than one data set, apply a WHERE= data
set option to each data set. In the DATA step, if a WHERE statement and a
WHERE= data set option apply to the same data set, SAS uses the data set option
and ignores the statement.

� The most important differences between the WHERE statement in the DATA step
and the subsetting IF statement are as follows:

� The WHERE statement selects observations before they are brought into the
program data vector, making it a more efficient programming technique. The
subsetting IF statement works on observations after they are read into the
program data vector.

� The WHERE statement can produce a different data set from the subsetting
IF when a BY statement accompanies a SET, MERGE, or UPDATE statement.
The different data set occurs because SAS creates BY groups before the
subsetting IF statement selects but after the WHERE statement selects.

� The WHERE statement cannot be executed conditionally as part of an IF
statement, but the subsetting IF statement can.

� The WHERE statement selects observations in SAS data sets only, whereas
the subsetting IF statement selects observations from an existing SAS data
set or from observations that are created with an INPUT statement.

� The subsetting IF statement cannot be used in SAS windowing procedures to
subset observations for browsing or editing.

� Do not confuse the WHERE statement with the DROP or KEEP statement. The
DROP and KEEP statements select variables for processing. The WHERE
statement selects observations.

1744 WHERE Statement � Chapter 6

Examples

Example 1: Basic WHERE Statement Usage This DATA step produces a SAS data set
that contains only observations from data set CUSTOMER in which the value for
NAME begins with Mac and the value for CITY is Charleston or Atlanta.

data testmacs;
set customer;
where substr(name,1,3)=’Mac’ and

(city=’Charleston’ or city=’Atlanta’);
run;

Example 2: Using Operators Available Only in the WHERE Statement
� Using BETWEEN-AND:

where empnum between 500 and 1000;

� Using CONTAINS:

where company ? ’bay’;
where company contains ’bay’;

� Using IS NULL and IS MISSING:

where name is null;
where name is missing;

� Using LIKE to select all names that start with the letter D:

where name like ’D%’;

� Using LIKE to match patterns from a list of the following names:
Diana
Diane
Dianna
Dianthus
Dyan

WHERE Statement Name Selected

where name like ’D_an’; Dyan

where name like ’D_an_’; Diana, Diane

where name like ’D_an__’; Dianna

where name like ’D_an%’; all names from list

� Using the Sounds-like Operator to select names that sound like “Smith”:

where lastname=*’Smith’;

� Using SAME-AND:

where year>1991;
...more SAS statements...
where same and year<1999;

In this example, the second WHERE statement is equivalent to the following
WHERE statement:

Statements � WINDOW Statement 1745

where year>1991 and year<1999;

See Also

Data Set Option:
“WHERE= Data Set Option” on page 67

Statement:
“IF Statement, Subsetting” on page 1533

SAS SQL Query Window User’s Guide
SAS/IML User’s Guide
Base SAS Procedures Guide
“SAS Indexes” in SAS Language Reference: Concepts
“WHERE-Expression Processing” in SAS Language Reference: Concepts
“BY-Group Processing” in SAS Language Reference: Concepts
Beatrous, S. & Clifford, W. (1998), “Sometimes You Do Get What You Want: SAS I/O

Enhancements in Version 7,” Proceedings of the Twenty–third Annual SAS Users
Group International Conference, 23.

WINDOW Statement

Creates customized windows for your applications.

Valid: in a DATA step
Category: Window Display
Type: Declarative

Syntax
WINDOW window <window-options> field-definition(s);

WINDOW window <window-options> group-definition(s);

Arguments

window
specifies the window name.
Restriction: Window names must conform to SAS naming conventions.

window-options
specifies characteristics of the window as a whole. Specify these window-options
before any field or GROUP= specifications:

COLOR=color
specifies the color of the window background for operating environments that have
this capability. In other operating environments, this option affects the color of the
window border. The following colors are available:

1746 WINDOW Statement � Chapter 6

BLACK

BLUE

BROWN

CYAN

GRAY

GREEN

MAGENTA

ORANGE

PINK

RED

WHITE

YELLOW
Default: If you do not specify a color with the COLOR= option, the window’s

background color is device-dependent instead of black, and the color of a field is
device-dependent instead of white.

Tip: The representation of colors might vary, depending on the monitor being
used. COLOR= has no effect on monochrome monitors.

COLUMNS=columns
specifies the number of columns in the window.
Default: The window fills all remaining columns on the monitor; the number of

columns that are available depends on the type of monitor that is being used.

ICOLUMN=column
specifies the initial column within the monitor at which the window is displayed.
Default: SAS displays the window at column 1.

IROW=row
specifies the initial row (or line) within the monitor at which the window is
displayed.
Default: SAS displays the window at row 1.

KEYS=<<libref.>catalog.>keys-entry
specifies the name of a KEYS entry that contains the function key definitions for
the window.
Default: SAS uses the current function key settings that are defined in the KEYS

window.
Tip: If you specify only an entry name, SAS looks in the SASUSER.PROFILE

catalog for a KEYS entry of the name that is specified. You can also specify the
three-level name of a KEYS entry, in the form

libref.catalog.keys-entry

Tip: To create a set of function key definitions for a window, use the KEYS
window. Define the keys as you want, and use the SAVE command to save the
definitions in the SASUSER.PROFILE catalog or in a SAS library and catalog
that you specify.

MENU=<<libref.>catalog.>pmenu-entry
specifies the name of a menu (pmenu) you have built with the PMENU procedure.

Statements � WINDOW Statement 1747

Tip: If you specify only an entry name, SAS looks in the SASUSER.PROFILE
catalog for a PMENU entry of the name specified. You can also specify the
three-level name of a PMENU entry in the form

libref.catalog.pmenu-entry

ROWS=rows
specifies the number of rows (or lines) in the window.

Default: The window fills all remaining rows on the monitor.

Tip: The number of rows that are available depends on the type of monitor that is
being used.

field-definition(s)
specifies and describes a variable or character string to be displayed in a window or
within a group of related fields.

Tip: A window or group can contain any number of fields, and you can define the
same field in several groups or windows.

Tip: You can specify multiple field-definitions.

See Also: The form of field-definition is given in “Field Definitions” on page 1748.

group-definition(s)
specifies a group and defines all fields within a group. A group definition consists of
two parts: the GROUP= option and one or more field definitions.

GROUP=group
specifies a group of related fields.

Restriction: group must be a SAS name.

Default: A window contains one unnamed group of fields.

Tip: When you refer to a group in a DISPLAY statement, write the name as
window.group.

Tip: A group contains all fields in a window that you want to display at the same
time. Display various groups of fields within the same window at different
times by naming each group. Choose the group to appear by specifying
window.group in the DISPLAY statement.

Tip: Specifying several groups within a window prevents repetition of window
options that do not change and helps you to keep track of related displays. For
example, if you are defining a window to check data values, arrange the display
of variables and messages for most data values in the data set in a group that is
named STANDARD. Arrange the display of different messages in a group that
is named CHECKIT that appears when data values meet the conditions that
you want to check.

Details
Operating Environment Information: The WINDOW statement has some functionality
that might be specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

You can use the WINDOW statement in the SAS windowing environment, in
interactive line mode, or in noninteractive mode to create customized windows for your
applications.* Windows that you create can display text and accept input; they have
command and message lines. The window name appears at the top of the window. Use

* You cannot use the WINDOW statement in batch mode because no computer is connected to a batch executing process.

1748 WINDOW Statement � Chapter 6

commands and function keys with windows that you create. A window definition
remains in effect only for the DATA step that contains the WINDOW statement.

Define a window before you display it. Use the DISPLAY statement to display
windows that are created with the WINDOW statement. For information about the
DISPLAY statement, see “DISPLAY Statement” on page 1441.

Field Definitions Use a field definition to identify a variable or a character string to
be displayed, its position, and its attributes. Enclose character strings in quotation
marks. The position of an item is its beginning row (or line) and column. Attributes
include color, whether you can enter a value into the field, and characteristics such as
highlighting.

You can define a field to contain a variable value or a character string, but not both.
The form of a field definition for a variable value is

<row column> variable <format> options

The form for a character string is

<row column> ’character-string’ options

The elements of a field definition are described here.

row column
specifies the position of the variable or character string.

Default: If you omit row in the first field of a window or group, SAS uses the first
row of the window. If you omit row in a later field specification, SAS continues
on the row that contains the previous field. If you omit column, SAS uses
column 1 (the left border of the window).

Tip: Although you can specify either row or column first, the examples in this
documentation show the row first.

SAS keeps track of its position in the window with a pointer. For example,
when you tell SAS to write a variable’s value in the third column of the second row
of a window, the pointer moves to row 2, column 3 to write the value. Use the
pointer controls that are listed here to move the pointer to the appropriate position
for a field.

In a field definition, row can be one of these row pointer controls:

#n
specifies row n within the window.

Range: n must be a positive integer.

#numeric-variable
specifies the row within the window that is given by the value of
numeric-variable.

Restriction: #numeric-variable must be a positive integer. If the value is not
an integer, the decimal portion is truncated and only the integer is used.

#(expression)
specifies the row within the window that is given by the value of expression.

Restriction: expression can contain array references and must evaluate to a
positive integer.

Restriction: Enclose expression in parentheses.

/
moves the pointer to column 1 of the next row.

In a field definition, column can be one of these column pointer controls:

Statements � WINDOW Statement 1749

@n
specifies column n within the window.
Restriction: n must be a positive integer.

@numeric-variable
specifies the column within the window that is given by the value of
numeric-variable.
Restriction: numeric-variable must be a positive integer. If the value is not

an integer, the decimal portion is truncated and only the integer is used.

@(expression)
specifies the column within the window that is given by the value of
expression.
Restriction: expression can contain array references and must evaluate to a

positive integer.
Restriction: Enclose expression in parentheses.

+n
moves the pointer n columns.
Range: n must be a positive integer.

+numeric-variable
moves the pointer the number of columns that is given by the
numeric-variable.
Restriction: +numeric-variable must be a positive or negative integer. If the

value is not an integer, the decimal portion is truncated and only the
integer is used.

variable
specifies a variable to be displayed or to be assigned the value that you enter at
that position when the window is displayed.
Tip: variable can be the name of a variable or of an array reference.
Tip: To allow a variable value in a field to be displayed but not changed by the

user, use the PROTECT= option (described later in this section). You can also
protect an entire window or group for the current execution of the DISPLAY
statement by specifying the NOINPUT option in the DISPLAY statement.

Tip: If a field definition contains the name of a new variable, that variable is
added to the data set that is being created (unless you use a KEEP or DROP
specification).

format
gives the format for the variable.
Default: If you omit format, SAS uses an informat and format that are specified

elsewhere (for example, in an ATTRIB, INFORMAT, or FORMAT statement or
permanently stored with the data set) or a SAS default informat and format.

Tip: If a field displays a variable that cannot be changed (that is, you use the
PROTECT=YES option), format can be any SAS format or a format that you
define with the FORMAT procedure.

Tip: If a field can both display a variable and accept input, you must either
specify the informat in an INFORMAT or ATTRIB statement or use a SAS
format such as $CHAR. or TIME. that has a corresponding informat.

Tip: If a format is specified, the corresponding informat is assigned automatically
to fields that can accept input.

Tip: A format and an informat in a WINDOW statement override an informat
and a format that are specified elsewhere.

1750 WINDOW Statement � Chapter 6

’character-string’
contains the text of a character string to be displayed.
Restriction: The character string must be enclosed in quotation marks.
Restriction: You cannot enter a value in a field that contains a character string.

options
Specify field definition attributes:

ATTR=highlighting-attribute
controls these highlighting attributes of the field:

BLINK
causes the field to blink.

HIGHLIGHT
displays the field at high intensity.

REV_VIDEO
displays the field in reverse video.

UNDERLINE
underlines the field.

Alias: A=
Tip: To specify more than one highlighting attribute, use the form

ATTR=(highlighting-attribute-1, . . .)
Tip: The highlighting attributes that are available depend on the type of

monitor that you use.

AUTOSKIP=YES | NO
controls whether the cursor moves to the next unprotected field of the current
window or group when you have entered data in all positions of a field.

YES specifies that the cursor moves automatically to the next
unprotected field.

NO specifies that the cursor does not move automatically.
Alias: AUTO=
Default: NO

COLOR=color
specifies a color for the variable or character string. You can specify one of
the following colors:

BLACK

BLUE

BROWN

CYAN

GRAY

GREEN

MAGENTA

ORANGE

PINK

RED

WHITE

Statements � WINDOW Statement 1751

YELLOW
Alias: C=
Default: WHITE
Tip: The representation of colors might vary, depending on the monitor you

use.
Tip: COLOR= has no effect on monochrome monitors.

DISPLAY=YES | NO
controls whether the contents of a field are displayed.

YES specifies that SAS displays characters in a field as you
type them in.

NO specifies that the entered characters are not displayed.
Default: YES

PERSIST=YES | NO
controls whether a field is displayed by all executions of a DISPLAY
statement in the same iteration of the DATA step until the DISPLAY
statement contains the BLANK option.

YES specifies that each execution of the DISPLAY statement
displays all previously displayed contents of the field as
well as the contents that are scheduled for display by the
current DISPLAY statement. If the new contents overlap
persisting contents, the persisting contents are no longer
displayed.

NO specifies that each execution of a DISPLAY statement
displays only the current contents of the field.

Default: NO
Tip: PERSIST= is most useful when the position of a field changes in each

execution of a DISPLAY statement.
Featured in: Example 3 on page 1754

PROTECT=YES | NO
controls whether information can be entered into a field.

YES specifies that you cannot enter information.

NO specifies that you can enter information.
Alias: P=
Default: No
Tip: Use PROTECT= only for fields that contain variables; fields that contain

text are automatically protected.

REQUIRED=YES | NO
controls whether a field can be left blank.

NO specifies that you can leave the field blank.

YES specifies that you must enter a value in the field.
Default: NO
Tip: If you try to leave a field blank that was defined with REQUIRED=YES,

SAS does not allow you to input values in any subsequent fields in the
window.

Automatic Variables The WINDOW statement creates two automatic SAS variables:
CMD and _MSG_.

1752 WINDOW Statement � Chapter 6

CMD contains the last command from the window’s command line that
was not recognized by the window.
Tip: _CMD_ is a character variable of length 80; its value is set to

’’(blank) before each execution of a DISPLAY statement.
Featured in: Example 4 on page 1755

MSG contains a message that you specify to be displayed in the message
area of the window.
Tip: _MSG_ is a character variable with length 80; its value is set

to ’’(blank) after each execution of a DISPLAY statement.
Featured in: Example 4 on page 1755

Displaying Windows The DISPLAY statement enables you to display windows. Once
you display a window, the window remains visible until you display another window
over it or until the end of the DATA step. When you display a window that contains
fields into which you can enter values, either enter a value or press ENTER at each
unprotected field to cause SAS to proceed to the next display. While a window is being
displayed, you can use commands and function keys to view other windows, change the
size of the current window, and so on. The execution proceeds to the next display only
after you have pressed ENTER in all unprotected fields.

A DATA step that contains a DISPLAY statement continues execution until
� the last observation that is read by a SET, MERGE, MODIFY, UPDATE, or

INPUT statement has been processed
� a STOP or ABORT statement is executed
� an END command executes.

Comparisons
� The WINDOW statement creates a window, and the DISPLAY statement displays

it.
� The %WINDOW and %DISPLAY statements in the macro language create and

display windows that are controlled by the macro facility.

Examples

Example 1: Creating a Single Window This DATA step creates a window with a single
group of fields:

data _null_;
window start

#9 @26 ’WELCOME TO THE SAS SYSTEM’
color=black

#12 @19 ’THIS PROGRAM CREATES’
#12 @40 ’TWO SAS DATA SETS’
#14 @26 ’AND USES THREE PROCEDURES’
#18 @27 ’Press ENTER to continue’;

display start;
stop;

run;

Statements � WINDOW Statement 1753

The START window fills the entire monitor. The first line of text is black. The other
three lines are the default for your operating environment. The text begins in the
column that you specified in your program. The START window does not require you to
input any values. However, to exit the window do one of the following:

� Press ENTER to cause DATA step execution to proceed to the STOP statement.
� Issue the END command.

If you omit the STOP statement from this program, the DATA step executes
endlessly until you execute END from the window, either with a function key or from
the command line. (Because this DATA step does not read any observations, SAS
cannot detect an end-of-file to end DATA step execution.)

Example 2: Displaying Two Windows Simultaneously The following statements assign
news articles to reporters. The list of article topics is stored as variable art in SAS data
set category.article. This application allows you to assign each topic to a writer and to
view the accumulating assignments. The program creates a new SAS data set named
Assignment.

libname category ’SAS-library’;

data Assignment;
set category.article end=final;
drop a b j s o;
window Assignment irow=1 rows=12 color=white

#3 @10 ’Article:’ +1 art protect=yes
’Name:’ +1 name $14.;

window Showtotal irow=20 rows=12 color=white
group=subtotal
#1 @10 ’Adams has’ +1 a
#2 @10 ’Brown has’ +1 b
#3 @10 ’Johnson has’ +1 j
#4 @10 ’Smith has’ +1 s
#5 @10 ’Other has’ +1 o
group=lastmessage
#8 @10
’ALL ARTICLES ASSIGNED.
Press ENTER to stop processing.’;

display Assignment blank;
if name=’Adams’ then a+1;
else if name=’Brown’ then b+1;
else if name=’Johnson’ then j+1;
else if name=’Smith’ then s+1;
else o+1;

1754 WINDOW Statement � Chapter 6

display Showtotal.subtotal blank noinput;
if final then display Showtotal.lastmessage;

run;

When you execute the DATA step, the following windows appear.

In the Assignment window (located at the top of the monitor), you see the name of
the article and a field into which you enter a reporter’s name. After you type a name
and press ENTER, SAS displays the Showtotal window (located at the bottom of the
monitor) which shows the number of articles that are assigned to each reporter
(including the assignment that you just made). As you continue to make assignments,
the values in the Showtotal window are updated. During the last iteration of the DATA
step, SAS displays the message that all articles are assigned, and instructs you to press
ENTER to stop processing.

Example 3: Persisting and Nonpersisting Fields This example demonstrates the
PERSIST= option. You move from one window to the other by positioning the cursor in
the current window and pressing ENTER.

data _null_;
array row{3} r1-r3;
array col{3} c1-c3;
input row{*} col{*};
window One

rows=20 columns=36
#1 @14 ’PERSIST=YES’ color=black
#(row{i}) @(col{i}) ’Hello’
color=black persist=yes;

window Two
icolumn=43 rows=20 columns=36
#1 @14 ’PERSIST=NO’ color=black
#(row{i}) @(col{i}) ’Hello’
color=black persist=no;

do i=1 to 3;
display One;
display Two;

end;
datalines;

5 10 15 5 10 15
;

The following windows show the results of this DATA step after its third iteration.

Statements � WINDOW Statement 1755

Note that window One shows Hello in all three positions in which it was displayed.
Window Two shows only the third and final position in which Hello was displayed.

Example 4: Sending a Message This example uses the _CMD_ and _MSG_ automatic
variables to send a message when you execute an erroneous windowing command in a
window that is defined with the WINDOW statement:

if _cmd_ ne ’ ’ then
msg=’CAUTION: UNRECOGNIZED COMMAND’ || _cmd_;

When you enter a command that contains an error, SAS sets the value of _CMD_ to
the text of the erroneous command. Because the value of _CMD_ is no longer blank, the
IF statement is true. The THEN statement assigns to _MSG_ the value that is created
by concatenating CAUTION: UNRECOGNIZED COMMAND and the value of _CMD_
(up to a total of 80 characters). The next time a DISPLAY statement displays that
window, the message line of the window displays

CAUTION: UNRECOGNIZED COMMAND command

Command is the erroneous windowing command.

Example 5: Creating a SAS Data Set The following statements create a SAS data set
by using input from the WINDOW statement.

data new;
length name $20;
window start

#3 @20 ’Type the variable name’
#4 @20 ’and press the Enter key.’
#7 ’Name:’ +1 name attr=underline
#11 ’When you are finished entering variable names, type "end"’
#12 ’at the command line.’;

display start;
run;

proc print;
run;

1756 X Statement � Chapter 6

See Also

Statements:
“DISPLAY Statement” on page 1441

“The PMENU Procedure” in Base SAS Procedures Guide

X Statement

Issues an operating-environment command from within a SAS session.

Valid: anywhere
Category: Operating Environment
See: X Statement in the documentation for your operating environment.

Syntax
X <’operating-environment-command’>;

Without Arguments

Using X without arguments places you in your operating environment, where you
can issue commands that are specific to your environment.

Arguments
’operating-environment-command’

specifies an operating environment command that is enclosed in quotation marks.

Details
In all operating environments, you can use the X statement when you run SAS in
windowing or interactive line mode. In some operating environments, you can use the X
statement when you run SAS in batch or noninteractive mode.

Statements � SAS Statements Documented in Other SAS Publications 1757

Operating Environment Information: The X statement is dependent on your operating
environment. See the SAS documentation for your operating environment to determine
whether it is a valid statement on your system. Keep in mind:

� The way you return from operating environment mode to the SAS session is
dependent on your operating environment.

� The commands that you use with the X statement are specific to your operating
environment.

�

You can use the X statement with SAS macros to write a SAS program that can run in
multiple operating environments. See SAS Macro Language: Reference for information.

Comparisons
In a windowing session, the X command works exactly like the X statement except that
you issue the command from a command line. You submit the X statement from the
Program Editor window.

The X statement is similar to the SYSTEM function, the X command, and the CALL
SYSTEM routine. In most cases, the X statement, X command or %SYSEXEC macro
statement are preferable because they require less overhead. However, the SYSTEM
function can be executed conditionally. The X statement is a global statement and
executes as a DATA step is being compiled.

See Also

CALL Routine:

“CALL SYSTEM Routine” on page 535

Function:

“SYSTEM Function” on page 1122

SAS Statements Documented in Other SAS Publications

In addition to system options documented in SAS Language Reference: Dictionary,
statements are also documented in the following publications:

“SAS Companion for Windows” on page 1758

“SAS Companion for OpenVMS on HP Integrity Servers” on page 1758

“SAS Companion for UNIX Environments” on page 1758

“SAS Companion for z/OS” on page 1758

“SAS Language Interfaces to Metadata” on page 1759

“SAS Macro Language: Reference” on page 1759

“SAS Output Delivery System: User’s Guide” on page 1760

“SAS Scalable Performance Data Engine: Reference” on page 1762

“SAS XML LIBNAME Engine: User’s Guide” on page 1762

“SAS/ACCESS for Relational Databases: Reference” on page 1762

“SAS/CONNECT User’s Guide ”on page 1763

“SAS/SHARE User’s Guide ”on page 1763

1758 SAS Companion for Windows � Chapter 6

SAS Companion for Windows
The statements listed here are documented only in SAS Companion for Windows.

Other statements in SAS Companion for Windows contain information specific to the
Windows operating environment, where the main documentation is in SAS Language
Reference: Dictionary. These latter statements are not listed here.

Statement Description

SYSTASK Executes, lists, or terminates asynchronous tasks.

WAITFOR Suspends execution of the current SAS session until the specified
tasks finish executing.

SAS Companion for OpenVMS on HP Integrity Servers
The statements listed here are documented only in SAS Companion for OpenVMS on

HP Integrity Servers. Other statements in SAS Companion for OpenVMS on HP
Integrity Servers contain information specific to the OpenVMS operating environment,
where the main documentation is in SAS Language Reference: Dictionary. These latter
statements are not listed here.

Statement Description

SYSTASK Executes, lists, or kills asynchronous tasks.

WAITFOR Suspends execution of the current SAS session until the specified
tasks finish executing.

SAS Companion for UNIX Environments
The statements listed here are documented only in SAS Companion for UNIX

Environments. Other statements in SAS Companion for UNIX Environments contain
information specific to the UNIX operating environment, where the main documentation
is in SAS Language Reference: Dictionary. These latter statements are not listed here.

Statement Description

SYSTASK Executes asynchronous tasks.

WAITFOR Suspends execution of the current SAS session until the specified
tasks finish executing.

SAS Companion for z/OS
The statements listed here are documented only in SAS Companion for z/OS. Other

statements in SAS Companion for z/OS contain information specific to the z/OS

Statements � SAS Macro Language: Reference 1759

operating environment, where the main documentation is in SAS Language Reference:
Dictionary. These latter statements are not listed here.

Statement Description

DSNEXST Checks to see whether the specified physical file exists and is
available.

SYSTASK LIST Lists asynchronous tasks.

TSO Issues a TSO command or invokes a CLIST or a REXX exec during a
SAS session.

WAITFOR Suspends execution of the current SAS session until the specified
tasks finish executing.

SAS Language Interfaces to Metadata

Statement Description

LIBNAME Statement for the Metadata Engine Associates a SAS libref with the metadata that
is in a SAS Metadata Repository on the SAS
Metadata Server.

SAS Macro Language: Reference

Statement Description

%ABORT Stops the macro that is executing along with the current DATA step,
SAS job, or SAS session.

%* Macro Comment Designates comment text.

%COPY Copies specified items from a SAS macro library.

%DISPLAY Displays a macro window.

%DO Begins a %DO group.

%DO, Iterative Executes a section of a macro repetitively based on the value of an
index variable.

%DO %UNTIL Executes a section of a macro repetitively until a condition is true.

%DO %WHILE Executes a section of a macro repetitively while a condition is true.

%END Ends a %DO group.

%GLOBAL Creates macro variables that are available during the execution of an
entire SAS session.

%GOTO Branches macro processing to the specified label.

%IF-%THEN/%ELSE Conditionally process a portion of a macro.

%INPUT Supplies values to macro variables during macro execution.

1760 SAS Output Delivery System: User’s Guide � Chapter 6

Statement Description

%label Identifies the destination of a %GOTO statement.

%LET Creates a macro variable and assigns it a value.

%LOCAL Creates macro variables that are available only during the execution
of the macro where they are defined.

%MACRO Begins a macro definition.

%MEND Ends a macro definition.

%PUT Writes text or macro variable information to the SAS log.

%RETURN Execution causes normal termination of the currently executing
macro.

%SYMDEL Deletes the specified variable or variables from the macro global
symbol table.

%SYSCALL Invokes a SAS call routine.

%SYSEXEC Issues operating environment commands.

%SYSLPUT Creates a new macro variable or modifies the value of an existing
macro variable on a remote host or server.

%SYSRPUT Assigns the value of a macro variable on a remote host to a macro
variable on the local host.

%WINDOW Defines customized windows.

SAS Output Delivery System: User’s Guide

Statement Description

FILE, ODS Creates an ODS output object by binding the data component to the
table definition (template). Listing the variables to include in the
ODS output, and specifying options that control the way that the
variables are formatted is optional.

LIBNAME, SASEDOC Uses the SASEDOC engine to associate a SAS libref (library
reference) with one or more ODS output objects that are stored in an
ODS document.

ODS _ALL_CLOSE Closes all open ODS output destinations.

ODS CHTML Opens, manages, or closes the CHTML destination, which produces a
compact, minimal HTML that does not use style information.

ODS CSVALL Opens, manages, or closes the CSVALL destination, which produces
HTML output containing columns of data values that are separated
by commas, and produces tabular output with titles, notes, and by
lines.

ODS DECIMAL_ALIGN Controls the justification of numeric columns when no justification is
specified.

ODS DOCBOOK Opens, manages, or closes the DOCBOOK destination, which
produces XML output that conforms to the DocBook DTD by OASIS.

Statements � SAS Output Delivery System: User’s Guide 1761

Statement Description

ODS DOCUMENT Opens, manages, or closes the DOCUMENT destination, which
produces a hierarchy of output objects that enables you to produce
multiple ODS output formats without rerunning a PROC or DATA
step.

ODS ESCAPECHAR Defines a representative character to be used in output strings.

ODS EXCLUDE Specifies output objects to exclude from ODS destinations.

ODS GRAPHICS Enables ODS automatic graphic capabilities.

ODS HTML Opens, manages, or closes the HTML destination, which produces
HTML 4.0 output that contains embedded style sheets.

ODS HTMLCSS Opens, manages, or closes the HTMLCSS destination, which
produces HTML output with cascading style sheets.

ODS HTML3 Opens, manages, or closes the HTML3 destination, which produces
HTML 3.2 formatted output.

ODS IMODE Opens, manages, or closes the IMODE destination, which produces
HTML output as a column of output, separated by lines.

ODS LISTING Opens, manages, or closes the LISTING destination.

ODS MARKUP Opens, manages, or closes the MARKUP destination, which produces
SAS output that is formatted using one of many different markup
languages.

ODS OUTPUT Produces a SAS data set from an output object and manages the
selection and exclusion lists for the OUTPUT destination.

ODS PACKAGE Opens, adds to, publishes, or closes one SAS ODS package object.

ODS PATH Specifies locations to write to or read from when creating or using
PROC TEMPLATE definitions and the order in which to search for
them.

ODS PCL Opens, manages, or closes the PCL destination, which produces
printable output for PCL (HP LaserJet) files.

ODS PDF Opens, manages, or closes the PDF destination, which produces PDF
output, a form of output that is read by Adobe Acrobat and other
applications.

ODS PHTML Opens, manages, or closes the PHTML destination, which produces
simple HTML output that uses 12 style elements and no class
attributes.

ODS PRINTER Opens, manages, or closes the PRINTER destination, which produces
printable output.

ODS PROCLABEL Enables you to change a procedure label.

ODS PROCTITLE Determines whether to write the title that identifies the procedure
that produces the results in the output.

ODS PS Opens, manages, or closes the PS destination, which produces
PostScript (PS) output.

ODS RESULTS Tracks ODS output in the Results window.

ODS RTF Opens, manages, or closes the RTF destination, which produces
output written in Rich Text Format for use with Microsoft Word 2002.

1762 SAS Scalable Performance Data Engine: Reference � Chapter 6

Statement Description

ODS SELECT Specifies output objects for ODS destinations.

ODS SHOW Writes the specified selection or exclusion list to the SAS log.

ODS TAGSETS.RTF Opens, manages, or closes the RTF destination, which produces
measured output that is written in Rich Text Format for use with
Microsoft Word 2002.

ODS TEXT= Inserts text into your ODS output.

ODS TRACE Writes to the SAS log a record of each output object that is created,
or else suppresses the writing of this record.

ODS USEGOPT Determines whether ODS uses graphics option settings.

ODS VERIFY Prints or suppresses a message indicating that a style definition or a
table definition being used is not supplied by SAS.

ODS WML Opens, manages, or closes the WML destination, which uses the
Wireless Application Protocol (WAP) to produce a Wireless Markup
Language (WML) DTD with a simple list for a table of contents.

PUT, ODS Writes data values to a special buffer from which they can be written
to the data component and then formatted by ODS.

SAS Scalable Performance Data Engine: Reference

Statement Description

LIBNAME for the Scalable
Performance Data Engine

Associates a SAS libref with a SAS library for rapid processing of
very large data sets by multiple CPUs.

SAS XML LIBNAME Engine: User’s Guide

Statement Description

LIBNAME for the XML
Engine

Associates a SAS libref with the physical location of an XML
document.

SAS/ACCESS for Relational Databases: Reference

Statement Description

LIBNAME for SAS/
ACCESS Relational
Databases

Associates a SAS libref with a database management system (DBMS)
database, schema, server, or group of tables or SAS views.

Statements � SAS/SHARE User’s Guide 1763

SAS/CONNECT User’s Guide

Statement Description

LIBNAME for SAS/
CONNECT Remote Library
Services

Associates a libref with a SAS library that is located on the server for
client access.

LIBNAME for SAS/
CONNECT TCP/IP Pipe

Associates a libref with a TCP/IP pipe (instead of a physical disk
device) for processing input and output. The SASESOCK engine is
required for SAS/CONNECT applications that implement MP
CONNECT with piping.

RSUBMIT Marks the beginning of a block of statements that a client session
submits to a server session for execution.

SIGNON Initiates a connection between a client session and a server session.

SAS/SHARE User’s Guide

Statement Description

LIBNAME for SAS/SHARE In a client session, associates a libref with a SAS library that is
located on the server for client access. In a server session, pre-defines
a server library that clients are permitted to access.

1764

1765

C H A P T E R

7
SAS System Options

Definition of System Options 1769
Syntax 1769

Specifying System Options in an OPTIONS Statement 1769

Specifying Hexadecimal Values 1770

Using SAS System Options 1770

Default Settings 1770
Saving and Loading SAS System Options 1770

Determining Which Settings Are in Effect 1770

Restricted Options 1771

Determining How a SAS System Option Value Was Set 1774

Obtaining Descriptive Information about a System Option 1774

Changing SAS System Option Settings 1775
How Long System Option Settings Are in Effect 1776

Order of Precedence 1776

Interaction with Data Set Options 1777

Comparisons 1777

SAS System Options by Category 1778
Dictionary 1791

APPEND= System Option 1791

APPLETLOC= System Option 1792

AUTHPROVIDERDOMAIN System Option 1793

AUTOSAVELOC= System Option 1795
BINDING= System Option 1795

BOTTOMMARGIN= System Option 1796

BUFNO= System Option 1797

BUFSIZE= System Option 1799

BYERR System Option 1800

BYLINE System Option 1801
BYSORTED System Option 1802

CAPS System Option 1803

CARDIMAGE System Option 1804

CATCACHE= System Option 1805

CBUFNO= System Option 1806
CENTER System Option 1807

CGOPTIMIZE= System Option 1808

CHARCODE System Option 1809

CLEANUP System Option 1810

CMPLIB= System Option 1812
CMPMODEL= System Option 1813

CMPOPT= System Option 1814

COLLATE System Option 1816

1766 Contents � Chapter 7

COLORPRINTING System Option 1817
COMPRESS= System Option 1817

COPIES= System Option 1819

CPUCOUNT= System Option 1820

CPUID System Option 1822

DATASTMTCHK= System Option 1822
DATE System Option 1823

DATESTYLE= System Option 1824

DEFLATION= System Option 1825

DETAILS System Option 1826

DEVICE= System Option 1827

DKRICOND= System Option 1827
DKROCOND= System Option 1828

DLDMGACTION= System Option 1829

DMR System Option 1830

DMS System Option 1831

DMSEXP System Option 1832
DMSLOGSIZE= System Option 1833

DMSOUTSIZE= System Option 1834

DMSPGMLINESIZE= System Option 1835

DMSSYNCHK System Option 1835

DSNFERR System Option 1836
DTRESET System Option 1837

DUPLEX System Option 1838

ECHOAUTO System Option 1839

EMAILAUTHPROTOCOL= System Option 1840

EMAILFROM System Option 1840

EMAILHOST= System Option 1841
EMAILID= System Option 1842

EMAILPORT System Option 1843

EMAILPW= System Option 1844

ENGINE= System Option 1845

ERRORABEND System Option 1846
ERRORBYABEND System Option 1847

ERRORCHECK= System Option 1848

ERRORS= System Option 1849

EXPLORER System Option 1850

FILESYNC= System Option 1850
FIRSTOBS= System Option 1851

FMTERR System Option 1853

FMTSEARCH= System Option 1854

FONTEMBEDDING System Option 1855

FONTRENDERING= System Option 1856

FONTSLOC= System Option 1857
FORMCHAR= System Option 1858

FORMDLIM= System Option 1859

FORMS= System Option 1860

GSTYLE System Option 1860

GWINDOW System Option 1861
HELPBROWSER= System Option 1861

HELPENCMD System Option 1862

HELPHOST System Option 1863

HELPPORT= System Option 1864

HTTPSERVERPORTMAX= System Option 1865

SAS System Options � Contents 1767

HTTPSERVERPORTMIN= System Option 1865
IBUFNO= System Option 1866

IBUFSIZE= System Option 1867

INITCMD System Option 1869

INITSTMT= System Option 1870

INSERT= System Option 1871
INTERVALDS= System Option 1872

INVALIDDATA= System Option 1874

JPEGQUALITY= System Option 1874

LABEL System Option 1875

LAST= System Option 1876

LEFTMARGIN= System Option 1877
LINESIZE= System Option 1878

LOGPARM= System Option 1879

LRECL= System Option 1883

MAPS= System Option 1884

MERGENOBY System Option 1885
MISSING= System Option 1886

MSGLEVEL= System Option 1886

MULTENVAPPL System Option 1888

NEWS= System Option 1888

NOTES System Option 1889
NUMBER System Option 1890

OBS= System Option 1890

ORIENTATION= System Option 1896

OVP System Option 1897

PAGEBREAKINITIAL System Option 1898

PAGENO= System Option 1898
PAGESIZE= System Option 1899

PAPERDEST= System Option 1900

PAPERSIZE= System Option 1901

PAPERSOURCE= System Option 1903

PAPERTYPE= System Option 1904
PARM= System Option 1904

PARMCARDS= System Option 1905

PDFACCESS System Option 1906

PDFASSEMBLY System Option 1907

PDFCOMMENT System Option 1908
PDFCONTENT System Option 1909

PDFCOPY System Option 1910

PDFFILLIN System Option 1911

PDFPAGELAYOUT= System Option 1912

PDFPAGEVIEW= System Option 1913

PDFPASSWORD= System Option 1914
PDFPRINT= System Option 1915

PDFSECURITY= System Option 1916

PRIMARYPROVIDERDOMAIN= System Option 1918

PRINTERPATH= System Option 1920

PRINTINIT System Option 1921
PRINTMSGLIST System Option 1922

QUOTELENMAX System Option 1922

REPLACE System Option 1923

REUSE= System Option 1924

RIGHTMARGIN= System Option 1925

1768 Contents � Chapter 7

RLANG System Option 1926
RSASUSER System Option 1927

S= System Option 1927

S2= System Option 1931

S2V= System Option 1934

SASHELP= System Option 1935
SASUSER= System Option 1936

SEQ= System Option 1936

SETINIT System Option 1937

SKIP= System Option 1938

SOLUTIONS System Option 1939

SORTDUP= System Option 1939
SORTEQUALS System Option 1940

SORTSIZE= System Option 1941

SORTVALIDATE System Option 1942

SOURCE System Option 1943

SOURCE2 System Option 1944
SPOOL System Option 1945

SQLCONSTDATETIME System Option 1946

SQLREDUCEPUT= System Option 1947

SQLREDUCEPUTOBS= System Option 1948

SQLREDUCEPUTVALUES= System Option 1949
SQLREMERGE System Option 1951

SQLUNDOPOLICY= System Option 1952

STARTLIB System Option 1953

STEPCHKPT System Option 1954

STEPCHKPTLIB= System Option 1955

STEPRESTART System Option 1956
SUMSIZE= System Option 1957

SVGCONTROLBUTTONS 1958

SVGHEIGHT= System Option 1958

SVGPRESERVEASPECTRATIO= System Option 1960

SVGTITLE= System Option 1963
SVGVIEWBOX= System Option 1964

SVGWIDTH= System Option 1966

SVGX= System Option 1967

SVGY= System Option 1969

SYNTAXCHECK System Option 1970
SYSPRINTFONT= System Option 1972

TERMINAL System Option 1974

TERMSTMT= System Option 1975

TEXTURELOC= System Option 1976

THREADS System Option 1976

TOOLSMENU System Option 1978
TOPMARGIN= System Option 1978

TRAINLOC= System Option 1979

UNIVERSALPRINT System Option 1980

UPRINTCOMPRESSION System Option 1981

USER= System Option 1982
UTILLOC= System Option 1982

UUIDCOUNT= System Option 1984

UUIDGENDHOST= System Option 1984

V6CREATEUPDATE= System Option 1986

VALIDFMTNAME= System Option 1986

SAS System Options � Specifying System Options in an OPTIONS Statement 1769

VALIDVARNAME= System Option 1988
VARLENCHK= System Option 1989

VIEWMENU System Option 1992

VNFERR System Option 1993

WORK= System Option 1993

WORKINIT System Option 1994
WORKTERM System Option 1995

YEARCUTOFF= System Option 1996

SAS System Options Documented in Other SAS Publications 1997

Encryption in SAS 1998

Grid Computing in SAS 1999

SAS Interface to Application Response Measurement (ARM): Reference 1999
SAS Companion for Windows 1999

SAS Companion for OpenVMS on HP Integrity Servers 2002

SAS Companion for UNIX Environments 2005

SAS Companion for z/OS 2006

SAS Data Quality Server: Reference 2012
SAS Intelligence Platform: Application Server Administration Guide 2012

SAS Language Interfaces to Metadata 2013

SAS Logging: Configuration and Programming Reference 2014

SAS Macro Language: Reference 2014

SAS National Language Support (NLS): Reference Guide 2015
SAS Scalable Performance Data Engine: Reference 2016

SAS VSAM Processing for Z/OS 2016

SAS/ACCESS for Relational Databases: Reference 2017

SAS/CONNECT User’s Guide 2017

SAS/SHARE User’s Guide 2018

Definition of System Options
System options are instructions that affect your SAS session. They control the way

that SAS performs operations such as SAS System initialization, hardware and
software interfacing, and the input, processing, and output of jobs and SAS files.

Syntax

Specifying System Options in an OPTIONS Statement
The syntax for specifying system options in an OPTIONS statement is

OPTIONS option(s);

where

option
specifies one or more SAS system options that you want to change.

The following example shows how to use the system options NODATE and
LINESIZE= in an OPTIONS statement:

options nodate linesize=72;

1770 Specifying Hexadecimal Values � Chapter 7

Operating Environment Information: On the command line or in a configuration file,
the syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

Specifying Hexadecimal Values
Hexadecimal values for system options must begin with a number (0-9), followed by

an X. For example, the following OPTIONS statement sets the line size to 160 using a
hexadecimal number:

options linesize=0a0x;

Using SAS System Options

Default Settings
SAS system options are initialized with default settings when SAS is invoked.

However, the default settings for some SAS system options vary both by operating
environment and by site. Your on-site SAS support personnel might have created a
default options table. The default options table is created by your site administrator
and provides a global set of default values that are specific for your site. It reduces the
need to duplicate options in every system configuration file at your site.

Information about creating and maintaining the default options table is provided in
the configuration guide for SAS software for your operating environment.

Saving and Loading SAS System Options
SAS system options can be saved to either the SAS registry or a SAS data set by

using the OPTSAVE procedure or by using the DMOPTSAVE command in the SAS
windowing environment. Some system options cannot be saved. For a list of these
options and additional information about saving options, see the OPTSAVE Procedure
in Base SAS Procedures Guide.

To load a set of saved system options you use either the OPTLOAD procedure or the
DMOPTLOAD command. For information about loading system option, see the
OPTLOAD Procedure in Base SAS Procedures Guide.

For information about the DMOPTSAVE command and the DMOPTLOAD command,
see the SAS Help and Documentation.

Determining Which Settings Are in Effect
To determine which settings are in effect for SAS system options, use one of the

following:

OPLIST system option
Writes to the SAS log the system options that were specified on the SAS invocation
command line. (See the SAS documentation for your operating environment for
more information.)

VERBOSE system option

SAS System Options � Restricted Options 1771

Writes to the SAS log the system options that were specified in the configuration
file and on the SAS invocation command line.

SAS System Options window
Lists all system option settings.

OPTIONS procedure
Writes system option settings to the SAS log. To display the settings of system
options with a specific functionality, such as error handling, use the GROUP=
option:

proc options GROUP=errorhandling;
run;

(See the Base SAS Procedures Guide for more information.)

GETOPTION function
Returns the value of a specified system option.

VOPTION Dictionary table
Located in the SASHELP library, VOPTION contains a list of all current system
option settings. You can view this table with SAS Explorer, or you can extract
information from the VOPTION table using PROC SQL.

dictionary.options SQL table
Accessed with the SQL procedure, this table lists the system options that are in
effect.

Restricted Options
Restricted options are system options whose value are determined by the site

administrator and cannot be overridden. The site administrator can create a restricted
options table that specifies the option values that are restricted when SAS starts. Any
attempt to modify a system option that is listed in the restricted options table is either
ignored, or if you use the OPTIONS statement to set a restricted option, SAS issues a
warning message to the log.

To determine which system options are restricted by your site administrator, use the
RESTRICT option of the OPTIONS procedure. The RESTRICT option displays the
option’s value, scope, and setting. In the following example, the SAS log shows that
only one option, CMPOPT, is restricted:

proc options restrict;
run;

Output 7.1 Restricted Option Information

1 proc options restrict;
2 run;

SAS (r) Proprietary Software Release xxx TS1B0

Option Value Information For SAS Option CMPOPT
Option Value: (NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK NOFUNCDIFFERENCING)
Option Scope: SAS Session
How option value set: Site Administrator Restricted

The OPTIONS procedure displays this information for all options that are restricted.
If your site administrator has not restricted any options, then the following message
appears in the SAS log:

1772 Restricted Options � Chapter 7

Your site administrator has not restricted any options.

The following table lists the system options that cannot be restricted:

Table 7.1 System Options That Cannot Be Restricted

Option All

Operating
Environments

OpenVMS UNIX Windows z/OS

ALTLOG X

ALTPRINT X

ASYNCHIO X

AUTOEXEC X

BOMFILE X

BOTTOMMARGIN X

COMDEF X X

CONFIG X

CPUCOUNT X

DATESTYLE X

DBCS X

DFLANG X

DLDMGACTION X

DMR X

DMS X

DMSEXP X

DMSPGMLINESIZE X

ENGINE X

EXPLORER X

FILELOCKWAITMAX X X

INITCMD X

INITSTMT X

JREOPTIONS X

LEFTMARGIN X

LINESIZE X

LAST X

LOG X

LOGAPPLNAME X

LOGPARM X

MEMCACHE X

MEMLIB X

METAPASS X

SAS System Options � Restricted Options 1773

Option All

Operating
Environments

OpenVMS UNIX Windows z/OS

METAPROTOCOL X

METAREPOSITORY X

METASERVER X

METAUSER X

MSYMTABMAX X

MVARSIZE X

OBJECTSERVER X

ORIENTATION X

OVP X

PAGESIZE X

PAPERSIZE X

PATH X

PDFPASSWORD X

PRINT X

PRINTERPATH X

RESOURCESLOC X

RIGHTMARGIN X

SASCONTROL X

SASFRSCR X

SASUSER X

SGIO X

SOURCE X

SSLPKCS12LOC X

SSLPKSC12PASS X

SSPI X

STARTLIB X

SYSIN X

SYSPRINTFONT X

TERMINAL X

TOOLDEF X

TOPMARGIN X

TRANTAB X

1774 Determining How a SAS System Option Value Was Set � Chapter 7

Option All

Operating
Environments

OpenVMS UNIX Windows z/OS

USER X

WORK X

Determining How a SAS System Option Value Was Set
To determine how a system option value was set, use the OPTIONS procedure with

the VALUE option specified in the OPTIONS statement. The VALUE option displays
the specified option’s value and scope. For example, the following statements write a
message to the SAS log that tells you how the option value for the system option
CENTER was set:

proc options option=center value;
run;

The following partial SAS log shows that the option value for CENTER was the
shipped default.

Output 7.2 Option Value Information for the System Option CENTER

2 proc options option=center value;
3 run;

Option Value Information for SAS Option CENTER
Option Value: CENTER
Option Scope: Default
How option value set: Shipped Default

If no value is assigned to a character system option, then SAS assigns the option a
value of ’’(a space between two single quotation marks) and Option Value displays a
blank space.

Obtaining Descriptive Information about a System Option
You can quickly obtain basic descriptive information about a system option by

specifying the DEFINE option in the PROC OPTIONS statement.
The DEFINE option writes the following descriptive information about a system

option to the SAS log:

� a description of the option

� the name and description of each System option group that the option is a part of

� type information

� when in the SAS session it can be set

� if it can be restricted by the system administrator

� if the OPTSAVE procedure or the DMOPTSAVE command will save the option.

For example, the following statements write a message to the SAS log that contains
descriptive information about the system option CENTER:

SAS System Options � Changing SAS System Option Settings 1775

proc options option=center define;
run;

Output 7.3 Descriptive Information for the System Option CENTER

1 proc options option=center define;
2 run;

CENTER
Option Definition Information for SAS Option CENTER

Group= LISTCONTROL
Group Description: Procedure output and display settings
Description: Center SAS procedure output
Type: The option value is of type BOOLEAN
When Can Set: Startup or anytime during the SAS Session
Restricted: Your Site Administrator can restrict modification of this option
Optsave: Proc Optsave or command Dmoptsave will save this option.

Changing SAS System Option Settings
SAS provides default settings for SAS system options. You can override the default

settings of any unrestricted system option in several ways, depending on the function of
the system option:

� On the command line or in a configuration file: You can specify any unrestricted
SAS system option setting either on the SAS command line or in a configuration
file. If you use the same option settings frequently, then it is usually more
convenient to specify the options in a configuration file, rather than on the
command line. Either method sets your SAS system options during SAS
invocation. Many SAS system option settings can be specified only during SAS
invocation. Descriptions of the individual options provide details.

� In an OPTIONS statement: You can specify an OPTIONS statement at any time
during a session except within data lines or parmcard lines. Settings remain in
effect throughout the current program or process unless you reset them with
another OPTIONS statement or change them in the SAS System Options window.
You can also place an OPTIONS statement in an autoexec file.

� In the OPTLOAD procedure or the DMOPTLOAD command: You can use the
OPTLOAD procedure or the DMOPTLOAD command to read option settings that
were specified with the OPTSAVE procedure and saved to a SAS data set.

� In a SAS System Options window: If you are in a windowing environment, type
options in the toolbar or on the command line to open the SAS System Options
window. The SAS System Options window lists the names of the SAS system
option groups. You can then expand the groups to see the option names and to
change their current settings. Alternatively, you can use the Find Option command
in the Options pop-up menu to go directly to an option. Changes take effect
immediately and remain in effect throughout the session unless you reset them
with an OPTIONS statement or change them in the SAS System Options window.

SAS system options can be restricted by a site administrator so that after they are
set by the administrator, they cannot be changed by a user. Depending upon your
operating environment, system options can be restricted globally, by group, or by user.
You can use the OPTIONS procedure to determine which options are restricted. For
more information about how to restrict options, see the SAS configuration guide for
your operating environment. For more information about the OPTIONS procedure, see

1776 How Long System Option Settings Are in Effect � Chapter 7

“The Options Procedure” in Base SAS Procedures Guide and the SAS documentation for
your operating environment.

How Long System Option Settings Are in Effect
When you specify a SAS system option setting, the setting applies to the next step

and to all subsequent steps for the duration of the SAS session, or until you reset the
system option setting, as shown:

data one;
set items;

run;

/* option applies to all subsequent steps */
options obs=5;

/* printing ends with the fifth observation */
proc print data=one;
run;

/* the SET statement stops reading
after the fifth observation */

data two;
set items;

run;

To read more than five observations, you must reset the OBS= system option. For
more information, see “OBS= System Option” on page 1890.

Order of Precedence
If the same system option appears in more than one place, the order of precedence

from highest to lowest is
1 restricted options table, if it exists
2 OPTIONS statement and SAS System Options window
3 autoexec file (that contains an OPTIONS statement)
4 command-line specification
5 configuration file specification
6 SAS system default settings.

Operating Environment Information: In some operating environments, you can specify
system options in other places. See the SAS documentation for your operating
environment. �

The following table shows the order of precedence that SAS uses for execution mode
options. These options are a subset of the SAS invocation options and are specified on
the command line during SAS invocation.

SAS System Options � Comparisons 1777

Table 7.2 Order of Precedence for SAS Execution Mode Options

Execution Mode Option Precedence

OBJECTSERVER Highest

DMR 2nd

SYSIN 3rd

INITCMD 4th

DMS 4th

DMSEXP 4th

EXPLORER 4th

none (default is interactive line mode under
UNIX and OpenVMS; interactive full screen
mode under z/OS)

5th

The order of precedence of SAS execution mode options consists of the following rules:

� SAS uses the execution mode option with the highest precedence.

� If you specify more than one execution mode option of equal precedence, SAS uses
only the last option listed.

See the descriptions of the individual options for more details.

Interaction with Data Set Options
Many system options and data set options share the same name and have the same

function. System options remain in effect for all DATA and PROC steps in a SAS job or
session until their settings are changed. A data set option, however, overrides a system
option only for the particular data set in the step in which it appears.

In this example, the OBS= system option in the OPTIONS statement specifies that
only the first 100 observations will be read from any data set within the SAS job. The
OBS= data set option in the SET statement, however, overrides the system option and
specifies that only the first five observations will be read from data set TWO. The PROC
PRINT step uses the system option setting and reads and prints the first 100
observations from data set THREE:

options obs=100;

data one;
set two(obs=5);

run;

proc print data=three;
run;

Comparisons

Note the differences between system options, data set options, and statement options.

system options

1778 SAS System Options by Category � Chapter 7

remain in effect for all DATA and PROC steps in a SAS job or current process
unless they are respecified.

data set options
apply to the processing of the SAS data set with which they appear. Some data set
options have corresponding system options or LIBNAME statement options. For
an individual data set, you can use the data set option to override the setting of
these other options.

statement options
control the action of the statement in which they appear. Options in global
statements, such as in the LIBNAME statement, can have a broader impact.

SAS System Options by Category

Table 7.3 Categories and Descriptions of SAS System Options

Category SAS System Options Description

Communications: Email “EMAILAUTHPROTOCOL=
System Option” on page
1840

Specifies the authentication protocol for SMTP E-mail.

“EMAILFROM System
Option” on page 1840

When sending e-mail by using SMTP, specifies whether
the e-mail option FROM is required in either the FILE
or FILENAME statement.

“EMAILHOST= System
Option” on page 1841

Specifies one or more SMTP servers that support e-mail
access.

“EMAILID= System
Option” on page 1842

Identifies an e-mail sender by specifying either a logon
ID, an e-mail profile, or an e-mail address.

“EMAILPORT System
Option” on page 1843

Specifies the port that the SMTP server is attached to.

“EMAILPW= System
Option” on page 1844

Specifies an e-mail logon password.

Communications:
Networking and encryption

“HTTPSERVERPORTMAX=
System Option” on page
1865

Specifies the highest port number that can be used by
the SAS HTTP server for remote browsing.

“HTTPSERVERPORTMIN=
System Option” on page
1865

Specifies the lowest port number that can be used by the
SAS HTTP server for remote browsing.

Environment control:
Display

“AUTOSAVELOC= System
Option” on page 1795

Specifies the location of the Program Editor autosave file.

“CHARCODE System
Option” on page 1809

Specifies whether specific keyboard combinations are
substituted for special characters that are not on the
keyboard.

“DMSLOGSIZE= System
Option” on page 1833

Specifies the maximum number of rows that the SAS Log
window can display.

“DMSOUTSIZE= System
Option” on page 1834

Specifies the maximum number of rows that the SAS
Output window can display.

SAS System Options � SAS System Options by Category 1779

Category SAS System Options Description

“DMSPGMLINESIZE=
System Option” on page
1835

Specifies the maximum number of characters in a
Program Editor line.

“FONTSLOC= System
Option” on page 1857

Specifies the location of the fonts that are supplied by
SAS; names the default font file location for registering
fonts that use the FONTREG procedure.

“FORMS= System Option”
on page 1860

If forms are used for printing, specifies the default form
to use.

“SOLUTIONS System
Option” on page 1939

Specifies whether the SOLUTIONS menu is included in
SAS windows.

“TOOLSMENU System
Option” on page 1978

Specifies whether the Tools menu is included in SAS
windows.

“VIEWMENU System
Option” on page 1992

Specifies whether the View menu is included in SAS
windows.

Environment control:
Error handling

“BYERR System Option”
on page 1800

Specifies whether SAS produces errors when the SORT
procedure attempts to process a _NULL_ data set.

“CLEANUP System
Option” on page 1810

For an out-of-resource condition, specifies whether to
perform an automatic cleanup or a user-specified cleanup.

“DMSSYNCHK System
Option” on page 1835

In the SAS windowing environment, specifies whether to
enable syntax check mode for DATA step and PROC step
processing.

“DSNFERR System
Option” on page 1836

When a SAS data set cannot be found, specifies whether
SAS issues an error message.

“ERRORABEND System
Option” on page 1846

Specifies whether SAS responds to errors by terminating.

“ERRORBYABEND
System Option” on page
1847

Specifies whether SAS ends a program when an error
occurs in BY-group processing.

“ERRORCHECK= System
Option” on page 1848

Specifies whether SAS enters syntax-check mode when
errors are found in the LIBNAME, FILENAME,
%INCLUDE, and LOCK statements.

“ERRORS= System
Option” on page 1849

Specifies the maximum number of observations for which
SAS issues complete error messages.

“FMTERR System Option”
on page 1853

When a variable format cannot be found, specifies
whether SAS generates an error or continues processing.

“QUOTELENMAX System
Option” on page 1922

If a quoted string exceeds the maximum length allowed,
specifies whether SAS writes a warning message to the
SAS log.

“STEPCHKPT System
Option” on page 1954

Specifies whether checkpoint-restart data is to be
recorded for a batch program.

“STEPCHKPTLIB=
System Option” on page
1955

Specifies the libref of the library where
checkpoint-restart data is saved.

“STEPRESTART System
Option” on page 1956

Specifies whether to execute a batch program by using
checkpoint-restart data.

1780 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“SYNTAXCHECK System
Option” on page 1970

In non-interactive or batch SAS sessions, specifies
whether to enable syntax check mode for multiple steps.

“VNFERR System Option”
on page 1993

Specifies whether SAS issues an error or warning when a
BY variable exists in one data set but not another data
set when processing the SET, MERGE, UPDATE, or
MODIFY statements.

Environment control: Files “APPEND= System
Option” on page 1791

Appends a value to the existing value of the specified
system option.

“APPLETLOC= System
Option” on page 1792

Specifies the location of Java applets.

“FMTSEARCH= System
Option” on page 1854

Specifies the order in which format catalogs are searched.

“HELPENCMD System
Option” on page 1862

Specifies whether SAS uses the English version or the
translated version of the keyword list for the
command–line Help.

“INSERT= System Option”
on page 1871

Inserts the specified value as the first value of the
specified system option.

“NEWS= System Option”
on page 1888

Specifies an external file that contains messages to be
written to the SAS log, immediately after the header.

“PARM= System Option”
on page 1904

Specifies a parameter string that is passed to an external
program.

“PARMCARDS= System
Option” on page 1905

Specifies the file reference to open when SAS encounters
the PARMCARDS statement in a procedure.

“RSASUSER System
Option” on page 1927

Specifies whether to open the SASUSER library for read
access or read-write access.

“SASHELP= System
Option” on page 1935

Specifies the location of the SASHELP library.

“SASUSER= System
Option” on page 1936

Specifies the SAS library to use as the SASUSER library.

“TRAINLOC= System
Option” on page 1979

Specifies the URL for SAS online training courses.

“USER= System Option”
on page 1982

Specifies the default permanent SAS library.

“UUIDCOUNT= System
Option” on page 1984

Specifies the number of UUIDs to acquire from the
UUID Generator Daemon.

“UUIDGENDHOST=
System Option” on page
1984

Identifies the host and port or the LDAP URL that the
UUID Generator Daemon runs on.

“V6CREATEUPDATE=
System Option” on page
1986

Specifies the type of message to write to the SAS log
when Version 6 data sets are created or updated.

“WORK= System Option”
on page 1993

Specifies the WORK data library.

SAS System Options � SAS System Options by Category 1781

Category SAS System Options Description

“WORKINIT System
Option” on page 1994

Specifies whether to initialize the WORK library at SAS
invocation.

“WORKTERM System
Option” on page 1995

Specifies whether to erase the WORK files when SAS
terminates.

Environment control: Help “HELPBROWSER=
System Option” on page
1861

Specifies the browser to use for SAS Help and ODS
output.

“HELPHOST System
Option” on page 1863

Specifies the name of the computer where the remote
browser is to send Help and ODS output.

“HELPPORT= System
Option” on page 1864

Specifies the port number for the remote browser client.

Environment control:
Initialization and
operation

“AUTHPROVIDERDOMAIN
System Option” on page
1793

Associates a domain suffix with an authentication
provider.

“DMR System Option” on
page 1830

Specifies whether to enable SAS to invoke a server
session for use with a SAS/CONNECT client.

“DMS System Option” on
page 1831

Specifies whether to invoke the SAS windowing
environment and display the Log, Editor, and Output
windows.

“DMSEXP System Option”
on page 1832

Specifies whether to invoke the SAS windowing
environment and display the Explorer, Editor, Log,
Output, and Results windows.

“EXPLORER System
Option” on page 1850

Specifies whether to invoke the SAS windowing
environment and display only the Explorer window.

“INITCMD System
Option” on page 1869

Specifies an application invocation command and
optional SAS windowing environment or text editor
commands that SAS executes before processing
AUTOEXEC file during SAS invocation.

“INITSTMT= System
Option” on page 1870

Specifies a SAS statement to execute after any
statements in the autoexec file and before any
statements from the SYSIN= file.

“MULTENVAPPL System
Option” on page 1888

Specifies whether the fonts available in a SAS
application font selector window lists only the SAS fonts
that are available in all operating environments.

“PRIMARYPROVIDERDOMAIN=
System Option” on page
1918

Specifies the domain name of the primary authentication
provider.

“TERMINAL System
Option” on page 1974

Specifies whether to associate a terminal with a SAS
session.

“TERMSTMT= System
Option” on page 1975

Specifies the SAS statements to execute when SAS
terminates.

Environment control:
Language control

“DATESTYLE= System
Option” on page 1824

Specifies the sequence of month, day, and year when
ANYDTDTE, ANYDTDTM, or ANYDTTME informat
data is ambiguous.

1782 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“PAPERSIZE= System
Option” on page 1901

Specifies the paper size to use for printing.

Files: External files “LRECL= System Option”
on page 1883

Specifies the default logical record length to use for
reading and writing external files.

“STARTLIB System
Option” on page 1953

Specifies whether SAS assigns user-defined permanent
librefs when SAS starts.

Files: SAS Files “BUFNO= System Option”
on page 1797

Specifies the number of buffers to be allocated for
processing SAS data sets.

“BUFSIZE= System
Option” on page 1799

Specifies the permanent buffer page size for output SAS
data sets.

“CATCACHE= System
Option” on page 1805

Specifies the number of SAS catalogs to keep open in
cache memory.

“CBUFNO= System
Option” on page 1806

Specifies the number of extra page buffers to allocate for
each open SAS catalog.

“CMPLIB= System
Option” on page 1812

Specifies one or more SAS data sets that contain compiler
subroutines to include during program compilation.

“COMPRESS= System
Option” on page 1817

Specifies the type of compression of observations to use
for output SAS data sets.

“DATASTMTCHK= System
Option” on page 1822

Specifies which SAS statement keywords are prohibited
from being specified as a one-level DATA step name to
protect against overwriting an input data set.

“DKRICOND= System
Option” on page 1827

Specifies the level of error detection to report when a
variable is missing from an input data set during the
processing of a DROP=, KEEP=, or RENAME= data set
option.

“DKROCOND= System
Option” on page 1828

Specifies the level of error detection to report when a
variable is missing for an output data set during the
processing of a DROP=, KEEP=, or RENAME= data set
option.

“DLDMGACTION=
System Option” on page
1829

Specifies the type of action to take when a SAS data set
or a SAS catalog is detected as damaged.

“ENGINE= System
Option” on page 1845

Specifies the default access method for SAS libraries.

“FILESYNC= System
Option” on page 1850

Specifies when operating system buffers that contain
contents of permanent SAS files are written to disk.

“FIRSTOBS= System
Option” on page 1851

Specifies the observation number or external file record
that SAS processes first.

“IBUFNO= System
Option” on page 1866

Specifies an optional number of extra buffers to be
allocated for navigating an index file.

“IBUFSIZE= System
Option” on page 1867

Specifies the buffer page size for an index file.

“_LAST_= System Option”
on page 1876

Specifies the most recently created data set.

SAS System Options � SAS System Options by Category 1783

Category SAS System Options Description

“MERGENOBY System
Option” on page 1885

Specifies the type of message that is issued when MERGE
processing occurs without an associated BY statement.

“OBS= System Option” on
page 1890

Specifies the observation that is used to determine the
last observation to process, or specifies the last record to
process.

“REPLACE System
Option” on page 1923

Specifies whether permanently stored SAS data sets can
be replaced.

“REUSE= System Option”
on page 1924

Specifies whether SAS reuses space when observations
are added to a compressed SAS data set.

“SQLCONSTDATETIME
System Option” on page
1946

Specifies whether the SQL procedure replaces references
to the DATE, TIME, DATETIME, and TODAY functions
in a query with their equivalent constant values before
the query executes.

“SQLREDUCEPUT=
System Option” on page
1947

For the SQL procedure, specifies the engine type that a
query uses for which optimization is performed by
replacing a PUT function in a query with a logically
equivalent expression.

“SQLREDUCEPUTOBS=
System Option” on page
1948

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the minimum
number of observations that must be in a table in order
for PROC SQL to consider optimizing the PUT function
in a query.

“SQLREDUCEPUTVALUES=
System Option” on page
1949

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the maximum
number of SAS format values that can exist in a PUT
function expression in order for PROC SQL to consider
optimizing the PUT function in a query.

“SQLREMERGE System
Option” on page 1951

Specifies whether the SQL procedure can process queries
that use remerging of data.

“SQLUNDOPOLICY=
System Option” on page
1952

Specifies whether the SQL procedure keeps or discards
updated data if errors occur while the data is being
updated.

“UTILLOC= System
Option” on page 1982

Specifies one or more file system locations in which
applications can store utility files.

“VALIDFMTNAME=
System Option” on page
1986

Specifies the maximum size (32 characters or 8
characters) that user-created format and informat names
can be before an error or warning is issued.

“VALIDVARNAME=
System Option” on page
1988

Specifies the rules for valid SAS variable names that can
be created and processed during a SAS session.

“VARLENCHK= System
Option” on page 1989

Specifies the type of message to write to the SAS log
when the input data set is read using the SET, MERGE,
UPDATE, or MODIFY statements.

Graphics: Driver settings “DEVICE= System Option”
on page 1827

Specifies the device driver to which SAS/GRAPH sends
procedure output.

1784 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“GSTYLE System Option”
on page 1860

Specifies whether ODS styles can be used in the
generation of graphs that are stored as GRSEG catalog
entries.

“GWINDOW System
Option” on page 1861

Specifies whether SAS displays SAS/GRAPH output in
the GRAPH window.

“MAPS= System Option”
on page 1884

Specifies the location of the SAS library that contains
SAS/GRAPH map data sets.

Input control: Data
Processing

“BYSORTED System
Option” on page 1802

Specifies whether observations in one or more data sets
are sorted in alphabetic or numeric order or are grouped
in another logical order.

“CAPS System Option” on
page 1803

Specifies whether to convert certain types of input to
uppercase.

“CARDIMAGE System
Option” on page 1804

Specifies whether SAS processes source and data lines as
80-byte cards.

“DATESTYLE= System
Option” on page 1824

Specifies the sequence of month, day, and year when
ANYDTDTE, ANYDTDTM, or ANYDTTME informat
data is ambiguous.

“INVALIDDATA= System
Option” on page 1874

Specifies the value that SAS assigns to a variable when
invalid numeric data is encountered.

“S= System Option” on
page 1927

Specifies the length of statements on each line of a
source statement and the length of data on lines that
follow a DATALINES statement.

“S2= System Option” on
page 1931

Specifies the length of statements on each line of a
source statement from a %INCLUDE statement, an
autoexec file, or an autocall macro file.

“S2V= System Option” on
page 1934

Specifies the starting position to begin reading a file that
is specified in a %INCLUDE statement, an autoexec file,
or an autocall macro file with a variable length record
format.

“SEQ= System Option” on
page 1936

Specifies the length of the numeric portion of the
sequence field in input source lines or data lines.

“SPOOL System Option”
on page 1945

Specifies whether SAS statements are written to a utility
data set in the WORK data library.

“YEARCUTOFF= System
Option” on page 1996

Specifies the first year of a 100-year span that is used by
date informats and functions to read a two–digit year.

Input control: Data
processing

“INTERVALDS= System
Option” on page 1872

Specifies one or more interval name and value pairs,
where the value is a SAS data set that contains
user-supplied holidays. The interval can be used as an
argument to the INTNX and INTCK functions.

Log and procedure output
control: ODS Printing

“BINDING= System
Option” on page 1795

Specifies the binding edge for duplexed printed output.

“BOTTOMMARGIN=
System Option” on page
1796

Specifies the size of the margin at the bottom of a
printed page.

SAS System Options � SAS System Options by Category 1785

Category SAS System Options Description

“COLLATE System
Option” on page 1816

Specifies whether to collate multiple copies of printed
output.

“COLORPRINTING
System Option” on page
1817

Specifies whether to print in color if color printing is
supported.

“COPIES= System Option”
on page 1819

Specifies the number of copies to print.

“DEFLATION= System
Option” on page 1825

Specifies the level of compression for device drivers that
support the Deflate compression algorithm.

“DUPLEX System Option”
on page 1838

Specifies whether duplex (two-sided) printing is enabled.

“FONTEMBEDDING
System Option” on page
1855

Specifies whether font embedding is enabled in Universal
Printer and SAS/GRAPH printing.

“FONTRENDERING=
System Option” on page
1856

Specifies whether SAS/GRAPH devices that are based on
the SASGDGIF, SASGDTIF, and SASGDIMG modules
render fonts by using the operating system or by using
the FreeType engine.

“GSTYLE System Option”
on page 1860

Specifies whether ODS styles can be used in the
generation of graphs that are stored as GRSEG catalog
entries.

“JPEGQUALITY= System
Option” on page 1874

Specifies the JPEG quality factor that determines the
ratio of image quality to the level of compression for
JPEG files produced by the SAS/GRAPH JPEG device
driver.

“LEFTMARGIN= System
Option” on page 1877

Specifies the print margin for the left side of the page.

“ORIENTATION= System
Option” on page 1896

Specifies the paper orientation to use when printing to a
printer.

“PAPERDEST= System
Option” on page 1900

Specifies the name of the output bin to receive printed
output.

“PAPERSIZE= System
Option” on page 1901

Specifies the paper size to use for printing.

“PAPERSOURCE= System
Option” on page 1903

Specifies the name of the paper bin to use for printing.

“PAPERTYPE= System
Option” on page 1904

Specifies the type of paper to use for printing.

“PRINTERPATH= System
Option” on page 1920

Specifies the name of a registered printer to use for
Universal Printing.

“RIGHTMARGIN= System
Option” on page 1925

Specifies the print margin for the right side of the page
for output directed to an ODS printer destination.

“TEXTURELOC= System
Option” on page 1976

Specifies the location of textures and images that are
used by ODS styles.

“TOPMARGIN= System
Option” on page 1978

Specifies the print margin at the top of the page for
output directed to an ODS printer destination.

1786 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“UNIVERSALPRINT
System Option” on page
1980

Specifies whether to enable Universal Printing services.

“UPRINTCOMPRESSION
System Option” on page
1981

Specifies whether to enable compression of file created by
some Universal Printer and SAS/GRAPH devices.

Log and procedure output
control: PDF

“PDFACCESS System
Option” on page 1906

Specifies whether text and graphics from PDF documents
can be read by screen readers for the visually impaired.

“PDFASSEMBLY System
Option” on page 1907

Specifies whether PDF documents can be assembled.

“PDFCOMMENT System
Option” on page 1908

Specifies whether PDF document comments can be
modified.

“PDFCONTENT System
Option” on page 1909

Specifies whether the contents of a PDF document can be
changed.

“PDFCOPY System
Option” on page 1910

Specifies whether text and graphics from a PDF
document can be copied.

“PDFFILLIN System
Option” on page 1911

Specifies whether PDF forms can be filled in.

“ PDFPAGELAYOUT=
System Option” on page
1912

Specifies the page layout for PDF documents.

“ PDFPAGEVIEW=
System Option” on page
1913

Specifies the page viewing mode for PDF documents.

“PDFPASSWORD= System
Option” on page 1914

Specifies the password to use to open a PDF document
and the password used by a PDF document owner.

“PDFPRINT= System
Option” on page 1915

Specifies the resolution to print PDF documents.

“PDFSECURITY= System
Option” on page 1916

Specifies the printing permissions for PDF documents.

Log and procedure output
control: Procedure output

“BYLINE System Option”
on page 1801

Specifies whether to print BY lines above each BY group.

“CENTER System Option”
on page 1807

Specifies whether to center or left align SAS procedure
output.

“FORMCHAR= System
Option” on page 1858

Specifies the default output formatting characters.

“FORMDLIM= System
Option” on page 1859

Specifies a character to delimit page breaks in SAS
output.

“LABEL System Option”
on page 1875

Specifies whether SAS procedures can use labels with
variables.

“PAGENO= System
Option” on page 1898

Resets the SAS output page number.

“PRINTINIT System
Option” on page 1921

Specifies whether to initialize the SAS procedure output
file.

SAS System Options � SAS System Options by Category 1787

Category SAS System Options Description

“SKIP= System Option” on
page 1938

Specifies the number of lines to skip at the top of each
page of SAS output.

“SYSPRINTFONT=
System Option” on page
1972

Specifies the default font to use for printing, which can
be overridden by explicitly specifying a font and an ODS
style.

Log and procedure output
control: Procedure output

“DATE System Option” on
page 1823

Specifies whether to print the date and time that a SAS
program started.

“DETAILS System Option”
on page 1826

Specifies whether to include additional information when
files are listed in a SAS library.

“DTRESET System
Option” on page 1837

Specifies whether to update the date and time in the
SAS log and in the procedure output file.

“LINESIZE= System
Option” on page 1878

Specifies the line size for the SAS log and for SAS
procedure output.

“MISSING= System
Option” on page 1886

Specifies the character to print for missing numeric
values.

“NUMBER System
Option” on page 1890

Specified whether to print the page number in the title
line of each page of SAS output.

“PAGEBREAKINITIAL
System Option” on page
1898

Specifies whether to begin the SAS log and procedure
output files on a new page.

“PAGESIZE= System
Option” on page 1899

Specifies the number of lines that compose a page of SAS
output.

Log and procedure output
control: SAS log and
procedure output

“DATE System Option” on
page 1823

Specifies whether to print the date and time that a SAS
program started.

“DETAILS System Option”
on page 1826

Specifies whether to include additional information when
files are listed in a SAS library.

“DTRESET System
Option” on page 1837

Specifies whether to update the date and time in the
SAS log and in the procedure output file.

“LINESIZE= System
Option” on page 1878

Specifies the line size for the SAS log and for SAS
procedure output.

“MISSING= System
Option” on page 1886

Specifies the character to print for missing numeric
values.

“NUMBER System
Option” on page 1890

Specified whether to print the page number in the title
line of each page of SAS output.

“PAGEBREAKINITIAL
System Option” on page
1898

Specifies whether to begin the SAS log and procedure
output files on a new page.

“PAGESIZE= System
Option” on page 1899

Specifies the number of lines that compose a page of SAS
output.

Log and procedure output
control: SAS log

“CPUID System Option”
on page 1822

Specifies whether the CPU identification number is
written to the SAS log.

“DATE System Option” on
page 1823

Specifies whether to print the date and time that a SAS
program started.

1788 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“DETAILS System Option”
on page 1826

Specifies whether to include additional information when
files are listed in a SAS library.

“DMSLOGSIZE= System
Option” on page 1833

Specifies the maximum number of rows that the SAS Log
window can display.

“DTRESET System
Option” on page 1837

Specifies whether to update the date and time in the
SAS log and in the procedure output file.

“ECHOAUTO System
Option” on page 1839

Specifies whether the statements in the autoexec file are
written to the SAS log as they are executed.

“ERRORS= System
Option” on page 1849

Specifies the maximum number of observations for which
SAS issues complete error messages.

“LINESIZE= System
Option” on page 1878

Specifies the line size for the SAS log and for SAS
procedure output.

“LOGPARM= System
Option” on page 1879

Specifies when SAS log files are opened, closed, and, in
conjunction with the LOG= system option, how they are
named.

“MISSING= System
Option” on page 1886

Specifies the character to print for missing numeric
values.

“MSGLEVEL= System
Option” on page 1886

Specifies the level of detail in messages that are written
to the SAS log.

“NEWS= System Option”
on page 1888

Specifies an external file that contains messages to be
written to the SAS log, immediately after the header.

“NOTES System Option”
on page 1889

Specifies whether notes are written to the SAS log.

“NUMBER System
Option” on page 1890

Specified whether to print the page number in the title
line of each page of SAS output.

“OVP System Option” on
page 1897

Specifies whether overprinting of error messages to make
them bold, is enabled.

“PAGEBREAKINITIAL
System Option” on page
1898

Specifies whether to begin the SAS log and procedure
output files on a new page.

“PAGESIZE= System
Option” on page 1899

Specifies the number of lines that compose a page of SAS
output.

“PRINTMSGLIST System
Option” on page 1922

Specifies whether to print all messages to the SAS log or
to print only top-level messages to the SAS log.

“SOURCE System Option”
on page 1943

Specifies whether SAS writes source statements to the
SAS log.

“SOURCE2 System
Option” on page 1944

Specifies whether SAS writes secondary source
statements from included files to the SAS log.

Log and procedure output
control: SVG

“SVGCONTROLBUTTONS”
on page 1958

Specifies whether to display the paging control buttons
and an index in a multipage SVG document.

“SVGHEIGHT= System
Option” on page 1958

Specifies the height of the viewport unless the SVG
output is embedded in another SVG output; specifies the
value of the height attribute of the outermost <svg>
element in the SVG file.

SAS System Options � SAS System Options by Category 1789

Category SAS System Options Description

“SVGPRESERVEASPECTRATIO=
System Option” on page
1960

Specifies whether to force uniform scaling of SVG output;
specifies the preserveAspectRatio attribute on the
outermost <svg> element.

“SVGTITLE= System
Option” on page 1963

Specifies the title in the title bar of the SVG output;
specifies the value of the <title> element in the SVG file.

“SVGVIEWBOX= System
Option” on page 1964

Specifies the coordinates, width, and height that are
used to set the viewBox attribute on the outermost <svg>
element, which enables SVG output to scale to the
viewport.

“SVGWIDTH= System
Option” on page 1966

Specifies the width of the viewport unless the SVG
output is embedded in another SVG output; specifies the
value of the width attribute in the outermost <svg>
element in the SVG file.

“SVGX= System Option”
on page 1967

Specifies the x-axis coordinate of one corner of the
rectangular region into which an embedded <svg>
element is placed; specifies the x attribute in the
outermost <svg> element in an SVG file.

“SVGY= System Option”
on page 1969

Specifies the y-axis coordinate of one corner of the
rectangular region into which an embedded <svg>
element is placed; specifies the y attribute in the
outermost <svg> element in an SVG file.

Sort: Procedure options “SORTDUP= System
Option” on page 1939

Specifies whether the SORT procedure removes duplicate
variables based on all variables in a data set or the
variables that remain after the DROP or KEEP data set
options have been applied.

“SORTEQUALS System
Option” on page 1940

Specifies whether observations in the output data set
with identical BY variable values have a particular order.

“SORTSIZE= System
Option” on page 1941

Specifies the amount of memory that is available to the
SORT procedure.

“SORTVALIDATE System
Option” on page 1942

Specifies whether the SORT procedure verifies if a data
set is sorted according to the variables in the BY
statement when a user-specified sort order is denoted in
the sort indicator.

System administration:
Code generation

“CGOPTIMIZE= System
Option” on page 1808

Specifies the level of optimization to perform during code
compilation.

System administration:
Installation

“SETINIT System Option”
on page 1937

Specifies whether site license information can be altered.

System administration:
Memory

“SORTSIZE= System
Option” on page 1941

Specifies the amount of memory that is available to the
SORT procedure.

“SUMSIZE= System
Option” on page 1957

Specifies a limit on the amount of memory that is
available for data summarization procedures when class
variables are active.

System administration:
Performance

“BUFNO= System Option”
on page 1797

Specifies the number of buffers to be allocated for
processing SAS data sets.

“BUFSIZE= System
Option” on page 1799

Specifies the permanent buffer page size for output SAS
data sets.

1790 SAS System Options by Category � Chapter 7

Category SAS System Options Description

“CGOPTIMIZE= System
Option” on page 1808

Specifies the level of optimization to perform during code
compilation.

“CMPMODEL= System
Option” on page 1813

Specifies the output model type for the MODEL
procedure.

“CMPOPT= System
Option” on page 1814

Specifies the type of code generation optimizations to use
in the SAS language compiler.

“COMPRESS= System
Option” on page 1817

Specifies the type of compression of observations to use
for output SAS data sets.

“CPUCOUNT= System
Option” on page 1820

Specifies the number of processors that the
thread-enabled applications should assume will be
available for concurrent processing.

“SQLREDUCEPUT=
System Option” on page
1947

For the SQL procedure, specifies the engine type that a
query uses for which optimization is performed by
replacing a PUT function in a query with a logically
equivalent expression.

“SQLREDUCEPUTOBS=
System Option” on page
1948

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the minimum
number of observations that must be in a table in order
for PROC SQL to consider optimizing the PUT function
in a query.

“SQLREDUCEPUTVALUES=
System Option” on page
1949

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the maximum
number of SAS format values that can exist in a PUT
function expression in order for PROC SQL to consider
optimizing the PUT function in a query.

“THREADS System
Option” on page 1976

Specifies that SAS use threaded processing if it is
available.

System administration:
SQL

“SQLCONSTDATETIME
System Option” on page
1946

Specifies whether the SQL procedure replaces references
to the DATE, TIME, DATETIME, and TODAY functions
in a query with their equivalent constant values before
the query executes.

“SQLREDUCEPUT=
System Option” on page
1947

For the SQL procedure, specifies the engine type that a
query uses for which optimization is performed by
replacing a PUT function in a query with a logically
equivalent expression.

“SQLREDUCEPUTOBS=
System Option” on page
1948

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the minimum
number of observations that must be in a table in order
for PROC SQL to consider optimizing the PUT function
in a query.

“SQLREDUCEPUTVALUES=
System Option” on page
1949

For the SQL procedure when the SQLREDUCEPUT=
system option is set to NONE, specifies the maximum
number of SAS format values that can exist in a PUT
function expression in order for PROC SQL to consider
optimizing the PUT function in a query.

“SQLREMERGE System
Option” on page 1951

Specifies whether the SQL procedure can process queries
that use remerging of data.

SAS System Options � APPEND= System Option 1791

Category SAS System Options Description

“SQLUNDOPOLICY=
System Option” on page
1952

Specifies whether the SQL procedure keeps or discards
updated data if errors occur while the data is being
updated.

System administration:
Security

“PDFPASSWORD= System
Option” on page 1914

Specifies the password to use to open a PDF document
and the password used by a PDF document owner.

“PDFSECURITY= System
Option” on page 1916

Specifies the printing permissions for PDF documents.

“RLANG System Option”
on page 1926

Specifies whether SAS executes R language statements.

Dictionary

APPEND= System Option
Appends a value to the existing value of the specified system option.

Valid in: OPTIONS statement, SAS System Options window
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
See: APPEND= System Option in the documentation for your operating environment

Syntax
APPEND=(system-option-1=argument-1 system-option-n=argument-n)

Syntax Description

system-option
can be CMPLIB, FMTSEARCH, MAPS, SASAUTOS, or SASSCRIPT.

argument
specifies a new value that you want to append to the current value of system-option.

argument can be any value that could be specified for system-option if
system-option is set using the OPTIONS statement.

Details
If you specify a new value for the CMPLIB=, FMTSEARCH=, MAPS=, SASAUTOS=, or
SASSCRIPT= system options, the new value replaces the value of the option. Instead of
replacing the value, you can use the APPEND= system option to append a new value to
the current value of the option.

Comparison
The APPEND= system option adds a new value to the end of the current value of the
CMPLIB=, FMTSEARCH=, MAPS=, SASAUTOS=, or SASSCRIPT= system options.

1792 APPLETLOC= System Option � Chapter 7

The INSERT= system option adds a new value as the first value of one of these system
options.

Examples

The following table shows the results of adding a value to the end of the
FMTSEARCH= option value:

Current FMTSEARCH=
Value

Value of APPEND= System
Option

New FMTSEARCH= Value

(WORK LIBRARY) (fmtsearch=(abc def)) (WORK LIBRARY ABC DEF)

See Also

System Option:

“INSERT= System Option” on page 1871

APPLETLOC= System Option

Specifies the location of Java applets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Syntax
APPLETLOC=“base-URL”

Syntax Description

“base-URL”
specifies the address where the SAS Java applets are located. The maximum address
length is 256 characters.

Details
The APPLETLOC= system option specifies the base location (typically a URL) of Java
applets. These applets are typically accessed from an intranet server or a local
CD-ROM.

SAS System Options � AUTHPROVIDERDOMAIN System Option 1793

Examples

Some examples of the base-URL are
� "file://e:\java"

� "http://server.abc.com/SAS/applets"

AUTHPROVIDERDOMAIN System Option

Associates a domain suffix with an authentication provider.

Valid in: configuration file, SAS invocation
Alias: AUTHPD
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
AUTHPROVIDERDOMAIN provider : domain

AUTHPROVIDERDOMAIN (provider–1 : domain–1<, …provider-n : domain-n>)

Note: In UNIX operating environments, you must insert an escape character before
each parenthesis. For example,

-authproviderdomain \(ADIR:MyDomain, LDAP:sas\)

�

Syntax Description

provider
specifies the authentication provider that is associated with a domain. The following
are valid values for provider:

ADIR specifies that the authentication provider be a Microsoft Active
Directory server that accepts a bind containing user names and
passwords for authentication.

HOSTUSER specifies that user names and passwords be authenticated by
using the authentication processing that is provided by the host
operating system.

Operating Environment Information: Under the Windows
operating environment, assigning the authentication provider
using the HOSTUSER domain is the same as assigning the
authentication provider using the AUTHSERVER system option.
You might want to use the AUTHPROVIDERDOMAIN system
option when you specify multiple authentication providers. �

LDAP specifies that the authentication provider use a directory server to
specify the bind distinguished name (BINDDN) and a password
for authentication.

domain

1794 AUTHPROVIDERDOMAIN System Option � Chapter 7

specifies a site-specific domain name. Quotation marks are required if the domain
name contains blanks.

Details
SAS is able to provide authentication of a user through the use of many authentication
providers. The AUTHPROVIDERDOMAIN= system option associates a domain suffix
with an authentication provider. This association enables the SAS server to choose the
authentication provider by the domain name that is presented.

When a domain suffix is not specified or the domain suffix is unknown,
authentication is performed on the user ID and password by the host operating system.

Parenthesis are required when you specify more than one set of provider : domain
pairs.

The maximum length for the AUTHPROVIDERDOMAIN option value is 1,024
characters.

To use the Microsoft Active Directory or LDAP authentication providers, these
environment variables must be set in the server or spawner startup script:

Microsoft Active Directory Server:
AD_PORT=Microsoft Active Directory port number
AD_HOST=Microsoft Active Directory host name

LDAP Server:
LDAP_PORT=LDAP port number
LDAP_BASE=base distinguished name
LDAP_HOST=LDAP host_name

LDAP Server for users connecting with a user ID instead of a distinguished name
(DN):

LDAP_PRIV_DN=privileged DN that is allowed to search for users
LDAP_PRIV_PW=LDAP_PRIV_DN password

Note: If the LDAP server allows anonymous binds, then LDAP_PRIV_DN
and LDAP_PRIV_PW are not required. �

In addition to setting these environment variables, you can set the LDAP_IDATTR
environment variable to the name of the person-entry LDAP attribute that stores the
user ID if the attribute does not contain the default value of uid.

Examples

The following examples show you how to specify the AUTHPROVIDERDOMAIN
option:

� -authpd ldap:sas causes the SAS server to send credentials for users who log on
as anything@sas to LDAP for authentication.

� -authpd adir:sas causes the SAS server to send credentials for users who log on
as anything@sas to Active Directory for authentication.

� -authproviderdomain (hostuser:’my domain’, ldap:sas) causes the SAS
server to send credentials for users who log on as the following:

� When a user logs on as anything@’my domain’, authentication is provided by
the operating system authentication system

� When a user logs on as anything@sas, authentication is provided by LDAP

See Also

SAS System Options � BINDING= System Option 1795

System option:

“PRIMARYPROVIDERDOMAIN= System Option” on page 1918

AUTOSAVELOC= System Option

Specifies the location of the Program Editor autosave file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Display

Restriction: The location that is specified by the AUTOSAVELOC= system option is valid
only for the Program Editor. This option does not apply to the Enhanced Editor.

PROC OPTIONS GROUP= ENVDISPLAY

See: AUTOSAVELOC System Option under UNIX OpenVMS

Syntax
AUTOSAVELOC= “location”

Syntax Description

location
specifies the pathname of the autosave file. If location contains spaces or is specified
in an OPTIONS statement, then enclose location in quotation marks.

See Also

“Saving Program Editor Files Using Autosave” in the SAS Companion for Windows.

“Program Editor Window” in the SAS Help and Documentation.

BINDING= System Option

Specifies the binding edge for duplexed printed output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Restriction: This option is ignored if the printer does not support duplex (two-sided)
printing.

1796 BOTTOMMARGIN= System Option � Chapter 7

Syntax
BINDING=DEFAULTEDGE | LONGEDGE | SHORTEDGE

Syntax Description

DEFAULT | DEFAULTEDGE
specifies that duplexing is done using the default binding edge.

LONG | LONGEDGE
specifies the long edge as the binding edge for duplexed output.

SHORT | SHORTEDGE
specifies the short edge as the binding edge for duplexed output.

Details
The binding edge setting determines how the paper is oriented before output is printed
on the second side.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

See Also

System Option:

“DUPLEX System Option” on page 1838

BOTTOMMARGIN= System Option

Specifies the size of the margin at the bottom of a printed page.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
BOTTOMMARGIN=margin-size<margin-unit>

SAS System Options � BUFNO= System Option 1797

Syntax Description

margin-size
specifies the size of the margin.
Restriction: The bottom margin should be small enough so that the top margin

plus the bottom margin is less than the height of the paper.
Interactions: Changing the value of this option might result in changes to the

value of the PAGESIZE= system option.

<margin-unit>
specifies the units for margin-size. The margin-unit can be in for inches or cm for
centimeters. <margin-unit> is saved as part of the value of the BOTTOMMARGIN
system option.
Default: inches

Details
All margins have a minimum that is dependent on the printer and the paper size. The
default value of the BOTTOMMARGIN system option is 0.00 in.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in the SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

See Also

System Options:
“LEFTMARGIN= System Option” on page 1877
“RIGHTMARGIN= System Option” on page 1925
“TOPMARGIN= System Option” on page 1978

BUFNO= System Option

Specifies the number of buffers to be allocated for processing SAS data sets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: Performance
PROC OPTIONS GROUP= SASFILES

PERFORMANCE

1798 BUFNO= System Option � Chapter 7

See: BUFNO= System Option in the documentation for your operating environment.

Syntax
BUFNO=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the number of buffers to be allocated in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776
(terabytes). For example, a value of 8 specifies 8 bytes, and a value of 3m specifies
3,145,728 bytes.
Tip: Use the notation that best fits the memory size of your system.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx
specifies 45 buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment. This is the default.

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer which is 231-1, or
approximately 2 billion.

Details
The number of buffers is not a permanent attribute of the data set; it is valid only for
the current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.
Using BUFNO= can improve execution time by limiting the number of input/output

operations that are required for a particular SAS data set. The improvement in
execution time, however, comes at the expense of increased memory consumption.

You can estimate the number of buffers you need from the data set page size and the
amount of memory in your system. The data set page size can be specified by the
BUFSIZE= system option or by the BUFSIZE= data set option. If the default is used,
SAS uses the minimal optimal page size for the operating environment. You can find
the page size for a data set in the output of the CONTENTS procedure. Once you have
the data set page size and the amount of memory available, you can estimate the
number of buffers you need. If the number of buffers is too large, SAS might not have
enough memory to process the DATA or PROC step. You can change the page size for a
data set by recreating the data set using the BUFSIZE= data set option.

Operating Environment Information: Under the Window operating environment, if the
SGIO system option is set, the maximum number of bytes that can be processed in an I/
O operation is 64MB. Therefore, number-of-buffers x page-size <= 64MB. �

SAS System Options � BUFSIZE= System Option 1799

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Comparisons
� You can override the BUFNO= system option by using the BUFNO= data set

option.
� To request that SAS allocate the number of buffers based on the number of data

set pages and index file pages, use the SASFILE statement.

See Also

Data Set Option:
“BUFNO= Data Set Option” on page 15

System Option:
“BUFSIZE= System Option” on page 1799

Statements:
“SASFILE Statement” on page 1703

Procedures:
The Contents Procedure

BUFSIZE= System Option

Specifies the permanent buffer page size for output SAS data sets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: Performance
PROC OPTIONS GROUP= SASFILES

PERFORMANCE
See: BUFSIZE= System Option in the documentation for your operating environment.

Syntax
BUFSIZE=n| nK | nM | nG | nT |hexX | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 8 specifies 8 bytes, and a value of 3m specifies 3,145,728 bytes.

1800 BYERR System Option � Chapter 7

The default is 0, which causes SAS to use the minimum optimal page size for the
operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by an X. For example, the value 2dx sets the page size
to 45 bytes.

MAX
sets the page size to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 231-1, or approximately 2 billion
bytes.

Details
The page size is the amount of data that can be transferred from a single input/output
operation to one buffer. The page size is a permanent attribute of the data set and is
used when the data set is processed.

A larger page size can improve execution time by reducing the number of times SAS
has to read from or write to the storage medium. However, the improvement in
execution time comes at the expense of increased memory consumption.

To change the page size, use a DATA step to copy the data set and either specify a
new page or use the SAS default.

Note: If you use the COPY procedure to copy a data set to another library that is
allocated with a different engine, the specified page size of the data set is not retained. �

Operating Environment Information: The default value for BUFSIZE= is determined
by your operating environment and is set to optimize sequential access. To improve
performance for direct (random) access, you should change the value for BUFSIZE=.
For the default setting and possible settings for direct access, see the BUFSIZE=
system option in the SAS documentation for your operating environment. �

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Comparisons
The BUFSIZE= system option can be overridden by the BUFSIZE= data set option.

See Also

Data Set Option:
“BUFSIZE= Data Set Option” on page 16

System Option:
“BUFNO= System Option” on page 1797

BYERR System Option
Specifies whether SAS produces errors when the SORT procedure attempts to process a _NULL_
data set.

SAS System Options � BYLINE System Option 1801

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Error handling

PROC OPTIONS GROUP= ERRORHANDLING

Syntax
BYERR | NOBYERR

Syntax Description

BYERR
specifies that SAS issue an error message and stop processing if the SORT procedure
attempts to sort a _NULL_ data set.

NOBYERR
specifies that SAS ignore the error message and continue processing if the SORT
procedure attempts to sort a _NULL_ data.

Comparisons
The VNFERR system option sets the error flag for a missing variable when a _NULL_
data set is used. The DSNFERR system option specifies how SAS responds when a SAS
data set is not found.

See Also

System Options:

“DSNFERR System Option” on page 1836

“VNFERR System Option” on page 1993

“BY-Group Processing” in SAS Language Reference: Concepts

BYLINE System Option

Specifies whether to print BY lines above each BY group.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

Syntax
BYLINE | NOBYLINE

1802 BYSORTED System Option � Chapter 7

Syntax Description

BYLINE
specifies that BY lines are printed above each BY group.

NOBYLINE
suppresses the automatic printing of BY lines.

Details
Use NOBYLINE to suppress the automatic printing of BY lines in procedure output.
You can then use #BYVAL, #BYVAR, or #BYLINE to display BYLINE information in a
TITLE statement.

These SAS procedures perform their own BY line processing by displaying output for
multiple BY groups on the same page:

� MEANS
� PRINT
� STANDARD
� SUMMARY
� TTEST (in SAS/STAT software).

With these procedures, NOBYLINE causes a page eject between BY groups. For
PROC PRINT, the page eject between BY groups has the same effect as specifying the
right most BY variable in the PAGEBY statement.

See Also

Statements:
#BYVAL, #BYVAR, and #BYLINE in the “TITLE Statement” on page 1726

“BY-Group Processing in SAS Programs” in SAS Language Reference: Concepts

BYSORTED System Option

Specifies whether observations in one or more data sets are sorted in alphabetic or numeric order
or are grouped in another logical order.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
BYSORTED | NOBYSORTED

Syntax Description

SAS System Options � CAPS System Option 1803

BYSORTED
specifies that observations in a data set or data sets are sorted in alphabetic or
numeric order.

Requirement: When you use the BYSORTED option, observations must be ordered
or indexed according to the values of BY variables.

Interaction: If both the BYSORTED system option and the NOTSORTED
statement option on a BY statement are specified, then the NOTSORTED option
in the BY statement takes precedence over the BYSORTED system option.

Tip: If BYSORTED is specified, then SAS assumes that the data set is ordered by
the BY variable. BYSORTED should be used if the data set is ordered by the BY
variable for better performance.

NOBYSORTED
specifies that observations with the same BY value are grouped together but are not
necessarily sorted in alphabetic or numeric order.

Tip: When the NOBYSORTED option is specified, you do not have to specify
NOTSORTED on every BY statement to access the data sets.

Tip: NOBYSORTED is useful if you have data that falls into other logical groupings
such as chronological order or linguistic order. NOBYSORTED allows BY
processing to continue without failure when a data set is not actually sorted in
alphabetic or numeric order.

Note: If a procedure ignores the NOTSORTED option in a BY statement, then it
ignores the NOBYSORTED system option also. �

Details
The requirement for ordering or indexing observations according to the values of BY
variables is suspended for BY-group processing when you use the NOBYSORTED
option. By default, BY-group processing requires that your data be sorted in alphabetic
or numeric order. If your data is grouped in any other way but alphabetic or numeric,
then you must use the NOBYSORTED option to allow BY-processing to continue
without failure. For more information about BY-group processing, see “BY-Group
Processing in SAS Programs” in SAS Language Reference: Concepts.

See Also

Statements:

NOTSORTED option in the “BY Statement” on page 1407.

CAPS System Option

Specifies whether to convert certain types of input to uppercase.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Input control: Data Processing

PROC OPTIONS GROUP= INPUTCONTROL

1804 CARDIMAGE System Option � Chapter 7

Syntax
CAPS | NOCAPS

Syntax Description

CAPS
specifies that SAS translate lowercase characters to uppercase in these types of input:

� data following CARDS, CARDS4, DATALINES, DATALINES4, and
PARMCARDS statements

� text enclosed in single or double quotation marks
� values in VALUE and INVALUE statements in the FORMAT procedure
� titles, footnotes, variable labels, and data set labels
� constant text in macro definitions
� values of macro variables
� parameter values passed to macros.

Note: Data read from external files and SAS data sets are not translated to
uppercase. �

NOCAPS
specifies that lowercase characters that occur in the types of input that are listed
above are not translated to uppercase.

Comparisons
The CAPS system option and the CAPS command both specify whether input is
converted to uppercase. The CAPS command, which is available in windows that allow
text editing, can act as a toggle. The CAPS command converts all text that is entered
from the keyboard to uppercase. If either the CAPS system option or the CAPS
command is in effect, all applicable input is translated to uppercase.

See Also

Command:
CAPS in SAS Help and Documentation

CARDIMAGE System Option

Specifies whether SAS processes source and data lines as 80-byte cards.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL
See: CARDIMAGE System Option in the documentation for your operating
environment.

SAS System Options � CATCACHE= System Option 1805

Syntax
CARDIMAGE | NOCARDIMAGE

Syntax Description

CARDIMAGE
specifies that SAS source and data lines be processed as if they were punched card
images—all exactly 80 bytes long and padded with blanks. That is, column 1 of a line
is treated as if it immediately followed column 80 of the previous line. Therefore,
tokens can be split across lines. (A token is a character or series of characters that
SAS treats as a discrete word.)

Strings in quotation marks (literal tokens) that begin on one line and end on
another are treated as if they contained blanks out to column 80 of the first line.
Data lines longer than 80 bytes are split into two or more 80-byte lines. Data lines
are not truncated regardless of their length.

NOCARDIMAGE
specifies that SAS source and data lines not be treated as if they were 80-byte card
images. When NOCARDIMAGE is in effect, the end of a line is always treated as the
end of the last token, except for strings in quotation marks. Strings in quotation
marks can be split across lines. Other types of tokens cannot be split across lines
under any circumstances. Strings in quotation marks that are split across lines are
not padded with blanks.

Operating Environment Information: CARDIMAGE is generally used in the z/OS
operating environment; NOCARDIMAGE is used in other operating environments. �

Examples

Consider the following DATA step:

data;
x=’A

B’;
run;

If CARDIMAGE is in effect, the variable X receives a value that consists of 78
characters: the A, 76 blanks, and the B. If NOCARDIMAGE is in effect, the variable X
receives a value that consists of two characters: AB, with no intervening blanks.

CATCACHE= System Option

Specifies the number of SAS catalogs to keep open in cache memory.

Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
See: CATCACHE= System Option in the documentation for your operating
environment.

1806 CBUFNO= System Option � Chapter 7

Syntax
CATCACHE=n | hexX | MIN | MAX |

Syntax Description

n
specifies any integer greater than or equal to 0 in terms of bytes. If n > 0, SAS places
up to that number of open-file descriptors in cache memory instead of closing the
catalogs.

hexX
specifies the number of open-file descriptors that are kept in cache memory as a
hexadecimal number. You must specify the value beginning with a number (0-9),
followed by an X. For example, the value 2dx sets the number of catalogs to keep
open to 45 catalogs.

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

MAX
sets the number of open-file descriptors that are kept in cache memory to the largest,
signed, 4–byte integer representable in your operating environment.

Tip: The recommended maximum setting for this option is 10.

Details
Use the CATCACHE= system option to tune an application by avoiding the overhead of
repeatedly opening and closing the same SAS catalogs.

CAUTION:
When using both the CBUFNO= and CATCACHE= options, if one of the option’s value is set
higher than zero, the other option must be set to zero. �

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

Operating Environment Information: Some system settings might affect the default
setting. For more information, see the documentation for your operating system. �

CBUFNO= System Option

Specifies the number of extra page buffers to allocate for each open SAS catalog.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

SAS System Options � CENTER System Option 1807

Syntax
CBUFNO=n| nK | nM | nG | nT | hexX |MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the number of extra page buffers in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes; 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes).
For example, a value of 8 specifies 8 bytes, and a value of 3m specifies 3,145,728 bytes.

MIN
sets the number of extra page buffers to 0.

MAX
sets the number of extra page buffers to 20.

hexX
specifies the number of extra page buffers as a hexadecimal number. You must
specify the value beginning with a number (0–9), followed by an X. For example, the
value 0ax sets the number of extra page buffers to 10 buffers.

Details
The CBUFNO= option is similar to the BUFNO= option that is used for SAS data set
processing.

Increasing the value for the CBUFNO= option might result in fewer I/O operations
when your application reads very large objects from catalogs. Increasing this value also
comes with the normal tradeoff between performance and memory usage. If memory is
a serious constraint for your system, you should not increase the value of the
CBUFNO= option. Do not increase the value of the CBUFNO= option if you have
increased the value of the CATCACHE= option.

CAUTION:
When using both the CBUFNO= and CATCACHE= options, if one of the option’s value is set
higher than zero, the other option must be set to zero. �

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

CENTER System Option

Specifies whether to center or left align SAS procedure output.

Alias: CENTRE
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

1808 CGOPTIMIZE= System Option � Chapter 7

Syntax
CENTER | NOCENTER

Syntax Description

CENTER
centers SAS procedure output.

NOCENTER
left aligns SAS procedure output.

CGOPTIMIZE= System Option

Specifies the level of optimization to perform during code compilation.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Alias: CGOPT
Category: System administration: Performance

System administration: Code generation
PROC OPTIONS GROUP= PERFORMANCE

CODEGEN

Syntax
CGOPTIMIZE=0 | 1 | 2 | 3

Syntax Description

0
specifies not to perform optimization.

1
specifies to perform stage 1 optimization. Stage 1 optimization removes redundant
instructions, missing value checks, and repetitive computations for array
subscriptions; detects patterns of instructions and replaces them with more efficient
sequences.

2
specifies to perform stage 2 optimization. Stage 2 performs optimizations that
pertain to the SAS register.
Interaction: Stage 2 optimization for a large DATA step program can result in a

significant increase in compilation time and thus overall execution time.

3
specifies to perform full optimization, which is a combination of stages 1 and 2. This
is the default value.

SAS System Options � CHARCODE System Option 1809

See Also

Reducing CPU Time by Modifying Program Compilation Optimization in SAS
Language Reference: Concepts

CHARCODE System Option

Specifies whether specific keyboard combinations are substituted for special characters that are
not on the keyboard.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY

Syntax
CHARCODE | NOCHARCODE

Syntax Description

CHARCODE
allows certain character combinations to be substituted for special characters that
might not be on your keyboard.

NOCHARCODE
does not allow substitutions for certain keyboard characters.

Details
If you do not have the following symbols on your keyboard, you can use these character
combinations to create the symbols that you need when CHARCODE is active:

Symbol Characters

back quote (‘) ?:

backslash (\) ?,

left brace ({) ?(

right brace (}) ?)

logical not sign (or ^) ?=

left square bracket ([) ?<

right square bracket (]) ?>

underscore (_) ?-

vertical bar (|) ?/

1810 CLEANUP System Option � Chapter 7

Examples

This statement produces the output [TEST TITLE]:

title ’?<TEST TITLE?>’;

CLEANUP System Option
For an out-of-resource condition, specifies whether to perform an automatic cleanup or a
user-specified cleanup.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING
See: CLEANUP System Option in the documentation for your operating environment.

Syntax
CLEANUP | NOCLEANUP

Syntax Description

CLEANUP
specifies that during the entire session, SAS attempts to perform automatic,
continuous clean-up of resources that are not essential for execution. Nonessential
resources include resources that are not visible to the user (for example, cache
memory) and resources that are visible to the user (for example, the KEYS windows).

When CLEANUP is in effect and an out-of-resource condition occurs (except for a
disk-full condition), a dialog box is not displayed, and no intervention is required by
the user. When CLEANUP is in effect and a disk-full condition occurs, a dialog box
displays that allows the user to decide how to proceed.

NOCLEANUP
specifies that SAS allow the user to choose how to handle an out-of-resource
condition. When NOCLEANUP is in effect and SAS cannot execute because of a lack
of resources, SAS automatically attempts to clean up resources that are not visible to
the user (for example, cache memory). However, resources that are visible to the user
(for example, windows) are not automatically cleaned up. Instead, a dialog box
appears that allows the user to choose how to proceed.

Details
This table lists the dialog box choices:

Dialog Box Choice Action

Free windows clears all windows not essential for execution.

Clear paste buffers deletes paste buffer contents.

Deassign inactive librefs prompts user for librefs to delete.

SAS System Options � CLEANUP System Option 1811

Dialog Box Choice Action

Delete definitions of all SAS macros and macro
variables

deletes all macro definitions and variables.

Delete SAS files allows user to select files to delete.

Clear Log window erases Log window contents.

Clear Output window erases Output window contents.

Clear Program Editor window erases Program Editor window contents.

Clear source spooling/DMS recall buffers erases recall buffers.

More items to clean up displays a list of other resources that can be
cleaned up.

Clean up everything cleans up all other options that are shown on
the requestor window. This selection only
applies to the current clean-up request, not to
the entire SAS session.

Continuous clean up performs automatic, continuous clean-up. When
continuous clean up is selected, SAS cleans up
as many resources as possible in order to
continue execution, and it ceases to display the
requester window. Selecting continuous clean-up
has the same effect as specifying CLEANUP.
This selection applies to the current clean-up
request and to the remainder of the SAS session.

Operating Environment Information: Some operating environments might also include
these choices in the dialog box:

Dialog Box Choice Action

Execute X command enables the user to erase files and perform other
clean-up operations.

Do nothing halts the clean-up request and returns to the
SAS session. This selection only applies to the
current clean-up request, not to the entire SAS
session.

If an out-of-resource condition cannot be resolved, the dialog box continues to display.
In that case, see the SAS documentation for your operating environment for
instructions on terminating the SAS session.

When running in modes other than a windowing environment, the operation of
CLEANUP depends on your operating environment. For details, see the SAS
documentation for your operating environment. �

1812 CMPLIB= System Option � Chapter 7

CMPLIB= System Option

Specifies one or more SAS data sets that contain compiler subroutines to include during program
compilation.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
CMPLIB=libref.data-set | (libref.data-set-1 … libref.data-set-n) | (libref.data-set-n –

libref.data-set-m)

Syntax Description

libref.data-set
specifies the libref and the data set of the compiler subroutines that are to be included
during program compilation. The libref and data-set must be valid SAS names.

libref.data-set-n – libref.data-set-m
specifies a range of compiler subroutines that are to be included during program
compilation. The name of the libref and the data set must be valid SAS names that
contain a numeric suffix.

Details
SAS procedures, DATA steps, and macro programs that perform non-linear statistical
modeling or optimization use a SAS language compiler subsystem that compiles and
executes your SAS programs. The compiler subsystem generates machine language
code for the computer on which SAS is running. The SAS procedures that use the SAS
language compiler are CALIS, COMPILE, GA, GENMOD, MODEL, NLIN, NLMIXED,
NLP, PHREG, Risk Dimensions procedures, and SQL.

The subroutines that you want to include must already have been compiled. All the
subroutines in libref.data-set are included.

You can specify a single libref.data-set, a list of libref.data-set names, or a range of
libref.data-set names with numeric suffixes. When you specify more than one
libref.data-set name, separate the names with a space and enclose the names in
parentheses.

After SAS starts, you can use the APPEND or INSERT system options to add
additional data sets.

SAS System Options � CMPMODEL= System Option 1813

Examples

Number of
Libraries

OPTIONS Statement

One library options cmplib=sasuser.cmpl;

Two or more libraries options cmplib=(sasuser.cmpl sasuser.cmplA sasuser.cmpl3);

A range of libraries options cmplib=(sasuser.cmpl1 - sasuser.cmpl6);

See Also

� System options:

“APPEND= System Option” on page 1791

“INSERT= System Option” on page 1871

CMPMODEL= System Option

Specifies the output model type for the MODEL procedure.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

Category: System administration: Performance

PROC OPTIONS GROUP= Performance

Syntax
CMPMODEL=BOTH | CATALOG | XML

Syntax Description

BOTH
specifies that the MODEL procedure create two output types for a model, one as a
SAS catalog entry and the other as an XML file. This is the default.

CATALOG
specifies that the output model type is an entry in a SAS catalog.

XML
specifies that the output model type is an XML file.

See Also

The MODEL Procedure in SAS/ETS User’s Guide

1814 CMPOPT= System Option � Chapter 7

CMPOPT= System Option

Specifies the type of code generation optimizations to use in the SAS language compiler.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

Category: System administration: Performance

PROC OPTIONS GROUP= PERFORMANCE

Syntax
CMPOPT=optimization-value | (optimization-value-1 ... optimization-value-n) |

“optimization-value–1 ... optimization-value-n”| ALL | NONE

NOCMPOPT

Syntax Description

optimization
specifies the type of optimization that the SAS compiler is to use. Valid values are

EXTRAMATH | NOEXTRAMATH
specifies to keep or remove mathematical operations that do not affect the outcome
of a statement. When you specify EXTRAMATH, the compiler retains the extra
mathematical operations. When you specify NOEXTRAMATH, the extra
mathematical operations are removed.

FUNCDIFFERENCING | NOFUNCDIFFERENCING
specifies whether analytic derivatives are computed for user defined functions.
When you specify NOFUNCDIFFERENCING, analytic derivatives are computed
for user defined functions. When you specify FUNCDIFFERENCING, numeric
differencing is used to calculate derivatives for user defined functions. The default
is NOFUNCDIFFERENCING.

GUARDCHECK | NOGUARDCHECK
specifies whether to check for array boundary problems. When you specify
GUARDCHECK, the compiler checks for array boundary problems. When you
specify NOGUARDCHECK, the compiler does not check for array boundary
problems.

Interaction: NOGUARDCHECK is set when CMPOPT is set to ALL and when
CMPOPT is set to NONE.

MISSCHECK | NOMISSCHECK
specifies whether to check for missing values in the data. If the data contains a
significant amount of missing data, then you can optimize the compilation by
specifying MISSCHECK. If the data rarely contains missing values, then you can
optimize the compilation by specifying NOMISSCHECK.

PRECISE | NOPRECISE
specifies to handle exceptions at an operation boundary or at a statement boundary.
When you specify PRECISE, exceptions are handled at the operation boundary.
When you specify NOPRECISE, exceptions are handled at the statement boundary.

SAS System Options � CMPOPT= System Option 1815

Tip: EXTRAMATH, MISSCHECK, PRECISE, GUARDCHECK, and
FUNCDIFFERENCING can be specified in any combination when you specify one
or more values.

ALL
specifies that the compiler is to optimize the machine language code by using the
(NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK
NOFUNCDIFFERENCING) optimization values. This is the default.

Restriction: ALL cannot be specified in combination with any other values.

NONE
specifies that the compiler is not set to optimize the machine language code by using
the (EXTRAMATH MISSCHECK PRECISE NOGUARDCHECK
FUNCDIFFERENCING) optimization values.

Restriction: NONE cannot be specified in combination with any other values.

NOCMPOPT
specifies to set the value of CMPOPT to ALL. The compiler is to optimize the
machine language code by using the (NOEXTRAMATH NOMISSCHECK
NOPRECISE NOGUARDCHECK NOFUNCDIFFERENCING) optimization values.

Restriction: NOCMPOPT cannot be specified in combination with values for the
CMPOPT option.

Details

SAS procedures that perform non-linear statistical modeling or optimization use a SAS
language compiler subsystem that compiles and executes your SAS programs. The
compiler subsystem generates machine language code for the computer on which SAS is
running. By specifying values with the CMPOPT option, the machine language code
can be optimized for efficient execution. The SAS procedures that use the SAS language
compiler are CALIS, COMPILE, GENMOD, MODEL, PHREG, NLIN, NLMIXED, NLP,
and RISK.

To specify multiple optimization values, the values must be enclosed in either
parentheses, single quotation marks, or double quotation marks. When CMPOPT is set
to multiple values, the parentheses or quotation marks are retained as part of the value.
They are not retained as part of the value when CMPOPT is set to a single value.

If a value is entered more than once, then the last setting is used. For example, if
you specify CMPOPT=(PRECISE NOEXTRAMATH NOPRECISE), then the values that
are set are NOEXTRAMATH and NOPRECISE. All leading, trailing, and embedded
blanks are removed.

When you specify EXTRAMATH or NOEXTRAMATH, some of the mathematical
operations that are either included or excluded in the machine language code are

x * 1 x * –1

x � 1 x � -1

x + 0 x - 0

x - x x � x

- -x any operation on two literal constants

1816 COLLATE System Option � Chapter 7

Examples

OPTIONS Statement Result

options cmpopt=(extramath); extramath

options cmpopt="extramath missscheck
precise";

"precise extramath extramath"

options nocmpopt; (noextramath nomisscheck noprecise
noguardcheck nofuncdifferencing)

COLLATE System Option

Specifies whether to collate multiple copies of printed output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
COLLATE | NOCOLLATE

Syntax Description

COLLATE
specifies to collate multiple copies of printed output.

NOCOLLATE
specifies not to collate multiple copies of printed output. This is the default.

Details
When you send a print job to the printer and you want multiple copies of multiple
pages, the COLLATE option controls how the pages are ordered:

COLLATE causes the pages to print consecutively: 123, 123, 123...

NOCOLLATE causes the same-numbered pages to print together: 111, 222, 333...

Note: You can also control collation with the SAS windowing environment Page
Setup window, invoked with the DMPAGESETUP command. �

Most SAS system options are initialized with default settings when SAS is invoked.
However, the default settings and option values for some SAS system options might
vary both by operating environment and by site. For details, see the SAS
documentation for your operating environment.

SAS System Options � COMPRESS= System Option 1817

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

See Also

System Option:
“COPIES= System Option” on page 1819

COLORPRINTING System Option

Specifies whether to print in color if color printing is supported.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
COLORPRINTING | NOCOLORPRINTING

Syntax Description

COLORPRINTING
specifies to attempt to print in color.

NOCOLORPRINTING
specifies not to print in color.

Details
Most SAS system options are initialized with default settings when SAS is invoked.
However, the default settings and option values for some SAS system options might
vary both by operating environment and by site. For details, see the SAS
documentation for your operating environment.

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

COMPRESS= System Option

Specifies the type of compression of observations to use for output SAS data sets.

1818 COMPRESS= System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

System administration: Performance

PROC OPTIONS GROUP= SASFILES

PERFORMANCE

Restriction: The TAPE engine does not support the COMPRESS= system option.

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Syntax Description

NO
specifies that the observations in a newly created SAS data set are uncompressed
(fixed-length records).

Alias: N | OFF

YES | CHAR
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RLE (Run Length Encoding). RLE compresses
observations by reducing repeated consecutive characters (including blanks) to
two-byte or three-byte representations.

Alias: Y, ON

Tip: Use this compression algorithm for character data.

Note: COMPRESS=CHAR is accepted by Version 7 and later versions. �

BINARY
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RDC (Ross Data Compression). RDC
combines run-length encoding and sliding-window compression to compress the file.

Tip: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (numeric variables). Because the
compression function operates on a single record at a time, the record length needs
to be several hundred bytes or larger for effective compression.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Details
Compressing a file is a process that reduces the number of bytes required to represent
each observation. Advantages of compressing a file include reduced storage
requirements for the file and fewer I/O operations necessary to read or write to the data
during processing. However, more CPU resources are required to read a compressed file
(because of the overhead of uncompressing each observation), and there are situations
when the resulting file size might increase rather than decrease.

SAS System Options � COPIES= System Option 1819

Use the COMPRESS= system option to compress all output data sets that are
created during a SAS session. Use the option only when you are creating SAS data files
(member type DATA). You cannot compress SAS views, because they contain no data.

Once a file is compressed, the setting is a permanent attribute of the file, which
means that to change the setting, you must re-create the file. That is, to uncompress a
file, specify COMPRESS=NO for a DATA step that copies the compressed file.

Note: For the COPY procedure, the default value CLONE uses the compression
attribute from the input data set for the output data set. If the engine for the input
data set does not support the compression attribute, then PROC COPY uses the current
value of the COMPRESS= system option. For more information about CLONE and
NOCLONE, see COPY statement in the DATASETS procedure in the Base SAS
Procedures Guide. This interaction does not apply when using SAS/SHARE or SAS/
CONNECT. �

Comparisons
The COMPRESS= system option can be overridden by the COMPRESS= option in the
LIBNAME statement and the COMPRESS= data set option.

The data set option POINTOBS=YES, which is the default, determines that a
compressed data set can be processed with random access (by observation number)
rather than sequential access. With random access, you can specify an observation
number in the FSEDIT procedure and the POINT= option in the SET and MODIFY
statements.

When you create a compressed file, you can also specify REUSE=YES (as a data set
option or system option) in order to track and reuse space. With REUSE=YES, new
observations are inserted in space freed when other observations are updated or
deleted. When the default REUSE=NO is in effect, new observations are appended to
the existing file.

POINTOBS=YES and REUSE=YES are mutually exclusive. That is, they cannot be
used together. REUSE=YES takes precedence over POINTOBS=YES. That is, if you set
REUSE=YES, SAS automatically sets POINTOBS=NO.

The TAPE engine does not support the COMPRESS= system option, but the engine
does support the COMPRESS= data set option.

The XPORT engine does not support compression.

See Also

Data Set Options:
“COMPRESS= Data Set Option” on page 19
“POINTOBS= Data Set Option” on page 48
“REUSE= Data Set Option” on page 56

Statements:
“LIBNAME Statement” on page 1607

System Option:
“REUSE= System Option” on page 1924

“Compressing Data Files” in SAS Language Reference: Concepts

COPIES= System Option
Specifies the number of copies to print.

1820 CPUCOUNT= System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
COPIES=n

Syntax Description

n
specifies the number of copies.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide. For additional information
about the SAS universal print facility, see “Printing with SAS” in SAS Language
Reference: Concepts.

See Also

System Option:
“COLLATE System Option” on page 1816

CPUCOUNT= System Option

Specifies the number of processors that the thread-enabled applications should assume will be
available for concurrent processing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: System administration: Performance
PROC OPTIONS GROUP= PERFORMANCE
Default: Under Windows, OpenVMS, and z/OS, the default is ACTUAL. Under UNIX,
the default is either ACTUAL or 4 for systems that have more than four processors.
Interaction: If the THREADS system option is set to NOTHREADS, the CPUCOUNT=
option has no effect.

Syntax
CPUCOUNT= 1 - 1024 | ACTUAL

SAS System Options � CPUCOUNT= System Option 1821

Syntax Description

1-1024
is the number of CPUs that SAS will assume are available for use by thread-enabled
applications.

Tip: The value is typically set to the actual number of CPUs available to the
current process by your configuration.

Tip: Setting CPUCOUNT= to a number greater than the actual number of available
CPUs might result in reduced overall performance of SAS.

ACTUAL
returns the number of physical processors that are associated with the operating
system where SAS is executing. If the operating system is executing in a partition,
the value of the CPUCOUNT system is the number of physical processors that are
associated with the operating system in that partition.

Tip: This number can be less than the physical number of CPUs if the SAS process
has been restricted by system administration tools.

Tip: Setting CPUCOUNT= to ACTUAL at any time causes the option to be reset to
the number of physical processors that are associated with the operating system at
that time. If the operating system is executing in a partition, the value of the
CPUCOUNT system is the number of physical processors that are associated with
the operating system in that partition.

Tip: If your system supports Simultaneous Multi-Threading (SMT), hyperthreading,
or Chip Multi-Threading (CMT), the value of the CPUCOUNT= option represents
the number of such threads on the system.

Details
Certain procedures have been modified to take advantage of multiple CPUs by
threading the procedure processing. The Base SAS engine also uses threading to create
an index. The CPUCOUNT= option provides the information that is needed to make
decisions about the allocation of threads.

Changing the value of CPUCOUNT= affects the degree of parallelism each
thread-enabled process attempts to achieve. Setting CPUCOUNT to a number greater
than the actual number of available CPUs might result in reduced overall performance
of SAS.

Comparisons
When the related system option THREADS is in effect, threading will be active where
available. The value of the CPUCOUNT= option affects the performance of THREADS
by suggesting how many system CPUs are available for use by thread-enabled SAS
procedures.

See Also

System Options:

“THREADS System Option” on page 1976

“UTILLOC= System Option” on page 1982

“Support for Parallel Processing” in SAS Language Reference: Concepts.

1822 CPUID System Option � Chapter 7

CPUID System Option

Specifies whether the CPU identification number is written to the SAS log.

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL

Syntax
CPUID | NOCPUID

Syntax Description

CPUID
specifies that the CPU identification number is printed at the top of the SAS log after
the licensing information.

NOCPUID
specifies that the CPU identification number is not written to the SAS log.

See Also
The SAS Log in SAS Language Reference: Concepts

DATASTMTCHK= System Option

Specifies which SAS statement keywords are prohibited from being specified as a one-level DATA
step name to protect against overwriting an input data set.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
DATASTMTCHK=COREKEYWORDS | ALLKEYWORDS | NONE

Syntax Description

COREKEYWORDS
prohibits certain words as one-level SAS data set names in the DATA statement.
They can appear as two-level names. The following keywords cannot appear as
one-level SAS data set names:

SAS System Options � DATE System Option 1823

MERGE
RETAIN
SET
UPDATE.

For example, SET is not acceptable in the DATA statement, but SAVE.SET and
WORK.SET are acceptable. COREKEYWORDS is the default.

ALLKEYWORDS
prohibits any keyword that can begin a statement in the DATA step (for example,
ABORT, ARRAY, INFILE) as a one-level data set name in the DATA statement.

NONE
provides no protection against overwriting SAS data sets.

Details
If you omit a semicolon in the DATA statement, you can overwrite an input data set if
the next statement is SET, MERGE, or UPDATE. Different, but significant, problems
arise when the next statement is RETAIN. DATASTMTCHK= enables you to protect
yourself against overwriting the input data set.

DATE System Option

Specifies whether to print the date and time that a SAS program started.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log
Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Syntax
DATE | NODATE

Syntax Description

DATE
specifies that the date and the time that the SAS program started are printed at the
top of each page of the SAS log and any output that is created by SAS.

Note: In an interactive SAS session, the date and time are noted only in the
output window. �

NODATE

1824 DATESTYLE= System Option � Chapter 7

specifies that the date and the time are not printed.

See Also
The SAS Log in SAS Language Reference: Concepts

DATESTYLE= System Option

Specifies the sequence of month, day, and year when ANYDTDTE, ANYDTDTM, or ANYDTTME
informat data is ambiguous.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Language control

Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

LANGUAGECONTROL

Syntax
DATESTYLE= MDY | MYD | YMD | YDM | DMY | DYM | LOCALE

Syntax Description

MDY
specifies that SAS set the order as month, day, year.

MYD
specifies that SAS set the order as month, year, day.

YMD
specifies that SAS set the order as year, month, day.

YDM
specifies that SAS set the order as year, day, month.

DMY
specifies that SAS set the order as day, month, year.

DYM
specifies that SAS set the order as day, year, month.

LOCALE
specifies that SAS set the order based on the value that corresponds to the
LOCALE= system option value and is one of the following: MDY | MYD | YMD |
YDM | DMY | DYM.

Details
System option DATESTYLE= identifies the order of month, day, and year. The default
value is LOCALE. The default LOCALE system option value is English, therefore, the
default DATESTYLE order is MDY.

SAS System Options � DEFLATION= System Option 1825

Operating Environment Information: See “Locale Values” in SAS National Language
Support (NLS): Reference Guide to get the default settings for each locale option value. �

See Also
System Option:
“LOCALE System Option: UNIX, Windows, OpenVMS, and z/OS” in SAS National

Language Support (NLS): Reference Guide

Informats:
“ANYDTDTEw. Informat” on page 1257
“ANYDTDTMw. Informat” on page 1259
“ANYDTTMEw. Informat” on page 1262

DEFLATION= System Option

Specifies the level of compression for device drivers that support the Deflate compression
algorithm.

Alias: DEFLATE
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Requirement: The UPRINTCOMPRESSION system option must be set in order to
compress files.
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
DEFLATION=n | MIN | MAX

Syntax Description

n
specifies the level of compression. The larger the number, the greater the
compression. For example, n=0 is the minimum compression level (completely
uncompressed), and n=9 is the maximum compression level.
Default: 6
Range: 0–9

MIN
specifies the minimum compression level of 0.

MAX
specifies the maximum compression level of 9.

Details
The DEFLATION= system option controls the level of compression for device drivers
that support Deflate compression. The PRINTERPATH= system option must be set to

1826 DETAILS System Option � Chapter 7

one of the following SAS device drivers that support Deflate compression: the PDF
device driver or the SVG Universal Printer drivers.

The ODS PRINTER statement option, COMPRESS=, takes precedence over the
DEFLATION system option.

See Also

System options:
“PRINTERPATH= System Option” on page 1920
“UPRINTCOMPRESSION System Option” on page 1981

Statements:
“ODS PRINTER Statement” in the SAS Output Delivery System: User’s Guide

DETAILS System Option

Specifies whether to include additional information when files are listed in a SAS library.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log
Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Syntax
DETAILS | NODETAILS

Syntax Description

DETAILS
includes additional information when some SAS procedures and windows display a
listing of files in a SAS library.

NODETAILS
does not include additional information.

Details
The DETAILS specification sets the default display for these components of SAS:

� the CONTENTS procedure
� the DATASETS procedure.

The type and amount of additional information that displays depends on which
procedure or window you use.

SAS System Options � DKRICOND= System Option 1827

See Also
The SAS Log in SAS Language Reference: Concepts

DEVICE= System Option

Specifies the device driver to which SAS/GRAPH sends procedure output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Alias: DEV=
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS
See: DEVICE= System Option in the documentation for your operating environment.

Syntax
DEVICE=device-driver-specification

Syntax Description

device-driver-specification
specifies the name of a device driver.

Details
If you omit the device-driver name, you are prompted to enter a driver name when you
execute a procedure that produces graphics.

Operating Environment Information: The syntax that is shown applies to the
OPTIONS statement. However, when you specify DEVICE= either on the command-line
or in a configuration file, the syntax is specific to your operating environment and might
include additional or alternate punctuation. �

See Also

Device Drivers in SAS/GRAPH: Reference

DKRICOND= System Option

Specifies the level of error detection to report when a variable is missing from an input data set
during the processing of a DROP=, KEEP=, or RENAME= data set option.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

1828 DKROCOND= System Option � Chapter 7

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

Syntax
DKRICOND=ERROR | WARN | WARNING | NOWARN | NOWARNING

Syntax Description

ERROR
sets the error flag and writes an error message to the SAS log when a variable is
missing from an input data set during the processing of a DROP=, KEEP=, or
RENAME= data set option.

WARN|WARNING
writes a warning message to the SAS log when a variable is missing from an input
data set during the processing of a DROP=, KEEP=, or RENAME= data set option.

NOWARN|NOWARNING
does not write a warning message to the SAS log when a variable is missing from an
input data set during the processing of a DROP=, KEEP=, or RENAME= data set
option.

Examples

In the following statements, if the variable X is not in data set B and
DKRICOND=ERROR, SAS sets the error flag to 1 and displays error messages:

data a;
set b(drop=x);

run;

See Also

System Option:

“DKROCOND= System Option” on page 1828

DKROCOND= System Option

Specifies the level of error detection to report when a variable is missing for an output data set
during the processing of a DROP=, KEEP=, or RENAME= data set option.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

SAS System Options � DLDMGACTION= System Option 1829

Syntax
DKROCOND=ERROR | WARN | WARNING | NOWARN | NOWARNING

Syntax Description

ERROR
sets the error flag and writes an error message to the SAS log when a variable is
missing for an output data set during the processing of a DROP=, KEEP=, or
RENAME= data set option.

WARN | WARNING
writes a warning message to the SAS log when a variable is missing for an output
data set during the processing of a DROP=, KEEP=, or RENAME= data set option.

NOWARN | NOWARNING
does not write a warning message to the SAS log when a variable is missing for an
output data set during the processing of a DROP=, KEEP=, or RENAME= data set
option.

Examples

In the following statements, if the variable X is not in data set A and
DKROCOND=ERROR, SAS sets the error flag to 1 and displays error messages:

data a;
drop x;

run;

See Also

System Option:
“DKRICOND= System Option” on page 1827

DLDMGACTION= System Option

Specifies the type of action to take when a SAS data set or a SAS catalog is detected as damaged.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
DLDMGACTION=FAIL | ABORT | REPAIR | NOINDEX | PROMPT

Syntax Description

1830 DMR System Option � Chapter 7

FAIL
stops the step and issues an error message to the log immediately. This is the default
for batch mode.

ABORT
terminates the step and issues an error message to the log, and ends the SAS session.

REPAIR
For data files, automatically repairs and rebuilds indexes and integrity constraints,
unless the data file is truncated. You use the REPAIR statement to restore the
truncated data file. It issues a warning message to the log. This is the default for
interactive mode. For catalogs, automatically deletes catalog entries for which an
error occurs during the repair process.

NOINDEX
For data files, automatically repairs the data file without the indexes and integrity
constraints, deletes the index file, updates the data file to reflect the disabled indexes
and integrity constraints, and limits the data file to be opened only in INPUT mode.
A warning is written to the SAS log instructing you to execute the PROC DATASETS
REBUILD statement to correct or delete the disabled indexes and integrity
constraints. For more information, see the “REBUILD Statement” in the
“DATASETS Procedure” in Base SAS Procedures Guide and “Recovering Disabled
Indexes and integrity Constraints” in SAS Language Reference: Concepts.
Restriction: NOINDEX does not apply to damaged catalogs or libraries, only data

files.

PROMPT
For data sets, displays a dialog box where you can specify either FAIL, ABORT,
REPAIR, or NOINDEX. For a damaged catalog or library, PROMPT displays a dialog
box where you can specify either FAIL, ABORT, or REPAIR.

DMR System Option

Specifies whether to enable SAS to invoke a server session for use with a SAS/CONNECT client.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
DMR | NODMR

Syntax Description

DMR
enables you to invoke a remote SAS session in order to connect with a SAS/
CONNECT client.

NODMR

SAS System Options � DMS System Option 1831

disables you from invoking a remote SAS session.

Details
You normally invoke the remote SAS session from a local session by including DMR
with the SAS command in a script that contains a TYPE statement. (A script is a text
file that contains statements to establish or terminate the SAS/CONNECT link between
the local and the remote SAS sessions.)

The following SAS execution mode invocation option has precedence over this option:
� OBJECTSERVER

DMR overrides all other SAS execution mode invocation options. See “Order of
Precedence” on page 1776 for more information about invocation option precedence.

See Also

DMR information in SAS/CONNECT User’s Guide

DMS System Option

Specifies whether to invoke the SAS windowing environment and display the Log, Editor, and
Output windows.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
DMS | NODMS

Syntax Description

DMS
invokes the SAS windowing environment and displays the Log, an Editor window,
and Output windows.

NODMS
invokes an interactive line mode SAS session.

Details
When you invoke SAS and you are using a configuration file or the command line to
control your system option settings, it is possible to create a situation where some
system option settings conflict with other system option settings. The following
invocation system options, in order, have precedence over the DMS invocation system
option:

1 OBJECTSERVER.

1832 DMSEXP System Option � Chapter 7

2 DMR
3 SYSIN

If you specify DMR while using another invocation option of equal precedence to
invoke SAS, SAS uses the last option that is specified. See “Order of Precedence” on
page 1776 for more information about invocation option precedence.

See Also
System Options:
“DMR System Option” on page 1830
“DMSEXP System Option” on page 1832
“EXPLORER System Option” on page 1850

DMSEXP System Option

Specifies whether to invoke the SAS windowing environment and display the Explorer, Editor, Log,
Output, and Results windows.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
DMSEXP | NODMSEXP

Syntax Description

DMSEXP
invokes SAS with the Explorer, Editor, Log, Output, and Results windows active.

NODMSEXP
invokes SAS with the Editor, Log, and Output windows active.

Details
In order to set DMSEXP or NODMSEXP, the DMS option must be set. The following
SAS execution mode invocation options, in order, have precedence over this option:

1 OBJECTSERVER.
2 DMR
3 SYSIN

If you specify DMSEXP with another execution mode invocation option of equal
precedence, SAS uses only the last option listed. See “Order of Precedence” on page
1776 for more information about invocation option precedence.

See Also

SAS System Options � DMSLOGSIZE= System Option 1833

System Options:
“DMS System Option” on page 1831
“DMR System Option” on page 1830
“EXPLORER System Option” on page 1850

DMSLOGSIZE= System Option

Specifies the maximum number of rows that the SAS Log window can display.

Valid in: configuration file, SAS invocation
Category: Environment control: Display

Log and procedure output control: SAS log
Restriction: This option is valid only in the SAS windowing environment.
PROC OPTIONS GROUP= ENVDISPLAY

LOGCONTROL

Syntax
DMSLOGSIZE= n | nK | hexX | MIN | MAX

Syntax Description

n | nK
specifies the maximum number of rows that can be displayed in the SAS windowing
environment Log window in multiples of 1 (n) or 1,024 (nK). For example, a value of
800 specifies 800 rows, and a value of 3K specifies 3,072 rows. Valid values range
from 500 to 999999. The default is 99999.

hexX
specifies the maximum number of rows that can be displayed in the SAS windowing
environment Log window as a hexadecimal value. You must specify the value
beginning with a number (0-9), followed by an X. For example, 2ffx specifies 767
rows and 0A00x specifies 2,560 rows.

MIN
specifies to set the maximum number of rows that can be displayed in the SAS
windowing environment Log window to 500.

MAX
specifies to set the maximum number of rows that can be displayed in the SAS
windowing environment Log window to 999999.

Details
When the maximum number of rows have been displayed in the Log window, SAS
prompts you to either file, print, save, or clear the Log window.

See Also

1834 DMSOUTSIZE= System Option � Chapter 7

System Option:
“DMSOUTSIZE= System Option” on page 1834

“The SAS Log” in SAS Language Reference: Concepts

DMSOUTSIZE= System Option

Specifies the maximum number of rows that the SAS Output window can display.

Valid in: configuration file, SAS invocation
Category: Environment control: Display
Restriction: This option is valid only in the SAS windowing environment.
PROC OPTIONS GROUP= ENVDISPLAY

Syntax
DMSOUTSIZE= n | nK | hexX | MIN | MAX

Syntax Description

n | nK
specifies the maximum number of rows that can be displayed in the SAS windowing
environment Output window in multiples of 1 (n) or 1,024 (nK). For example, a value
of 800 specifies 800 rows, and a value of 3K specifies 3,072 rows. Valid values range
from 500 to 999999. The default is 99999.

hexX
specifies the maximum number of rows that can be displayed in the SAS windowing
environment Output window as a hexadecimal value. You must specify the value
beginning with a number (0-9), followed by an X. For example, 2ffx specifies 767
rows and 0A00x specifies 2,560 rows.

MIN
specifies to set the maximum number of rows that can be displayed in the SAS
windowing environment Output window to 500.

MAX
specifies to set the maximum number of rows that can be displayed in the SAS
windowing environment Output window to 999999.

Details
When the maximum number of rows have been displayed in the Output window, SAS
prompts you to either file, print, save, or clear the Output window.

See Also

System Option:
“DMSLOGSIZE= System Option” on page 1833

SAS System Options � DMSSYNCHK System Option 1835

DMSPGMLINESIZE= System Option

Specifies the maximum number of characters in a Program Editor line.

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Syntax
DMSPGMLINESIZE= n

Syntax Description

n
specifies the maximum number of characters in a Program Editor line.

Default: 136

Range: 136–960

DMSSYNCHK System Option

In the SAS windowing environment, specifies whether to enable syntax check mode for DATA step
and PROC step processing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Error handling

PROC OPTIONS GROUP= ERRORHANDLING

Syntax
DMSSYNCHK | NODMSSYNCHK

Syntax Description

DMSSYNCHK
enables syntax check mode for statements that are submitted within the SAS
windowing environment.

NODMSSYNCHK
does not enable syntax check mode for statements that are submitted within the SAS
windowing environment.

1836 DSNFERR System Option � Chapter 7

Details
If a syntax or semantic error occurs in a DATA step after the DMSSYNCHK option is
set, then SAS enters syntax check mode, which remains in effect from the point where
SAS encountered the error to the end of the code that was submitted. After SAS enters
syntax mode, all subsequent DATA step statements and PROC step statements are
validated.

While in syntax check mode, only limited processing is performed. For a detailed
explanation of syntax check mode, see “Syntax Check Mode” in the “Error Processing in
SAS” section of SAS Language Reference: Concepts.

CAUTION:
Place the OPTIONS statement that enables DMSSYNCHK before the step for which you want
it to take effect. If you place the OPTIONS statement inside a step, then
DMSSYNCHK will not take effect until the beginning of the next step. �

If NODMSSYNCHK is in effect, SAS processes the remaining steps even if an error
occurs in the previous step.

Comparisons
You use the DMSSYNCHK system option to validate syntax in an interactive session by
using the SAS windowing environment. You use the SYNTAXCHECK system option to
validate syntax in a non-interactive or batch SAS session. You can use the
ERRORCHECK= option to specify the syntax check mode for the LIBNAME statement,
the FILENAME statement, the %INCLUDE statement, and the LOCK statement in
SAS/SHARE.

See Also

System options:
“ERRORCHECK= System Option” on page 1848
“SYNTAXCHECK System Option” on page 1970

“Error Processing” in SAS Language Reference: Concepts

DSNFERR System Option

When a SAS data set cannot be found, specifies whether SAS issues an error message.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
DSNFERR | NODSNFERR

Syntax Description

SAS System Options � DTRESET System Option 1837

DSNFERR
specifies that SAS issue an error message and stop processing if a reference is made
to a SAS data set that does not exist.

NODSNFERR
specifies that SAS ignore the error message and continue processing if a reference is
made to a SAS data set that does not exist. The data set reference is treated as if
NULL had been specified.

Comparisons
� DSNFERR is similar to the BYERR system option, which issues an error message

and stops processing if the SORT procedure attempts to sort a _NULL_ data set.
� DSNFERR is similar to the VNFERR system option, which sets the error flag for a

missing variable when a _NULL_ data set is used.

See Also

System Options:
“BYERR System Option” on page 1800
“VNFERR System Option” on page 1993

DTRESET System Option

Specifies whether to update the date and time in the SAS log and in the procedure output file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log
Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Syntax
DTRESET | NODTRESET

Syntax Description

DTRESET
specifies that SAS update the date and time in the titles of the SAS log and the
procedure output file.

NODTRESET
specifies that SAS not update the date and time in the titles of the SAS log and the
procedure output file.

1838 DUPLEX System Option � Chapter 7

Details
The DTRESET system option updates the date and time in the titles of the SAS log and
the procedure output file. This update occurs when the page is being written. The
smallest time increment that is reflected is minutes.

The DTRESET option is especially helpful in obtaining a more accurate date and
time stamp when you run long SAS jobs.

When you use NODTRESET, SAS displays the date and time that the job originally
started.

See Also
“The SAS Log” in SAS Language Reference: Concepts

DUPLEX System Option

Specifies whether duplex (two-sided) printing is enabled.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT
Restriction: This option is ignored if the printer does not support duplex (two-sided)
printing.

Syntax
DUPLEX| NODUPLEX

Syntax Description

DUPLEX
specifies that duplex (two-sided) printing is enabled.
Interaction: When DUPLEX is selected, the setting of the BINDING= option

determines how the paper is oriented before output is printed on the second side.

NODUPLEX
specifies that duplex (two-sided) printing is not enabled. This is the default.

Details
Note that duplex (two-sided) printing can be used only on printers that support duplex
output.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings for some SAS
system options might vary both by operating environment and by site. Option values
might also vary both by operating environment and by site. For details, see the SAS
documentation for your operating environment. �

SAS System Options � ECHOAUTO System Option 1839

See Also

System Option:

“BINDING= System Option” on page 1795

For information about declaring an ODS printer destination, see the ODS PRINTER
Statement in SAS Output Delivery System: User’s Guide.

For information about SAS Universal Printing, see Printing with SAS in SAS
Language Reference: Concepts.

ECHOAUTO System Option

Specifies whether the statements in the autoexec file are written to the SAS log as they are
executed.

Valid in: configuration file, SAS invocation

Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

Syntax
ECHOAUTO | NOECHOAUTO

Syntax Description

ECHOAUTO
specifies that the SAS statements in the autoexec file are written to the SAS log as
they are executed.

Requirement: To print autoexec file statements in the SAS log, the SOURCE
system option must be set.

NOECHOAUTO
specifies that SAS statements in the autoexec file are not written in the SAS log,
even though they are executed.

Details
Regardless of the setting of this option, messages that result from errors in the
autoexec files are printed in the SAS log.

See Also

System Option:

“SOURCE System Option” on page 1943

The SAS Log in SAS Language Reference: Concepts

1840 EMAILAUTHPROTOCOL= System Option � Chapter 7

EMAILAUTHPROTOCOL= System Option

Specifies the authentication protocol for SMTP E-mail.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Email
PROC OPTIONS GROUP= EMAIL

Syntax
EMAILAUTHPROTOCOL= NONE | LOGIN

Syntax Description

LOGIN
specifies that the LOGIN authentication protocol is used. For more information
about the order of authentication, see “Sending E-Mail through SMTP” in SAS
Language Reference: Concepts.

Note: When you specify LOGIN, you might also need to specify EMAILID and
EMAILPW. If you omit EMAILID, SAS will look up your user ID and use it. If you
omit EMAILPW, no password is used. �

NONE
specifies that no authentication protocol is used.

Comparisons
For the SMTP access method, use this option in conjunction with the EMAILID=,
EMAILPW=, EMAILPORT, and EMAILHOST system options. EMAILID= provides the
user name, EMAILPW= provides the password, EMAILPORT specifies the port to which
the SMTP server is attached, EMAILHOST specifies the SMTP server that supports
e-mail access for your site, and EMAILAUTHPROTOCOL= provides the protocol.

See Also

System Options:
“EMAILHOST= System Option” on page 1841
“EMAILID= System Option” on page 1842
“EMAILPORT System Option” on page 1843
“EMAILPW= System Option” on page 1844

EMAILFROM System Option

When sending e-mail by using SMTP, specifies whether the e-mail option FROM is required in
either the FILE or FILENAME statement.

SAS System Options � EMAILHOST= System Option 1841

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Email
PROC OPTIONS GROUP= EMAIL

Syntax
EMAILFROM | NOEMAILFROM

Syntax Description

EMAILFROM
specifies that the FROM e-mail option is required when sending e-mail by using
either the FILE or FILENAME statements.

NOEMAILFROM
specifies that the FROM e-mail option is not required when sending e-mail by using
either the FILE or FILENAME statements.

See Also

Statements:
“FILE Statement” on page 1457
“FILENAME Statement, EMAIL (SMTP) Access Method” on page 1485

EMAILHOST= System Option

Specifies one or more SMTP servers that support e-mail access.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Email
PROC OPTIONS GROUP= EMAIL

Syntax
EMAILHOST= server

EMAILHOST=(’server-1’ ’server-2’ <…’server-n’>)

Syntax Description

server
specifies one or more Simple Mail Transfer Protocol (SMTP) server domain names for
your site.

1842 EMAILID= System Option � Chapter 7

Note: The system administrator for your site will provide this information. �

Range: The maximum number of characters that can be specified for SMTP servers
is 1,024

Requirement: When more than one server name is specified, the list must be
enclosed in parentheses and each server name must be enclosed in single or
double quotation marks..

Details
When more than one SMTP server is specified, SAS attempts to connect to e-mail
servers in the order that they are specified. E-mail is delivered to the first server that
SAS connects to. If SAS is not able to connect to any of the specified servers, the
attempt to deliver e-mail fails and SAS returns an error.

Operating Environment Information: To enable the SMTP interface that SAS provides,
you must also specify the EMAILSYS=SMTP system option. For information about
EMAILSYS, see the documentation for your operating environment. �

Comparisons
For the SMTP access method, use this option in conjunction with the EMAILID=,
EMAILAUTHPROTOCOL=, EMAILPORT, and EMAILPW system options. EMAILID=
provides the user name, EMAILPW= provides the password, EMAILPORT specifies the
port to which the SMTP server is attached, EMAILHOST specifies SMTP servers that
supports e-mail access for your site, and EMAILAUTHPROTOCOL= provides the
protocol.

See Also

System Option:

“EMAILAUTHPROTOCOL= System Option” on page 1840

“EMAILID= System Option” on page 1842

“EMAILPORT System Option” on page 1843

“EMAILPW= System Option” on page 1844

EMAILID= System Option

Identifies an e-mail sender by specifying either a logon ID, an e-mail profile, or an e-mail address.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Communications: Email

PROC OPTIONS GROUP= EMAIL

Syntax
EMAILID =logonid| profile|emailaddress

SAS System Options � EMAILPORT System Option 1843

Syntax Description

logonid
specifies the logon ID for the user running SAS.
Maximum: The maximum number of characters is 32,000.

profile
see documentation for your e-mail system to determine the profile name.

email-address
specifies the fully qualified e-mail address of the user running SAS.
Requirement: The e-mail address is valid only when SMTP is enabled.
Requirement: If the value of email-address contains a space, you must enclose it

in double quotation marks.

Details
The EMAILID= system option specifies the logon ID, profile, or e-mail address to use
with your e-mail system.

Comparisons
For the SMTP access method, use this option in conjunction with the
EMAILAUTHPROTOCOL=, EMAILPW=, EMAILPORT, and EMAILHOST system
options. EMAILID= provides the user name, EMAILPW= provides the password,
EMAILPORT specifies the port to which the SMTP server is attached, EMAILHOST
specifies the SMTP server that supports e-mail access for your site, and
EMAILAUTHPROTOCOL= provides the protocol.

See Also

System Options:
“EMAILAUTHPROTOCOL= System Option” on page 1840
“EMAILHOST= System Option” on page 1841
“EMAILPORT System Option” on page 1843
“EMAILPW= System Option” on page 1844

EMAILPORT System Option

Specifies the port that the SMTP server is attached to.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Email
PROC OPTIONS GROUP= EMAIL

Syntax
EMAILPORT <port-number>

1844 EMAILPW= System Option � Chapter 7

Syntax Description

port-number
specifies the port number that is used by the SMTP server that you specified on the
EMAILHOST option.

Note: The system administrator for your site will provide this information. �

Details
Operating Environment Information: If you use the SMTP protocol that SAS provides,
you must also specify the EMAILSYS SMTP system option. For information about
EMAILSYS, see the documentation for your operating environment. �

Comparisons
For the SMTP access method, use this option in conjunction with the EMAILID=,
EMAILAUTHPROTOCOL= , EMAILPW= , and EMAILHOST system options.
EMAILID= provides the user name, EMAILPW= provides the password, EMAILPORT
specifies the port to which the SMTP server is attached, EMAILHOST specifies the
SMTP server that supports e–mail access for your site, and EMAILAUTHPROTOCOL=
provides the protocol.

See Also

System Option:
“EMAILAUTHPROTOCOL= System Option” on page 1840
“EMAILHOST= System Option” on page 1841
“EMAILID= System Option” on page 1842
“EMAILPW= System Option” on page 1844

EMAILPW= System Option

Specifies an e-mail logon password.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Communications: Email
PROC OPTIONS GROUP= EMAIL

Syntax
EMAILPW= "password"

Syntax Description

SAS System Options � ENGINE= System Option 1845

PASSWORD
specifies the logon password for your logon name.
Restriction: If “password” contains a space, you must enclose the value in double

quotation marks.

Details
You can use encoded e-mail passwords. When a password is encoded with PROC
PWENCODE, the output string includes a tag that identifies the string as having been
encoded. An example of a tag is {sas001}. The tag indicates the encoding method.
Encoding a password enables you to avoid e-mail access authentication with a password
in plaintext. Passwords that start with “{sas” trigger an attempt to be decoded. If the
decoding succeeds, then that decoded password is used. If the decoding fails, then the
password is used as is. For more information, see PROC PWENCODE in the Base SAS
Procedures Guide.

Operating Environment Information: In the Windows operating system, SAS will
prompt you for an e–mail ID and a password if the EMAILSYS system option is set to
MAPI or VIM, or if you do not specify the EMAILID and EMAILPW system options at
invocation, or if you are not otherwise logged on to your e-mail system. If the
EMAILSYS system option is set to SMTP, SAS will not prompt you for an e–mail ID
and a password. �

Comparisons
For the SMTP access method, use this option in conjunction with the EMAILID=,
EMAILAUTHPROTOCOL=, EMAILPORT, and EMAILHOST system options.
EMAILID= provides the user name, EMAILPW= provides the password, EMAILPORT
specifies the port to which the SMTP server is attached, EMAILHOST specifies the
SMTP server that supports e-mail access for your site, and EMAILAUTHPROTOCOL=
provides the protocol.

See Also

System Options:
“EMAILAUTHPROTOCOL= System Option” on page 1840
“EMAILHOST= System Option” on page 1841

“EMAILID= System Option” on page 1842
“EMAILPORT System Option” on page 1843

ENGINE= System Option

Specifies the default access method for SAS libraries.

Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
See: ENGINE= System Option in the documentation for your operating environment.

1846 ERRORABEND System Option � Chapter 7

Syntax
ENGINE=engine-name

Syntax Description

engine-name
specifies an engine name.

Details
The ENGINE= system option specifies which default engine name is associated with a
SAS library. The default engine is used when a SAS library points to an empty directory
or a new file. The default engine is also used on directory-based systems, which can
store more than one SAS file type within a directory. For example, some operating
environments can store SAS files from multiple versions in the same directory.

Operating Environment Information: Valid engine names depend on your operating
environment. For details, see the SAS documentation for your operating environment.
�

See Also

“SAS I/O Engines” in SAS Language Reference: Concepts

ERRORABEND System Option

Specifies whether SAS responds to errors by terminating.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Alias: ERRABEND | NOERRABEND
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
ERRORABEND | NOERRORABEND

Syntax Description

ERRORABEND
specifies that SAS terminate for most errors (including syntax errors and file not
found errors) that would normally cause it to issue an error message, set OBS=0, and

SAS System Options � ERRORBYABEND System Option 1847

go into syntax-check mode (if syntax checking is enabled). SAS also terminates if an
error occurs in any global statement other than the LIBNAME and FILENAME
statements.
Tip: Use the ERRORABEND system option with SAS production programs, which

presumably should not encounter any errors. If errors are encountered and
ERRORABEND is in effect, SAS brings the errors to your attention immediately
by terminating. ERRORABEND does not affect how SAS handles notes such as
invalid data messages.

NOERRORABEND
specifies that SAS handle errors normally, that is, issue an error message, set
OBS=0, and go into syntax-check mode (if syntax checking is enabled).

See Also

System options:
“ERRORBYABEND System Option” on page 1847
“ERRORCHECK= System Option” on page 1848

“Global Statements” on page 1389

ERRORBYABEND System Option

Specifies whether SAS ends a program when an error occurs in BY-group processing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
ERRORBYABEND | NOERRORBYABEND

Syntax Description

ERRORBYABEND
specifies that SAS ends a program for BY-group error conditions that would normally
cause it to issue an error message.

NOERRORBYABEND
specifies that SAS handle BY-group errors normally, that is, by issuing an error
message and continuing processing.

Details
If SAS encounters one or more BY-group errors while ERRORBYABEND is in effect,
SAS brings the errors to your attention immediately by ending your program.

1848 ERRORCHECK= System Option � Chapter 7

ERRORBYABEND does not affect how SAS handles notes that are written to the SAS
log.

Note: Use the ERRORBYABEND system option with SAS production programs that
should be error free. �

See Also

System Option:

“ERRORABEND System Option” on page 1846

ERRORCHECK= System Option

Specifies whether SAS enters syntax-check mode when errors are found in the LIBNAME,
FILENAME, %INCLUDE, and LOCK statements.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Error handling

PROC OPTIONS GROUP= ERRORHANDLING

Syntax

ERRORCHECK=NORMAL | STRICT

Syntax Description

NORMAL
specifies not to place the SAS program into syntax-check mode when an error occurs
in a LIBNAME or FILENAME statement, or in a LOCK statement in SAS/SHARE
software. In addition, the program or session does not terminate when a %INCLUDE
statement fails due to a non-existent file.

STRICT
specifies to place the SAS program into syntax-check mode when an error occurs in a
LIBNAME or FILENAME statement, or in a LOCK statement in SAS/SHARE
software. If the ERRORABEND system option is set and an error occurs in either a
LIBNAME or FILENAME statement, SAS terminates. In addition, SAS terminates
when a %INCLUDE statement fails due to a non-existent file.

See Also

System option:

“ERRORABEND System Option” on page 1846

SAS System Options � ERRORS= System Option 1849

ERRORS= System Option

Specifies the maximum number of observations for which SAS issues complete error messages.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling

Log and procedure output control: SAS log
PROC OPTIONS GROUP= ERRORHANDLING

LOGCONTROL

Syntax
ERRORS=n| nK | nM | nG | nT | MIN| MAX | hexX

Syntax Description

n | nK | nM | nG | nT
specifies the number of observations for which SAS issues error messages in terms of
1 (n); 1,024 (nK); 1,048,576 (nM); 1,073,741,824 (nG); or 1,099,511,627,776 (nT). For
example, a value of 8 specifies eight observations, and a value of 3M specifies
3,145,728 observations.

MIN
sets the number of observations for which SAS issues error messages to 0.

MAX
sets the maximum number of observations for which SAS issues error messages to
the largest signed, 4–byte integer representable in your operating environment.

hexX
specifies the maximum number of observations for which SAS issues error messages
as a hexadecimal number. You must specify the value beginning with a number
(0–9), followed by an X. For example, the value 2dx sets the maximum number of
observations for which SAS issues error messages to 45 observations.

Details
If data errors are detected in more than n observations, processing continues, but SAS
does not issue error messages for the additional errors.

Note: If you set ERRORS=0 and an error occurs, or if the maximum number of
errors has been reached, a warning message displays in the log which states that the
limit set by the ERRORS option has been reached. �

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

See Also
“The SAS Log” in SAS Language Reference: Concepts

1850 EXPLORER System Option � Chapter 7

EXPLORER System Option

Specifies whether to invoke the SAS windowing environment and display only the Explorer window.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation

PROC OPTIONS GROUP= EXECMODES

Syntax
EXPLORER | NOEXPLORER

Syntax Description

EXPLORER
specifies that the SAS session be invoked with only the Explorer window.

NOEXPLORER
specifies that the SAS session be invoked without the Explorer window.

Details
The following SAS execution mode invocation options, in order, have precedence over
this option:

1 OBJECTSERVER.
2 DMR
3 SYSIN

If you specify EXPLORER with another execution mode invocation option of equal
precedence, SAS uses only the last option listed. See “Order of Precedence” on page
1776 for more information about invocation option precedence.

See Also
System Options:
“DMS System Option” on page 1831
“DMSEXP System Option” on page 1832

FILESYNC= System Option

Specifies when operating system buffers that contain contents of permanent SAS files are written
to disk.

Valid in: configuration file, SAS invocation
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

SAS System Options � FIRSTOBS= System Option 1851

See: FILESYNC= System Option in the documentation for your operating environment.

Syntax
FILESYNC= SAS | CLOSE | HOST | SAVE

Syntax Description

SAS
specifies that SAS requests the operating system to force buffered data to be written
to disk when it is best for the integrity of the SAS file.

CLOSE
specifies that SAS requests the operating system to force buffered data to be written
to disk when the SAS file is closed.

HOST
specifies that the operating system schedules when the buffered data for a SAS file is
written to disk. This is the default.

SAVE
specifies that the buffers are written to disk when the SAS file is saved.

Details
By using the FILESYNC= system option, SAS can tell the operating system when to
force data that is temporarily stored in operating system buffers to be written to disk.
Only SAS files in a permanent SAS library are affected; files in a temporary library are
not affected.

If you specify a value other than the default value of HOST, the following occurs:

� the length of time it takes to run a SAS job increases

� the small chance of loosing data in the event of a system failure is further reduced

Consult with your system administrator before you change the value of the
FILESYNC= system option to a value other than the default value.

Operating Environment Information: Under z/OS, the FILESYNC= system option
affects SAS files only in UNIX file system (UFS) libraries. For more information, see
“FILESYNC= System Option” in SAS Companion for z/OS �

FIRSTOBS= System Option

Specifies the observation number or external file record that SAS processes first.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

1852 FIRSTOBS= System Option � Chapter 7

Syntax
FIRSTOBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the number of the first observation or external file record to process, with n
being an integer. Using one of the letter notations results in multiplying the integer
by a specific value. That is, specifying K (kilo) multiplies the integer by 1,024; M
(mega) multiplies by 1,048,576 ; G (giga) multiplies by 1,073,741,824; or T (tera)
multiplies by 1,099,511,627,776. For example, a value of 8 specifies the eighth
observations or records, and a value of 3m specifies observation or record 3,145,728.

hexX
specifies the number of the first observation or the external file record to process as a
hexadecimal value. You must specify the value beginning with a number (0–9),
followed by an X. For example, the value 2dx specifies the 45th observation.

MIN
sets the number of the first observation or external file record to process to 1. This is
the default.

MAX
sets the number of the first observation to process to the maximum number of
observations in the data sets or records in the external file, up to the largest
eight-byte, signed integer, which is 263-1, or approximately 9.2 quintillion
observations.

Details
The FIRSTOBS= system option is valid for all steps for the duration of your current
SAS session or until you change the setting. To affect any single SAS data set, use the
FIRSTOBS= data set option.

You can apply FIRSTOBS= processing to WHERE processing. For details, see
“Processing a Segment of Data That Is Conditionally Selected” in SAS Language
Reference: Concepts.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the documentation for your
operating environment. �

Comparisons
� You can override the FIRSTOBS= system option by using the FIRSTOBS= data set

option and by using the FIRSTOBS= option as a part of the INFILE statement.

� While the FIRSTOBS= system option specifies a starting point for processing, the
OBS= system option specifies an ending point. The two options are often used
together to define a range of observations or records to be processed.

Examples

If you specify FIRSTOBS=50, SAS processes the 50th observation of the data set first.

SAS System Options � FMTERR System Option 1853

This option applies to every input data set that is used in a program or a SAS
process. In this example, SAS begins reading at the 11th observation in the data sets
OLD, A, and B:

options firstobs=11;

data a;
set old; /* 100 observations */

run;

data b;
set a;

run;

data c;
set b;

run;

Data set OLD has 100 observations, data set A has 90, B has 80, and C has 70. To
avoid decreasing the number of observations in successive data sets, use the
FIRSTOBS= data set option in the SET statement. You can also reset FIRSTOBS=1
between a DATA step and a PROC step.

See Also

Data Set Option:
“FIRSTOBS= Data Set Option” on page 25

Statement:
“INFILE Statement” on page 1543

System Option:
“OBS= System Option” on page 1890

FMTERR System Option

When a variable format cannot be found, specifies whether SAS generates an error or continues
processing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
FMTERR | NOFMTERR

Syntax Description

1854 FMTSEARCH= System Option � Chapter 7

FMTERR
specifies that when SAS cannot find a specified variable format, it generates an error
message and does not allow default substitution to occur.

NOFMTERR
replaces missing formats with the w. or $w. default format, issues a note, and
continues processing.

See Also

System Option:

“FMTSEARCH= System Option” on page 1854

FMTSEARCH= System Option

Specifies the order in which format catalogs are searched.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

See: FMTSEARCH= System Option under OpenVMS

Syntax
FMTSEARCH=(catalog-specification-1... catalog-specification-n)

Syntax Description

catalog-specification
searches format catalogs in the order listed, until the desired member is found. The
value of catalog-specification can be either libref or libref.catalog. If only the libref is
given, SAS assumes that FORMATS is the catalog name.

Details
The WORK.FORMATS catalog is always searched first, and the LIBRARY.FORMATS
catalog is searched next, unless one of them appears in the FMTSEARCH= list.

If a catalog appears in the FMTSEARCH= list, the catalog is searched in the order in
which it appears in the list. If a catalog in the list does not exist, that particular item is
ignored and searching continues.

Operating Environment Information: Under the Windows, UNIX, and z/OS operating
environments, you can use the APPEND or INSERT system options to add additional
catalog-specification. For details, see the documentation for the APPEND and INSERT
system options. �

SAS System Options � FONTEMBEDDING System Option 1855

Examples

If you specify FMTSEARCH=(ABC DEF.XYZ GHI), SAS searches for requested
formats or informats in this order:

1 WORK.FORMATS
2 LIBRARY.FORMATS
3 ABC.FORMATS
4 DEF.XYZ
5 GHI.FORMATS.

If you specify FMTSEARCH=(ABC WORK LIBRARY) SAS searches in this order:
1 ABC.FORMATS
2 WORK.FORMATS
3 LIBRARY.FORMATS.

Because WORK appears in the FMTSEARCH list, WORK.FORMATS is not
automatically searched first.

See Also

System Option:
“APPEND= System Option” on page 1791
“INSERT= System Option” on page 1871
“FMTERR System Option” on page 1853

FONTEMBEDDING System Option

Specifies whether font embedding is enabled in Universal Printer and SAS/GRAPH printing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
FONTEMBEDDING | NOFONTEMBEDDING

Syntax Description

FONTEMBEDDING
specifies to enable font embedding. This is the default.

NOFONTEMBEDDING
specifies to disable font embedding.

1856 FONTRENDERING= System Option � Chapter 7

Details
When FONTEMBEDDING is set, fonts can be embedded, or included, in the output
files that are created by the Universal Printer and SAS/GRAPH. Output files with
embedded fonts do not rely on fonts being installed on the computer that is used to view
or print the output file. Embedding fonts increases the file size.

When NOFONTEMBEDDING is set, the output files rely on the fonts being installed
on the computer that is used to view or print the font.

When you print or create PostScript files, if the specified font is recognized by SAS
but is not available on the printer, SAS substitutes the most similar, standard font in
the output. For example, the Helvetica font would replace any occurrence of Albany
AMT. This guarantees that the printer is capable of printing the text.

To determine which fonts will be substituted for a given printer, use the Print Setup
window, the Registry Editor, or the REGEDIT procedure to display the Printer Setup
properties. Under Fonts, any individual fonts that are listed will be recognized by the
printer. All other fonts, including those that are available via a link in the SAS
Registry, will be substituted in the document when the document is created.

FONTRENDERING= System Option

Specifies whether SAS/GRAPH devices that are based on the SASGDGIF, SASGDTIF, and
SASGDIMG modules render fonts by using the operating system or by using the FreeType engine.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
FONTRENDERING=HOST_PIXELS | FREETYPE_POINTS

Syntax Description

HOST_PIXELS
specifies that fonts are rendered by the operating system and that font size is
requested in pixels.

Operating Environment Information: On z/OS, HOST_PIXELS is not supported. If
HOST_PIXELS is specified, SAS uses FREETYPE_POINTS as the value for this
option. �

FREETYPE_POINTS
specifies that fonts are rendered by the FreeType engine and that font size is
requested in points. This is the default.

Details
Use the FONTRENDERING= system option to specify how SAS/GRAPH devices that
are based on the SASGDGIF, SASGDTIF, and SASGDIMG modules render fonts. When

SAS System Options � FONTSLOC= System Option 1857

the operating system renders fonts, the font size is requested in pixels. When the
FreeType engine renders fonts, the font size is requested in points.

Use the GDEVICE procedure to determine which module a SAS/GRAPH device uses:

proc gdevice c=sashelp.devices browse nofs;
list devicename;

quit;

For example,

proc gdevice c=sashelp.devices browse nofs;
list gif;

quit;

The following is partial output from the GDEVICE procedure output:

GDEVICE procedure
Listing from SASHELP.DEVICES - Entry GIF

Orig Driver: GIF Module: SASGDGIF Model: 6031
Description: GIF File Format Type: EXPORT
*** Institute-supplied ***
Lrows: 43 Xmax: 8.333 IN Hsize: 0.000 IN Xpixels: 800
Lcols: 88 Ymax: 6.250 IN Vsize: 0.000 IN Ypixels: 600
Prows: 0 Horigin: 0.000 IN
Pcols: 0 Vorigin: 0.000 IN
Aspect: 0.000 Rotate:
Driver query: Y Queued messages: N

The Module entry names the module used by the device.

See Also
“SAS/GRAPH Fonts” in SAS/GRAPH: Reference

FONTSLOC= System Option

Specifies the location of the fonts that are supplied by SAS; names the default font file location for
registering fonts that use the FONTREG procedure.

Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY
See: FONTSLOC= System Option in the documentation for your operating environment

Syntax
FONTSLOC= “location”

Syntax Description

“location”

1858 FORMCHAR= System Option � Chapter 7

specifies a fileref or the location of the SAS fonts that are used during the SAS
session.

Note: If “location” is a fileref, you do not need to enclose the value in quotation
marks. �

FORMCHAR= System Option

Specifies the default output formatting characters.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
See: FORMCHAR= System Option in the documentation for your operating
environment.

Syntax
FORMCHAR= ’formatting-characters’

Syntax Description

’formatting-characters’
specifies any string or list of strings of characters up to 64 bytes long. If fewer than
64 bytes are specified, the string is padded with blanks on the right.
Tip: For consistent results when you move your document to different computers,

issue the following OPTIONS statement before using ODS destinations other than
the Listing destination:

options formchar="|----|+|---+=|-/\<>*";

Details
Formatting characters are used to construct tabular output outlines and dividers for
various procedures, such as the FREQ, REPORT, and TABULATE procedures. If you
omit formatting characters as an option in the procedure, the default specifications
given in the FORMCHAR= system option are used. Note that you can also specify a
hexadecimal character constant as a formatting character. When you use a hexadecimal
constant with this option, SAS interprets the value of the hexadecimal constant as
appropriate for your operating system.

Note: To ensure that row and column separators and boxed tabular reports are
printed legibly when using the standard forms characters, you must use these resources:

� either the SAS Monospace or the SAS Monospace Bold font
� a printer that supports TrueType fonts

�

SAS System Options � FORMDLIM= System Option 1859

See Also

For further information about how Base SAS procedures use formatting characters,
see the Base SAS Procedures Guide. For procedures in other products that use
formatting characters, see the documentation for that product.

“Printing with SAS” in SAS Language Reference: Concepts

FORMDLIM= System Option

Specifies a character to delimit page breaks in SAS output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

Syntax

FORMDLIM=’delimiting-character’

Syntax Description

’delimiting-character’
specifies in quotation marks a character written to delimit pages. Normally, the
delimit character is null, as in this statement:

options formdlim=’’;

Details

When the delimit character is null, a new physical page starts whenever a new page
occurs. However, you can conserve paper by allowing multiple pages of output to appear
on the same page. For example, this statement writes a line of dashes (- -) where
normally a page break would occur:

options formdlim=’-’;

When a new page is to begin, SAS skips a single line, writes a line consisting of the
dashes that are repeated across the page, and skips another single line. There is no
skip to the top of a new physical page. Resetting FORMDLIM= to null causes physical
pages to be written normally again.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

1860 FORMS= System Option � Chapter 7

FORMS= System Option

If forms are used for printing, specifies the default form to use.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY

Syntax
FORMS=form-name

Syntax Description

form-name
specifies the name of the form.
Tip: To create a customized form, use the FSFORM command in a windowing

environment.

Details
The default form contains settings that control various aspects of interactive windowing
output, including printer selection, text body, and margins. The FORMS= system option
also customizes output from the PRINT command (when FORM= is omitted) or output
from interactive windowing procedures.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

GSTYLE System Option
Specifies whether ODS styles can be used in the generation of graphs that are stored as GRSEG
catalog entries.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Graphics: Driver settings

Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= GRAPHICS

ODSPRINT

Syntax
GSTYLE | NOGSTYLE

SAS System Options � HELPBROWSER= System Option 1861

Syntax Description

GSTYLE
specifies that ODS styles can be used in the generation of graphs that are stored as
GRSEG catalog entries. If no style is specified, the default style for the given output
destination is used. This is the default.

NOGSTYLE
specifies to not use ODS styles in the generation of graphs that are stored as GRSEG
catalog entries.
Tip: Use NOGSTYLE for compatibility of graphs generated before SAS 9.2.

Details
The GSTYLE system option affects only graphic output that is generated using
GRSEGs. The GSTYLE option does not affect the use of ODS styles in graphs that are
generated by the following means:

� Java device driver
� ActiveX device driver
� SAS/GRAPH statistical graphic procedures
� SAS/GRAPH template language
� ODS GRAPHICS ON statement

GWINDOW System Option
Specifies whether SAS displays SAS/GRAPH output in the GRAPH window.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS

Syntax
GWINDOW | NOGWINDOW

Syntax Description

GWINDOW
displays SAS/GRAPH software output in the GRAPH window, if your site licenses
SAS/GRAPH software and if your personal computer has graphics capability.

NOGWINDOW
displays graphics outside of the windowing environment.

HELPBROWSER= System Option
Specifies the browser to use for SAS Help and ODS output.

1862 HELPENCMD System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help
PROC OPTIONS GROUP= HELP

Syntax
HELPBROWSER=REMOTE | SAS

Syntax Description

REMOTE
specifies to use the remote browser for the Help. The location of the remote browser
is determined by the HELPHOST and the HELPPORT system options. This is the
default value for the OpenVMS, UNIX, z/OS, and Windows 64-bit operating
environments.

SAS
specifies to use the SAS browser for the Help. This is the default for the Windows
32-bit operating environment.

See Also

System options:
“HELPHOST System Option” on page 1863
“HELPPORT= System Option” on page 1864

Viewing Output and Help in the SAS Remote Browser in SAS Companion for
OpenVMS on HP Integrity Servers

Viewing Output and Help in the SAS Remote Browser in SAS Companion for UNIX
Environments

Viewing Output and Help in the SAS Remote Browser in SAS Companion for
Windows

Using the SAS Remote Browser in SAS Companion for z/OS

HELPENCMD System Option

Specifies whether SAS uses the English version or the translated version of the keyword list for the
command–line Help.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= HELP

Syntax
HELPENCMD | NOHELPENCMD

SAS System Options � HELPHOST System Option 1863

Syntax Description

HELPENCMD
specifies that SAS use the English version of the keyword list for the command-line
help, although the index will still be displayed with translated keywords. This is the
default.

NOHELPENCMD
specifies that SAS use the translated version of the keyword list for the
command-line help, if a translated version exists.

Details
Set NOHELPENCMD if you want the command-line help to locate keywords by using
the localized terms. By default, all terms on the command line will be read as English.

See Also
System Options:

HELPINDEX System Option in SAS Companion for Windows , SAS Companion for
UNIX Environments, and SAS Companion for OpenVMS on HP Integrity Servers

HELPLOC System Option in SAS Companion for Windows, SAS Companion for
UNIX Environments, SAS Companion for OpenVMS on HP Integrity Servers, and
SAS Companion for z/OS

HELPTOC System Option in SAS Companion for Windows, SAS Companion for
UNIX Environments, and SAS Companion for OpenVMS on HP Integrity Servers

HELPHOST System Option

Specifies the name of the computer where the remote browser is to send Help and ODS output.

Default: NULL

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Help

PROC OPTIONS GROUP= HELP

See: HELPHOST= System Option under OpenVMS UNIX Windowsz/OS

Syntax
HELPHOST="host"

"host"
specifies the name of the computer where the remote help is to be displayed.
Quotation marks or parentheses are required. The maximum number of characters is
2,048.

1864 HELPPORT= System Option � Chapter 7

Details
Operating Environment Information: If you do not specify the HELPHOST option, the
location where SAS displays the Help depends on your operating environment. See the
HELPHOST system option in the documentation for your operating environment. �

See Also

“HELPBROWSER= System Option” on page 1861
“HELPPORT= System Option” on page 1864
Viewing Output and Help in the SAS Remote Browser in the SAS Companion for

OpenVMS on HP Integrity Servers
Viewing Output and Help in the SAS Remote Browser in the SAS Companion for

UNIX Environments
Viewing Output and Help in the SAS Remote Browser in the SAS Companion for

Windows
Using the SAS Remote Browser in the SAS Companion for z/OS

HELPPORT= System Option

Specifies the port number for the remote browser client.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Help
PROC OPTIONS GROUP= HELP

Syntax
HELPPORT=port-number

port-number
specifies the port number for the SAS Remote Browser Server.
Range: 0–65535
Default: 0

Details
When HELPPORT is set to 0, SAS uses the default port number for the remote browser
server.

See Also

“HELPBROWSER= System Option” on page 1861
“HELPHOST System Option” on page 1863

SAS System Options � HTTPSERVERPORTMIN= System Option 1865

Viewing Output and Help in the SAS Remote Browser in the SAS Companion for
OpenVMS on HP Integrity Servers

Viewing Output and Help in the SAS Remote Browser in the SAS Companion for
UNIX Environments

Viewing Output and Help in the SAS Remote Browser in the SAS Companion for
Windows

Using the SAS Remote Browser in the SAS Companion for z/OS

HTTPSERVERPORTMAX= System Option

Specifies the highest port number that can be used by the SAS HTTP server for remote browsing.

Valid in: configuration file, SAS invocation
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= Communications

Syntax
HTTPSERVERPORTMAX=max-port-number

Syntax Description

max-port-number
specifies the highest port number that can be used by the SAS HTTP server for
remote browsing.
Range: 0–65535
Default: 0

Details
Use the HTTPSERVERPORTMAX= and HTTPSERVERPORTMIN= system options to
specify a range of port values that the remote browser HTTP server can use to
dynamically assign a port number when a firewall is configured between SAS and the
HTTP server.

See Also

System options:
“HTTPSERVERPORTMIN= System Option” on page 1865

HTTPSERVERPORTMIN= System Option

Specifies the lowest port number that can be used by the SAS HTTP server for remote browsing.

1866 IBUFNO= System Option � Chapter 7

Valid in: configuration file, SAS invocation
Category: Communications: Networking and encryption
PROC OPTIONS GROUP= Communications

Syntax
HTTPSERVERPORTMIN=min-port-number

Syntax Description

min-port-number
specifies the lowest port number that can be used by the SAS HTTP server for
remote browsing.
Range: 0–65535
Default: 0

Details
Use the HTTPSERVERPORTMIN and HTTPSERVERPORTMAX system options to
specify a range of port values that the remote browser HTTP server can use to
dynamically assign a port number when a firewall is configured between SAS and the
HTTP server.

See Also

System option:
“HTTPSERVERPORTMAX= System Option” on page 1865

IBUFNO= System Option

Specifies an optional number of extra buffers to be allocated for navigating an index file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
Default: 0

Syntax
IBUFNO=n | nK | nM | nG | nT |hexX | MIN | MAX

Syntax Description

SAS System Options � IBUFSIZE= System Option 1867

n | nK | nM | nG | nT
specifies the number of extra index buffers to be allocated in multiples of 1 (bytes);
1,024 (kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or
1,099,511,627,776 (terabytes). For example, a value of 8 specifies eight buffers, and a
value of 3k specifies 3,072 buffers.

Restriction: Maximum value is 10,000.

hexX
specifies the number of extra index buffers as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by an X. For example, the value
2dx specifies 45 buffers.

MIN
sets the number of extra index buffers to 0. This is the default.

MAX
sets the maximum number of extra index buffers to 10,000.

Details
An index is an optional SAS file that you can create for a SAS data file in order to
provide direct access to specific observations. The index file consists of entries that are
organized into hierarchical levels, such as a tree structure, and connected by pointers.
When an index is used to process a request, such as for WHERE processing, SAS does a
binary search on the index file and positions the index to the first entry that contains a
qualified value. SAS uses the value’s identifier to directly access the observation that
contains the value. SAS requires memory for buffers when an index is actually used.
The buffers are not required unless SAS uses the index, but they must be allocated in
preparation for the index that is being used.

SAS automatically allocates a minimal number of buffers in order to navigate the
index file. Typically, you do not need to specify extra buffers. However, using IBUFNO=
to specify extra buffers could improve execution time by limiting the number of input/
output operations that are required for a particular index file. However, the
improvement in execution time comes at the expense of increased memory consumption.

Note: Whereas too few buffers allocated to the index file decrease performance, over
allocation of index buffers creates performance problems as well. Experimentation is
the best way to determine the optimal number of index buffers. For example,
experiment with ibufno=3, then ibufno=4, and so on, until you find the least number
of buffers that produces satisfactory performance results. �

See Also

“Understanding SAS Indexes” in SAS Language Reference: Concepts.

System Option:

“IBUFSIZE= System Option” on page 1867

IBUFSIZE= System Option

Specifies the buffer page size for an index file.

1868 IBUFSIZE= System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

Restriction: Specify a page size before the index file is created. After it is created, you
cannot change the page size.

Syntax
IBUFSIZE=n | nK | nM | nG | nT | hexX | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the page size to process in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 8 specifies 8 bytes, and a value of 3k specifies 3,072 bytes.

The default is 0, which causes SAS to use the minimum optimal page size for the
operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0–9), followed by an X. For example, the value 2dx sets the page size
to 45 bytes.

MAX
sets the page size for an index file to the maximum possible number. For
IBUFSIZE=, the value is 32,767 bytes.

Details
An index is an optional SAS file that you can create for a SAS data file in order to
provide direct access to specific observations. The index file consists of entries that are
organized into hierarchical levels, such as a tree structure, and connected by pointers.
When an index is used to process a request, such as for WHERE processing, SAS does a
search on the index file in order to rapidly locate the requested records.

Typically, you do not need to specify an index page size. However, the following
situations could require a different page size:

� The page size affects the number of levels in the index. The more pages there are,
the more levels in the index. The more levels, the longer the index search takes.
Increasing the page size allows more index values to be stored on each page, thus
reducing the number of pages (and the number of levels). The number of pages
required for the index varies with the page size, the length of the index value, and
the values themselves. The main resource that is saved when reducing levels in
the index is I/O. If your application is experiencing a lot of I/O in the index file,
increasing the page size might help. However, you must re-create the index file
after increasing the page size.

� The index file structure requires a minimum of three index values to be stored on
a page. If the length of an index value is very large, you might get an error
message that the index could not be created because the page size is too small to
hold three index values. Increasing the page size should eliminate the error.

SAS System Options � INITCMD System Option 1869

Note: Experimentation is the best way to determine the optimal index page size. �

See Also

“Understanding SAS Indexes” in SAS Language Reference: Concepts.
“IBUFNO= System Option” on page 1866

INITCMD System Option

Specifies an application invocation command and optional SAS windowing environment or text
editor commands that SAS executes before processing AUTOEXEC file during SAS invocation.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
INITCMD "command-1 <windowing-command-n>"

Syntax Description

command-1
specifies any SAS command that invokes an application window. Some valid values
are:

AF

ANALYST

ASSIST

DESIGN

EIS

FORECAST

GRAPH

HELP

IMAGE

LAB

MINER

PHCLINICAL

PHKINETICS

PROJMAN

QUERY

1870 INITSTMT= System Option � Chapter 7

RUNEIS

SQC

XADX.
Interaction: If you specify FORECAST for command-1, you cannot use

windowing-command-n.

windowing-command-n
specifies a valid windowing command or text editor command. Separate multiple
commands with semicolons. These commands are processed in sequence. If you use a
windowing command that impacts flow, such as the BYE command, it might delay or
prohibit processing.
Restriction: Do not use the windowing-command-n argument when you enter a

command for an application that submits SAS statements or commands during
initialization of the application, that is, during autoexec file initialization.

Details
The INITCMD system option suppresses the Log, Output, Program Editor, and
Explorer windows when SAS starts so that application window is the first screen that
you see. The suppressed windows do not appear, but you can activate them. You can
use the ALTLOG option to direct log output for viewing. If windows are initiated by an
autoexec file or the INITSTMT option, the window that is displayed by the INITCMD
option is displayed last. When you exit an application that is invoked with the
INITCMD option, your SAS session ends.

You can use the INITCMD option in a windowing environment only. Otherwise, the
option is ignored and a warning message is issued. If command-1 is not a valid
command, the option is ignored and a warning message is issued.

The following SAS execution mode invocation options, in order, have precedence over
this option:

1 OBJECTSERVER.
2 DMR
3 SYSIN

If you specify INITCMD with another execution mode invocation option of equal
precedence, SAS uses only the last option listed. See “Order of Precedence” on page
1776 for more information about invocation option precedence.

Examples
INITCMD "AFA c=mylib.myapp.primary.frame dsname=a.b"
INITCMD "ASSIST; FSVIEW SASUSER.CLASS"

INITSTMT= System Option

Specifies a SAS statement to execute after any statements in the autoexec file and before any
statements from the SYSIN= file.

Valid in: configuration file, SAS invocation
Alias: IS=
Category: Environment control: Initialization and operation

SAS System Options � INSERT= System Option 1871

PROC OPTIONS GROUP= EXECMODES

See: INITSTMT= System Option under Windows OpenVMS

Syntax
INITSTMT=’statement’

Syntax Description

’statement’
specifies any SAS statement or statements.

Requirements: statement must be able to run on a step boundary.

Operating Environment Information: On the command line or in a configuration file,
the syntax is specific to your operating environment. The SYSIN= system option might
not be supported by your operating environment. For details, see the SAS
documentation for your operating environment. �

Comparisons
INITSTMT= specifies the SAS statements to be executed at SAS initialization, and the
TERMSTMT= system option specifies the SAS statements to be executed at SAS
termination.

Examples

Here is an example of using this option on UNIX:

sas -initstmt ’%put you have used the initstmt; data x; x=1;
run;’

See Also

System Option:

“TERMSTMT= System Option” on page 1975

INSERT= System Option

Inserts the specified value as the first value of the specified system option.

Valid in: OPTIONS statement, SAS System Option Window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

See: INSERT= System Option in the documentation for your operating environment.

1872 INTERVALDS= System Option � Chapter 7

Syntax
INSERT=(system-option-1=argument-1 system-option-n=argument-n)

Syntax Description

system-option
can be CMPLIB, FMTSEARCH, MAPS, SASAUTOS, or SASSCRIPT.

argument
specifies a new value that you want as the first value of system-option.

argument can be any value that could be specified for system-option if
system-option is set using the OPTIONS statement.

Details
If you specify a new value for the CMPLIB=, FMTSEARCH=, MAPS=, SASAUTOS=, or
SASSCRIPT= system options, the new value replaces the value of the option. Instead of
replacing the value, you can use the INSERT= system option to add an additional value
to the option as the first value of the option.

Comparison
The INSERT= system option adds a new value to the beginning of the current value of
the CMPLIB=, FMTSEARCH=, MAPS=, SASAUTOS=, or SASSCRIPT= system options.
The APPEND= system option adds a new value to the end of one of these system
options.

Examples

The following table shows the results of adding a value to the beginning of the
FMTSEARCH= option value:

Current FMTSEARCH=
Value

Value of INSERT= System
Option

New FMTSEARCH= Value

(WORK LIBRARY) (fmtsearch=(abc def)) (ABC DEF WORK LIBRARY)

See Also

System option:
“APPEND= System Option” on page 1791

INTERVALDS= System Option

Specifies one or more interval name and value pairs, where the value is a SAS data set that
contains user-supplied holidays. The interval can be used as an argument to the INTNX and INTCK
functions.

SAS System Options � INTERVALDS= System Option 1873

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Input control: Data processing

PROC OPTIONS GROUP= INPUTCONTROL

Requirement: The set of interval-value pairs must be enclosed in parentheses.

Syntax
INTERVALDS=(interval-1=libref.dataset-name-1 <interval-n=libref.dataset-name-n>)

Syntax Description

interval
specifies the name of an interval. The value of interval is the data set that is named
in libref.dataset-name.

Requirement: When you specify multiple intervals, the interval name must not be
the same as another interval.

libref.dataset-name
specifies the libref and the data set name of the file that contains user-supplied
holidays.

Details
The INTCK and INTNX functions specify interval as the interval name in the function
argument list to reference a data set that names user-supplied intervals.

The same libref.dataset-name can be assigned to different intervals. An error occurs
when more than one interval of the same name is defined for the INTERVALDS system
option.

Examples
This example assigns a single data set to an interval on the SAS command line or in a
configuration file.

-intervalds (mycompany=mycompany.holidays)

The next example assigns multiple intervals using the OPTIONS statement. The
intervals subsid1 and subsid2 are assigned the same libref and data set name.

options intervalds=(mycompany=mycompany.holidays subsid1=subsid.holidays subsid2=subsid.hol

See Also

Functions:

“INTCK Function” on page 816

“INTNX Function” on page 831

About Date and Time Intervals in SAS Language Reference: Concepts

1874 INVALIDDATA= System Option � Chapter 7

INVALIDDATA= System Option

Specifies the value that SAS assigns to a variable when invalid numeric data is encountered.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Input control: Data Processing

PROC OPTIONS GROUP= INPUTCONTROL

Syntax
INVALIDDATA=’character’

Syntax Description

’character’
specifies the value to be assigned, which can be a letter (A through Z, a through z), a
period (.), or an underscore (_). The default value is a period.

Details
The INVALIDDATA= system option specifies the value that SAS is to assign to a
variable when invalid numeric data is read with an INPUT statement or the INPUT
function.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

JPEGQUALITY= System Option

Specifies the JPEG quality factor that determines the ratio of image quality to the level of
compression for JPEG files produced by the SAS/GRAPH JPEG device driver.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Requirement: The DEVICE graphic option must be set to the SAS/GRAPH JPEG device
driver.

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
JPEGQUALITY= n | MIN | MAX

SAS System Options � LABEL System Option 1875

Syntax Description

n
specifies an integer that indicates the JPEG quality factor. The quality of the image
increases with larger numbers and decreases with smaller numbers. JPEG files are
compressed less for higher-quality images. Therefore, the JPEG file size is greater
for higher-quality images. For example, n=100 is completely uncompressed and the
image quality is highest. When n=0, the image is produced at the maximum
compression level with the lowest quality.
Range: 0–100

Default: 75

MIN
specifies to set the JPEG quality factor to 0, which has the lowest image quality and
the greatest file compression.

MAX
specifies to set the JPEG quality factor to 100, which has the highest image quality
with no file compression.

Details
The optimal quality value varies for each image. The default value of 75 is a good
starting value that you can use to optimize the quality of an image within a compressed
file. You can increase or decrease the value until you are satisfied with the image
quality. Values between 50 and 95 produce the best quality images.

When the value is 24 or less, some viewers might not be able to display the JPEG
file. When you create such a file, SAS writes the following caution to the SAS log:

Caution: quantization tables are too coarse for baseline JPEG.

See Also

Graph options:

DEVICE

LABEL System Option

Specifies whether SAS procedures can use labels with variables.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL

Syntax
LABEL | NOLABEL

1876 _LAST_= System Option � Chapter 7

Syntax Description

LABEL
specifies that SAS procedures can use labels with variables. The LABEL system
option must be in effect before the LABEL option of any procedure can be used.

NOLABEL
specifies that SAS procedures cannot use labels with variables. If NOLABEL is
specified, the LABEL option of a procedure is ignored.

Details
A label is a string of up to 256 characters that can be written by certain procedures in
place of the variable’s name.

See Also

Data Set Option:
“LABEL= Data Set Option” on page 37

Statements:
“ODS PROCLABEL Statement” in SAS Output Delivery System: User’s Guide.

LAST= System Option

Specifies the most recently created data set.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
LAST=SAS-data-set

Syntax Description

SAS-data-set
specifies a SAS data set name.
Restriction: No data set options are allowed.
Restriction: Use libref.membername or membername syntax, not a string that is

enclosed in quotation marks, to specify a SAS data set name.

Note: You can use quotation marks in the libref.membername or membername
syntax if the libref or member name is associated with a SAS/ACCESS engine that
supports member names with syntax that requires quoting or name literal

SAS System Options � LEFTMARGIN= System Option 1877

(n-literal) specification. For more information, see the SAS/ACCESS
documentation. �

Details
By default, SAS automatically keeps track of the most recently created SAS data set.
Use the _LAST_= system option to override the default.

LAST= is not allowed with data set options.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

LEFTMARGIN= System Option

Specifies the print margin for the left side of the page.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
LEFTMARGIN=margin-size<margin-unit>

Syntax Description

margin-size
specifies the size of the left print margin.

Restriction: The left margin should be small enough so that the left margin plus
the right margin is less than the width of the paper.

Interactions: Changing the value of this option might result in changes to the
value of the LINESIZE= system option.

<margin-unit>
specifies the units for margin-size. The margin-unit can be in for inches or cm for
centimeters. <margin-unit> is saved as part of the value of the BOTTOMMARGIN
system option whether or not it is specified.
Default: inches

Details
All margins have a minimum that is dependent on the printer and the paper size. The
default value of the LEFTMARGIN system option is 0.00 in.

1878 LINESIZE= System Option � Chapter 7

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

See Also

System Options:
“BOTTOMMARGIN= System Option” on page 1796

“RIGHTMARGIN= System Option” on page 1925
“TOPMARGIN= System Option” on page 1978

LINESIZE= System Option

Specifies the line size for the SAS log and for SAS procedure output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Alias: LS=
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log

Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LOG_LISTCONTROL

LISTCONTROL

LOGCONTROL
See: LINESIZE= System Option in the documentation for your operating environment.

Syntax
LINESIZE=n | MIN | MAX | hexX

Syntax Description

n
specifies the number of characters in a line.

MIN
sets the number of characters in a line to 64.

MAX
sets the number of characters in a line to 256.

SAS System Options � LOGPARM= System Option 1879

hexX
specifies the number of characters in a line as a hexadecimal number. You must
specify the value beginning with a number (0–9), followed by an X. For example, the
value 0FAx sets the line size of the SAS procedure output to 250.

Details
The LINESIZE= system option specifies the line size (printer line width) in characters
for the SAS log and the SAS output that are used by the DATA step and procedures.
The LINESIZE= system option affects the following output:

� the Output window for the ODS LISTING destination
� output produced for an ODS markup destination by a DATA step where the FILE

statement destination is PRINT (the FILE PRINT ODS statement is not affected
by the LINESIZE= system option)

� procedures that produce only characters that cannot be scaled, such as the PLOT
procedure, the CALENDAR procedure, the TIMEPLOT procedure, the FORMS
procedure, and the CHART procedure

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

See Also
“The SAS Log” in SAS Language Reference: Concepts

LOGPARM= System Option

Specifies when SAS log files are opened, closed, and, in conjunction with the LOG= system
option, how they are named.

Valid in: configuration file, SAS invocation
Restriction: LOGPARM= is valid only in line mode and in batch mode
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL
See: LOGPARM= System Option in the documentation for your operating environment.

Syntax
LOGPARM=

“<OPEN= APPEND | REPLACE | REPLACEOLD>
<ROLLOVER= AUTO | NONE | SESSION | n | nK | nM | nG>
<WRITE= BUFFERED | IMMEDIATE>”

Syntax Description

1880 LOGPARM= System Option � Chapter 7

OPEN=APPEND | REPLACE | REPLACEOLD
when a log file already exists, specifies how the contents of the existing file are
treated.

APPEND
appends the log when opening an existing file. If the file does not already exist, a
new file is created.

REPLACE
overwrites the current contents when opening an existing file. If the file does not
already exist, a new file is created.

REPLACEOLD
replaces files that are more than one day old. If the file does not already exist, a
new file is created.

Operating Environment Information: For z/OS, see the SAS documentation for
your operating environment for limitations on the use of OPEN=REPLACEOLD. �

Default: REPLACE

ROLLOVER=AUTO|NONE|SESSION | n | nG | nM | nG
specifies when or if the SAS log “rolls over”. That is, when the current log is closed
and a new one is opened.

AUTO
causes an automatic “rollover” of the log when the directives in the value of the
LOG= option change, that is, the current log is closed and a new log file is opened.
Interaction: The name of the new log file is determined by the value of the LOG=

system option. If LOG= does not contain a directive, however, the name would
never change, so the log would never roll over, even when ROLLOVER=AUTO.

NONE
specifies that rollover does not occur, even when a change occurs in the name that
is specified with the LOG= option.
Interaction: If the LOG= value contains any directives, they do not resolve. For

example, if Log="#b.log" is specified, the directive “#” does not resolve, and the
name of the log file remains "#b.log".

SESSION
at the beginning of each SAS session, opens the log file, resolves directives that
are specified in the LOG= system option, and uses its resolved value to name the
new log file. During the course of the session, no rollover is performed.

n |nK |nM |nG
causes the log to rollover when the log reaches a specific size, stated in multiples
of 1 (bytes); 1,024 (kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes).
When the log reaches the specified size, it is closed and renamed by appending
“old” to the log filename, and if it exists, the lock file for a server log. For example,
a filename of 2008Dec01.log would be renamed 2008Dec01old.log. A new log file is
opened using the name specified in the LOG= option.

CAUTION:
Old log files can be overwritten. SAS maintains only one old log file with the
same name as the open log file. If rollover occurs more than once, the old log file
is overwritten. �

Restriction: The minimum log file size is 10K.
See also: “Log Filenames” in SAS Language Reference: Concepts

Default: NONE

SAS System Options � LOGPARM= System Option 1881

Interaction: Rollover is triggered by a change in the value of the LOG= option.
Restriction: Rollover will not occur more often than once a minute.
See Also: LOG= system option under Windows, UNIX, z/OS

WRITE=BUFFERED | IMMEDIATE
specifies when content is written to the SAS log.

BUFFERED
writes content to the SAS log only when a buffer is full in order to increase
efficiency.

IMMEDIATE
writes to the SAS log each time that statements are submitted that produce
content for the SAS log. SAS does no buffering of log messages.

Default: BUFFERED
Tip: Under Windows, the buffered log contents are written periodically, using an

interval that is specified by SAS.

Details
The LOGPARM= system option controls the opening and closing of SAS log files when
SAS is operating in batch mode or in line mode. This option also controls the naming of
new log files, in conjunction with the LOG= system option and the use of directives in
the value of LOG=.

Using directives in the value of the LOG= system option enables you to control when
logs are open and closed and how they are named, based on actual time events, such as
time, month, and day of week.

Operating Environment Information: Under the Windows and UNIX operating
environments, you can begin directives with either the % symbol or the # symbol, and
use both symbols in the same directive. For example, -log=mylog%b#C.log.

Under z/OS, begin directives only with the # symbol. For example,
-log=mylog#b#c.log.

Under OpenVMS, begin directives only with the % symbol. For example,
-log=mylog%b%c.log. �

The following table contains a list of directives that are valid in LOG= values:

Table 7.4 Directives for Controlling the Name of SAS Log Files

Directive Description Range

%a or #a Locale’s abbreviated day
of week

Sun–Sat

%A or #A Locale’s full day of week Sunday–Saturday

%b or #b Local’s abbreviated month Jan–Dec

%B or #B Locale’s full month January–December

%C or #C Century number 00–99

%d or #d Day of the month 01–31

%H or #H Hour 00–23

%j or #j Julian day 001–366

%l or #l * User name alphanumeric string that is the name of the
user that started SAS

1882 LOGPARM= System Option � Chapter 7

Directive Description Range

%M or #M Minutes 00–59

%m or #m Month number 01–12

%n or #n Current system node
name (without domain
name)

none

%p or #p * Process ID alphanumeric string that is the SAS session
process ID

%s or #s Seconds 00–59

%u or #u Day of week 1= Monday–7=Sunday

%v or #v * Unique identifier alphanumeric string that creates a log
filename that does not currently exist

%w or #w Day of week 0=Sunday–6=Saturday

%W or #W Week number (Monday as
first day; all days in new
year preceding first
Monday are in week 00)

00–53

%y or #y Year without century 00–99

%Y or #Y Full year 1970–9999

%% Percent escape writes a
single percent sign in the
log filename.

%

Pound escape writes a
single pound sign in the
log filename.

#

* Because %v, %l, and %p are not a time-based format, the log filename will never change after
it has been generated. Therefore, the log will never roll over. In these situations,specifying
ROLLOVER=AUTO is equivalent to specifying ROLLOVER=SESSION.

Operating Environment Information: See the SAS companion for z/OS for limitations
on the length of the log filename under z/OS. �

Note: Directives that you specify in the LOG= system option are not the same as
the conversion characters that you specify to format logging facility logs. Directives
specify a format for a log name. Conversion characters specify a format for log
messages. Directives and conversion characters that use the same characters might
function differently. �

Note: If you start SAS in batch mode or server mode and the LOGCONFIGLOC=
option is specified, logging is done by the SAS logging facility. The traditional SAS log
option LOGPARM= is ignored. The traditional SAS log option LOG= is honored only
when the %S{App.Log} conversion character is specified in the logging configuration file.
For more information, see SAS Logging Facility in SAS Logging: Configuration and
Programming Reference. �

Examples

SAS System Options � LRECL= System Option 1883

Operating Environment Information: The LOGPARM= system option is executed when
SAS is invoked. When you invoke SAS at your site, the form of the syntax is specific to
your operating environment. See the SAS documentation for your operating
environment for details. �

� Rolling over the log at a certain time and using directives to name the log
according to the time: If this command is submitted at 9:43 AM, this example
creates a log file called test0943.log, and the log rolls over each time the log
filename changes. In this example, at 9:44 AM, the test0943.log file will be closed,
and the test0944.log file will be opened.

sas -log "test%H%M.log" -logparm "rollover=auto"

� Preventing log rollover but using directives to name the log: For a SAS session that
begins at 9:34 AM, this example creates a log file named test0934.log, and
prevents the log file from rolling over:

sas -log "test%H%M.log" -logparm "rollover=session"

� Preventing log rollover and preventing the resolution of directives: This example
creates a log file named test%H%M.log, ignores the directives, and prevents the
log file from rolling over during the session:

sas -log "test%H%M.log" -logparm "rollover=none"

� Creating log files with unique identifiers: This example uses a unique identifier to
create a log file with a unique name:

sas -log "test%v.log" -logparm "rollover=session"

SAS replaces the directive %v with process_IDvn, where process_ID is a numeric
process identifier that is determined by the operating system and n is an integer
number, starting with 1. The letter v that is between process_ID and n is always a
lowercase letter.

For this example, process_ID is 3755. If the file does not already exist, SAS
creates a log file with the name test3755v1.log. If test3755v1.log does exist, SAS
attempts to create a log file by incrementing n by 1, and this process continues
until SAS can generate a log file. For example, if the file test3755v1.log exists,
SAS attempts to create the file test3755v2.log.

� Naming a log file by the user that started SAS: This example creates a log filename
that contains the user name that started the SAS session:

sas -log "%l.log" -logparm "rollover=session";

See Also

“The SAS Log” in SAS Language Reference: Concepts

LRECL= System Option

Specifies the default logical record length to use for reading and writing external files.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

1884 MAPS= System Option � Chapter 7

Category: Files: External files
PROC OPTIONS GROUP= EXTFILES

Syntax
LRECL=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n
specifies the logical record length in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 32 specifies 32 bytes, and a value of 32k specifies 32,767 bytes.
Default: 256
Range: 1–32767

hexX
specifies the logical record length as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by an X. For example, the value 2dx sets
the logical record length to 45 characters.

MIN
specifies a logical record length of 1.

MAX
specifies a logical record length of 32,767.

Details
The logical record length for reading or writing external files is first determined by the
LRECL= option in the access method statement, function, or command that is used to
read or write an individual file, or the DDName value in the z/OS operating
environment. If the logical record length is not specified by any of these means, SAS
uses the value that is specified by the LRECL= system option.

Use a value for the LRECL= system option that is not an arbitrary large value.
Large values for this option can result in excessive use of memory, which can degrade
performance.

Operating Environment Information: Under z/OS, the LRECL= system option is
recognized only for reading and writing HFS files. �

MAPS= System Option

Specifies the location of the SAS library that contains SAS/GRAPH map data sets.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Graphics: Driver settings
PROC OPTIONS GROUP= GRAPHICS

SAS System Options � MERGENOBY System Option 1885

See: MAPS= System Option in the documentation for your operating environment

Syntax
MAPS=location-of-maps

Syntax Description

location-of-maps
specifies either a physical path, an environment variable, or a libref to locate the
SAS/GRAPH map data sets.
Restriction: If you specify a libref, you must specify the MAPS option in the

configuration file.

Operating Environment Information: The syntax shown here applies to the OPTIONS
statement. On the command line or in a configuration file, the syntax is specific to your
operating environment. For more information, see the SAS documentation for your
operating environment. �

Operating Environment Information: Under the Windows, UNIX, and z/OS operating
environments, you can use the APPEND or INSERT system options to add additional
location-of-maps. For more information, see the documentation for the APPEND and
INSERT system options. �

See Also

System Options:
“APPEND= System Option” on page 1791
“INSERT= System Option” on page 1871

MERGENOBY System Option

Specifies the type of message that is issued when MERGE processing occurs without an associated
BY statement.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
MERGENOBY= NOWARN |WARN | ERROR

Syntax Description

1886 MISSING= System Option � Chapter 7

NOWARN
specifies that no warning message is issued. This is the default.

WARN
specifies that a warning message is issued.

ERROR
specifies that an error message is issued.

MISSING= System Option
Specifies the character to print for missing numeric values.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log
Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

Syntax
MISSING=<’>character<’>

Syntax Description

<’>character<’>
specifies the value to be printed. The value can be any character. Single or double
quotation marks are optional. The period is the default.

Operating Environment Information: The syntax that is shown above applies to the
OPTIONS statement. However, when you specify the MISSING= system option on the
command line or in a configuration file, the syntax is specific to your operating
environment and might include additional or alternate punctuation. For details, see the
SAS documentation for your operating environment. �

Details
The MISSING= system option does not apply to special missing values such as .A and .Z.

See Also
“The SAS Log” in SAS Language Reference: Concepts

MSGLEVEL= System Option
Specifies the level of detail in messages that are written to the SAS log.

SAS System Options � MSGLEVEL= System Option 1887

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

Syntax

MSGLEVEL= N | I

Syntax Description

N
specifies to print notes, warnings, CEDA message, and error messages only. N is the
default.

I
specifies to print additional notes pertaining to index usage, merge processing, and
sort utilities, along with standard notes, warnings, CEDA message, and error
messages.

Details

Some of the conditions under which the MSGLEVEL= system option applies are as
follows:

� If MSGLEVEL=I, SAS writes informative messages to the SAS log about index
processing. In general, when a WHERE expression is executed for a data set with
indexes, the following information appears in the SAS log:

� if an index is used, a message displays that specifies the name of the index

� if an index is not used but one exists that could optimize at least one condition
in the WHERE expression, messages provide suggestions that describe what
you can do to influence SAS to use the index. For example, a message could
suggest sorting the data set into index order or to specify more buffers.

� a message displays the IDXWHERE= or IDXNAME= data set option value if
the setting can affect index processing.

� If MSGLEVEL=I, SAS writes a warning to the SAS log when a MERGE statement
would cause variables to be overwritten.

� If MSGLEVEL=I, SAS writes a message that indicates which sorting product was
used.

� For informative messages about queries by an application to a SAS/SHARE server,
MSGLEVEL=I must be set for the SAS session where the SAS/SHARE server is
running. The messages are written to the SAS log for the SAS session that runs
the SAS/SHARE server.

See Also

“The SAS Log” in SAS Language Reference: Concepts

1888 MULTENVAPPL System Option � Chapter 7

MULTENVAPPL System Option

Specifies whether the fonts available in a SAS application font selector window lists only the SAS
fonts that are available in all operating environments.

Valid in: configuration file, SAS invocation, OPTIONS statement
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
MULTENVAPPL | NOMULTENVAPPL

Syntax Description

MULTENVAPPL
specifies that an application font selector window list only the SAS fonts.

NOMULTENVAPPL
specifies that an application font selector window list only the operating environment
fonts.

Details
The MULTENVAPPL system option enables applications that support a font selection
window, such as SAS/AF, SAS/FSP, SAS/EIS, or SAS/GIS, to choose a SAS font that is
supported in all operating environments. Choosing a SAS font ensures portability of
applications across all operating environments.

When NOMULTENVAPPL is in effect, the application font selector window has
available only the fonts that are specific to your operating environment. SAS might
need to resize operating environment fonts, which could result in text that is difficult to
read. If the application is ported to another environment and the font is not available, a
font is selected by the operating environment.

NEWS= System Option

Specifies an external file that contains messages to be written to the SAS log, immediately after
the header.

Valid in: configuration file, SAS invocation

Category: Environment control: Files
Log and procedure output control: SAS log

PROC OPTIONS GROUP= ENVFILES
LOGCONTROL

See: NEWS= System Option in the documentation for your operating environment.

SAS System Options � NOTES System Option 1889

Syntax
NEWS=external-file

Syntax Description

external-file
specifies an external file.

Operating Environment Information: A valid file specification and its syntax are
specific to your operating environment. Although the syntax is generally consistent
with the command line syntax of your operating environment, it might include
additional or alternate punctuation. For details, see the SAS documentation for your
operating environment. �

Details
The NEWS file can contain information for uses, including news items about SAS.

The contents of the NEWS file are written to the SAS log immediately after the SAS
header.

See Also
“The SAS Log” in SAS Language Reference: Concepts

NOTES System Option

Specifies whether notes are written to the SAS log.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

Syntax
NOTES | NONOTES

Syntax Description

NOTES
specifies that SAS write notes to the SAS log.

NONOTES
specifies that SAS does not write notes to the SAS log. NONOTES does not suppress
error and warning messages.

1890 NUMBER System Option � Chapter 7

Details
You must specify NOTES for SAS programs that you send to SAS for problem
determination and resolution.

See Also
“The SAS Log” in SAS Language Reference: Concepts

NUMBER System Option

Specified whether to print the page number in the title line of each page of SAS output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log

Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL

LISTCONTROL

LOGCONTROL

Syntax
NUMBER | NONUMBER

Syntax Description

NUMBER
specifies that SAS print the page number on the first title line of each page of SAS
output.

NONUMBER
specifies that SAS not print the page number on the first title line of each page of
SAS output.

See Also
“The SAS Log” in SAS Language Reference: Concepts

OBS= System Option

Specifies the observation that is used to determine the last observation to process, or specifies
the last record to process.

SAS System Options � OBS= System Option 1891

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES
See: OBS= System Option in the documentation for your operating environment

Syntax
OBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies a number to indicate when to stop processing, with n being an integer.
Using one of the letter notations results in multiplying the integer by a specific
value. That is, specifying K (kilo) multiplies the integer by 1,024; M (mega)
multiplies by 1,048,576; G (giga) multiplies by 1,073,741,824; or T (tera) multiplies
by 1,099,511,627,776. For example, a value of 20 specifies 20 observations or records,
while a value of 3m specifies 3,145,728 observations or records.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8x in order to specify the
decimal equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to 0 to indicate when to stop processing.
Interaction: If OBS=0 and the NOREPLACE option is in effect, then SAS can still

take certain actions because it actually executes each DATA and PROC step in the
program, using no observations. For example, SAS executes procedures, such as
CONTENTS and DATASETS, that process libraries or SAS data sets. External
files are also opened and closed. Therefore, even if you specify OBS=0, when your
program writes to an external file with a PUT statement, an end-of-file mark is
written, and any existing data in the file is deleted.

MAX
sets the number to indicate when to stop processing to the maximum number of
observations or records, up to the largest eight-byte, signed integer, which is 263-1, or
approximately 9.2 quintillion. This is the default.

Details
OBS= tells SAS when to stop processing observations or records. To determine when to
stop processing, SAS uses the value for OBS= in a formula that includes the value for
OBS= and the value for FIRSTOBS=. The formula is

(obs - firstobs) + 1 = results
For example, if OBS=10 and FIRSTOBS=1 (which is the default for FIRSTOBS=),

the result is 10 observations or records, that is (10 - 1) + 1 = 10. If OBS=10 and
FIRSTOBS=2, the result is nine observations or records, that is, (10 - 2) + 1 = 9.

OBS= is valid for all steps during your current SAS session or until you change the
setting.

1892 OBS= System Option � Chapter 7

You can also use OBS= to control analysis of SAS data sets in PROC steps.
If SAS is processing a raw data file, OBS= specifies the last line of data to read. SAS

counts a line of input data as one observation, even if the raw data for several SAS data
set observations is on a single line.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Comparisons
� An OBS= specification from either a data set option or an INFILE statement

option takes precedence over the OBS= system option.
� While the OBS= system option specifies an ending point for processing, the

FIRSTOBS= system option specifies a starting point. The two options are often
used together to define a range of observations to be processed.

Examples

Example 1: Using OBS= to Specify When to Stop Processing Observations This
example illustrates the result of using OBS= to tell SAS when to stop processing
observations. This example creates a SAS data set, executes the OPTIONS statement
by specifying FIRSTOBS=2 and OBS=12, and executes the PRINT procedure. The result
is 11 observations, that is, (12 - 2) + 1 = 11. The result of OBS= in this situation
appears to be the observation number that SAS processes last, because the output starts
with observation 2, and ends with observation 12, but this result is only a coincidence.

data Ages;
input Name $ Age;
datalines;

Miguel 53
Brad 27
Willie 69
Marc 50
Sylvia 40
Arun 25
Gary 40
Becky 51
Alma 39
Tom 62
Kris 66
Paul 60
Randy 43
Barbara 52
Virginia 72
;
options firstobs=2 obs=12;
proc print data=Ages;
run;

SAS System Options � OBS= System Option 1893

Output 7.4 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 1

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60

Example 2: Using OBS= with WHERE Processing This example illustrates the result of
using OBS= along with WHERE processing. The example uses the data set that was
created in Example 1, which contains 15 observations, and the example assumes a new
SAS session with the defaults FIRSTOBS=1 and OBS=MAX.

First, here is the PRINT procedure with a WHERE statement. The subset of the
data results in 12 observations:

proc print data=Ages;
where Age LT 65;

run;

Output 7.5 PROC PRINT Output Using a WHERE Statement

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60
13 Randy 43
14 Barbara 52

Executing the OPTIONS statement with OBS=10 and the PRINT procedure with the
WHERE statement results in 10 observations, that is, (10 - 1) + 1 = 10. Note that
with WHERE processing, SAS first subsets the data and then SAS applies OBS= to the
subset.

options obs=10;
proc print data=Ages;

where Age LT 65;
run;

1894 OBS= System Option � Chapter 7

Output 7.6 PROC PRINT Output Using a WHERE Statement and OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60

The result of OBS= appears to be how many observations to process, because the
output consists of 10 observations, ending with the observation number 12. However,
the result is only a coincidence. If you apply FIRSTOBS=2 and OBS=10 to the subset,
the result is nine observations, that is, (10 - 2) + 1 = 9. OBS= in this situation is
neither the observation number to end with nor how many observations to process; the
value is used in the formula to determine when to stop processing.

options firstobs=2 obs=10;
proc print data=Ages;

where Age LT 65;
run;

Output 7.7 PROC PRINT Output Using WHERE Statement, OBS=, and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60

Example 3: Using OBS= When Observations Are Deleted This example illustrates the
result of using OBS= for a data set that has deleted observations. The example uses the
data set that was created in Example 1, with observation 6 deleted. The example also
assumes a new SAS session with the defaults FIRSTOBS=1 and OBS=MAX.

First, here is PROC PRINT output of the modified file:

&proc print data=Ages;
run;

SAS System Options � OBS= System Option 1895

Output 7.8 PROC PRINT Output Showing Observation 6 Deleted

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39
10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43
14 Barbara 52
15 Virginia 72

Executing the OPTIONS statement with OBS=12, then the PRINT procedure, results
in 12 observations, that is, (12 - 1) + 1 = 12:

options obs=12;
proc print data=Ages;
run;

Output 7.9 PROC PRINT Output Using OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

The result of OBS= appears to be how many observations to process, because the
output consists of 12 observations, ending with the observation number 13. However, if
you apply FIRSTOBS=2 and OBS=12, the result is 11 observations, that is (12 - 2) +
1 = 11. OBS= in this situation is neither the observation number to end with nor how
many observations to process; the value is used in the formula to determine when to
stop processing.

options firstobs=2 obs=12;
proc print data=Ages;
run;

1896 ORIENTATION= System Option � Chapter 7

Output 7.10 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

See Also

Data Set Options:
“FIRSTOBS= Data Set Option” on page 25
“OBS= Data Set Option” on page 39
“REPLACE= Data Set Option” on page 55

System Option:
“FIRSTOBS= System Option” on page 1851

ORIENTATION= System Option

Specifies the paper orientation to use when printing to a printer.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
ORIENTATION=PORTRAIT | LANDSCAPE | REVERSEPORTRAIT |

REVERSELANDSCAPE

Syntax Description

PORTRAIT
specifies the paper orientation as portrait. This is the default.

LANDSCAPE

SAS System Options � OVP System Option 1897

specifies the paper orientation as landscape.

REVERSEPORTRAIT
specifies the paper orientation as reverse portrait to enable printing on paper with
prepunched holes. The reverse side of the page is printed upside down.

REVERSELANDSCAPE
specifies the paper orientation as reverse landscape to enable printing on paper with
prepunched holes. The reverse side of the page is printed upside down.

Details
Changing the value of this option might result in changes to the values of the portable
LINESIZE= and PAGESIZE= system options.

Operating Environment Information: Most SAS system options are initialized with
default settings when you invoke SAS. However, the default settings for some SAS
system options vary both by operating environment and by site. For details, see the
SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

OVP System Option

Specifies whether overprinting of error messages to make them bold, is enabled.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL

Syntax
OVP | NOOVP

Syntax Description

OVP
specifies that overprinting of error messages is enabled.

NOOVP
specifies that overprinting of error messages is disabled. This is the default.

Details
When OVP is specified, error messages are emphasized when SAS overprints the error
message two additional times with overprint characters.

1898 PAGEBREAKINITIAL System Option � Chapter 7

When output is displayed to a monitor, OVP is overridden and is changed to NOOVP.

See Also
“The SAS Log” in SAS Language Reference: Concepts

PAGEBREAKINITIAL System Option

Specifies whether to begin the SAS log and procedure output files on a new page.

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: SAS log and procedure output

Log and procedure output control: SAS log
Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LOG_LISTCONTROL
LISTCONTROL
LOGCONTROL

See: PAGEBREAKINITIAL System Option in the documentation for your operating
environment.

Syntax
PAGEBREAKINITIAL | NOPAGEBREAKINITIAL

Syntax Description

PAGEBREAKINITIAL
specifies to begin the SAS log and procedure output files on a new page.

NOPAGEBREAKINITIAL
specifies not to begin the SAS log and procedure output files on a new page.
NOPAGEBREAKINITIAL is the default.

Details
The PAGEBREAKINITIAL option inserts a page break at the start of the SAS log and
procedure output files.

See Also
“The SAS Log” in SAS Language Reference: Concepts

PAGENO= System Option

Resets the SAS output page number.

SAS System Options � PAGESIZE= System Option 1899

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL
See: PAGENO= System Option in the documentation for your operating environment.

Syntax
PAGENO=n | nK | hexX | MIN | MAX

Syntax Description

n | nK
specifies the page number in multiples of 1 (n); 1,024 (nK). For example, a value of 8
sets the page number to 8 and a value of 3k sets the page number to 3,072.

hexX
specifies the page number as a hexadecimal number. You must specify the value
beginning with a number (0-9), followed by an X. For example, the value 2dx sets the
page number to 45.

MIN
sets the page number to the minimum number, 1.

MAX
specifies the maximum page number as the largest signed, four–byte integer that is
representable in your operating environment.

Details
The PAGENO= system option specifies a beginning page number for the next page of
output that SAS produces. Use PAGENO= to reset page numbering during a SAS
session.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

PAGESIZE= System Option

Specifies the number of lines that compose a page of SAS output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Alias: PS=

Category: Log and procedure output control: SAS log and procedure output
Log and procedure output control: SAS log

1900 PAPERDEST= System Option � Chapter 7

Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LOG_LISTCONTROL

LISTCONTROL
LOGCONTROL

See: PAGESIZE= System Option in the documentation for your operating environment.

Syntax
PAGESIZE=n| nK | hexX | MIN | MAX

Syntax Description

n | nK
specifies the number of lines that compose a page in terms of lines (n)or units of
1,024 lines (nK).

hex
specifies the number of lines that compose a page as a hexadecimal number. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the value 2dx sets the number of lines that compose a page to 45 lines.

MIN
sets the number of lines that compose a page to the minimum setting, 15.

MAX
sets the number of lines that compose a page to the maximum setting, 32,767.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, valid values and
range vary with your operating environment. For details, see the SAS documentation
for your operating environment. �

Details
The PAGESIZE= system option affects the following output:

� the Output window for the ODS LISTING destination
� the ODS markup destinations when the PRINT option is used in the FILE

statement in a DATA step (the FILE PRINT ODS statement is not affected by the
PAGESIZE= system option)

� procedures that produce characters that cannot be scaled, such as the PLOT
procedure, the CALENDAR procedure, the TIMEPLOT procedure, the FORMS
procedure, and the CHART procedure

See Also
“The SAS Log” in SAS Language Reference: Concepts

PAPERDEST= System Option

Specifies the name of the output bin to receive printed output.

SAS System Options � PAPERSIZE= System Option 1901

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT
Restriction: This option is ignored if the printer does not have multiple output bins.

Syntax
PAPERDEST=printer-bin-name

Syntax Description

printer-bin-name
specifies the bin to receive printed output.

Restriction: Maximum length is 200 characters.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

See Also

System Options:

“PAPERSIZE= System Option” on page 1901

“PAPERSOURCE= System Option” on page 1903
“PAPERTYPE= System Option” on page 1904

PAPERSIZE= System Option

Specifies the paper size to use for printing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Language control
Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= LANGUAGECONTROL

ODSPRINT

1902 PAPERSIZE= System Option � Chapter 7

Syntax
PAPERSIZE=paper_size_name| (“width_value” <,> “height_value”)| (’width_value’<,>

’height_value’) | (width_value height_value)

Syntax Description

paper_size_name
specifies a predefined paper size. The default is either LETTER or A4, depending on
the locale.
Default: Letter
Valid Values: Refer to the Registry Editor, or use PROC REGISTRY to obtain a

listing of supported paper sizes. Additional values can be added.
Requirement: When the name of a predefined paper size contains spaces, enclose

the name in single or double quotation marks.
Restriction: The maximum length is 200 characters.

(“width_value”, “height_value”)
specifies paper width and height as positive floating-point values.
Default: inches
Range: in or cm for width_value, height_value

Details
If you specify a predefined paper size or a custom size that is not supported by your
printer, the printer default paper size is used. The printer default paper size is locale
dependent and can be changed using the Page Setup dialog box.

Fields that specify values for paper sizes can either be separated by blanks or
commas.

Note: Changing the value of this option can result in changes to the values of the
portable LINESIZE= and PAGESIZE= system options. �

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options can vary both by operating environment and by site. For
details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see ODS
statements in the SAS Output Delivery System: User’s Guide.

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

Examples
The first OPTIONS statement sets a paper size value that is a paper size name from
the SAS Registry. The second OPTIONS statement sets a specific width and height for
a paper size.

options papersize="480x640 Pixels";
options papersize=("4.5" "7");

In the first example, quotation marks are required because there is a space in the
name.

In the second example, quotation marks are not required. When no measurement
units are specified, SAS writes the following warning to the SAS log:

SAS System Options � PAPERSOURCE= System Option 1903

WARNING: Units were not specified on the PAPERSIZE option. Inches will be used.
WARNING: Units were not specified on the PAPERSIZE option. Inches will be used.

You can avoid the warning message by adding the unit type, in or cm, to the value with
no space separating the value and the unit type:

options papersize=(4.5in 7in);

See Also

System Options:

“PAPERDEST= System Option” on page 1900

“PAPERSOURCE= System Option” on page 1903

“PAPERTYPE= System Option” on page 1904

PAPERSOURCE= System Option

Specifies the name of the paper bin to use for printing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Restriction: This option is ignored if the printer does not have multiple input bins.

Syntax
PAPERSOURCE=printer-bin-name

Syntax Description

printer-bin-name
specifies the bin that sends paper to the printer.

Operating Environment Information: For instructions on how to specify a printer bin,
see the SAS documentation for your operating environment. �

See Also

System Options:

“PAPERDEST= System Option” on page 1900

“PAPERSIZE= System Option” on page 1901

“PAPERTYPE= System Option” on page 1904

1904 PAPERTYPE= System Option � Chapter 7

For information about declaring an ODS printer destination, see the ODS PRINTER
statement in SAS Output Delivery System: User’s Guide.

For information about SAS Universal Printing, see Printing with SAS in SAS
Language Reference: Concepts.

PAPERTYPE= System Option

Specifies the type of paper to use for printing.

Valid in: configuration file, SAS invocation, OPTIONS statement SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
PAPERTYPE=paper-type-string

Syntax Description

paper-type-string
specifies the type of paper. Maximum length is 200.
Range: Values vary by printer, site, and operating environment.
Default: Values vary by site and operating environment.

Operating Environment Information: For instructions on how to specify the type of
paper, see the SAS documentation for your operating environment. There is a very
large number of possible values for this option. �

See Also

System Options:
“PAPERDEST= System Option” on page 1900
“PAPERSIZE= System Option” on page 1901
“PAPERSOURCE= System Option” on page 1903

For information about declaring an ODS printer destination, see the ODS PRINTER
statement in SAS Output Delivery System: User’s Guide

For information about SAS Universal Printing, see Printing with SAS in SAS
Language Reference: Concepts.

PARM= System Option

Specifies a parameter string that is passed to an external program.

SAS System Options � PARMCARDS= System Option 1905

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES

Syntax
PARM=<’>string<’>

Syntax Description

<’>string<’>
specifies a character string that contains a parameter.

Examples

This statement passes the parameter X=2 to an external program:

options parm=’x=2’;

Operating Environment Information: Other methods of passing parameters to external
programs depend on your operating environment and on whether you are running in
interactive line mode or batch mode. For details, see the SAS documentation for your
operating environment. �

PARMCARDS= System Option

Specifies the file reference to open when SAS encounters the PARMCARDS statement in a
procedure.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
See: PARMCARDS= System Option in the documentation for your operating
environment.

Syntax
PARMCARDS=file-ref

Syntax Description

file-ref
specifies the file reference to open.

1906 PDFACCESS System Option � Chapter 7

Details

The PARMCARDS= system option specifies the file reference of a file that SAS opens
when it encounters a PARMCARDS (or PARMCARDS4) statement in a procedure.

SAS writes all data lines after the PARMCARDS (or PARMCARDS4) statement to
the file until it encounters a delimiter line of either one or four semicolons. The file is
then closed and made available to the procedure to read. There is no parsing or macro
expansion of the data lines.

Operating Environment Information: The syntax shown here applies to the OPTIONS
statement. On the command line or in a configuration file, the syntax is specific to your
operating environment. For details, see the SAS documentation for your operating
environment. �

PDFACCESS System Option

Specifies whether text and graphics from PDF documents can be read by screen readers for the
visually impaired.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: PDF

PROC OPTIONS GROUP= PDF

Syntax

PDFACCESS | NOPDFACCESS

Syntax Description

PDFACCESS
specifies that text and graphics from an ODS PDF document can be read by screen
readers for the visually impaired.

NOPDFACCESS
specifies that text and graphics from an ODS PDF document cannot be read by
screen readers for the visually impaired.

Details

When the PDFSECURITY system option is set to HIGH, SAS sets the PDFACCESS
option. If the PDFSECURITY option is set to LOW or NONE, this option is not
functional. When the PDFSECURITY option is set to NONE, screen readers can read
PDF text and graphics.

The following document properties are set for this option:

SAS System Options � PDFASSEMBLY System Option 1907

Value of PDFACCESS Value of PDFSECURITY Document Properties

NOPDFACCESS HIGH Content Extraction
for Accessibility is set
to Not Allowed.

See Also

System Options:
“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFASSEMBLY System Option

Specifies whether PDF documents can be assembled.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: PDF
PROC OPTIONS GROUP= PDF

Syntax
PDFASSEMBLY | NOPDFASSEMBLY

Syntax Description

PDFASSEMBLY
specifies that PDF documents can be assembled.

NOPDFASSEMBLY
specifies that PDF documents cannot be assembled. This is the default.

Details
When a PDF document is assembled, pages can be rotated, inserted, and deleted, and
bookmarks and thumbnail images can be added.

When the PDFSECURITY system option is set to HIGH, SAS sets the
PDFASSEMBLY option. If the PDFSECURITY option is set to LOW or NONE, this
option is not functional. When the PDFSECURITY option is set to NONE, PDF
documents can be assembled.

See Also

1908 PDFCOMMENT System Option � Chapter 7

System Options:
“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFCOMMENT System Option

Specifies whether PDF document comments can be modified.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: PDF
PROC OPTIONS GROUP= PDF

Syntax
PDFCOMMENT | NOPDFCOMMENT

Syntax Description

PDFCOMMENT
specifies that PDF document comments can be modified.

NOPDFCOMMENT
specifies that PDF document comments cannot be modified. This is the default.

Details
When the PDFSECURITY system option is set to either LOW or HIGH, SAS sets the
PDFCOMMENT option. If the PDFSECURITY option is set to NONE, the
PDFCOMMENT option is not functional and PDF document comments can be modified.

The following document properties are set for this option:

Value of PDFCOMMENT Value of PDFSECURITY Document Properties

NOPDFCOMMENT LOW Commenting is set to Not
Allowed

Filling in of fields is
set to Not Allowed

When PDFSECURITY=LOW, the settings for the PDFCOMMENT and PDFFILLIN
options are dependent on each other. A change in either of these options changes the
other option to the similar setting. For example, if PDFSECURITY=LOW, and
PDFCOMMENT and PDFFILLIN are set, and if the PDFCOMMENT setting is
modified to NOPDFCOMMENT, then SAS sets NOPDFFILLIN. When
PDFSECURITY=HIGH, PDFCOMMENT and PDFFILLIN can be set independently.

SAS System Options � PDFCONTENT System Option 1909

See Also

System Options:

“PDFFILLIN System Option” on page 1911

“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFCONTENT System Option

Specifies whether the contents of a PDF document can be changed.

Requirement: Adobe Acrobat Reader or Professional 3.0 and later versions

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: PDF

PROC OPTIONS GROUP= PDF

Syntax
PDFCONTENT | NOPDFCONTENT

Syntax Description

PDFCONTENT
specifies that the contents of a PDF document can be changed.

NOPDFCONTENT
specifies that the contents of a PDF document cannot be changed.

Details
When the PDFSECURITY option is set to either LOW or HIGH, SAS sets the
PDFCONTENT option. If the PDFSECURITY option is set to NONE, this option is not
functional and the PDF document can be changed.

The following document properties are set for this option:

Value of PDFCONTENT Value of PDFSECURITY Document Properties

PDFCONTENT HIGH Page Extraction and
Commenting are set to Not
Allowed.

NOPDFCONTENT Not applicable Changing the Document
and Document Assembly
are both set to Not Allowed.

1910 PDFCOPY System Option � Chapter 7

See Also

System Options:
“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFCOPY System Option

Specifies whether text and graphics from a PDF document can be copied.

Requirement: Adobe Acrobat Reader or Professional 3.0 and later versions
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: PDF
PROC OPTIONS GROUP= PDF

Syntax
PDFCOPY | NOPDFCOPY

Syntax Description

PDFCOPY
specifies that text and graphics from a PDF document can be copied. This is the
default.

NOPDFCOPY
specifies that text and graphics from a PDF document cannot be copied.

Details
When the PDFSECURITY system option is set to either LOW or HIGH, SAS sets the
PDFCOPY option. If the PDFSECURITY option is set to NONE, this option is not
functional and PDF documents can be copied.

The following document properties are set for this option:

SAS System Options � PDFFILLIN System Option 1911

Value of PDFCOPY Value of PDFSECURITY Document Properties

NOPDFCOPY LOW Printing, Content
Copying, and Content
Copying for
Accessibility are set to
Allowed. All other properties
are set to Not Allowed.

NOPDFCOPY HIGH Changing the Document,
Document Assembly,
Content Copying, Page
Extraction, and
Commenting are set to Not
Allowed.

See Also

System Options:

“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFFILLIN System Option

Specifies whether PDF forms can be filled in.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: PDF

PROC OPTIONS GROUP= PDF

Syntax
PDFFILLIN | NOPDFFILLIN

Syntax Description

PDFFILLIN
specifies that PDF forms can be filled in.

NOPDFFILLIN
specifies that PDF forms cannot be filled in.

1912 PDFPAGELAYOUT= System Option � Chapter 7

Details
When the PDFSECURITY option is set to HIGH, SAS sets the PDFFILLIN option. If
the PDFSECURITY option is set to LOW or NONE, this option is not functional. When
the PDFSECURITY option is set to NONE, PDF forms can be filled in.

The following document properties are set for this option:

Value of PDFFILLIN Value of PDFSECURITY Document Properties

NOPDFFILLIN LOW Changing the Document,
Document Assembly, Page
Extraction, Commenting,
Filling of form
fields, Signing, and
Creation of Template
Pages are set to Not
Allowed.

When PDFSECURITY=LOW, the settings for the PDFCOMMENT and PDFFILLIN
options are dependent on each other. A change in either of these options changes the
other option to the similar setting. For example, if PDFSECURITY=LOW, and
PDFCOMMENT and PDFFILLIN are set, and if the PDFCOMMENT setting is
modified to NOPDFCOMMENT, then SAS sets NOPDFFILLIN. When
PDFSECURITY=HIGH, PDFCOMMENT and PDFFILLIN can be set independently.

See Also

System Options:

“PDFCOMMENT System Option” on page 1908

“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFPAGELAYOUT= System Option

Specifies the page layout for PDF documents.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: PDF

PROC OPTIONS GROUP= PDF

Syntax
PDFPAGELAYOUT= DEFAULT | SINGLEPAGE | CONTINUOUS | FACING |

CONTINUOUSFACING

SAS System Options � PDFPAGEVIEW= System Option 1913

Syntax Description

DEFAULT
specifies to use the current page layout for Acrobat Reader. This is the default.

SINGLEPAGE
specifies to display one page at a time in the viewing area.

CONTINUOUS
specifies to display all document pages in the viewing area in a single column.

FACING
specifies to display only two pages in the viewing area, with the even pages on the
left and the odd pages on the right.
Requirement: Acrobat Reader 5.0 or later version is required.

CONTINUOUSFACING
specifies to display all pages in the viewing area, two pages side by side. The even
pages display on the left, and the odd pages display on the right.

See Also

System option:
“ PDFPAGEVIEW= System Option” on page 1913

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFPAGEVIEW= System Option

Specifies the page viewing mode for PDF documents.

Requirement: Adobe Acrobat Reader or Professional 5.0 and later versions
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: PDF
PROC OPTIONS GROUP= PDF

Syntax
PDFPAGEVIEW= DEFAULT | ACTUAL | FITPAGE | FITWIDTH | FULLSCREEN

Syntax Description

DEFAULT
specifies to use the current page view setting for Acrobat Reader. This is the default.

ACTUAL
specifies to set the page view setting to 100%.

1914 PDFPASSWORD= System Option � Chapter 7

FITPAGE
specifies to view a page using the full extent of the viewing window, maintaining the
height and width aspect ratio.

FITWIDTH
specifies to view a page using the full width of the viewing window. The height of the
document is not scaled to fit the page.

FULLSCREEN
specifies to view a page using the full screen. This option disables the table of
contents, bookmarks, and all other document access aids, such as accessing a specific
page.

See Also

System option:
“ PDFPAGEVIEW= System Option” on page 1913

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFPASSWORD= System Option

Specifies the password to use to open a PDF document and the password used by a PDF document
owner.

Requirement: Adobe Acrobat Reader or Professional 3.0 and later versions
Alias: PDFPW
Valid in: configuration file, SAS invocation, OPTIONS statement
Category: Log and procedure output control: PDF

System administration: Security
PROC OPTIONS GROUP= PDF

SECURITY
Security

Syntax
PDFPASSWORD=(OPEN=<">password<"> | OPEN="" < <,>

OWNER=<">password<"> | OWNER="">)

PDFPASSWORD=(OWNER=<">password<"> | OWNER="" <<,>
OPEN=<">password<"> | OPEN="">)

PDFPASSWORD=(OPEN=<">password<"> | OPEN="")

PDFPASSWORD=(OWNER=<">password<"> | OWNER="")

Syntax Description

OPEN="password"

SAS System Options � PDFPRINT= System Option 1915

specifies the password to open a PDF document. The quotation marks are optional.

password
specifies a set of characters, up to 32 characters, that are used to validate that a
user has permission to open a PDF document.
Restriction: The OPEN password must be different from the OWNER password.

OPEN=""
specifies to reset the password to open a PDF document to null. When the password
is set to null, no password is necessary to open a PDF document. This is the default.
Restriction: Null values are not valid.

OWNER="password"
specifies the password for the PDF document owner. The quotation marks are
optional.

password
specifies a set of characters, up to 32 characters, that are used to validate the
owner of a PDF document.
Restriction: The OWNER password must be different from the OPEN password.
Restriction: Null values are not valid.

OWNER=""
specifies to reset the password used by a PDF document owner to null. When the
password is set to null, the owner does not need a password for the PDF document.
This is the default.
Restriction: Null values are not valid.

Details
You can set the PDFPASSWORD option at any time, but it is ignored until the
PDFSECURITY system option is set to either LOW or HIGH. When the
PDFSECURITY option is set to NONE, passwords for a PDF document are not needed.

See Also

System option:
“ PDFPAGEVIEW= System Option” on page 1913
“PDFSECURITY= System Option” on page 1916

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFPRINT= System Option

Specifies the resolution to print PDF documents.

Requirement: Adobe Acrobat Reader or Professional 3.0 and later versions, depending on
PDFPRINT setting
Valid in: configuration files, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: PDF
PROC OPTIONS GROUP= PDF

1916 PDFSECURITY= System Option � Chapter 7

Syntax
PDFPRINT= HRES | LRES | NONE

Syntax Description

HRES
specifies to print PDF documents at the highest resolution available on the printer.
This is the default for Acrobat Reader or Professional 5.0 and later versions.
Requirement: Acrobat Reader or Professional 5.0 and later versions.

LRES
specifies to print PDF documents at a lower resolution for draft-quality documents.

Requirement: Acrobat Reader or Professional 3.0 and later versions.

Restriction: PDFPRINT=LRES can be set only when the PDFSECURITY option is
set to HIGH.

NONE
specifies the PDF documents have no print resolution.
Requirement: Any version of Acrobat Reader or Professional.

Restriction: PDFPRINT=NONE can be set only when the PDFSECURITY option is
set to HIGH or LOW.

Details
When the PDFSECURITY option is set to NONE, PDF documents can be printed.

The following table shows the option settings for allowing high and low resolution
printing:

Value of PDFPRINT Value of PDFSECURITY Printing Resolution Allowed

LRES LOW High resolution printing

LRES HIGH Low resolution (150 dpi)
printing

See Also

System option:

“ PDFPAGEVIEW= System Option” on page 1913

Securing ODS Generated PDF Files in SAS Language Reference: Concepts

PDFSECURITY= System Option

Specifies the printing permissions for PDF documents.

SAS System Options � PDFSECURITY= System Option 1917

Requirements: Adobe Acrobat Reader or Professional 3.0 and later versions, unless
otherwise noted.
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Restriction: The PDFSECURITY option is valid for UNIX, Windows, and z/OS operating
systems, but only in countries where importing encryption software is legal.
Category: Log and procedure output control: PDF

System administration: Security
PROC OPTIONS GROUP= PDF

SECURITY

Syntax
PDFSECURITY= HIGH | LOW | NONE

Syntax Description

HIGH
specifies that SAS encrypts PDF documents using a 128-bit encryption algorithm.
Requirements: When PDFSECURITY=HIGH, you must use Acrobat 5.0 or later

version.
Interaction: At least one password must be set using the PDFPASSWORD= system

option when PDFSECURITY=HIGH or LOW.

LOW
specifies that SAS encrypts PDF documents using a 40-bit encryption algorithm.
Interaction: At least one password must be set using the PDFPASSWORD= system

option when PDFSECURITY=HIGH or LOW.

NONE
specifies that no encryption is performed on PDF documents. This is the default.

Details
The following table shows the PDF options that SAS sets when the PDFSECURITY
option is set to HIGH, LOW, or NONE. When the PDFSECURITY option is set to
NONE, there are no restrictions on PDF documents, and the PDF options are not
functional.

Table 7.5 How SAS Sets PDF Options Values for the PDFSECURITY Settings

PDFSECURITY Settings

Option HIGH LOW NONE

PDFACCESS PDFACCESS Not functional Not functional

PDFASSEMBLY PDFASSEMBLY Not functional Not functional

PDFCOMMENT PDFCOMMENT PDFCOMMENT Not functional

PDFCONTENT PDFCONTENT PDFCONTENT Not functional

PDFCOPY PDFCOPY PDFCOPY Not functional

1918 PRIMARYPROVIDERDOMAIN= System Option � Chapter 7

PDFFILLIN PDFFILLIN Not functional Not functional

PDFPRINT PRFPRINT=HRES PDFPRINT=HRES Not functional

See Also

System option:
“PDFACCESS System Option” on page 1906

“PDFASSEMBLY System Option” on page 1907
“PDFCOMMENT System Option” on page 1908
“PDFCONTENT System Option” on page 1909
“PDFCOPY System Option” on page 1910

“PDFFILLIN System Option” on page 1911
“PDFPASSWORD= System Option” on page 1914
“PDFPRINT= System Option” on page 1915

“Securing ODS Generated PDF Files” in SAS Output Delivery System: User’s Guide

PRIMARYPROVIDERDOMAIN= System Option

Specifies the domain name of the primary authentication provider.

Valid in: configuration file, SAS invocation
Alias PRIMPD=

Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
PRIMARYPROVIDERDOMAIN=domain-name

Syntax Description

domain-name
specifies the name of the domain that authenticates user names.
Requirement: If the domain name contains one or more spaces, the domain name

must be enclosed in quotation marks.

Details
By default, users who log on to the SAS Metadata Server are authenticated by the
operating system that hosts the SAS Metadata Server. You can specify an alternate
authentication provider by using the AUTHPROVIDERDOMAIN= system option. User
IDs that are verified by an alternate authentication provider must be in the format
user-ID@domain-name (for example, user1@sas.com).

SAS System Options � PRIMARYPROVIDERDOMAIN= System Option 1919

By specifying an authentication provider and a domain name that use the
AUTHPROVIDERDOMAIN= and PRIMARYPROVIDERDOMAIN= system options,
respectively, you enable users to log on to the SAS Metadata Server by using their
usual user ID without using a domain-name suffix on the user ID. For example, by
specifying the following system options, users who log on as user-ID or
user-ID@mycompany.com can be verified by the authentication provider that is specified
by the AUTHPROVIDERDOMAIN= system option:

-authproviderdomain ldap:mycompany
-primaryproviderdomain mycompany.com

If you specify the PRIMARYPROVIDERDOMAIN system option without specifying
the AUTHPROVIDERDOMAIN system option, authentication is performed by the host
provider.

Comparison
You use the AUTHPROVIDERDOMAIN system option to register and name your Active
Directory provider or other LDAP provider. You use the PRIMARYPROVIDERDOMAIN
system option to designate the primary authentication provider.

Examples

The following examples show the system options that you might use in a
configuration file to define a primary authentication provider domain-name:

Active Directory

/* Environment variables that describe your Active Directory server */
-set AD_HOST myhost

/* Define authentication provider */
-authpd ADIR:mycomapny.com
-primpd mycompany.com

LDAP

/* Environment variables that describe your LDAP server */
-set LDAP_HOST myhost
-set LDAP_BASE "ou=emp, o=us"

/* Define authentication provider */
-authpd LDAP:mycompany.com
-primpd mycompany.com

See Also

System option:

“AUTHPROVIDERDOMAIN System Option” on page 1793

AUTHSERVER System Option in the SAS Companion for Windows

“Direct LDAP Authentication” in the SAS Intelligence Platform: Security
Administration Guide

1920 PRINTERPATH= System Option � Chapter 7

PRINTERPATH= System Option

Specifies the name of a registered printer to use for Universal Printing.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Restriction: The PRINTERPATH= system option is ignored when the DEVICE= system
option is set to the ActiveX or Java devices.

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
PRINTERPATH=(’printer-name’ <fileref>)

Syntax Description

’printer-name’
must be one of the printers defined in the Registry Editor under Core � Printing �
Printers

Requirement: When the printer name contains blanks, you must enclose it in
quotation marks.

fileref
is an optional fileref. If a fileref is specified, it must be defined with a FILENAME
statement or an external allocation. If a fileref is not specified, the default output
destination can specify a printer in the Printer Setup dialog box, which you open by
selecting File � Printer Setup. Parentheses are required only when a fileref is
specified.

Details
If the PRINTERPATH= option is not a null string, then Universal Printing will be used.
If the PRINTERPATH= option does not specify a valid Universal Printing printer, then
the default Universal Printer is used.

Comparisons
A related system option SYSPRINT specifies which operating system printer will be
used for printing. PRINTERPATH= specifies which Universal Printing printer will be
used for printing.

The operating system printer specified by the SYSPRINT option is used when
PRINTERPATH="" (two double quotation marks with no space between them sets a
null string).

Examples

The following example specifies an output destination that is different from the
default:

SAS System Options � PRINTINIT System Option 1921

options PRINTERPATH=(corelab out);
filename out ’your_file’;

Operating Environment Information: In some operating environments, setting the
PRINTERPATH= option might not change the setting of the PMENU print button,
which might continue to use operating environment printing. See the SAS
documentation for your operating environment for more information.

For additional information about declaring an ODS printer destination, see ODS
statements in SAS Output Delivery System: User’s Guide. �

For additional information about the SAS universal print facility, see “Printing with
SAS” in SAS Language Reference: Concepts.

PRINTINIT System Option

Specifies whether to initialize the SAS procedure output file.

Valid in: configuration file, SAS invocation
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL
See: PRINTINIT System Option in the documentation for your operating environment.

Syntax
PRINTINIT | NOPRINTINIT

Syntax Description

PRINTINIT
specifies to initialize the SAS procedure output file and resets the file attributes.
Tip: Specifying PRINTINIT causes the SAS procedure output file to be cleared even

when output is not generated.

NOPRINTINIT
specifies to preserve the existing procedure output file if no new output is generated.
This is the default.
Tip: Specifying NOPRINTINIT causes the SAS procedure output file to be

overwritten only when new output is generated.

Details
Operating Environment Information: The behavior of the PRINTINIT system option
depends on your operating environment. For additional information, see the SAS
documentation for your operating environment. �

1922 PRINTMSGLIST System Option � Chapter 7

PRINTMSGLIST System Option

Specifies whether to print all messages to the SAS log or to print only top-level messages to the
SAS log.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL

Syntax
PRINTMSGLIST | NOPRINTMSGLIST

Syntax Description

PRINTMSGLIST
specifies to print the entire list of messages to the SAS log. PRINTMSGLIST is the
default.

NOPRINTMSGLIST
specifies to print only the top-level message to the SAS log.

Details
For Version 7 and later versions, the return code subsystem allows for lists of return
codes. All of the messages in a list are related, in general, to a single error condition,
but give different levels of information. This option enables you to see the entire list of
messages or just the top-level message.

See Also
“The SAS Log” in SAS Language Reference: Concepts

QUOTELENMAX System Option

If a quoted string exceeds the maximum length allowed, specifies whether SAS writes a warning
message to the SAS log.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
QUOTELENMAX | NOQUOTELENMAX

SAS System Options � REPLACE System Option 1923

Syntax Description

QUOTELENMAX
specifies that SAS write a warning message to the SAS log about the maximum
length for strings in quotation marks.

NOQUOTELENMAX
specifies that SAS does not write a warning message to the SAS log about the
maximum length for strings in quotation marks.

Details
If a string in quotation marks is too long, SAS writes the following warning to the SAS
log:

WARNING 32-169: The quoted string currently being processed has become
more than 262 characters long. You may have unbalanced
quotation marks.

If you are running a program that has long strings in quotation marks, and you do
not want to see this warning, use the NOQUOTELENMAX system option to turn off
the warning.

REPLACE System Option

Specifies whether permanently stored SAS data sets can be replaced.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

Syntax
REPLACE | NOREPLACE

Syntax Description

REPLACE
specifies that a permanently stored SAS data set can be replaced with another SAS
data set of the same name.

NOREPLACE
specifies that a permanently stored SAS data set cannot be replaced with another
SAS data set of the same name, which prevents the accidental replacement of
existing SAS data sets.

1924 REUSE= System Option � Chapter 7

Details
This option has no effect on data sets in the WORK library, even if you use the
WORKTERM= system option to store the WORK library files permanently.

Comparisons
The REPLACE= data set option overrides the REPLACE system option.

See Also

System Option:
“WORKTERM System Option” on page 1995

Data Set Option:
“REPLACE= Data Set Option” on page 55

REUSE= System Option

Specifies whether SAS reuses space when observations are added to a compressed SAS data set.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
REUSE=YES | NO

Syntax Description

YES
specifies to track free space and reuses it whenever observations are added to an
existing compressed data set.

NO
specifies not to track free space. This is the default.

Details
If space is reused, observations that are added to the SAS data set are inserted
wherever enough free space exists, instead of at the end of the SAS data set.

Specifying REUSE=NO results in less efficient usage of space if you delete or update
many observations in a SAS data set. However, the APPEND procedure, the FSEDIT
procedure, and other procedures that add observations to the SAS data set continue to
add observations to the end of the data set, as they do for uncompressed SAS data sets.

SAS System Options � RIGHTMARGIN= System Option 1925

You cannot change the REUSE= attribute of a compressed SAS data set after it is
created. Space is tracked and reused in the compressed SAS data set according to the
REUSE= value that was specified when the SAS data set was created, not when you
add and delete observations. Even with REUSE=YES, the APPEND procedure will add
observations at the end.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Comparisons
The REUSE= data set option overrides the REUSE= system option.

PERFORMANCE NOTE: When using COMPRESS=YES and REUSE=YES system
options settings, observations cannot be addressed by observation number.

Note that REUSE=YES takes precedence over the POINTOBS=YES data set option
setting.

See Also

System Option:
“COMPRESS= System Option” on page 1817

Data Set Options:
“COMPRESS= Data Set Option” on page 19
“REUSE= Data Set Option” on page 56

RIGHTMARGIN= System Option

Specifies the print margin for the right side of the page for output directed to an ODS printer
destination.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
RIGHTMARGIN=margin-size<margin-unit>

Syntax Description

margin-size
specifies the size of the margin.
Restriction: The right margin should be small enough so that the left margin plus

the right margin is less than the width of the paper.

1926 RLANG System Option � Chapter 7

Interactions: Changing the value of this option might result in changes to the
value of the LINESIZE= system option.

<margin-unit>
specifies the units for margin-size. The margin-unit can be in for inches or cm for
centimeters. <margin-unit> is saved as part of the value of the RIGHTMARGIN
system option.
Default: inches

Details
All margins have a minimum that is dependent on the printer and the paper size. The
default value of the RIGHTMARGIN system option is 0.00 in.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see the ODS
statements in SAS Output Delivery System: User’s Guide

See Also

System Options:
“BOTTOMMARGIN= System Option” on page 1796
“LEFTMARGIN= System Option” on page 1877
“TOPMARGIN= System Option” on page 1978

RLANG System Option

Specifies whether SAS executes R language statements.

Valid in: configuration file, SAS invocation
Category: System administration: Security
PROC OPTIONS GROUP= SECURITY

Syntax
RLANG | NORLANG

Syntax Description

RLANG
specifies that SAS executes R language statements in operating environments that
support the R language.

NORLANG

SAS System Options � S= System Option 1927

specifies that SAS is not to execute R language statements. This is the default value.

Details
If RLANG is specified and the R language is not supported in the operating
environment, SAS writes a message to the SAS log. The message indicates that the R
language is not supported and asks you to call SAS Technical Support. SAS Technical
Support would like to track the operating environments where users would like SAS to
execute R language statements, but the R language is not supported.

RSASUSER System Option

Specifies whether to open the SASUSER library for read access or read-write access.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
See: RSASUSER System Option in the documentation for your operating environment.

Syntax
RSASUSER | NORSASUSER

Syntax Description

RSASUSER
opens the SASUSER library in read-only mode.

NORSASUSER
opens the SASUSER library in read-write mode.

Details
The RSASUSER system option is useful for sites that use a single SASUSER library for
all users and want to prevent users from modifying it. However, it is not useful when
users use SAS/ASSIST software, because SAS/ASSIST requires writing to the
SASUSER library.

Operating Environment Information: For network considerations about using the
RSASUSER system option, see the SAS documentation for your operating
environment. �

S= System Option

Specifies the length of statements on each line of a source statement and the length of data on
lines that follow a DATALINES statement.

1928 S= System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
S=n| nK | nM | nG | nT| hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the length of statements and data in terms of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes).
For example, a value of 8 specifies 8 bytes, and a value of 3m specifies 3,145,728 bytes.

hexX
specifies the length of statements and data as a hexadecimal number. You must
specify the value beginning with a number (0–9), followed by an X. For example, the
value 2dx sets the length of statements and data to 45.

MIN
sets the length of statements and data to 0.

MAX
sets the length of statements and data to 2,147,483,647.

Details
Input can be from either fixed-length or variable-length records. Both fixed-length and
variable-length records can be sequenced or unsequenced. The location of the sequence
numbers is determined by whether the file record format is fixed-length or
variable-length.

SAS uses the value of S to determine whether to look for sequence numbers in the
input, and to determine how to read the input:

SAS System Options � S= System Option 1929

Record Type Value of S SAS Looks for
Sequence Numbers

How SAS Reads The
Input

Fixed-length S>0 or S=MAX No The value of S is used
as the length of the
source or data to be
scanned and ignores
everything beyond
that length on each
line.

Fixed-length S=0 or S=MIN Yes, at the end of the
line of input.

SAS inspects the last
n columns (where n is
the value of the SEQ=
system option) of the
first sequence field.

If those columns
contain numbers, they
are assumed to be
sequence numbers and
SAS ignores the last
eight columns of each
line.

If the n columns
contain non-digit
characters, SAS reads
the last eight columns
as data columns.

1930 S= System Option � Chapter 7

Record Type Value of S SAS Looks for
Sequence Numbers

How SAS Reads The
Input

Variable-length S>0 or S=MAX No The value of S is used
as the starting column
of the source or data
to be scanned and
ignores everything
before that length on
each line.

Variable-length S=0 or S=MIN Yes, at the beginning
of each line of input.

SAS inspects the last
n columns (where n is
the value of the SEQ=
system option) of the
first sequence field.

If those columns
contain numbers, they
are assumed to be
sequence numbers and
SAS ignores the first
eight columns of each
line.

If the n columns
contain non-digit
characters, SAS reads
the first eight columns
as data columns.

Comparisons
The S= system option operates exactly like the S2= system option except that S2=
controls input only from a %INCLUDE statement, an autoexec file, or an autocall macro
file.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

See Also

System Options:
“S2= System Option” on page 1931
“S2V= System Option” on page 1934
“SEQ= System Option” on page 1936

SAS System Options � S2= System Option 1931

S2= System Option

Specifies the length of statements on each line of a source statement from a %INCLUDE
statement, an autoexec file, or an autocall macro file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
S2=S | n | nK | nM | nG | nT | MIN | MAX | hexX

Syntax Description

S
uses the current value of the S= system option to compute the record length of text
that comes from a %INCLUDE statement, an autoexec file, or an autocall macro file.

n | nK | nM | nG | nT
specifies the length of the statements in a file that is specified in a %INCLUDE
statement, an autoexec file, or an autocall macro file, in terms of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776
(terabytes). For example, a value of 8 specifies 8 bytes, and a value of 3m specifies
3,145,728 bytes.

hexX
specifies the length of statements as a hexadecimal number. You must specify the
value beginning with a number (0 - 9), followed by an X. For example, the value 2dx
sets the length of statements to 45.

MIN
sets the length of statements and data to 0.

MAX
sets the length of statements and data to 2,147,483,647.

Details
Input can be from either fixed-length or variable-length records. Both fixed-length and
variable-length records can be sequenced or unsequenced. The location of the sequence
numbers is determined by whether the file record format is fixed-length or
variable-length.

SAS uses the value of S2 to determine whether to look for sequence numbers in the
input, and to determine how to read the input:

1932 S2= System Option � Chapter 7

Record Type Value of S2 SAS Looks for
Sequence Numbers

How SAS Reads The
Input

Fixed-length S2>0 or S2=MAX No The value of S2 is
used as the length of
the source or data to
be scanned and
ignores everything
beyond that length on
each line.

Fixed-length S2=0 or S2=MIN Yes, at the end of the
line of input.

SAS inspects the last
n columns (where n is
the value of the SEQ=
system option) of the
first sequence field.

If those columns
contain numbers, they
are assumed to be
sequence numbers and
SAS ignores the last
eight columns of each
line.

If the n columns
contain non-digit
characters, SAS reads
the last eight columns
as data columns.

SAS System Options � S2= System Option 1933

Record Type Value of S2 SAS Looks for
Sequence Numbers

How SAS Reads The
Input

Variable-length S2>0 or S2=MAX No The value of S2 is
used as the starting
column of the source
or data to be scanned
and ignores
everything before that
length on each line.

Variable-length S2=0 or S2=MIN Yes, at the beginning
of each line of input.

SAS inspects the last
n columns (where n is
the value of the SEQ=
system option) of the
first sequence field.

If those columns
contain numbers, they
are assumed to be
sequence numbers and
SAS ignores the first
eight columns of each
line.

If the n columns
contain non-digit
characters, SAS reads
the first eight columns
as data columns.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

Comparisons
The S2= system option operates exactly like the S= system option except that the S2=
option controls input from a %INCLUDE statement, an autoexec file, or an autocall
macro file.

The S2= system option reads both fixed-length and variable-length record formats
from a file specified in a %INCLUDE statement, an autoexec file, or an autocall macro
file. The S2V= system option reads only a variable-length record format from a file
specified in a%INCLUDE statement, an autoexec file, or an autocall macro file.

See Also

System Options:
“S= System Option” on page 1927
“S2V= System Option” on page 1934

1934 S2V= System Option � Chapter 7

“SEQ= System Option” on page 1936

S2V= System Option

Specifies the starting position to begin reading a file that is specified in a %INCLUDE statement,
an autoexec file, or an autocall macro file with a variable length record format.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
S2V=S2 | S | n | nK | nM | nG | nT | MIN | MAX | hexX

Syntax Description

S2
specifies to use the current value of the S2= system option to compute the starting
position of the variable-sized record to read from a %INCLUDE statement, an
autoexec file, or an autocall macro file. This is the default.

S
specifies to use the current value of the S= system option to compute the starting
position of the variable-sized record to read from a %INCLUDE statement, an
autoexec file, or an autocall macro file.

n | nK | nM | nG | nT
specifies the starting position of the variable-length record to read that comes from a
%INCLUDE statement, an autoexec file, or an autocall macro file, in terms of 1
(bytes); 1,024 (kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or
1,099,511,627,776 (terabytes). For example, a value of 8 specifies 8 bytes, and a
value of 3m specifies 3,145,728 bytes.

MIN
sets the starting position of the variable-length record to read that comes from a
%INCLUDE statement, an autoexec file, or an autocall macro, to 0.

MAX
sets the starting position of the variable-length record to read that comes from a
%INCLUDE statement, an autoexec file, or an autocall macro, to 2,147,483,647.

hexX
specifies the starting position of the variable-length record to read that comes from a
%INCLUDE statement, an autoexec file, or an autocall macro, as a hexadecimal
number. You must specify the value beginning with a number (0–9), followed by an X.

Details
Both the S2V= system option and the S2= system option specify the starting position
for reading variable-sized record input from a %INCLUDE statement, an autoexec file,

SAS System Options � SASHELP= System Option 1935

or an autocall macro file. When values for both options are specified, the value of the
S2V= system option takes precedence over the value specified for the S2= system option.

Operating Environment Information: The syntax shown here applies to the OPTIONS
statement. On the command line or in a configuration file, the syntax is specific to your
operating environments. For details, see the SAS documentation for your operating
environment. �

Comparisons
The S2= system option specifies the starting position for reading both fixed-length and
variable-length record formats for input from a %INCLUDE statement, an autoexec file,
or an autocall macro file. The S2V= system option specifies the starting position for
reading only variable-length record formats for input from a %INCLUDE statement, an
autoexec file, or an autocall macro file.

See Also

System Options:
“S= System Option” on page 1927
“S2= System Option” on page 1931
“SEQ= System Option” on page 1936

SASHELP= System Option

Specifies the location of the SASHELP library.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
See: SASHELP= System Option in the documentation for your operating environment.

Syntax
SASHELP=library-specification

Syntax Description

library-specification
identifies an external library.

Details
The SASHELP= system option is set during the installation process and normally is not
changed after installation.

Operating Environment Information: A valid external library specification is specific
to your operating environment. On the command line or in a configuration file, the

1936 SASUSER= System Option � Chapter 7

syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

Operating Environment Information: Under the Windows, UNIX, and z/OS operating
environments, you can use the APPEND or INSERT system options to add additional
library-specifications. For more information, see the documentation for the APPEND
and INSERT system options. �

See Also

System Options:
“APPEND= System Option” on page 1791
“INSERT= System Option” on page 1871

SASUSER= System Option

Specifies the SAS library to use as the SASUSER library.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES
See: SASUSER= System Option in the documentation for your operating environment.

Syntax
SASUSER=library-specification

Syntax Description

library-specification
specifies the libref or the physical name that contains a user’s Profile catalog.

Details
The library and catalog are created automatically by SAS; you do not have to create
them explicitly.

Operating Environment Information: A valid library specification and its syntax are
specific to your operating environment. On the command line or in a configuration file,
the syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

SEQ= System Option

Specifies the length of the numeric portion of the sequence field in input source lines or data lines.

SAS System Options � SETINIT System Option 1937

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
SEQ=n| MIN | MAX | hexX

Syntax Description

n
specifies the length in terms of bytes.

MIN
sets the minimum length to 1.

MAX
sets the maximum length to 8.
Tip: When SEQ=8, all eight characters in the sequence field are assumed to be

numeric.

hexX
specifies the length as a hexadecimal. You must specify the value beginning with a
number (0–9), followed by an X.

Details
Unless the S= or S2= system option specifies otherwise, SAS assumes an
eight-character sequence field. However, some editors place some alphabetic
information (for example, the filename) in the first several characters. The SEQ= value
specifies the number of digits that are right-justified in the eight-character field. For
example, if you specify SEQ=5 for the sequence field AAA00010, SAS looks at only the
last five characters of the eight-character sequence field and, if the characters are
numeric, treats the entire eight-character field as a sequence field.

See Also

System Options:
“S= System Option” on page 1927
“S2= System Option” on page 1931

SETINIT System Option

Specifies whether site license information can be altered.

Valid in: configuration file, SAS invocation
Category: System administration: Installation

1938 SKIP= System Option � Chapter 7

PROC OPTIONS GROUP= INSTALL

Syntax
SETINIT | NOSETINIT

Syntax Description

SETINIT
in a non-windowing environment, specifies that you can change license information
by running the SETINIT procedure.

NOSETINIT
specifies not to allow you to alter site license information after installation.

Details
SETINIT is set in the installation process and is not normally changed after
installation. The SETINIT option is valid only in a non-windowing SAS session.

SKIP= System Option

Specifies the number of lines to skip at the top of each page of SAS output.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: Procedure output
PROC OPTIONS GROUP= LISTCONTROL

Syntax
SKIP=n | hexX | MIN | MAX

Syntax Description

n
specifies the range of lines to skip from 0 to 20.

MIN
sets the number of lines to skip to 0, so no lines are skipped.

MAX
sets the number of lines to skip to 20.

hex
specifies the number of lines to skip as a hexadecimal number. You must specify the
value beginning with a number (0–9), followed by an X. For example, the value 0ax
specifies to skip 10 lines.

SAS System Options � SORTDUP= System Option 1939

Details
The location of the first line is relative to the position established by carriage control or
by the forms control buffer on the printer. Most sites define this position so that the
first line of a new page begins three or four lines down the form. If this spacing is
sufficient, specify SKIP=0 so that additional lines are not skipped.

The SKIP= value does not affect the maximum number of lines printed on each page,
which is controlled by the PAGESIZE= system option.

SOLUTIONS System Option
Specifies whether the SOLUTIONS menu is included in SAS windows.

Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY

Syntax
SOLUTIONS | NOSOLUTIONS

Syntax Description

SOLUTIONS
specifies that the SOLUTIONS menu is included in SAS windows.

NOSOLUTIONS
specifies that the SOLUTIONS menu is not included in SAS windows.

SORTDUP= System Option
Specifies whether the SORT procedure removes duplicate variables based on all variables in a
data set or the variables that remain after the DROP or KEEP data set options have been applied.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT

Syntax
SORTDUP=PHYSICAL | LOGICAL

Syntax Description

1940 SORTEQUALS System Option � Chapter 7

PHYSICAL
removes duplicates based on all the variables that are present in the data set. This is
the default.

LOGICAL
removes duplicates based on only the variables remaining after the DROP= and
KEEP= data set options are processed.

Details
The SORTDUP= option specifies what variables to sort to remove duplicate
observations when the SORT procedure NODUPRECS option is specified.

When SORTDUP= is set to LOGICAL and NODUPRECS is specified in the SORT
procedure, duplicate observations are removed based on the variables that remain after
a DROP or KEEP operation on the input data set. Setting SORTDUP=LOGICAL
increases the number of duplicate observations that are removed because it eliminates
variables before observations are compared. Setting SORTDUP=LOGICAL might
improve performance.

When SORTDUP= is set to PHYSICAL and NODUPRECS is specified in the SORT
procedure, duplicate observations are removed based on all of the variables in the input
data set.

See Also

The SORT Procedure in Base SAS Procedures Guide

SORTEQUALS System Option

Specifies whether observations in the output data set with identical BY variable values have a
particular order.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System
OPTIONS window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT

Syntax
SORTEQUALS | NOSORTEQUALS

SORTEQUALS
specifies that observations with identical BY variable values are to retain the same
relative positions in the output data set as in the input data set.

NOSORTEQUALS
specifies that no resources be used to control the order of observations with identical
BY variable values in the output data set.
Interaction: To achieve the best sorting performance when using the THREADS=

system option, specify THREADS=YES and NOSORTEQUALS.

SAS System Options � SORTSIZE= System Option 1941

Tip: To save resources, use NOSORTEQUALS when you do not need to maintain a
specific order of observations with identical BY variable values.

Comparisons
The SORTEQUALS and NOSORTEQUALS system options set the sorting behavior of
PROC SORT for your SAS session. The EQUAL or NOEQUAL option in the PROC
SORT statement overrides the setting of the system option for an individual PROC step
and specifies the sorting behavior for that PROC step only.

See Also

Statement Options:
EQUALS option for the PROC SORT statement in Base SAS Procedures Guide.

System Options:
“THREADS System Option” on page 1976

SORTSIZE= System Option

Specifies the amount of memory that is available to the SORT procedure.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options

System administration: Memory
PROC OPTIONS GROUP= MEMORY

SORT
See: SORTSIZE= System Option in the documentation for your operating environment.

Syntax
SORTSIZE=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the amount of memory in terms of 1 (byte); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 4000 specifies 4,000 bytes and a value of 2m specifies 2,097,152
bytes. If n=0, the sort utility uses its default. Valid values for SORTSIZE range from
0 to 9,223,372,036,854,775,807.

hexX
specifies the amount of memory as a hexadecimal number. This number must begin
with a number (0-9), followed by an X. For example, 0fffx specifies 4095 bytes of
memory.

1942 SORTVALIDATE System Option � Chapter 7

MIN
specifies the minimum amount of memory available.

MAX
specifies the maximum amount of memory available.

Operating Environment Information: Values for MIN and MAX will vary, depending on
your operating environment. For details, see the SAS documentation for your operating
environment �

Details
Generally, the value of the SORTSIZE= system option should be less than the physical
memory available to your process. If the SORT procedure needs more memory than you
specify, the system creates a temporary utility file.

PERFORMANCE NOTE: Proper specification of SORTSIZE= can improve sort
performance by restricting the swapping of memory that is controlled by the operating
environment.

See Also

System Option:
“SUMSIZE= System Option” on page 1957

“The SORT procedure” in the SAS documentation for your operating environment

SORTVALIDATE System Option

Specifies whether the SORT procedure verifies if a data set is sorted according to the variables in
the BY statement when a user-specified sort order is denoted in the sort indicator.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Sort: Procedure options
PROC OPTIONS GROUP= SORT

Syntax
SORTVALIDATE | NOSORTVALIDATE

Syntax Description

SORTVALIDATE
specifies that the SORT procedure verifies if the observations in the data set are
sorted by the variables specified in the BY statement.

NOSORTVALIDATE

SAS System Options � SOURCE System Option 1943

specifies that the SORT procedure is not to verify if the observations in the data set
are sorted. This is the default.

Details
You can use the SORTVALIDATE system option to specify whether the SORT procedure
validates that a data set is sorted correctly when the data set sort indicator shows a
user-specified sort order. The user can specify a sort order by using the SORTEDBY=
data set option in a DATA statement or by using the SORTEDBY= option in the
DATASETS procedure MODIFY statement. When the sort indicator is set by a user,
SAS cannot be absolutely certain that a data set is sorted according to the variables in
the BY statement.

If the SORTVALIDATE system option is set and the data set sort indicator was set
by a user, the SORT procedure performs a sequence check on each observation to
ensure that the data set is sorted according to the variables in the BY statement. If the
data set is not sorted correctly, SAS sorts the data set.

At the end of a successful sequence check or at the end of a sort, the SORT procedure
sets the Validated sort information to Yes. If a sort is performed, the SORT procedure
updates the Sortedby sort information to the variables that are specified in the BY
statement.

If an output data set is specified, the Validated sort information in the output data
set is set to Yes. If no sort is necessary, the data set is copied to the output data set.

See Also

Data Set Option:
“SORTEDBY= Data Set Option” on page 57

Procedures:
“The DATASETS Procedure” in the Base SAS Procedures Guide
“The SORT Procedure” in the Base SAS Procedures Guide

“Sorted Data Sets” in SAS Language Reference: Concepts

SOURCE System Option

Specifies whether SAS writes source statements to the SAS log.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SAS log
PROC OPTIONS GROUP= LOGCONTROL

Syntax
SOURCE | NOSOURCE

Syntax Description

1944 SOURCE2 System Option � Chapter 7

SOURCE
specifies to write SAS source statements to the SAS log.

NOSOURCE
specifies not to write SAS source statements to the SAS log.

Details
The SOURCE system option does not affect whether statements from a file read with
%INCLUDE or from an autocall macro are printed in the SAS log.

Note: SOURCE must be in effect when you execute SAS programs that you want to
send to SAS for problem determination and resolution. �

See Also
“The SAS Log” in SAS Language Reference: Concepts

SOURCE2 System Option

Specifies whether SAS writes secondary source statements from included files to the SAS log.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: SAS log

PROC OPTIONS GROUP= LOGCONTROL

Syntax
SOURCE2 | NOSOURCE2

Syntax Description

SOURCE2
specifies to write to the SAS log secondary source statements from files that have
been included by %INCLUDE statements.

NOSOURCE2
specifies not to write secondary source statements to the SAS log.

Details
Note: SOURCE2 must be in effect when you execute SAS programs that you want

to send to SAS for problem determination and resolution. �

See Also
“The SAS Log” in SAS Language Reference: Concepts

SAS System Options � SPOOL System Option 1945

SPOOL System Option

Specifies whether SAS statements are written to a utility data set in the WORK data library.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Input control: Data Processing

PROC OPTIONS GROUP= INPUTCONTROL

Syntax

SPOOL | NOSPOOL

Syntax Description

SPOOL
specifies that SAS write statements to a utility data set in the WORK data library
for later use by a %INCLUDE or %LIST statement, or by the RECALL command,
within a windowing environment.

NOSPOOL
specifies that SAS does not write statements to a utility data set. Specifying
NOSPOOL accelerates execution time, but you cannot use the %INCLUDE and
%LIST statements to resubmit SAS statements that were executed earlier in the
session.

Examples

Specifying SPOOL is especially helpful in interactive line mode because you can
resubmit a line or lines of code by referring to the line numbers. Here is an example of
code including line numbers:

00001 data test;
00002 input w x y z;
00003 datalines;
00004 411.365 101.945 323.782 512.398
00005 ;

If SPOOL is in effect, you can resubmit line number 1 by submitting this statement:

%inc 1;

You can also resubmit a range of lines by placing a colon (:) or dash (-) between the
line numbers. For example, these statements resubmit lines 1 through 3 and 4 through
5 of the above example:

%inc 1:3;
%inc 4-5;

1946 SQLCONSTDATETIME System Option � Chapter 7

SQLCONSTDATETIME System Option

Specifies whether the SQL procedure replaces references to the DATE, TIME, DATETIME, and
TODAY functions in a query with their equivalent constant values before the query executes.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: SQL
PROC OPTIONS GROUP= SASFILES

SQL

Syntax
SQLCONSTDATETIME | NOSQLCONSTDATETIME

Syntax Description

SQLCONSTDATETIME
specifies that the SQL procedure is to replace references to the DATE, TIME,
DATETIME, and TODAY functions with their equivalent numeric constant values.

NOSQLCONSTDATETIME
specifies that the SQL procedure is not to replace references to the DATE, TIME,
DATETIME, and TODAY functions with their equivalent numeric constant values.

Details
When the SQLCONSTDATETIME system option is set, the SQL procedure evaluates
the DATE, TIME, DATETIME, and TODAY functions in a query once, and uses those
values throughout the query. Computing these values once ensures consistency of
results when the functions are used multiple times in a query or when the query
executes the functions close to a date or time boundary.

When the NOSQLCONSTDATETIME system option is set, the SQL procedure
evaluates these functions in a query each time it processes an observation.

If both the SQLREDUCEPUT system option and the SQLCONSTDATETIME system
option are specified, the SQL procedure replaces the DATE, TIME, DATETIME, and
TODAY functions with their respective values in order to determine the PUT function
value before the query executes:

select x from &lib..c where (put(bday, date9.) = put(today(), date9.));

Note: The value that is specified in the SQLCONSTDATETIME system option is in
effect for all SQL procedure statements, unless the CONSTDATETIME option in the
PROC SQL statement is set. The value of the CONSTDATETIME option takes
precedence over the SQLCONSTDATETIME system option. However, changing the
value of the CONSTDATETIME option does not change the value of the
SQLCONSTDATETIME system option. �

See Also

SAS System Options � SQLREDUCEPUT= System Option 1947

System option:
“SQLREDUCEPUT= System Option” on page 1947

PROC SQL statement CONSTDATETIME option in Base SAS Procedures Guide
Improving Query Performance in SAS 9.2 SQL Procedure User’s Guide

SQLREDUCEPUT= System Option

For the SQL procedure, specifies the engine type that a query uses for which optimization is
performed by replacing a PUT function in a query with a logically equivalent expression.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: SQL
System administration: Performance

PROC OPTIONS GROUP= SASFILES
SQL
PERFORMANCE

Syntax
SQLREDUCEPUT= ALL | NONE | DBMS | BASE

Syntax Description

ALL
specifies that optimization is performed on all PUT functions regardless of any
engine that is used by the query to access the data.

NONE
specifies that no optimization is to be performed.

DBMS
specifies that optimization is performed on all PUT functions whose query is
performed by a SAS/ACCESS engine. This is the default.
Requirement: The first argument to the PUT function must be a variable obtained

by a table that is accessed using a SAS/ACCESS engine.

BASE
specifies that optimization is performed on all PUT functions whose query is
performed by a SAS/ACCESS engine or a Base SAS engine.

Details
By using the SQLREDUCEPUT= system option, you can specify that SAS reduces the
PUT function as much as possible before the query is processed. If the query also
contains a WHERE clause, the evaluation of the WHERE clause is simplified. The
following SELECT statements are examples of queries that would be reduced if this
option was set to any value other than none:

1948 SQLREDUCEPUTOBS= System Option � Chapter 7

select x, y from &lib..b where (PUT(x, abc.) in (’yes’, ’no’));
select x from &lib..a where (PUT(x, udfmt.) = trim(left(’small’)));

If both the SQLREDUCEPUT system option and the SQLCONSTDATETIME system
option are specified, the SQL procedure replaces the DATE, TIME, DATETIME, and
TODAY functions with their respective values to determine the PUT function value
before the query executes. The following two SELECT clauses show the original and
optimized queries:

select x from &lib..c where (put(bday, date9.) = put(today(), date9.));

would be reduced to

select x from &lib..c where (put(bday, date9.) = "01Jun2008");

If a query does not contain the PUT function, optimization is not performed.

Note: The value that is specified in the SQLREDUCEPUT system option is in effect
for all SQL procedure statements, unless the REDUCEPUT option in the PROC SQL
statement is set. The value of the REDUCEPUT option takes precedence over the
SQLREDUCEPUT system option. However, changing the value of the REDUCEPUT
option does not change the value of the SQLREDUCEPUT system option. �

See Also

System option:
“SQLCONSTDATETIME System Option” on page 1946
“SQLREDUCEPUTOBS= System Option” on page 1948

“PROC SQL Statement REDUCEPUT option” in the Base SAS Procedures Guide
“Improving Query Performance” in the SAS 9.2 SQL Procedure User’s Guide

SQLREDUCEPUTOBS= System Option
For the SQL procedure when the SQLREDUCEPUT= system option is set to NONE, specifies the
minimum number of observations that must be in a table in order for PROC SQL to consider
optimizing the PUT function in a query.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: SQL
System administration: Performance

Interaction: If the SQLREDUCEPUT= system option is set to NONE, conditions for both
the SQLREDUCEPUTOBS= and SQLREDUCEPUTVALUES= system options must be
met in order for the SQL procedure to consider optimizing the PUT function.
PROC OPTIONS GROUP= SASFILES

SQL
PERFORMANCE

Syntax
SQLREDUCEPUTOBS=n | nK | nM | nG | nT |hexX | MIN | MAX

SAS System Options � SQLREDUCEPUTVALUES= System Option 1949

Syntax Description

n | nK | nM | nG | nT
specifies the number of observations that must be in a table before the SQL
procedure considers to optimize the PUT function. number-of-observations is an
integer that can be allocated in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). For
example, a value of 8 specifies eight buffers, and a value of 3k specifies 3,072 buffers.
Default: 0, which indicates that there is no minimum number of observations in a

table required for the SQL procedure to optimize the PUT function.
Range: 0 – 263–1, or approximately 9.2 quintillion

hexX
specifies the number of observations that must be in a table before the SQL
procedure considers to optimize the PUT function as a hexadecimal value. You must
specify the value beginning with a number (0–9), followed by an X. For example, the
value 2dx specifies 45 buffers.

MIN
sets the number of observations that must be in a table before the SQL procedure
considers to optimize the PUT function to 0. A value of 0 indicates that there is no
minimum number of observations required. This is the default.

MAX
sets the maximum number of observations that must be in a table before the SQL
procedure considers to optimize the PUT function to 263–1, or approximately 9.2
quintillion.

Details
For databases that allow implicit pass-through when the row count for a table is not
known, the SQL procedure allows the optimization in order for the query to be executed
by the database. When the SQLREDUCEPUT= system option is set to NONE, the SQL
procedure considers the value of both the SQLREDUCEPUTVALUES= and
SQLREDUCEPUTOBS= system options and determines whether to optimize the PUT
function.

For databases that do not allow implicit pass-through, the SQL procedure does not
perform the optimization, and more of the query is performed by SAS.

See Also

System options:
“SQLREDUCEPUT= System Option” on page 1947

“Improving Query Performance” in the SAS 9.2 SQL Procedure User’s Guide

SQLREDUCEPUTVALUES= System Option

For the SQL procedure when the SQLREDUCEPUT= system option is set to NONE, specifies the
maximum number of SAS format values that can exist in a PUT function expression in order for
PROC SQL to consider optimizing the PUT function in a query.

1950 SQLREDUCEPUTVALUES= System Option � Chapter 7

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: SQL
System administration: Performance

Interaction: If the SQLREDUCEPUT= system option is set to NONE, conditions for both
the SQLREDUCEPUTVALUES= and SQLREDUCEPUTOBS= system options must be
met in order for the SQL procedure to consider optimizing the PUT function.
PROC OPTIONS GROUP= SASFILES

SQL
PERFORMANCE

Syntax
SQLREDUCEPUTVALUES= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the number of SAS format values that can exist in a PUT function
expression, where n is an integer that can be allocated in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776
(terabytes). For example, a value of 8 specifies eight buffers, and a value of 3k
specifies 3,072 buffers.
Default: 0, which indicates that there is no minimum number of SAS format values

that can exist in a PUT function expression.
Range: 0–5,000
Interaction: If the number of format values in a PUT function expression is greater

than this value, the SQL procedure does not optimize the PUT function.

hexX
specifies the number of SAS format values that can exist in a PUT function
expression. You must specify the value beginning with a number (0–9), followed by
an X. For example, the value 2dx specifies 45 buffers.

MIN
sets the number of SAS format values that can exist in a PUT function expression to
0. A value of 0 indicates that there is no minimum number of SAS format values
that are required. This is the default.

MAX
sets the maximum number of SAS format values that can exist in a PUT function
expression to 5,000.

Details
Some formats, especially user-defined formats, can contain many format values.
Depending on the number of matches for a given PUT function expression, the resulting
expression can list many format values. If the number of format values becomes too
large, the query performance can degrade. When the SQLREDUCEPUT= system option
is set to NONE, the SQL procedure considers the value of both the

SAS System Options � SQLREMERGE System Option 1951

SQLREDUCEPUTVALUES= and SQLREDUCEPUTOBS= system options and
determines whether to optimize the PUT function.

See Also

System options:
“SQLREDUCEPUT= System Option” on page 1947
“SQLREDUCEPUTOBS= System Option” on page 1948

“Improving Query Performance” in the SAS 9.2 SQL Procedure User’s Guide

SQLREMERGE System Option

Specifies whether the SQL procedure can process queries that use remerging of data.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

System administration: SQL
PROC OPTIONS GROUP= SASFILES

SQL

Syntax
SQLREMERGE | NOSQLREMERGE

Syntax Description

SQLREMERGE
specifies that the SQL procedure can process queries that use remerging of data.

NOSQLREMERGE
specifies that the SQL procedure cannot process queries that use remerging of data.

Details
The remerge feature of the SQL procedure makes two passes through a table, using
data in the second pass that was created in the first pass, in order to complete a query.
When the NOSQLREMERGE system option is set, the SQL procedure cannot process
remerging of data. If remerging is attempted when the NOSQLREMERGE option is
set, an error is written to the SAS log.

See Also

PROC SQL statement REMERGE option in Base SAS Procedures Guide
Remerging Data in the summary-function component of the SQL procedure in Base

SAS Procedures Guide

1952 SQLUNDOPOLICY= System Option � Chapter 7

“Improving Query Performance” in the SAS 9.2 SQL Procedure User’s Guide

SQLUNDOPOLICY= System Option

Specifies whether the SQL procedure keeps or discards updated data if errors occur while the data
is being updated.

Valid in: configuration file, SAS invocation, Options statement
Category: Files: SAS Files

System administration: SQL
PROC OPTIONS GROUP= SASFILES

SQL

Syntax
SQLUNDOPOLICY=NONE | OPTIONAL | REQUIRED

Syntax Description

NONE
specifies to keep changes that are made by the INSERT and UPDATE statements.

OPTIONAL
specifies to reverse changes that are made by the INSERT and UPDATE statements
as long as reversing the changes is reliable.

REQUIRED
specifies to undo all changes that are made by the INSERT and UPDATE
statements, up to the point of the error. This is the default.

CAUTION:
Some UNDO operations cannot reliably reverse changes. In some situations, reversing
the effects of the INSERT and UPDATE statements cannot be done reliably. When
operations cannot be reversed, the SQL procedure issues an error message and
does not execute the statement. For example, when a program uses a
SAS/ACCESS view, or when a SAS data set is accessed through a SAS/SHARE
server and is opened with the data set option CNTLLEV=RECORD, changes
cannot be reliably reversed. �

CAUTION:
Some UNDO operations might not reverse changes. In situations where multiple
transactions are made to the same record, PROC SQL might not reverse a change;
it will issue an error message instead. For example, if an error occurs during an
insert, PROC SQL can delete a record that another user updated. In that case, the
UNDO statement is not executed, and an error message is issued. �

Details
The value that is specified in the SQLUNDOPOLICY= system option is in effect for all
SQL procedure statements, unless the UNDO_POLICY option in the PROC SQL

SAS System Options � STARTLIB System Option 1953

statement is set. The value of the UNDO_POLICY option takes precedence over the
SQLUNDOPOLICY= system option. The RESET statement can also be used to set or
reset the UNDO_POLICY option. However, changing the value of the UNDO_POLICY
option does not change the value of the SQLUNDOPOLICY= system option. Once the
procedure completes, the undo policy reverts to the value of the SQLUNDOPOLICY=
system option.

If you are updating a data set using the SPD Engine, you can significantly improve
processing performance by setting SQLUNDOPOLICY=NONE. However, ensure that
NONE is an appropriate setting for your application.

See Also

PROC SQL Statement UNDO_POLICY option in the Base SAS Procedures Guide

STARTLIB System Option

Specifies whether SAS assigns user-defined permanent librefs when SAS starts.

Valid in: configuration file, SAS invocation
Category: Files: External files
PROC OPTIONS GROUP= EXTFILES

Syntax
STARTLIB | NOSTARTLIB

Syntax Description

STARTLIB
specifies that when SAS starts, SAS assigns user-defined permanent librefs.
STARTLIB is the default for the windowing environment.

NOSTARTLIB
specifies that SAS is not to assign user-defined permanent librefs when SAS starts.
NOSTARTLIB is the default for batch mode, interactive line mode, and
noninteractive mode.

Details
You assign a permanent libref only in the windowing environment by using the New
Library window and by selecting the Enable at startup check box. SAS stores the
permanent libref in the SAS registry. To open the New Library window, right-mouse
click Libraries in the Explorer window and select New. Alternatively, type
DMLIBASSIGN in the command box.

In the windowing environment, SAS automatically assigns permanent librefs when
SAS starts because STARTLIB is the default.

In all other execution modes (batch, interactive line, and noninteractive), SAS
assigns permanent librefs only when you start SAS with the STARTLIB option specified
either on the command line or in the configuration file.

1954 STEPCHKPT System Option � Chapter 7

STEPCHKPT System Option

Specifies whether checkpoint-restart data is to be recorded for a batch program.

Valid in: configuration file, SAS invocation

Category: Environment control: Error handling

Requirement: can be used only in batch mode

PROC OPTIONS GROUP= ERRORHANDLING

Syntax
STEPCHKPT | NOSTEPCHKPT

Syntax Description

STEPCHKPT
enables checkpoint mode, which specifies to record checkpoint-restart data.

NOSTEPCHKPT
disables checkpoint mode, which specifies not to record checkpoint-restart data. This
is the default.

Details
Using the STEPCHKPT system option puts SAS in checkpoint mode for SAS programs
that run in batch. Each time a DATA step or PROC step executes, SAS records data in
a checkpoint-restart library. If a program terminates without completing, the program
can be resubmitted, beginning with the step that was executing when the program
terminated.

To ensure that the checkpoint-restart data is accurate, when you specify the
STEPCHKPT option, also specify the ERRORCHECK STRICT option and set the
ERRORABEND option so that SAS terminates for most errors.

Checkpoint mode is not valid for batch programs that contain the DM statement,
which submits commands to SAS. If checkpoint mode is enabled and SAS encounters a
DM statement, checkpoint mode is disabled and the checkpoint catalog entry is deleted.

See Also

System Options:

“STEPCHKPTLIB= System Option” on page 1955

“STEPRESTART System Option” on page 1956

“ERRORABEND System Option” on page 1846

“ERRORCHECK= System Option” on page 1848

Statement:

“CHECKPOINT EXECUTE_ALWAYS Statement” on page 1416

“Restarting Batch Programs” in SAS Language Reference: Concepts

SAS System Options � STEPCHKPTLIB= System Option 1955

STEPCHKPTLIB= System Option

Specifies the libref of the library where checkpoint-restart data is saved.

Valid in: configuration file, SAS invocation
Category: Environment control: Error handling
Requirement: can be used only in batch mode
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
STEPCHKPTLIB=libref

Syntax Description

libref
specifies the libref that identifies the library where the checkpoint-restart data is
saved.
Default: Work
Requirement: The LIBNAME statement that identifies the checkpoint-restart

library must use the BASE engine and be the first statement in the batch program.

Details
When the STEPCHKPT system option is specified, checkpoint-restart data for batch
programs is saved in the libref that is specified in the STEPCHKPTLIB= system option.
If no libref is specified, SAS uses the Work library to save checkpoint data. The
LIBNAME statement that defines the libref must be the first statement in the batch
program.

If the Work library is used to save checkpoint data, the NOWORKTERM and
NOWORKINIT system options must be specified so that the checkpoint-restart data is
available when the batch program is resubmitted. These two options ensure that the
Work library is saved when SAS ends and is restored when SAS starts. If the
NOWORKTERM option is not specified, the Work library is deleted at the end of the
SAS session and the checkpoint-restart data is lost. If the NOWORKINIT option is not
specified, a new Work library is created when SAS starts, and again the
checkpoint-restart data is lost.

The STEPCHKPTLIB= option must be specified for any SAS session that accesses
checkpoint-restart data that is not saved to the Work library.

See Also

System Options:
“STEPCHKPT System Option” on page 1954
“STEPRESTART System Option” on page 1956
“WORKINIT System Option” on page 1994
“WORKTERM System Option” on page 1995

1956 STEPRESTART System Option � Chapter 7

Statement:

“CHECKPOINT EXECUTE_ALWAYS Statement” on page 1416

“Restarting Batch Programs” in SAS Language Reference: Concepts

STEPRESTART System Option

Specifies whether to execute a batch program by using checkpoint-restart data.

Valid in: configuration file, SAS invocation

Category: Environment control: Error handling

Requirement: can be used only in batch mode

PROC OPTIONS GROUP= ERRORHANDLING

Syntax
STEPRESTART | NOSTEPRESTART

Syntax Description

STEPRESTART
enables restart mode, which specifies to execute the batch program by using the
checkpoint-restart data.

NOSTEPRESTART
disables restart mode, which specifies not to execute the batch program using
checkpoint-restart data.

Details
You specify the STEPRESTART option when you want to resubmit a batch program
that ran in checkpoint mode and terminated before it completed. When you resubmit
the batch program, SAS determines from the checkpoint data which DATA step or
PROC step was executing when the program terminated, and resumes executing the
batch program by using that DATA or PROC step.

See Also

System Options:

“STEPCHKPT System Option” on page 1954

“STEPCHKPTLIB= System Option” on page 1955

Statement:

“CHECKPOINT EXECUTE_ALWAYS Statement” on page 1416

“Restarting Batch Programs” in SAS Language Reference: Concepts

SAS System Options � SUMSIZE= System Option 1957

SUMSIZE= System Option

Specifies a limit on the amount of memory that is available for data summarization procedures
when class variables are active.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: System administration: Memory
PROC OPTIONS GROUP= MEMORY

Syntax
SUMSIZE=n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies the amount of memory in terms of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). When n=0,
the default value, the amount of memory is determined by values of the MEMSIZE
option and the REALMEMSIZE option. Valid values for SUMSIZE range from 0 to 2
(n-1) where n is the data width in bits (32 or 64) of the operating system.

hexX
specifies the amount of memory as a hexadecimal number. You must specify the
value beginning with a number (0–9), followed by an X. For example, a value of
0fffx specifies 4,095 bytes of memory.

MIN
specifies the minimum amount of memory available.

MAX
specifies the maximum amount of memory available.

Details
The SUMSIZE= system option affects the MEANS, OLAP, REPORT, SUMMARY,
SURVEYFREQ, SURVEYLOGISTIC, SURVEYMEANS, and TABULATE procedures.

Proper specification of SUMSIZE= can improve procedure performance by restricting
the swapping of memory that is controlled by the operating environment.

Generally, the value of the SUMSIZE= system option should be less than the
physical memory available to your process. If the procedure you are using needs more
memory than you specify, the system creates a temporary utility file.

If the value of SUMSIZE is greater than the values of the MEMSIZE option and the
REALMEMSIZE option, SAS uses the values of the MEMSIZE option and
REALMEMSIZE option.

See Also

System Options:
“SORTSIZE= System Option” on page 1941

1958 SVGCONTROLBUTTONS � Chapter 7

“MEMSIZE System Option” in the documentation for your operating
environment.

“REALMEMSIZE System Option” in the documentation for your operating
environment.

SVGCONTROLBUTTONS

Specifies whether to display the paging control buttons and an index in a multipage SVG document.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG

Syntax
SVGCONTROLBUTTONS | NOSVGCONTROLBUTTONS

Syntax Description

SVGCONTROLBUTTONS
specifies to display the paging control buttons in the SVG document.

NOSVGCONTROLBUTTONS
specifies not to display the paging control buttons in the SVG document. This is the
default.

Details
When SVGCONTROLBUTTONS is specified, the size of the SVG is increased to
accommodate the script that controls paging in the SVG document.

The SVGView printer sets the option to SVGCONTROLBUTTONS.

SVGHEIGHT= System Option

Specifies the height of the viewport unless the SVG output is embedded in another SVG output;
specifies the value of the height attribute of the outermost <svg> element in the SVG file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGHEIGHT= option sets the height attribute only on the outermost
<svg> element.

SAS System Options � SVGHEIGHT= System Option 1959

Syntax
SVGHEIGHT= number-of-units<unit-of-measure> | "" | "

Syntax Description

number-of- units
specifies the height as a number of unit-of-measure.

Requirement: number-of- units must be a positive integer value.
Interaction: If number-of- units is a negative number, the SVG document is not

rendered by the browser.

unit-of-measure
specifies the unit of measurement, which can be one of the following:

% percentage

cm centimeters

em the height of the element’s font

ex the height of the letter x

in inches

mm millimeters

pc picas

pt points

px pixels
Default: px

"" | "
specifies to reset the height to the default value of 600 pixels.
Requirement: Use two double quotation marks or two single quotation marks with

no space between them.

Details
For embedded <svg> elements, the SVGHEIGHT= option specifies the height of the
rectangular region into which the <svg> element is placed. The SVG output is scaled to
fit the viewBox if SVGHEIGHT="100%".

If the SVGHEIGHT= option is not specified, the height attribute on the <svg>
element is not set, which effectively provides full scalability by using a height of 100%.

The value for the SVGHEIGHT= option can be specified using no delimiters, enclosed
in single or double quotation marks, or enclosed in parentheses.

Examples

The following OPTIONS statement specifies to size the SVG output to portrait
letter-sized and to scale the output to 100% of the viewport:

options printerpath=svg orientation=portrait svgheight="100%" svgwidth="100%"
papersize=letter;

By using these option values, SAS creates the following <svg> element:

1960 SVGPRESERVEASPECTRATIO= System Option � Chapter 7

<svg> xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xml:space="preserve"
onload=’Init(evt)’ version="1.1"
width="100%" height="100%"
viewBox="0 0 850 1100"

</svg>

The value of "100%" in the SVGHEIGHT= option specifies to scale the SVG output
height to 100% of the viewport, which is based on the value of the PAPERSIZE= option.
The paper size is letter in the portrait orientation, which has a height of 11" at 100 dpi.

See Also

System options:
“SVGCONTROLBUTTONS” on page 1958
“SVGPRESERVEASPECTRATIO= System Option” on page 1960
“SVGTITLE= System Option” on page 1963
“SVGVIEWBOX= System Option” on page 1964
“SVGWIDTH= System Option” on page 1966
“SVGX= System Option” on page 1967
“SVGY= System Option” on page 1969

“Using SAS System Options” on page 1770
The SAS Registry in SAS Language Reference: Concepts
Creating Scalable Vector Graphics Using Universal Printing in SAS Language

Reference: Concepts

SVGPRESERVEASPECTRATIO= System Option

Specifies whether to force uniform scaling of SVG output; specifies the preserveAspectRatio
attribute on the outermost <svg> element.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGPRESERVEASPECTRATIO= option sets the
preserveAspectRatio attribute only on the outermost <svg> element.

Syntax
SVGPRESERVEASPECTRATIO=align | meetOrSlice | NONE | ""

SVGPRESERVEASPECTRATIO="align meetOrSlice"

Syntax Description

SAS System Options � SVGPRESERVEASPECTRATIO= System Option 1961

align
specifies to force uniform scaling by specifying the alignment method to use. The
value for align can be one of the following:

xMinYMin specifies to force uniform scaling by using the following alignment:

Align the <min–x> of the element’s viewBox with the smallest
X value of the viewport.

Align the <min–y> of the element’s viewBox with the smallest
Y value of the viewport.

xMidYMin specifies to force uniform scaling by using the following alignment:

Align the midpoint X value of the element’s viewBox with the
midpoint X value of the viewport.

Align the <min–y> of the element’s viewBox with the smallest
Y value of the viewport.

xMaxYMin specifies to force uniform scaling by using the following alignment:

Align the <min–x>+<width> of the element’s viewBox with the
maximum X value of the viewport.

Align the <min–y> of the element’s viewBox with the smallest
Y value of the viewport.

xMinYMid specifies to force uniform scaling by using the following alignment:

Align the <min–x> of the element’s viewBox with the smallest
X value of the viewport.

Align the midpoint Y value of the element’s viewBox with the
midpoint Y value of the viewport.

xMidYMid specifies to force uniform scaling by using the following alignment:

Align the midpoint X value of the element’s viewBox with the
midpoint X value of the viewport.

Align the midpoint Y value of the element’s viewBox with the
midpoint Y value of the viewport. This is the default.

xMaxYMid specifies to force uniform scaling by using the following alignment:

Align the <min–x>+<width> of the element’s viewBox with the
maximum X value of the viewport.

Align the midpoint Y value of the element’s viewBox with the
midpoint Y value of the viewport.

xMinYMax specifies to force uniform scaling by using the following alignment:

Align the <min–x> of the element’s viewBox with the smallest
X value of the viewport.

Align the <min–y>+<height> of the element’s viewBox with the
maximum Y value of the viewport.

xMidYMax specifies to force uniform scaling by using the following alignment:

Align the midpoint X value of the element’s viewBox with the
midpoint X value of the viewport.

Align the <min–y>+<height> of the element’s viewBox with the
maximum Y value of the viewport.

xMaxYMax specifies to force uniform scaling by using the following alignment:

1962 SVGPRESERVEASPECTRATIO= System Option � Chapter 7

Align the <min–x>+<width> of the element’s viewBox with the
maximum X value of the viewport.

Align the <min–y>+<height> of the element’s viewBox with the
maximum Y value of the viewport.

meetOrSlice
specifies to preserve the aspect ratio and how the viewBox displays. The following
values are valid for meetOrSlice:

meet specifies to scale the SVG graphic as follows:

� preserve the aspect ratio

� make the entire viewBox visible within the viewport

� scale up the viewBox as much as possible while meeting
other criteria

If the aspect ratio of the graphic does not match the viewport,
some of the viewport will extend beyond the bounds of the
viewBox.

slice specifies to scale the SVG graphic as follows:

� preserve the aspect ratio

� cover the entire viewBox with the viewport

� scale down the viewBox as much as possible while meeting
other criteria

If the aspect ratio of the viewBox does not match the viewport,
some of the viewBox will extend the bounds of the viewport.

NONE
specifies not to force uniform scaling and to scale the SVG output nonuniformly so
that the element’s bounding box exactly matches the viewport rectangle.

""
specifies to reset the preserveAspectRatio attribute of the <svg> element to the
default value of xMidYMid meet.

Requirement: Use two double quotation marks with no space between them.

Details
When the value of the SVGPRESERVEASPECTRATIO= option includes both align and
meetOrSlice, you can delimit the value by using single or double quotation marks or
parentheses.

The preserveAspectRatio attribute applies only when a value is provided for the
viewBox on the same <svg> element. If the viewBox attribute is not provided, the
preserveAspectRatio attribute is ignored.

Examples

The following OPTIONS statements are examples of using the
SVGPRESERVEASPECTRATIO= system option:

options svgpreserveaspectratio=xMinYMax;
options svgpreserveaspectratio="xMinYMin meet";
options svgpreserveaspectratio=(xMinYMin meet);
options svgpreserveaspectratio="";

SAS System Options � SVGTITLE= System Option 1963

See Also

System options:
“SVGCONTROLBUTTONS” on page 1958
“SVGHEIGHT= System Option” on page 1958
“SVGTITLE= System Option” on page 1963
“SVGWIDTH= System Option” on page 1966
“SVGVIEWBOX= System Option” on page 1964
“SVGX= System Option” on page 1967
“SVGY= System Option” on page 1969

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

SVGTITLE= System Option

Specifies the title in the title bar of the SVG output; specifies the value of the <title> element in
the SVG file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG

Syntax
SVGTITLE="title" | "" | "

Syntax Description

"title"
specifies the title of the SVG.

"" | "
specifies to reset the title to empty.
Requirement: Use two double quotation marks or two single quotation marks with

no space between them.

Details
If the SVGTITLE option is not specified, the title bar of the SVG output displays the
filename of the SVG output.

The value for the SVGTITLE= option must be enclosed in single or double quotation
marks, or enclosed in parentheses.

See Also

1964 SVGVIEWBOX= System Option � Chapter 7

System options:
“SVGCONTROLBUTTONS” on page 1958
“SVGHEIGHT= System Option” on page 1958
“SVGPRESERVEASPECTRATIO= System Option” on page 1960
“SVGWIDTH= System Option” on page 1966
“SVGVIEWBOX= System Option” on page 1964
“SVGX= System Option” on page 1967
“SVGY= System Option” on page 1969

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

SVGVIEWBOX= System Option

Specifies the coordinates, width, and height that are used to set the viewBox attribute on the
outermost <svg> element, which enables SVG output to scale to the viewport.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGVIEWBOX= option sets the viewBox attribute only on the
outermost <svg> element.

Syntax
SVGVIEWBOX="min-x min-y width height" | none | "" | ’’

Syntax Description

min–x
specifies the beginning x coordinate of the viewBox, in user units.
Requirement: min-x can be 0, or a positive or a negative integer value.

min–y
specifies the beginning y coordinate of the viewBox, in user units.
Requirement: min–y can be 0, or a positive or negative integer value.

width
specifies the width of the viewBox, in user units.
Requirement: width must be a positive integer value.

height
specifies the height of the viewBox, in user units.
Requirement: height must be a positive integer value.

none
specifies that no viewBox attribute is to be specified on the outermost <svg>
element, which will effectively create a static SVG document.

SAS System Options � SVGVIEWBOX= System Option 1965

"" | ’’
specifies to reset the width and height of the viewBox to the width and height of the
paper size for the SVG printer.

Requirement: Use two double quotation marks or two single quotation marks with
no space between them.

Details

When the viewBox attribute is specified, the SVG output is scaled to be rendered in the
viewport and the current coordinate system is updated to be the dimensions that are
specified by the viewBox attribute. If it is not specified, the viewBox attribute on the
outermost <svg> element sets the height and width arguments of the viewBox attribute
to the paper height and paper width as defined by the PAPERSIZE= system option.

The coordinates, width, and height of the viewBox attribute should be mapped to the
coordinates, width, and height of the viewport, taking into account the values of the
preserveAspectRatio attribute.

The value for the SVGVIEWBOX= option must be enclosed in single or double
quotation marks, or enclosed in parentheses.

You can use a negative value for min-x and min-y to place the SVG document in the
output. A negative value of min-x shifts the output to the right. A negative value of
min-y shifts the placement of the output downward.

Examples

The following OPTIONS statement specifies to scale the output to a width of 100
user units and a height of 200 user units:

options printerpath=svg svgviewbox="0 0 100 200" dev=sasprtc;

By using these option values, SAS creates the following <svg> element:

<svg> xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xml:space="preserve"
onload=’Init(evt)’ version="1.1"
viewBox="0 0 100 200"

</svg>

See Also

System options:

“SVGCONTROLBUTTONS” on page 1958

“SVGHEIGHT= System Option” on page 1958

“SVGPRESERVEASPECTRATIO= System Option” on page 1960

“SVGTITLE= System Option” on page 1963

“SVGWIDTH= System Option” on page 1966

“SVGX= System Option” on page 1967

“SVGY= System Option” on page 1969

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

1966 SVGWIDTH= System Option � Chapter 7

SVGWIDTH= System Option

Specifies the width of the viewport unless the SVG output is embedded in another SVG output;
specifies the value of the width attribute in the outermost <svg> element in the SVG file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGWIDTH= option sets the width attribute only on the outermost
<svg> element.

Syntax
SVGWIDTH= number-of-units<unit-of-measure> | "" | "

Syntax Description

number-of-units
specifies the width as a number of unit-of-measure.
Requirement: number-of- units must be a positive integer value.
Interaction: If number-of- units is a negative number, the SVG document is not

rendered by the browser.

unit-of-measure
specifies the unit of measurement, which can be one of the following:

% percentage

cm centimeters

em the height of the element’s font

ex the height of the letter x

in inches

mm millimeters

pc picas

pt points

px pixels
Default: px

"" | "
specifies to reset the width to the default value of 800 pixels.
Requirement: Use two double quotation marks or two single quotation marks with

no space between them.

Details
For embedded <svg> elements, the SVGWIDTH= option specifies the width of the
rectangular region into which the <svg> element is placed. The SVG output is scaled to
fit the viewBox if SVGWIDTH="100%".

SAS System Options � SVGX= System Option 1967

If the SVGWIDTH= option is not specified, the width attribute on the <svg> element
is not set, which effectively provides full scalability by using a width of 100%.

The value for the SVGWIDTH= option can be specified without delimiters, enclosed
in single or double quotation marks, or enclosed in parentheses.

Examples

The following OPTIONS statement specifies to size the SVG output to portrait
letter-sized and to scale the output to 100% of the viewport:

options printerpath=svg orientation=portrait svgheight="100%" svgwidth="100%"
papersize=letter;

By using these option values, SAS creates the following <svg> element:

<svg> xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
xml:space="preserve"
onload=’Init(evt)’ version="1.1"
width="100%" height="100%"
viewBox="0 0 850 1100"

</svg>

The value of "100%" in the SVGWIDTH= option specifies to scale the SVG output
width to 100% of the viewport, which is based on the value of the PAPERSIZE= option.
The paper size is letter in the portrait orientation, which has a width of 8.5" at 96 dpi.

See Also

System options:

“SVGCONTROLBUTTONS” on page 1958
“SVGHEIGHT= System Option” on page 1958

“SVGPRESERVEASPECTRATIO= System Option” on page 1960
“SVGTITLE= System Option” on page 1963

“SVGVIEWBOX= System Option” on page 1964
“SVGX= System Option” on page 1967
“SVGY= System Option” on page 1969

“Using SAS System Options” on page 1770
The SAS Registry in SAS Language Reference: Concepts

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

SVGX= System Option

Specifies the x-axis coordinate of one corner of the rectangular region into which an embedded
<svg> element is placed; specifies the x attribute in the outermost <svg> element in an SVG file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

1968 SVGX= System Option � Chapter 7

Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGX= option sets the x attribute only on the outermost <svg> element.

Syntax
SVGX= number-of-units<unit-of-measure> | "" | "

Syntax Description

number-of-units
specifies the x-axis coordinate as a number of unit-of-measure.

unit-of-measure
specifies the unit of measurement, which can be one of the following:

% percentage

cm centimeters

em the height of the element’s font

ex the height of the letter x

in inches

mm millimeters

pc picas

pt points

px pixels
Default: px

"" | "
specifies to reset the x attribute to 0 on the <svg> element and the x-axis coordinate
for embedded SVG to 0.
Requirement: Use two double quotation marks or two single quotation marks with

no space between them.

Details
If the SVGX= option is not set, the x attribute on the <svg> element effectively has a
value of 0 and no x-axis coordinate is set for embedded SVG output.

The value for the SVGX= option can be specified without delimiters, enclosed in
single or double quotation marks, or enclosed in parentheses.

The x attribute on the outermost <svg> element has no effect on SVG documents
that are produced by SAS. You can use the SVGX= system option to specify the x-axis
coordinate if the SVG document is processed outside of SAS.

See Also

System options:
“SVGCONTROLBUTTONS” on page 1958

SAS System Options � SVGY= System Option 1969

“SVGHEIGHT= System Option” on page 1958
“SVGPRESERVEASPECTRATIO= System Option” on page 1960
“SVGTITLE= System Option” on page 1963
“SVGWIDTH= System Option” on page 1966
“SVGVIEWBOX= System Option” on page 1964
“SVGY= System Option” on page 1969

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

SVGY= System Option

Specifies the y-axis coordinate of one corner of the rectangular region into which an embedded
<svg> element is placed; specifies the y attribute in the outermost <svg> element in an SVG file.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: SVG
PROC OPTIONS GROUP= SVG
Restriction: The SVGY= option sets the y attribute only on the outermost <svg> element.

Syntax
SVGY= number-of-units<unit-of-measure> | "" | "

Syntax Description

number-of-units
specifies the y-axis coordinate as a number of unit-of-measure.

unit-of-measure
specifies the unit of measurement, which can be one of the following:

% percentage

cm centimeters

em the height of the element’s font

ex the height of the letter x

in inches

mm millimeters

pc picas

pt points

px pixels
Default: px

"" | "

1970 SYNTAXCHECK System Option � Chapter 7

specifies to reset the y attribute on the <svg> element and the y-axis coordinate for
embedded SVG output to 0.
Requirement: Use two double quotation marks or two single quotation marks with

no space between them.

Details
If the SVGY= option is not set, the y attribute on the <svg> element effectively has a
value of 0 and no y-axis coordinate is set for embedded SVG output.

The value for the SVGY= option can be specified without delimiters, enclosed in
single or double quotation marks, or enclosed in parentheses.

The y attribute on the outermost <svg> element has no effect on SVG documents
that are produced by SAS. You can use the SVGY= system option to specify the y-axis
coordinate if the SVG document is processed outside of SAS.

See Also

System options:
“SVGCONTROLBUTTONS” on page 1958
“SVGHEIGHT= System Option” on page 1958
“SVGPRESERVEASPECTRATIO= System Option” on page 1960
“SVGTITLE= System Option” on page 1963
“SVGWIDTH= System Option” on page 1966
“SVGVIEWBOX= System Option” on page 1964
“SVGX= System Option” on page 1967

Creating Scalable Vector Graphics Using Universal Printing in SAS Language
Reference: Concepts

SYNTAXCHECK System Option

In non-interactive or batch SAS sessions, specifies whether to enable syntax check mode for
multiple steps.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
SYNTAXCHECK | NOSYNTAXCHECK

Syntax Description

SYNTAXCHECK

SAS System Options � SYNTAXCHECK System Option 1971

enables syntax check mode for statements that are submitted within a
non-interactive or batch SAS session.

NOSYNTAXCHECK
does not enable syntax check mode for statements that are submitted within a
non-interactive or batch SAS session.

CAUTION:
Setting NOSYNTAXCHECK might cause a loss of data. Manipulating and deleting data
by using untested code might result in a loss of data if your code contains invalid
syntax. Be sure to test code completely before placing it in a production
environment. �

Details
If a syntax or semantic error occurs in a DATA step after the SYNTAXCHECK option is
set, then SAS enters syntax check mode, which remains in effect from the point where
SAS encountered the error to the end of the code that was submitted. After SAS enters
syntax mode, all subsequent DATA step statements and PROC step statements are
validated.

While in syntax check mode, only limited processing is performed. For a detailed
explanation of syntax check mode, see “Syntax Check Mode” in the section “Error
Processing in SAS” in SAS Language Reference: Concepts.

Place the OPTIONS statement that enables SYNTAXCHECK before the step for
which you want it to take effect. If you place the OPTIONS statement inside a step,
then SYNTAXCHECK will not take effect until the beginning of the next step.

NOSYNTAXCHECK enables continuous processing of statements regardless of
syntax error conditions.

SYNTAXCHECK is ignored in the SAS windowing environment and in SAS
line-mode sessions.

Comparisons
You use the SYNTAXCHECK system option to validate syntax in a non-interactive or a
batch SAS session. You use the DMSSYNCHK system option to validate syntax in an
interactive session by using the SAS windowing environment.

The ERRORCHECK= option can be set to enable or disable syntax check mode for
the LIBNAME statement, the FILENAME statement, the %INCLUDE statement, and
the LOCK statement in SAS/SHARE. If you specify the NOSYNTAXCHECK option and
the ERRORCHECK=STRICT option, then SAS does not enter syntax check mode when
an error occurs.

See Also

System Options:
“DMSSYNCHK System Option” on page 1835
“ERRORCHECK= System Option” on page 1848

“Error Processing in SAS” in the section “Error Processing and Debugging” in SAS
Language Reference: Concepts

1972 SYSPRINTFONT= System Option � Chapter 7

SYSPRINTFONT= System Option

Specifies the default font to use for printing, which can be overridden by explicitly specifying a
font and an ODS style.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Log and procedure output control: Procedure output

PROC OPTIONS GROUP= LISTCONTROL

See: SYSPRINTFONT= System Option in the documentation for your operating
environment.

Syntax
SYSPRINTFONT=(“face-name” <weight> <style> <character-set> <point-size>

<NAMED “printer-name ” | UPRINT=“printer-name ” | DEFAULT | ALL>)

Syntax Description

“face-name”
specifies the name of the font face to use for printing.

Requirement: If face-name consists of more than one word, you must be enclose the
value in single or double quotation marks. The quotation marks are stored with
the face-name.

Requirement: When you use the SYSPRINTFONT= option with multiple
arguments, you must enclose the arguments in parentheses.

Interaction: When you specify UPRINT=printer-name, face-name must be a valid
font for printer-name.

weight
specifies the weight of the font, such as BOLD. A list of valid values for your
specified printer appears in the SAS: Printer Properties window.

Default: NORMAL

style
specifies the style of the font, such as Italic. A list of valid values for your specified
printer appears in the SAS: Printer Properties window.

Default: REGULAR

character-set
specifies the character set to use for printing.

Default: If the font does not support the specified character set, the default
character set is used. If the default character set is not supported by the font, the
font’s default character set is used.

Range: Valid values are listed in the SAS: Printer Properties window, under the
Font tab.

point-size

SAS System Options � SYSPRINTFONT= System Option 1973

specifies the point size to use for printing. If you omit this argument, SAS uses the
default.
Requirement: Point-size must be an integer. It must also be placed after the

face-name, weight, style, and character-set arguments.

NAMED “printer-name”
specifies a printer in the Windows operating environment to which these settings
apply.
Restriction: This argument is valid only for printers in the Windows operating

environment. To specify a Universal Printer, use the UPRINT=argument.
Requirement: The printer-name must exactly match the name shown in the Print

Setup dialog box (except that the printer name is not case sensitive).
Requirement: If the printer is more than one word, the printer-name must be

enclosed in double quotation marks. The quotation marks are stored with the
printer-name.

UPRINT=“printer-name”
specifies a Universal Printer to which these settings apply.
Restriction: This argument is valid only for printers that are listed in the SAS

Registry.
Requirement: The printer-name must match exactly the name shown in the Print

Setup dialog box (except that the printer name is not case sensitive).
Requirement: If the printer-name is more than one word, it must be enclosed in

single or double quotation marks. The quotation marks are stored with the
printer-name.

DEFAULT | ALL
specifies whether the font settings apply to the default printer or to all printers:

DEFAULT
specifies that the font settings apply to the current default printer that is specified
by the SYSPRINT= system option.

ALL
specifies that the font settings apply to all installed printers.

Details
The SYSPRINTFONT= system option sets the font to use when printing to the current
default printer, to a specified printer or to all printers.

In some cases, you might need to specify the font from a SAS program. In this case,
you might want to view the SAS: Printer Properties window for allowable names, styles
weights, and sizes for your fonts. For examples of how to apply the SYSPRINTFONT=
option in a SAS program, see “Examples” on page 1974.

If you specified SYSPRINTFONT= with DEFAULT or without a keyword and later
use the Print Setup dialog box to change the current default printer, then the font used
with the current default printer will be the font that was specified with
SYSPRINTFONT, if the specified font exists on the printer. If the current printer does
not support the specified font, the printer’s default font is used.

The following fonts are widely supported:

� Helvetica
� Times
� Courier
� Symbol

1974 TERMINAL System Option � Chapter 7

By specifying one of these fonts in a SAS program, you can usually avoid returning an
error. If that particular font is not supported, a similar-looking font prints in its place.

All Universal printers and many SAS/GRAPH devices use the FreeType engine to
render TrueType fonts. For more information, see Using TrueType Fonts with Universal
Printing and SAS/GRAPH Devices in SAS Language Reference: Concepts.

Note: As an alternative to using the SYSPRINTFONT= system option, you can set
fonts with the SAS: Printer Properties window, under the Font tab. From the
drop-down menu select File � Print Setup � Properties � Font. Using a dialog box is
fast and easy because you choose your font, style, weight, size, and character set from a
list of options that your selected printer supports. �

Examples
Specifying a Font to the Default Printer

This example specifies the 12–point Times font on the default printer:

options sysprintfont=("times" 12);

Specifying a Font to a Named Windows Printer
This example specifies to use Courier on the printer named HP LaserJet IIIsi
Postscript. Specify the printer name in the same way that it is specified in the
SAS Print Setup dialog box:

options sysprintfont= ("courier" named "hp laserjet 111s, postscript");

Specifying a Font to a Universal Printer, on the SAS command line
This example specifies the Albany AMT font for the PDF Universal Printer::

sysprintfont=(’courier’ 11 uprint=’PDF’)

TERMINAL System Option

Specifies whether to associate a terminal with a SAS session.

Valid in: configuration file, SAS invocation
Category: Environment control: Initialization and operation
PROC OPTIONS GROUP= EXECMODES

Syntax
TERMINAL | NOTERMINAL

Syntax Description

TERMINAL
specifies that SAS evaluate the execution environment and if a physical display is
not available for an interactive environment, sets the option to NOTERMINAL.
Specify TERMINAL when you use the SAS windowing environment.

NOTERMINAL
specifies that SAS not evaluate the execution environment.

SAS System Options � TERMSTMT= System Option 1975

Details
SAS defaults to the appropriate setting for the TERMINAL system option based on
whether the session is invoked in the foreground or the background. If NOTERMINAL
is specified, dialog boxes are not displayed.

The TERMINAL option is normally used with the following execution modes:

� SAS windowing environment mode

� interactive line mode

� noninteractive mode.

TERMSTMT= System Option

Specifies the SAS statements to execute when SAS terminates.

Valid in: configuration file, SAS invocation

Category: Environment control: Initialization and operation

PROC OPTIONS GROUP= EXECMODES

Syntax
TERMSTMT=’statement(s)’

Syntax Description

’statement(s)’
is one or more SAS statements.

Maximum length: 2,048 characters

Operating Environment Information: In some operating system environments there is
a limit to the size of the value for TERMSTMT=. To circumvent this limitation, you can
use the %INCLUDE statement. �

Details
TERMSTMT= is fully supported in batch mode. In interactive modes, TERMSTMT= is
executed only when you submit the ENDSAS statement from an editor window to
terminate the SAS session. Terminating SAS by any other means in interactive mode
results in TERMSTMT= not being executed.

An alternate method for specifying TERMSTMT= is to put a %INCLUDE statement
at the end of a batch file or to submit a %INCLUDE statement before terminating the
SAS session in interactive mode.

Comparisons
TERMSTMT= specifies the SAS statements to be executed at SAS termination, and
INITSTMT= specifies the SAS statements to be executed at SAS initialization.

1976 TEXTURELOC= System Option � Chapter 7

See Also

System Option:
“INITSTMT= System Option” on page 1870

Statement:
“%INCLUDE Statement” on page 1536

TEXTURELOC= System Option

Specifies the location of textures and images that are used by ODS styles.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
TEXTURELOC=location

Syntax Description

location
specifies the location of textures and images used by ODS styles. Location can refer
either to the physical name of the directory or to a URL reference to the directory.
Requirement: If location is not a fileref, then you must enclose the value in

quotation marks.
Restriction: Only one location is allowed per statement.
Requirement: The files in the directory must be in the form of gif, jpeg, or bitmap.
Requirement: Location must refer to a directory.

See Also
“Dictionary of ODS Language Statements” in SAS Output Delivery System: User’s

Guide.

THREADS System Option

Specifies that SAS use threaded processing if it is available.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: System administration: Performance

SAS System Options � THREADS System Option 1977

PROC OPTIONS GROUP= PERFORMANCE

Syntax
THREADS | NOTHREADS

Syntax Description

THREADS
specifies to use threaded processing for SAS applications that support it.
Interaction If THREADS is specified either as a SAS system option or in PROC

SORT and another program has the input SAS data set open for reading, writing,
or updating using the SPD engine, then the procedure might fail and write a
subsequent message to the SAS log.

NOTHREADS
specifies not to use threaded processing for running SAS applications that support it.

Interaction: When you specify NOTHREADS, CPUCOUNT= is ignored unless you
specify a procedure option that overrides the NOTHREADS system option.

Details
The THREADS system option enables some legacy SAS processes that are
thread-enabled to take advantage of multiple CPUs by threading the processing and I/O
operations. Threading the processing and I/O operations achieves a degree of
parallelism that generally reduces the real time to completion for a given operation at
the possible cost of additional CPU resources. In SAS 9 and SAS 9.1, the
thread-enabled processes include

� Base SAS engine indexing

� Base SAS procedures: SORT, SUMMARY, MEANS, REPORT, TABULATE, and
SQL

� SAS/STAT procedures: GLM, LOESS, REG, ROBUSTREG.

For example, in some cases, processing small data sets, SAS might determine to use
a single-threaded operation.

Set this option to NOTHREADS to achieve SAS behavior most compatible with
releases before to SAS 9, if you find that threading does not improve performance or if
threading might be related to an unexplainable problem. See the specific
documentation for each product to determine whether it has functionality that is
enabled by the THREADS option.

Comparisons
The system option THREADS determines when threaded processing is in effect. The
SAS system option CPUCOUNT= suggests how many system CPUs are available for
use by thread-enabled SAS procedures.

See Also

System Option:

1978 TOOLSMENU System Option � Chapter 7

“CPUCOUNT= System Option” on page 1820
“UTILLOC= System Option” on page 1982

“Support for Parallel Processing” in SAS Language Reference: Concepts.

TOOLSMENU System Option

Specifies whether the Tools menu is included in SAS windows.

Default: TOOLSMENU
Valid in: configuration file, SAS invocation
Category: Environment control: Display
PROC OPTIONS GROUP= ENVDISPLAY

Syntax
TOOLSMENU | NOTOOLSMENU

Syntax Description

TOOLSMENU
specifies that the Tools menu is included in SAS windows.

NOTOOLSMENU
specifies that the Tools menu is not included in SAS windows.

TOPMARGIN= System Option

Specifies the print margin at the top of the page for output directed to an ODS printer destination.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
TOPMARGIN= margin-size<margin-unit>

Syntax Description

margin-size
specifies the size of the margin.

SAS System Options � TRAINLOC= System Option 1979

Restriction: The bottom margin should be small enough so that the top margin
plus the bottom margin is less than the height of the paper.

Interactions: Changing the value of this option might result in changes to the
value of the PAGESIZE= system option.

<margin-unit>
specifies the units for margin-size. The margin-unit can be in for inches or cm for
centimeters. <margin-unit> is saved as part of the value of the TOPMARGIN system
option.
Default: inches

Details
All margins have a minimum that is dependent on the printer and the paper size. The
default value of the TOPMARGIN system option is 0.00 in.

Operating Environment Information: Most SAS system options are initialized with
default settings when SAS is invoked. However, the default settings and option values
for some SAS system options might vary both by operating environment and by site.
For details, see the SAS documentation for your operating environment. �

For additional information about declaring an ODS printer destination, see the ODS
statements in the SAS Output Delivery System: User’s Guide.

See Also

System Options:
“BOTTOMMARGIN= System Option” on page 1796
“LEFTMARGIN= System Option” on page 1877
“RIGHTMARGIN= System Option” on page 1925

TRAINLOC= System Option

Specifies the URL for SAS online training courses.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES

Syntax
TRAINLOC=”base-URL”

Syntax Description

base-URL

1980 UNIVERSALPRINT System Option � Chapter 7

specifies the address where the SAS online training courses are located.

Details
The TRAINLOC= system option specifies the base location (typically a URL) of SAS
online training courses. These online training courses are typically accessed from an
intranet server or a local CD-ROM.

Examples

Some examples of the base-URL are:

� "file://e:\onlintut"

� "http://server.abc.com/SAS/sastrain"

UNIVERSALPRINT System Option

Specifies whether to enable Universal Printing services.

Valid in: configuration file, SAS invocation

Category: Log and procedure output control: ODS Printing

PROC OPTIONS GROUP= ODSPRINT

Syntax
UNIVERSALPRINT | NOUNIVERSALPRINT

Syntax Description

UNIVERSALPRINT
routes all printing through the Universal Print services.

Alias: UPRINT

NOUNIVERSALPRINT
disables printing through the Universal Print services.

Alias: NOUPRINT

Details
Universal Printing services provides interactive and batch printing capabilities to SAS
applications and procedures. The ODS PRINTER destination uses Universal Print
services whenever the UNIVERSALPRINT option is enabled.

See Also
“Printing with SAS” in SAS Language Reference: Concepts

SAS System Options � UPRINTCOMPRESSION System Option 1981

UPRINTCOMPRESSION System Option

Specifies whether to enable compression of file created by some Universal Printer and SAS/GRAPH
devices.

Alias: UPC | NOUPC
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Log and procedure output control: ODS Printing
PROC OPTIONS GROUP= ODSPRINT

Syntax
UPRINTCOMPRESSION | NOUPRINTCOMPRESSION

Syntax Description

UPRINTCOMPRESSION
specifies to enable compression of files created by some Universal Printers and some
SAS/GRAPH devices. This is the default.

NOUPRINTCOMPRESSION
specifies to disable compression of files created by some Universal Printers and some
SAS/GRAPH devices.

Details
The following table lists the Universal Printers and the SAS/GRAPH devices that are
affected by the UPRINTCOMPRESSION system option:

Universal Printers SAS/GRAPH Device Drivers

PCL5, PCL5C, PCL5E PCL5, PCL5C, PCL5E

PDF PDF, PDFA, PDFC

SVGZ SVGZ

PS SASPRTC, SASPRTG, SASPRTM

UEPS, UPSC, UPCL5, UPCL5C,
UPCL5E, UPDF, UPSL, UPSLC

When NOUPRINTCOMPRESSION is set, the DEFLATION= option is ignored.
The ODS PRINTER statement option, COMPRESS=, takes precedence over the

UPRINTCOMPRESSION system option.

See Also

System options:

1982 USER= System Option � Chapter 7

“DEFLATION= System Option” on page 1825

Statements:

“ODS PRINTER Statement” in the SAS Output Delivery System: User’s Guide

USER= System Option

Specifies the default permanent SAS library.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window

Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

See: USER= System Option in the documentation for your operating environment.

Syntax
USER= library-specification

Syntax Description

library-specification
specifies the libref or physical name of a SAS library.

Details
If this option is specified, you can use one-level names to reference permanent SAS files
in SAS statements. However, if USER=WORK is specified, SAS assumes that files
referenced with one-level names refer to temporary work files.

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For details, see the SAS documentation for your
operating environment. �

UTILLOC= System Option

Specifies one or more file system locations in which applications can store utility files.

Valid in: configuration file and SAS invocation

Category: Files: SAS Files

PROC OPTIONS GROUP= SASFILES

See: UTILLOC= System Option in the documentation for your operating environment.

SAS System Options � UTILLOC= System Option 1983

Syntax
UTILLOC= WORK | location | (location-1... location-n)

Syntax Description

WORK
specifies that SAS creates utility files in the same directory as the Work library.

This is the default.

location
specifies the location of an existing directory for utility files that are created by
applications. Enclose location in single or double quotation marks when the location
contains spaces.

Operating Environment Information: On z/OS each location is a list of DCB and
SMS options to be used when creating utility files. �

(location-1 ... location-n)
specifies a list of existing directories that can be accessed in parallel for utility files
that are created by applications. A single utility file cannot span locations. Enclose a
location in single or double quotation marks when the location contains spaces. Any
location that does not exist is deleted from the value of the UTILLOC= system option.

Operating Environment Information: On z/OS, each location is a list of DCB and
SMS options to be used when creating utility files. �

Requirement: If you have more than one location, then you must enclose the list of
locations in parentheses.

Details
Thread-enabled SAS applications are able to create temporary utility files that can be
accessed in parallel by separate threads.

For the SORT procedure, the UTILLOC= system option affects the placement of the
utility files only if the multi-threaded SAS sort is used. The multi-threaded SAS sort
can be invoked when the THREAD system option is specified and the value of the
CPUCOUNT= system option is greater than 1. The multi-threaded SAS sort can also be
invoked when you specify the THREADS option in the PROC SORT statement. The
multi-threaded sort stores all temporary data in a single utility file within one of the
locations that are specified by the UTILLOC= system option. The size of this utility file
is proportional to the amount of data that is read from the input data set. A second
utility file of the same size can be created in another of these locations when the
amount of data that is read from the input data set is large or the amount of memory
that is available to the SORT procedure is small.

See Also

System Option:

“CPUCOUNT= System Option” on page 1820

“THREADS System Option” on page 1976

The SORT Procedure in Base SAS Procedures Guide

“Support for Parallel Processing” in SAS Language Reference: Concepts.

1984 UUIDCOUNT= System Option � Chapter 7

UUIDCOUNT= System Option

Specifies the number of UUIDs to acquire from the UUID Generator Daemon.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES

Syntax
UUIDCOUNT= n | MIN | MAX

Syntax Description

n
specifies the number of UUIDs to acquire. Zero indicates that the UUID Generator
Daemon is not required.
Range: 0–1000
Default: 100

MIN | MAX
MIN specifies that the number of UUIDs to acquire is zero, indicating that the

UUID Generator Daemon is not required.
MAX specifies that 1000 UUIDs at a time should be acquired from the UUID

Generator Daemon.

Details
If a SAS application will generate a large number of UUIDs, this value can be adjusted
at any time during a SAS session to reduce the number of times that the SAS session
would have to contact the SAS UUID Generator Daemon.

See Also

System Option:
“UUIDGENDHOST= System Option” on page 1984

Function:
“UUIDGEN Function” on page 1143

“Universal Unique Identifiers and the Object Spawner” in SAS Language Reference:
Concepts

UUIDGENDHOST= System Option

Identifies the host and port or the LDAP URL that the UUID Generator Daemon runs on.

SAS System Options � UUIDGENDHOST= System Option 1985

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES

Syntax
UUIDGENDHOST= ’host-string’

Syntax Description

’host-string’
is either of the form hostname:port or an LDAP URL. The value must be in one
string. Enclose an LDAP URL string with quotation marks.

Details
SAS does not guarantee that all UUIDs are unique. Use the SAS UUID Generator
Daemon (UUIDGEN) to ensure unique UUIDs.

Examples
� Specifying hostname:port as the ’host-string’:

sas -UUIDGENDHOST ’myhost.com:5306’

or

sas UUIDGENDHOST= ’myhost.com:5306’

� Specifying an LDAP URL as the ’host-string’:

"ldap://ldap-hostname/sasspawner-distinguished-name"

� A more detailed example of an LDAP URL as the ’host-string’:

"ldap://ldaphost/sasSpawnercn=UUIDGEND,sascomponent=sasServer, cn=ABC,o=ABC Inc,c=US"

� Specifying your binddn and password, if your LDAP server is secure:

"ldap://ldap-hostname/sasSpawner-distinguished-name????
bindname=binddn,password=bind-password"

� An example with a bindname value and a password value:

"ldap://ldaphost/
sasSpawnercn=UUIDGEND,sascomponent=sasServer,cn=ABC,o=ABC Inc,c=US
????bindname=cn=me%2co=ABC Inc %2cc=US,
password=itsme"

Note: When specifying your bindname and password, commas that are a part of
your bindname and your password must be replaced with the string "%2c". In the
previous example, the bindname is as follows:

cn=me,o=ABC Inc,c=US

�

See Also

1986 V6CREATEUPDATE= System Option � Chapter 7

System Option:
“UUIDCOUNT= System Option” on page 1984

Function:
“UUIDGEN Function” on page 1143

V6CREATEUPDATE= System Option

Specifies the type of message to write to the SAS log when Version 6 data sets are created or
updated.

Valid in: configuration file, SAS invocation
Category: Environment control: Files
PROC OPTIONS GROUP= SASFILES

Syntax
V6CREATEUPDATE = ERROR | NOTE | WARNING | IGNORE

Syntax Description

ERROR
specifies that an ERROR is written to the SAS log when the V6 engine is used to open
a SAS data set for creation or update. The attempt to create or update a SAS data set
in Version 6 format will fail. Reading Version 6 data sets will not generate an error.

NOTE
specifies that a NOTE is written to the SAS log when the V6 engine is used; all other
processing occurs normally.

WARNING
specifies that a WARNING is written to the SAS log when the V6 engine is used; all
other processing occurs normally.

IGNORE
disables the V6CREATEUPDATE= system option. Nothing is written to the SAS log
when the V6 engine is used.

VALIDFMTNAME= System Option

Specifies the maximum size (32 characters or 8 characters) that user-created format and informat
names can be before an error or warning is issued.

Default: LONG
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files

SAS System Options � VALIDFMTNAME= System Option 1987

PROC OPTIONS GROUP= SASFILES

Syntax
VALIDFMTNAME=LONG | FAIL | WARN

Syntax Description

LONG
specifies that format and informat names can be up to 32 alphanumeric characters.
This is the default.

FAIL
specifies that creating a format or informat name that is longer than eight characters
results in an error message.

Tip: Specify this setting for using formats and informats that are valid in both SAS
9 and previous releases of SAS.

Interaction: If you explicitly specify the V7 or V8 Base SAS engine, such as in a
LIBNAME statement, then SAS automatically uses the VALIDFMTNAME=FAIL
behavior for data sets that are associated with those engines.

WARN
specifies that creating a format or informat name that is longer than eight characters
results in a warning message to remind you that the format or informat cannot be
used with releases before to SAS 9.

Details
SAS 9 enables you to define format and informat names up to 32 characters. Previous
releases were limited to eight characters. The VALIDFMTNAME= system option
applies to format and informat names in both data sets and format catalogs.
VALIDFMTNAME= does not control the length of format and informat names. It only
controls the length of format and informat names that you associate with variables
when you create a SAS data set.

If a SAS data set has a variable with a long format or informat name, which means
that a release before SAS 9 cannot read it, then you can remove the long name so that
the data set can be accessed by an earlier release. However, in order to retain the
format attribute of the variable, an identical format with a short name would have to be
applied to the variable.

Note: After you create a format or informat using a name that is longer than eight
characters, if you rename it using eight or fewer characters, a release before SAS 9
cannot use the format or informat. You must recreate the format or informat using the
shorter name. �

See Also

For more information about SAS names, see “Names in the SAS Language” Names in
the SAS Language in SAS Language Reference: Concepts.

For information about defining formats and informats, see “The FORMAT Procedure”
in Base SAS Procedures Guide.

1988 VALIDVARNAME= System Option � Chapter 7

For information about compatibility issues, see “SAS 9.1 Compatibility with SAS
Files From Earlier Releases” in SAS Language Reference: Concepts.

VALIDVARNAME= System Option

Specifies the rules for valid SAS variable names that can be created and processed during a SAS
session.

Default: V7
Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
VALIDVARNAME=V7 | UPCASE | ANY

Syntax Description

V7
specifies that variable names must follow these rules:

� can be up to 32 characters in length.
� must begin with a letter of the Latin alphabet (A - Z, a - z) or the underscore

character. Subsequent characters can be letters of the Latin alphabet,
numerals, or underscores.

� cannot contain blanks.
� cannot contain special characters except for the underscore.
� can contain mixed-case letters. SAS stores and writes the variable name in the

same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. You cannot,
therefore, use the same variable name with a different combination of
uppercase and lowercase letters to represent different variables. For example,
cat, Cat, and CAT all represent the same variable.

� cannot be assigned the names of special SAS automatic variables (such as _N_
and _ERROR_) or variable list names (such as _NUMERIC_, _CHARACTER_,
and _ALL_).

UPCASE
specifies that the variable name follows the same rules as V7, except that the
variable name is uppercase, as in earlier versions of SAS.

ANY
specifies that SAS variable names must follow these rules:

� can be up to 32 characters in length
� can be special and multi-byte characters not to exceed 32 bytes.

SAS System Options � VARLENCHK= System Option 1989

� cannot contain any null bytes
� leading blanks are preserved, but trailing blanks are ignored
� name must contain at least one character. An all blank name is not permitted.
� can begin with or contain any characters, including blanks

Note: If you use any characters other than the ones that are valid when the
VALIDVARNAME system option is set to V7 (letters of the Latin alphabet,
numerals, or underscores), then you must express the variable name as a name
literal and you must set VALIDVARNAME=ANY. See “SAS Name Literals” and
“Avoiding Errors When Using Name Literals” in SAS Language Reference:
Concepts.

If you use either the percent sign (%) or the ampersand (&), then you must
use single quotation marks in the name literal in order to avoid interaction with
the SAS Macro Facility. �

� can contain mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable. However, when SAS
processes a variable name, SAS internally converts it to uppercase. You cannot,
therefore, use the same variable name with a different combination of
uppercase and lowercase letters to represent different variables. For example,
cat, Cat, and CAT all represent the same variable.

Warning: The intent of the VALIDVARNAME=ANY option is to enable
compatibility with other DBMS variable (column) naming conventions, such as
allowing embedded blanks and national characters. Throughout SAS, using the
name literal syntax with variable names that exceed the 32–byte limit or have
excessive embedded quotation marks might cause unexpected results.

See Also

“Rules for Words and Names in the SAS Language” in SAS Language Reference:
Concepts

VARLENCHK= System Option

Specifies the type of message to write to the SAS log when the input data set is read using the
SET, MERGE, UPDATE, or MODIFY statements.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Files: SAS Files
PROC OPTIONS GROUP= SASFILES

Syntax
VARLENCHK=NOWARN | WARN | ERROR

Syntax Description

1990 VARLENCHK= System Option � Chapter 7

NOWARN
specifies that no warning message is issued when the length of a variable that is
being read is larger than the length that is defined for the variable.

WARN
specifies that a warning is issued when the length of a variable that is being read is
larger than the length that is defined for the variable. This is the default.

ERROR
specifies that an error message is issued when the length of a variable that is being
read is larger than the length that is defined for the variable.

Details
After a variable is defined, the length of a variable can be changed only by a LENGTH
statement. If a variable is read by the SET, MERGE, UPDATE, or MODFIY statements
and the length of the variable is longer than a variable of the same name, SAS issues a
warning message and uses the shorter, original length of the variable. By using the
shorter length, data will not be truncated.

When you intentionally truncate data, perhaps to remove unnecessary blanks from
character variables, SAS issues a warning message that might not be useful to you. To
make it so that SAS does not issue the warning message or set a nonzero return code,
you can set the VARLENCHK= system option to NOWARN. When
VARLENCHK=NOWARN, SAS does not issue a warning message and sets the return
code to SYSRC=0.

Alternatively, if you set VARLENCHK=ERROR and the length of a variable that is
being read is larger than the length that is defined for the variable, SAS issues an error
and sets the return code SYSRC=8.

Examples

Example 1: SAS Issues a Warning Message Merging Two Data Sets with Different
Variable Lengths This example merges two data sets, the sashelp.class data set and
the exam_schedule data set. The length of the variable Name is set to 8 by the first
SET statement, set sashelp.class;. The exam_schedule data set sets the length of
Name to 10. When exam_schedule is read in the second SET statement, set
exam_schedule key=Name;, SAS issues a warning message because the length of
Name in the exam_schedule data set is longer than the length of Name in the
sashelp.class data set, and data might have been truncated.

/& Create the exam_schedule data set. */

data exam_schedule(index=(Name));
input Name $10. +1 Exam_Date mmddyy10.;
format Exam_Date mmddyy10.;

datalines;
Carol 06/09/2008
Hui 06/09/2008
Janet 06/09/2008
Geoffrey 06/09/2008
John 06/09/2008
Joyce 06/09/2008
Helga 06/09/2008
Mary 06/09/2008
Roberto 06/09/2008

SAS System Options � VARLENCHK= System Option 1991

Ronald 06/09/2008
Barbara 06/10/2008
Louise 06/10/2008
Alfred 06/11/2008
Alice 06/11/2008
Henri 06/11/2008
James 06/11/2008
Philip 06/11/2008
Tomas 06/11/2008
William 06/11/2008

/* Merge the data sets sashelp.class and exam_schedule */

data exams;
set sashelp.class;
set exam_schedule key=Name;

run;

The following SAS log shows the warning message:

Output 7.11 The Warning Message in the SAS Log

1 data exam_schedule(index=(Name));

2 input Name $10. +1 Exam_Date mmddyy10.;

3 format Exam_Date mmddyy10.;

4 datalines;

NOTE: The data set WORK.EXAM_SCHEDULE has 20 observations and 2 variables.

NOTE: DATA statement used (Total process time):

real time 4.32 seconds

cpu time 0.24 seconds

25 ;

26

27 data exams;

28 set sashelp.class;

29 set exam_schedule key=Name;

30 run;

WARNING: Multiple lengths were specified for the variable Name by input data set(s). This may cause truncation of data.

NOTE: There were 19 observations read from the data set SASHELP.CLASS.

NOTE: The data set WORK.EXAMS has 19 observations and 6 variables.

NOTE: DATA statement used (Total process time):

real time 0.51 seconds

cpu time 0.00 seconds

Example 2: Turn Off the Warning Message and Use the LENGTH Statement to Match
Variable Lengths In order to merge the two data sets, sashelp.class and
exam_schedule, you can examine the values of Name in exam_schedule. You can see
that there are no values that are greater than 8 and that you can change the length of
Name without losing data.

To change the length of the variable Name, you use a LENGTH= statement in a
DATA step before the set exam_schedule; statement. If the value of VARLENCHK is
WARN (the default), SAS issues the warning message that the value of Name is
truncated when it is read from work.exam_schedule. Because you know that data is not
lost, you might want to turn the warning message off:

1992 VIEWMENU System Option � Chapter 7

options varlenchk=nowarn;
data exam_schedule(index=(Name));

length Name $ 8;
set exam_schedule;

run;

The following is the SAS log output:

37 options varlenchk=nowarn;

38 options varlenchk=nowarn;
39 data exam_schedule(index=(Name));
40 length Name $ 8;
41 set exam_schedule;
42 run;

NOTE: There were 20 observations read from the data set WORK.EXAM_SCHEDULE.
NOTE: The data set WORK.EXAM_SCHEDULE has 20 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

See Also

Looking at Sources of Common Problems in the “Combining SAS Data Sets: Basic
Concepts” section of SAS Language Reference: Concepts

VIEWMENU System Option

Specifies whether the View menu is included in SAS windows.

Default: VIEWMENU

Valid in: configuration file, SAS invocation

Category: Environment control: Display

PROC OPTIONS GROUP= ENVDISPLAY

Syntax
VIEWMENU | NOVIEWMENU

Syntax Description

VIEWMENU
specifies that the View menu is included in SAS windows.

NOVIEWMENU
specifies that the View menu is not included in SAS windows.

SAS System Options � WORK= System Option 1993

VNFERR System Option
Specifies whether SAS issues an error or warning when a BY variable exists in one data set but
not another data set when processing the SET, MERGE, UPDATE, or MODIFY statements.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Error handling
PROC OPTIONS GROUP= ERRORHANDLING

Syntax
VNFERR | NOVNFERR

Syntax Description

VNFERR
specifies that SAS issue an error when a BY variable exists in one data set but not in
another data set when processing the SET, MERGE, UPDATE, or MODIFY
statements. When the error occurs, SAS enters into syntax-check mode.

NOVNFERR
specifies that SAS issue a warning when a BY variable exists in one data set but not
in another data set when processing the SET, MERGE, UPDATE, or MODIFY
statements. When the warning occurs, SAS does not enter into syntax-check mode.

Details
Operating Environment Information: Under z/OS, SAS also issues an error or a
warning when the data set specified by DDNAME points to a DUMMY library. �

Comparisons
� VNFERR is similar to the BYERR system option, which issues an error and enters

into syntax-check mode if the SORT procedure attempts to sort a _NULL_ data set.
� VNFERR is similar to the DSNFERR system option, which issues an error when a

SAS data set is not found.

See Also

System Options:
“BYERR System Option” on page 1800
“DSNFERR System Option” on page 1836

Syntax Check Mode in SAS Language Reference: Concepts

WORK= System Option
Specifies the WORK data library.

1994 WORKINIT System Option � Chapter 7

Valid in: configuration file, SAS invocation
Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

See: WORK= System Option in the documentation for your operating environment.

Syntax
WORK=library-specification

Syntax Description

library-specification
specifies the libref or physical name of the storage space where all data sets with
one-level names are stored. This library must exist.

Operating Environment Information: A valid library specification and its syntax are
specific to your operating environment. On the command line or in a configuration file,
the syntax is specific to your operating environment. For details, see the SAS
documentation for your operating environment. �

Details
This library is deleted at the end of your SAS session by default. To prevent the files
from being deleted, specify the NOWORKTERM system option.

See Also

System Option:

“WORKTERM System Option” on page 1995

WORKINIT System Option

Specifies whether to initialize the WORK library at SAS invocation.

Valid in: configuration file, SAS invocation
Category: Environment control: Files

PROC OPTIONS GROUP= ENVFILES

Syntax
WORKINIT | NOWORKINIT

Syntax Description

SAS System Options � WORKTERM System Option 1995

WORKINIT
erases files that exist from a previous SAS session in an existing WORK library at
SAS invocation.

NOWORKINIT
does not erase files from the WORK library at SAS invocation.

Comparisons
The WORKINIT system option initializes the WORK data library and erases all files
from a previous SAS session at SAS invocation. The WORKTERM system option
controls whether SAS erases WORK files at the end of a SAS session.

See Also

System Option:
“WORKTERM System Option” on page 1995

Operating Environment Information: WORKINIT has behavior and functions specific
to the UNIX operating environment. For details, see the SAS documentation for the
UNIX operating environment. �

WORKTERM System Option

Specifies whether to erase the WORK files when SAS terminates.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Environment control: Files
PROC OPTIONS GROUP= ENVFILES

Syntax
WORKTERM | NOWORKTERM

Syntax Description

WORKTERM
erases the WORK files at the termination of a SAS session.

NOWORKTERM
does not erase the WORK files.

Details
Although NOWORKTERM prevents the WORK data sets from being deleted, it has no
effect on initialization of the WORK library by SAS. SAS normally initializes the

1996 YEARCUTOFF= System Option � Chapter 7

WORK library at the start of each session, which effectively destroys any pre-existing
information.

Comparisons
Use the NOWORKINIT system option to prevent SAS from erasing existing WORK files
on invocation. Use the NOWORKTERM system option to prevent SAS from erasing
existing WORK files on termination.

See Also

System Option:
“WORKINIT System Option” on page 1994

YEARCUTOFF= System Option

Specifies the first year of a 100-year span that is used by date informats and functions to read a
two–digit year.

Valid in: configuration file, SAS invocation, OPTIONS statement, SAS System Options
window
Category: Input control: Data Processing
PROC OPTIONS GROUP= INPUTCONTROL

Syntax
YEARCUTOFF= nnnn | nnnnn

Syntax Description

nnnn | nnnnn
specifies the first year of the 100-year span.
Range: 1582–19900
Default: 1920

Details
The YEARCUTOFF= value is the default that is used by various date and datetime
informats and functions.

If the default value of nnnn (1920) is in effect, the 100-year span begins with 1920
and ends with 2019. Therefore, any informat or function that uses a two-digit year
value that ranges from 20 to 99 assumes a prefix of 19. For example, the value 92
refers to the year 1992.

The value that you specify in YEARCUTOFF= can result in a range of years that
span two centuries. For example, if you specify YEARCUTOFF=1950, any two-digit
value between 50 and 99 inclusive refers to the first half of the 100-year span, which is
in the 1900s. Any two-digit value between 00 and 49, inclusive, refers to the second half

SAS System Options � SAS System Options Documented in Other SAS Publications 1997

of the 100-year span, which is in the 2000s. The following figure illustrates the
relationship between the 100-year span and the two centuries if YEARCUTOFF=1950.

Figure 7.1 A 100–Year Span with Values in Two Centuries

100-year span

1950 1999 2000 2049

in the 1900s in the 2000s

Note: YEARCUTOFF= has no effect on existing SAS dates or dates that are read
from input data that include a four-digit year, except years with leading zeros. For
example, 0076 with yearcutoff=1990 indicates 2076. �

Operating Environment Information: The syntax that is shown here applies to the
OPTIONS statement. On the command line or in a configuration file, the syntax is
specific to your operating environment. For more information, see the SAS
documentation for your operating environment. �

See Also
“Year 2000” in SAS Language Reference: Concepts.

SAS System Options Documented in Other SAS Publications
In addition to system options documented in SAS Language Reference: Dictionary,

system options are also documented in the following publications:
“Encryption in SAS” on page 1998
“Grid Computing in SAS” on page 1999
“SAS Interface to Application Response Measurement (ARM): Reference ”on page 1999
“SAS Companion for Windows” on page 1999
“SAS Companion for OpenVMS on HP Integrity Servers” on page 2002
“SAS Companion for UNIX Environments” on page 2005

“SAS Companion for z/OS” on page 2006
“SAS Data Quality Server: Reference” on page 2012
“SAS Intelligence Platform: Application Server Administration Guide” on page 2012
“SAS Language Interfaces to Metadata” on page 2013
“SAS Logging: Configuration and Programming Reference” on page 2014
“SAS Macro Language: Reference” on page 2014
“SAS National Language Support (NLS): Reference Guide” on page 2015
“SAS Scalable Performance Data Engine: Reference” on page 2016
“SAS VSAM Processing for Z/OS” on page 2016
“SAS/ACCESS for Relational Databases: Reference” on page 2017

1998 Encryption in SAS � Chapter 7

“SAS/CONNECT User’s Guide ”on page 2017
“SAS/SHARE User’s Guide ”on page 2018

Encryption in SAS

System Option Description

NETENCRYPT= Specifies whether client/server data transfers are
encrypted.

NETENCRYPTALGORITHM= Specifies one or more algorithms to be used for encrypted
client/server data transfers.

NETENCRYPTKEYLEN= Specifies the key length to use for encrypted client/server
data transfers.

SSLCALISTLOC= Specifies the location of digital certificates for trusted
certification authorities (CA).

SSLCERTISS= Specifies the name of the issuer of the digital certificate
that SSL should use.

SSLCERTLOC= Specifies the location of the digital certificate that is used
for authentication.

SSLCERTSERIAL= Specifies the serial number of the digital certificate that
SSL should use.

SSLCERTSUBJ= Specifies the subject name of the digital certificate that
SSL should use.

SSLCLIENTAUTH= Specifies whether a server should perform client
authentication.

SSLCRLCHECK= Specifies whether a Certificate Revocation List (CRL) is
checked when a digital certificate is validated.

SSLCRLLOC= Specifies the location of a Certificate Revocation List (CRL).

SSLPVTKEYLOC= Specifies the location of the private key that corresponds to
the digital certificate.

SSLPVTKEYPASS= Specifies the password that SSL requires for decrypting the
private key.

SAS System Options � SAS Companion for Windows 1999

Grid Computing in SAS

System Option Description

CONNECTMETACONNECTIONSpecifies whether a SAS/CONNECT server is authorized to access a
SAS Metadata Server at server sign-on.

IPADDRESS Specifies whether the grid node sends its IP address to the client
session during sign-on to the grid.

SSPI Enables a SAS session that runs on a grid node to access the SAS
Metadata Server using credentials that are supplied by Windows
SSPI (Security Provider Interface).

For more information, see Grid Computing in SAS 9.2 on http://support.sas.com.

SAS Interface to Application Response Measurement (ARM):
Reference

System Option Description

ARMAGENT= Specifies another vendor’s ARM agent, which is an executable
module that contains a vendor’s implementation of the ARM API.

ARMLOC= Specifies the location of the ARM log.

ARMSUBSYS= Specifies whether to enable or disable the ARM subsystems that
determine the internal SAS processing transactions to be logged.

SAS Companion for Windows
The system options listed here are documented only in SAS Companion for Windows.

Other system options in SAS Companion for Windows contain information specific to
the Windows operating environment, where the main documentation is in SAS
Language Reference: Dictionary. These latter system options are not listed here.

System Option Description

ACCESSIBILITY Enables the accessibility features on the Customize Tools dialog box.

ALTLOG Specifies a destination for a copy of the SAS log.

ALTPRINT Specifies the destination for the copies of the output files from SAS
procedures.

AUTHSERVER Specifies the authentication domain server to search for secure server
logins.

AUTOEXEC Specifies the SAS autoexec file.

AWSCONTROL Specifies whether the main SAS window includes a title bar, a
system/control menu, and minimize/maximize buttons.

2000 SAS Companion for Windows � Chapter 7

System Option Description

AWSDEF Specifies the location and dimensions of the main SAS window when
SAS initializes.

AWSMENU Specifies whether to display the menu bar in the main SAS window.

AWSMENUMERGE Specifies whether to embed menu items that are specific to Windows
in the main menus.

AWSTITLE Replaces the default text in the main SAS title bar.

COMDEF Specifies the location where the SAS Command window is displayed.

CONFIG Specifies the configuration file that is used when initializing or
overriding the values of SAS system options.

ECHO Specifies a message to be echoed to the SAS log while initializing SAS.

EMAILDLG Specifies whether to use the native e-mail dialog box provided by
your e-mail application or the e-mail dialog box provided by SAS.

EMAILSYS Specifies the e-mail protocol to use for sending electronic mail.

ENHANCEDEDITOR Specifies whether to enable the Enhanced Editor during SAS
invocation.

FILTERLIST Specifies an alternative set of file filter specifications to use for the
Open and Save As dialog boxes.

FONT Specifies a font to use for SAS windows.

FONTALIAS Assigns a Windows font to one of the SAS fonts.

FULLSTIMER Specifies whether to write all available system performance statistics
to the SAS log.

HELPINDEX Specifies one or more index files for the SAS Help and Documentation.

HELPLOC Specifies the location of Help files that are used to view SAS Help
and Documentation using Microsoft HTML Help.

HELPREGISTER Registers help files to access from the main SAS window Help menu.

HELPTOC Specifies the table of contents files for the SAS Help and
Documentation.

HOSTPPRINT Specifies that the Windows Print Manager is to be used for printing.

ICON Minimizes the SAS window.

JREOPTIONS Identifies Java Runtime Environment (JRE) options for SAS.

LOADMEMSIZE Specifies a suggested amount of memory needed for executable
programs loaded by SAS.

LOG Specifies a destination for a copy of the SAS log when running in
batch mode.

MAXMEMQUERY Specifies the limit on the maximum amount of memory that is
allocated for procedures.

MEMBLKSZ Specifies the memory block size for memory-based libraries for
Windows operating environments.

MEMCACHE Specifies to use the memory-based libraries as a SAS file cache.

MEMLIB Specifies to process the Work library as a memory-based library.

SAS System Options � SAS Companion for Windows 2001

System Option Description

MEMMAXSZ Specifies the maximum amount of memory to allocate for using
memory-based libraries in Windows operating environments.

MEMSIZE Specifies the limit on the amount of virtual memory that can be used
during a SAS session.

MSG Specifies the library that contains the SAS error messages.

MSGCASE Specifies whether notes, warnings, and error messages that are
generated by SAS are displayed in uppercase characters.

NUMKEYS Controls the number of available function keys.

NUMMOUSEKEYS Specifies the number of mouse buttons SAS displays in the KEYS
window.

PATH Specifies one or more search paths for SAS executable files.

PFKEY Specifies which set of function keys to designate as the primary set of
function keys.

PRINT Specifies a destination for SAS output when running in batch mode.

PRNGETLIST Specifies if printers attached to the system are recognized.

PRTABORTDLGS Specifies when to display the Print Abort dialog box.

PRTPERSISTDEFAULT Specifies to use the same destination printer from SAS session to
SAS session.

PRTSETFORMS Specifies whether to include the Use Forms check box in the Print
Setup dialog box.

REALMEMSIZE Specifies the amount of virtual memory SAS can expect to allocate.

REGISTER Adds an application to the Tools menu in the main SAS window.

RESOURCESLOC Specifies a directory location of the files that contain SAS resources.

RTRACE Produces a list of resources that are read or loaded during a SAS
session.

RTRACELOC Specifies the pathname of the file to which the list of resources that
are read or loaded during a SAS session is written.

SASCONTROL Specifies whether the SAS application windows include system/
control menus and minimize/maximize buttons.

SASINITIALFOLDER Changes the working folder and the default folders for the Open and
Save As dialog boxes to the specified folder after SAS initialization is
complete.

SCROLLBARFLASH Specifies whether to allow the mouse or keyboard to focus on a scroll
bar.

SET Defines a SAS environment variable.

SGIO Activates the Scatter/Gather I/O feature.

SLEEPWINDOW Enables or disables the SLEEP window.

SORTANOM Specifies certain options for the SyncSort utility.

SORTCUT Specifies the number of observations above which SyncSort is used
instead of the SAS sort program.

2002 SAS Companion for OpenVMS on HP Integrity Servers � Chapter 7

System Option Description

SORTCUTP Specifies the number of bytes above which SyncSort is used instead of
the SAS sort program.

SORTDEV Specifies the pathname used for temporary files created by the
SyncSort utility.

SORTPARM Specifies parameters for the SyncSort utility.

SORTPGM Specifies the sort utility that is used in the SORT procedure.

SPLASH Specifies whether to display the splash screen (logo screen) when SAS
starts.

SPLASHLOC Specifies the location of the splash screen bitmap that appears when
SAS starts.

STIMEFMT Specifies the format to use for displaying the time on STIMER output.

STIMER Writes a subset of system performance statistics to the SAS log.

SYSGUIFONT Specifies a font to use for the button text and the descriptive text.

SYSPRINT Specifies a destination printer for printing SAS output.

SYSIN Specifies a batch mode source file.

TOOLDEF Specifies the Toolbox display location.

UPRINTMENUSWITCH Enables the universal print commands in the File menu.

USERICON Specifies the pathname of the resource file associated with your
user-defined icon.

VERBOSE Controls whether SAS writes the settings of all the system options
specified in the configuration file to either the terminal or the batch
log.

WEBUI Specifies to enable Web enhancements.

WINDOWSMENU Specifies to include or suppress the Window menu in windows that
display menus.

XCMD Specifies that the X command is valid in the current SAS session.

XMIN Specifies to open the application specified in the X command in a
minimized state or in the default active state.

XSYNC Controls whether an X command or statement executes
synchronously or asynchronously.

XWAIT Specifies whether you have to type EXIT at the DOS prompt before
the DOS shell closes.

SAS Companion for OpenVMS on HP Integrity Servers

The system options listed here are documented only in SAS Companion for
OpenVMS on HP Integrity Servers. Other system options in SAS Companion for
OpenVMS on HP Integrity Servers contain information specific to the OpenVMS
operating environment, where the main documentation is in SAS Language Reference:
Dictionary. These latter system options are not listed here.

SAS System Options � SAS Companion for OpenVMS on HP Integrity Servers 2003

System Option Description

ALTMULT Specifies the number of pages that are preallocated to a file.

ALTLOG Specifies a destination for a copy of the SAS log.

ALTPRINT Specifies the destination for the copies of the output files from SAS
procedures.

APPLETLOC Specifies the location of Java applets.

AUTOEXEC Specifies the SAS autoexec file.

CACHENUM Specifies the number of caches used per SAS file.

CACHESIZE Specifies the size of cache that is used for each open SAS file.

CC Tells SAS what type of carriage control to use when it writes to
external files.

CONFIG Specifies the configuration file that is used when initializing or
overriding the values of SAS system options.

DEQMULT Specifies the number of pages to extend a file.

DETACH Specifies that the asynchronous host command uses a detached
process.

DUMP Specifies when to create a process dump file.

EDITCMD Specifies the host editor to be used with the HOSTEDIT command.

EMAILSYS Specifies the e-mail protocol to use for sending electronic mail.

EXPANDLNM Specifies whether concealed logical names are expanded when libref
paths are displayed to the user.

FILECC Specifies how to treat data in column 1 of a print file.

FULLSTIMER Specifies whether to write all available system performance
statistics to the SAS log.

GSFCC Tells SAS what type of carriage control to use for writing to
graphics stream files.

HELPHOST Specifies the name of the local computer where the remote
browsing system is to be displayed.

HELPINDEX Specifies one or more index files for the SAS Help and
Documentation.

HELPLOC Specifies the location of the text and index files for the facility that
is used to view SAS Help and Documentation.

HELPTOC Specifies the table of contents files for the SAS Help and
Documentation.

JREOPTIONS Identifies the Java Runtime Environment (JRE) options for SAS.

LOADLIST Specifies whether to print to the specified file the information about
images that SAS has loaded into memory.

LOG Specifies a destination for a copy of the SAS log when running in
batch mode.

LOGMULTREAD Specifies the session log file to be opened for shared read access.

MEMSIZE Specifies the limit on the total amount of memory that can be used
by a SAS session.

2004 SAS Companion for OpenVMS on HP Integrity Servers � Chapter 7

System Option Description

MSG Specifies the library that contains SAS error messages.

MSGCASE Specifies whether notes, warnings, and error messages that are
generated by SAS are displayed in uppercase characters.

OPLIST Specifies whether the settings of the SAS system options are
written to the SAS log.

PRINT Specifies a destination for SAS output when running in batch mode.

REALMEMSIZE Specifies the amount of real memory SAS can expect to allocate.

SORTPGM Specifies whether SAS sorts using use the SAS sort utility or the
host sort utility.

SORTWORK Defines locations for host sort work files.

SPAWN Specifies that SAS is invoked in a SPAWN/NOWAIT subprocess.

STIMEFMT Specifies the format that is used to display time on STIMER output.

STIMER Specifies whether to write a subset of system performance statistics
to the SAS log.

SYSIN Specifies the default location of SAS source programs.

SYSPRINT Specifies the destination for printed output.

TERMIO Specifies whether terminal I/O is blocking or non-blocking.

USER Specifies the default permanent SAS library.

VERBOSE Specifies whether SAS writes the system options that are set when
SAS starts to the VMS computer in the SAS windowing
environment or, in batch, to the batch log.

WORKCACHE Specifies the size of the I/O data cache allocated for a file in the
WORK library.

XCMD Specifies whether the X command is valid in the SAS session.

XCMDWIN Specifies whether to create a DECTERM window for X command
output when in the SAS windowing environment.

XKEYPAD Specifies that subprocesses use the keypad settings that were in
effect before you invoked SAS.

XLOG Specifies whether to display the output from the X command in the
SAS log file.

XLOGICAL Specifies that process-level logical names are passed to the
subprocess that is spawned by an X statement or X command.

XOUTPUT Specifies whether to display the output from the X command.

XRESOURCES Specifies a character string of X resource options or the application
instance name for the SAS interface to Motif.

XSYMBOL Specifies that global symbols are passed to the subprocess that is
spawned by an X statement or X command.

XTIMEOUT Specifies how long a subprocess that has been spawned by an X
statement or X command remains inactive before being deleted.

SAS System Options � SAS Companion for UNIX Environments 2005

SAS Companion for UNIX Environments
The system options listed here are documented only in SAS Companion for UNIX

Environments. Other system options in SAS Companion for UNIX Environments
contain information specific to the UNIX operating environment, where the main
documentation is in SAS Language Reference: Dictionary. These latter system options
are not listed here.

System Option Description

ALTLOG Specifies a destination for a copy of the SAS log.

ALTPRINT Specifies the destination for the copies of the output files from SAS
procedures.

AUTOEXEC Specifies the SAS autoexec file.

CONFIG Specifies the configuration file that is used when initializing or
overriding the values of SAS system options.

ECHO Specifies a message to be echoed to the computer.

EDITCMD Specifies the host editor to be used with the HOSTEDIT command.

EMAILSYS Specifies the e-mail protocol to use for sending electronic mail.

FILELOCKS Specifies whether external file locking is turned on or off and what
action should be taken if a file cannot be locked.

FILELOCKWAITMAX Sets an upper limit on the time SAS will wait for a locked file.

FULLSTIMER Specifies whether to write all available system performance statistics
and the datetime stamp to the SAS log.

HELPINDEX Specifies one or more index files for the SAS Help and Documentation.

HELPLOC Specifies the location of the text and index files for the facility that is
used to view SAS Help and Documentation.

HELPTOC Specifies the location of the table of contents files for the SAS Help
and Documentation.

JREOPTIONS Identifies the Java Runtime Environment (JRE) options for SAS.

LOG Specifies a destination for a copy of the SAS log when running in
batch mode.

LPTYPE Specifies which UNIX command and options settings will be used to
route files to the printer.

MAXMEMQUERY Specifies the maximum amount of memory that is allocated per
request for certain procedures.

MEMSIZE Specifies the limit on the total amount of virtual memory that can be
used by a SAS session.

MSG Specifies the library that contains the SAS error messages.

MSGCASE Specifies whether notes, warnings, and error messages that are
generated by SAS are displayed in uppercase characters.

OPTLIST Specifies whether the settings of the SAS system options are written
to the SAS log.

PATH Specifies one or more search paths for SAS executable files.

PRINT Specifies a destination for SAS output when running in batch mode.

2006 SAS Companion for z/OS � Chapter 7

System Option Description

PRINTCMD Specifies the print command SAS is to use.

REALMEMSIZE Specifies the amount of real (physical) memory SAS can expect to
allocate.

RTRACE Produces a list of resources that are read or loaded during a SAS
session.

RTRACELOC Specifies the pathname of the file to which the list of resources that
are read or loaded during a SAS session is written.

SASSCRIPT Specifies one or more storage locations of SAS/CONNECT script files.

SET Defines an environment variable.

SORTANOM Specifies certain options for the host sort utility.

SORTCUT Specifies the number of observations that SAS sorts. If the number
of observation in the data set is greater than the specified number,
the host sort program sorts the remaining observations.

ojbedSORTCUTP Specifies the number of bytes that SAS sorts. If the number of bytes
in the data set is greater than the specified number, the host sort
program sorts the remaining data set.

SORTDEV Specifies the pathname used for temporary files created by the host
sort utility.

SORTNAME Specifies the name of the host sort utility.

SORTPARM Specifies parameters for the host sort utility.

SORTPGM Specifies whether SAS sorts using the SAS sort utility or the host
sort utility.

STDIO Specifies whether SAS should use stdin, stdout, and stderr.

STIMEFMT Specifies the format that is used to display the time on
FULLSTIMER and STIMER output.

STIMER Specifies whether to write a subset of system performance statistics
to the SAS log.

SYSIN Specifies the default location of SAS source code when running in
batch mode.

SYSPRINT Specifies the destination for printed output.

VERBOSE Specifies whether SAS writes the system option settings to the SAS
log.

WORKPERMS Sets the permissions of the SAS Work library when it is initially
created.

XCMD Specifies whether the X command is valid in the SAS session.

SAS Companion for z/OS

The system options listed here are documented only in SAS Companion for z/OS.
Other system options in SAS Companion for z/OS contain information specific to the

SAS System Options � SAS Companion for z/OS 2007

z/OS operating environment, where the main documentation is in SAS Language
Reference: Dictionary . These latter system options are not listed here.

System Option Description

ALTLOG= Specifies a destination for a copy of the SAS log.

ALTPRINT= Specifies the destination for the copies of the output files from SAS
procedures.

APPEND= Appends the specified value to the existing value of the specified
system option.

AUTOEXEC= Specifies the SAS autoexec file.

BLKALLOC Causes SAS to set LRECL and BLKSIZE values for a SAS library
when it is allocated rather than when it is first accessed.

BLKSIZE= Specifies the default block size for SAS libraries.

BLSKIZE(device-type)= Specifies the default block size for SAS libraries by device-type.

CAPSOUT Specifies that all output is to be converted to uppercase.

CHARTYPE= Specifies a character set or screen size to use for a device.

CLIST Specifies that SAS obtains its input from a CLIST.

CONFIG= Specifies the configuration file that is used when initializing or
overriding the values of SAS system options.

DLDISPCHG Controls changes in allocation disposition for an existing library data
set.

DLDSNTYPE Specifies the default value of the DSNTYPE LIBNAME option.

DLEXCPCOUNT Reports number of EXCPs to direct access bound SAS libraries.

DLHFSDIRCREATE Creates an HFS directory for a SAS library that is specified with
LIBNAME if the library does not exist.

DLMSGLEVEL= Specifies the level of messages to generate for SAS libraries.

DLSEQDSNTYPE Specifies the default value of the DSNTYPE LIBNAME option for
sequential-format disk files.

DLTRUNCHK Enables checking for SAS library truncation.

DLRESV Requests exclusive use of shared disk volumes when accessing
partitioned data sets on shared disk volumes.

DYNALLOC Controls whether SAS or the host sort utility allocates sort work data
sets.

ECHO= Specifies a message to be echoed to the SAS log while initializing SAS.

EMAILSYS= Specifies the e-mail protocol to use for sending electronic mail.

FILEAUTHDEFER Controls whether SAS performs file authorization checking for z/OS
data sets or defers authorization checking to z/OS system services
such as OPEN.

FILEBLKSIZE(device-
type)=

Specifies the default maximum block size for external files.

FILECC Specifies whether to treat data in column 1 of a printer file as
carriage-control data when reading the file.

FILEDEST= Specifies the default printer destination.

2008 SAS Companion for z/OS � Chapter 7

System Option Description

FILEDEV= Specifies the device name used for allocating new physical files.

FILEDIRBLK= Specifies the number of default directory blocks to allocate for new
partitioned data sets.

FILEEXT= Specifies how to handle file extensions when accessing members of
partitioned data sets.

FILEFORMS= Specifies the default SYSOUT form for a print file.

FILELBI Controls the use of the z/OS Large Block Interface support for BSAM
and QSAM files, as well as files on tapes that have standard labels.

FILELOCKS= Specifies the default SAS system file locking that is to be used for
external files (both USS and native MVS). Also specifies the
operating system file locking to be used for USS files (both SAS files
and external files).

FILEMOUNT Specifies whether an off-line volume is to be mounted.

FILEMSGS Controls whether you receive expanded dynamic allocation error
messages when you are assigning a physical file.

FILENULL Specifies whether zero-length records are written to external files.

FILEPROMPT Controls whether you are prompted if you reference a data set that
does not exist.

FILEREUSE Specifies whether to reuse an existing allocation for a file that is
being allocated to a temporary ddname.

FILESEQDSNTYPE Specifies the default value that is assigned to DSNTYPE when it is
not specified with a filename statement, a DD statement, or a TSO
ALLOC command.

FILESPPRI= Specifies the default primary space allocation for new physical files.

FILESPEC= Specifies the default secondary space allocation for new physical files.

FILESTAT Specifies whether ISPF statistics are written.

FILESYSOUT= Specifies the default SYSOUT CLASS for a printer file.

FILESYSTEM= Specifies the default file system used when the filename is ambiguous.

FILEUNIT= Specifies the default unit of allocation for new physical files.

FILEVOL= Specifies which VOLSER to use for new physical files.

FILSZ Specifies that the host sort utility supports the FILSZ parameter.

FSBCOLOR Specifies whether you can set background colors in SAS windows on
vector graphics devices.

FSBORDER= Specifies what type of symbols are to be used in borders.

FSDEVICE= Specifies the full-screen device driver for your terminal.

FSMODE= Specifies the full-screen data stream type.

FULLSTATS Specifies whether to write all available system performance statistics
to the SAS log.

GHFONT= Specifies the default graphics hardware font.

HELPCASE Controls how text is displayed in the help browser.

SAS System Options � SAS Companion for z/OS 2009

System Option Description

HELPHOST Specifies the name of the computer where the remote help browser is
running.

HELPLOC= Specifies the location of the text and index files for the facility that is
used to view SAS Help and Documentation.

HSLXTNTS= Specifies the size of each physical hyperspace that is created for a
SAS library.

HSMAXPGS= Specifies the maximum number of hyperspace pages allowed in a SAS
session.

HSMAXSPC= Specifies the maximum number of hyperspaces allowed in a SAS
session.

HSSAVE Controls how often the DIV data set pages are updated when a DIV
data set backs a hyperspace library.

HSWORK Tells SAS to place the WORK library in a hyperspace.

INSERT Inserts the specified value at the beginning of the specified system
option.

ISPCAPS Specifies whether to convert to uppercase printable ISPF parameters
that are used in CALL ISPEXEC and CALL ISPLINK.

ISPCHARF Specifies whether the values of SAS character variables are converted
using their automatically specified informats or formats each time
they are used as ISPF variables.

ISPCSR= Tells SAS to set an ISPF variable to the name of a variable whose
value is found to be invalid.

ISPEXECV= Specifies the name of an ISPF variable that passes its value to an
ISPF service.

ISPMISS= Specifies the value assigned to SAS character variables defined to
ISPF when the associated ISPF variable has a length of zero.

ISPMSG= Tells SAS to set an ISPF variable to a message ID when a variable is
found to be invalid.

ISPNOTES Specifies whether ISPF error messages are to be written to the SAS
log.

ISPNZTRC Specifies whether nonzero ISPF service return codes are to be written
to the SAS log.

ISPPPT Specifies whether ISPF parameter value pointers and lengths are to
be written to the SAS log.

ISPTRACE Specifies whether the parameter lists and service return codes are to
be written to the SAS log.

ISPVDEFA Specifies whether all current SAS variables are to be identified to
ISPF via the SAS VDEFINE user exit.

ISPVDLT Specifies whether VDELETE is executed before each SAS variable is
identified to ISPF via VDEFINE.

ISPVDTRC Specifies whether to trace every VDEFINE for SAS variables.

ISPVIMSG= Specifies the ISPF message ID that is to be set by the SAS VDEFINE
user exit when the informat for a variable returns a nonzero return
code.

2010 SAS Companion for z/OS � Chapter 7

System Option Description

ISPVRMSG= Specifies the ISPF message ID that is to be set by the SAS VDEFINE
user exit when a variable has a null value.

ISPVTMSG= Specifies the ISPF message ID that is to be displayed by the SAS
VDEFINE user exit when the ISPVTRAP option is in effect.

ISPVTNAM= Restricts the information that is displayed by the ISPVTRAP option
to the specified variable only.

ISPVTPNL= Specifies the name of the ISPF panel that is to be displayed by the
SAS VDEFINE user exit when the ISPVTRAP option is in effect.

ISPVTRAP Specifies whether the SAS VDEFINE user exit is to write information
to the SAS log (for debugging purposes) each time it is entered.

ISPVTVARS= Specifies the prefix for the ISPF variables to be set by the SAS
VDEFINE user exit when the ISPVTRAP option is in effect.

JREOPTIONS= Identifies the Java Runtime Environment (JRE) options for SAS.

LOG= Specifies a destination for a copy of the SAS log when running in
batch mode.

MEMLEAVE= Specifies the amount of memory in the user’s region that is reserved
exclusively for the use of the operating environment.

MEMRPT Specifies whether memory usage statistics are to be written to the
SAS log for each step.

MEMSIZE= Specifies the limit on the total amount of memory that can be used by
a SAS session.

MINSTG Tells SAS whether to minimize its use of storage.

MSG= Specifies the library that contains the SAS error messages.

MSGCASE Specifies whether notes, warnings, and error messages that are
generated by SAS are displayed in uppercase characters.

MSGSIZE= Specifies the size of the message cache.

OPLIST Specifies whether the settings of the SAS system options are written
to the SAS log.

PFKEY= Specifies which set of function keys to designate as the primary set of
function keys.

PGMPARM= Specifies the parameter that is passed to the external program
specified by the SYSINP= option.

PRINT= Specifies a destination for SAS output when running in batch mode.

PROCLEAVE= Specifies how much memory to leave unallocated for SAS procedures
to use to complete critical functions during out-of-memory conditions.

REALMEMSIZE= Specifies the amount of real memory SAS can expect to allocate.

REXXLOC= Specifies the ddname of the REXX library to be searched when the
REXXMAC option is in effect.

REXXMAC Enables or disables the REXX interface.

SASLIB= Specifies the ddname for an alternate load library.

SASSCRIPT Specifies one or more storage locations of SAS/CONNECT script files.

SEQENGINE= Specifies the default engine for sequential SAS libraries.

SAS System Options � SAS Companion for z/OS 2011

System Option Description

SET= Defines an environment variable.

SORT= Specifies the minimum size of all allocated sort work data sets.

SORTALTMSGF Enables sorting with alternate message flags.

SORTBLKMODE Enables block mode sorting.

SORTBUFMOD Enables modification of the sort utility output buffer.

SORTCUTP= Specifies the number of bytes that SAS sorts. If the number of
observations in the data set is greater that the specified number, the
host sort program sorts the remaining observations.

SORTDEV= Specifies the unit device name if SAS dynamically allocates the sort
work file.

SORTDEVWARN Enables device type warnings.

SORTEQOP Specifies whether the host sort utility supports the EQUALS option.

SORTLIB= Specifies the name of the sort library.

SORTLIST Enables passing of the LIST parameter to the host sort utility.

SORTMSG Controls the class of messages to be written by the host sort utility.

SORTMSG= Specifies the ddname to be dynamically allocated for the message
print file of the host sort utility.

SORTNAME= Specifies the name of the host sort utility.

SORTOPTS Specifies whether the host sort utility supports the OPTIONS
statement.

SORTPARM= Specifies parameters for the host sort utility.

SORTPGM= Specifies whether SAS sorts using the SAS sort utility or the host
sort utility.

SORTSHRB Specifies whether the host sort interface can modify data in buffers.

SORTSUMF Specifies whether the host sort utility supports the SUM
FIELDS=NONE control statement.

SORTUADCON Specifies whether the host sort utility supports passing a user
address constant to the E15/E35 exits.

SORTUNIT= Specifies the unit of allocation for sort work files.

SORTWKDD= Specifies the prefix of sort work data sets.

SORTWKNO= Specifies how many sort work data sets to allocate.

SORT31PL Controls what type of parameter list is used to invoke the host sort
utility.

STAE Enables or disables a system abend exit.

STATS Specifies whether statistics are to be written to the SAS log.

STAX Specifies whether to enable attention handling.

STIMER Specifies whether to write a subset of system performance statistics
to the SAS log.

SVC11SCREEN Specifies whether to enable SVC 11 screening to obtain host date and
time information.

2012 SAS Data Quality Server: Reference � Chapter 7

System Option Description

SYNCHIO Specifies whether synchronous I/O is enabled.

SYSIN= Specifies the location of the primary SAS input data stream.

SYSINP= Specifies the name of an external program that provides SAS input
statements.

SYSLEAVE= Specifies how much memory to leave unallocated to ensure that SAS
software tasks are able to terminate successfully.

SYSPREF= Specifies a prefix for partially qualified physical filenames.

SYSPRINT= Specifies the handling of output that is directed to the default print
file.

S99NOMIG Tells SAS whether to recall a migrated data set.

TAPECLOSE= Specifies the default CLOSE setting for a SAS library that is on tape.

USER= Specifies the location of the default SAS library.

V6GUIMODE Specifies whether SAS uses Version 6 SCL selection list windows.

VERBOSE Specifies whether SAS writes the system option settings to the SAS
log or to the batch log.

WTOUSERDESC= Specifies a WTO DATA step function descriptor code.

WTOUSERMCSF= Specifies WTO DATA step function MCS flags.

WTOUSERROUT= Specifies a WTO DATA step function routing code.

XCMD Specifies whether the X command is valid in the SAS session.

SAS Data Quality Server: Reference

System Option Description

DQLOCALE= Specifies an ordered list of locales.

DQOPTIONS Specifies SAS session parameters for data quality
programs.

DQSETUPLOC= Specifies the location of the SAS Data Quality Server
setup file.

SAS Intelligence Platform: Application Server Administration Guide

System Option Description

OBJECTSERVER Specifies whether SAS is to run as an Integrated Object Model (IOM)
server.

OBJECTSERVERPARMS Specifies startup parameters for the SAS object servers.

SAS System Options � SAS Language Interfaces to Metadata 2013

System Option Description

SECPACKAGE Identifies the security package that the IOM server uses to
authenticate incoming client connections.

SECPACKAGELIST Specifies the security authorization packages used by the server.

SSPI Identifies support for the Security Provider Interface for SSO
connections to IOM servers.

For more information, see the SAS Intelligence Platform documentation on http://
support.sas.com.

SAS Language Interfaces to Metadata

System Option Description

METAAUTORESOURCES= Identifies the metadata resources that are assigned when SAS starts.

METACONNECT= Identifies the named connection from the metadata user profiles to
use as the default values for logging in to the SAS Metadata Server.

METAENCRYPTALG= Specifies the type of encryption to use when communicating with a
SAS Metadata Server.

METAENCRYPTLEVEL= Specifies what is to be encrypted when communicating with a SAS
Metadata Server.

METAPASS= Specifies the default password for the SAS Metadata Server.

METAPORT= Specifies the TCP port for the SAS Metadata Server.

METAPROFILE= Identifies the file that contains the SAS Metadata Server user profiles.

METAPROTOCOL= Specifies the network protocol for communicating with the SAS
Metadata Server.

METAREPOSITORY= Specifies the default SAS Metadata Repository to use with the SAS
Metadata Server.

METASERVER= Specifies the address of the SAS Metadata Server.

METASPN= Specifies the service principal name (SPN) for the SAS Metadata
Server.

METAUSER= Specifies the default user ID for logging on to the SAS Metadata
Server.

2014 SAS Logging: Configuration and Programming Reference � Chapter 7

SAS Logging: Configuration and Programming Reference

System Option Description

LOGAPPLNAME Specifies a SAS session name for SAS logging.

LOGCONFIGLOC Specifies the name of the configuration file that is used to initialize
SAS logging.

SAS Macro Language: Reference

System Option Description

CMDMAC Controls command-style macro invocation.

IMPLMAC Controls statement-style macro invocation.

MACRO Controls whether the SAS macro language is available.

MAUTOLCDISPLAY Specifies whether to display the source location of the autocall macros
in the log when the autocall macro is invoked.

MAUTOSOURCE Specifies whether the autocall feature is available.

MCOMPILENOTE Issues a NOTE to the SAS log containing the size and number of
instructions upon the completion of the compilation of a macro.

MCOMPILE Specifies whether to allow new definitions of macros.

MERROR Specifies whether the macro processor issues a warning message
when a macro reference cannot be resolved.

MEXECNOTE Specifies whether to display macro execution information in the SAS
log at macro invocation.

MEXECSIZE Specifies the maximum macro size that can be executed in memory.

MFILE Specifies whether MPRINT output is routed to an external file.

MINDELIMITER= Specifies the character to be used as the delimiter for the macro IN
operator.

MINOPERATOR Specifies whether the macro processor recognizes and evaluates the
IN (#) logical operator.

MLOGIC Specifies whether the macro processor traces its execution for
debugging.

MLOGICNEST Specifies whether to display the macro nesting information in the
MLOGIC output in the SAS log.

MPRINT Specifies whether SAS statements generated by macro execution are
traced for debugging.

MPRINTNEST Specifies whether to display the macro nesting information in the
MPRINT output in the SAS log.

MRECALL Specifies whether autocall libraries are searched for a member that
was not found during an earlier search.

MREPLACE Specifies whether to enable existing macros to be redefined.

SAS System Options � SAS National Language Support (NLS): Reference Guide 2015

System Option Description

MSTORED Specifies whether the macro facility searches a specific catalog for a
stored compiled macro.

MSYMTABMAX Specifies the maximum amount of memory available to the macro
variable symbol tables.

MVARSIZE Specifies the maximum size for macro variable values that are stored
in memory.

SASAUTOS Specifies the location of one or more autocall libraries.

SASMSTORE= Identifies the libref of a SAS library with a catalog that contains, or
will contain, stored compiled SAS macros.

SERROR Specifies whether the macro processor issues a warning message
when a macro variable reference does not match a macro variable.

SYMBOLGEN Specifies whether the results of resolving macro variable references
are written to the SAS log for debugging.

SYSPARM Specifies a character string that can be passed to SAS programs.

SAS National Language Support (NLS): Reference Guide

System Option Description

BOMFILE Specifies whether to write the Byte Order Mark (BOM) prefix on
Unicode encoded external files.

DATESTYLE Identifies the sequence of month, date, and year when the
ANYDTDTM, ANYDTDTE, or ANYDTTME informats encounter
input where the year, month, and day determination is ambiguous.

DBCS Recognizes double-byte character sets.

DBCSLANG Specifies a double-byte character set (DBCS) language.

DBCSTYPE Specifies the encoding method to use for a double-byte character set
(DBCS).

DFLANG Specifies the language for international date informats and formats.

ENCODING Specifies the default character-set encoding for the SAS session.

FSDBTYPE Specifies a full-screen double-byte character set (DBCS) encoding
method.

FSIMM Specifies input method modules (IMMs) for a full-screen double-byte
character set (DBCS).

FSIMMOPT Specifies options for input method modules (IMMs) that are used
with a full-screen double-byte character set (DBCS).

LOCALE Specifies a set of attributes in a SAS session that reflect the
language, local conventions, and culture for a geographical region.

LOCALELANGCHG Determines whether the language of the ODS output text can be
changed.

2016 SAS Scalable Performance Data Engine: Reference � Chapter 7

System Option Description

NLSCOMPATMODE Provides national language compatibility with a previous release of
SAS.

RSASIOTRANSERROR Displays a transcoding error when illegal data is read from a remote
application.

SORTSEQ Specifies a language-specific collating sequence for the SORT
procedure to use in the current SAS session.

TRANTAB Specifies the translation tables that are used by various parts of SAS.

SAS Scalable Performance Data Engine: Reference

System Option Description

COMPRESS= Specifies to compress the SPD Engine data sets on disk as they are
being created.

MAXSEGRATIO= When evaluating a WHERE expression that contains indexed
variables, controls what percentage of index segments to identify as
candidate segments before processing the WHERE expression.

MINPARTSIZE= Specifies a minimum partition size to use for creating SPE Engine
data sets.

SPDEINDEXSORTSIZE= Specifies the size of memory space that the sorting utility can use
when sorting values for creating an index.

SPDEMAXTHREADS= Specifies the upper limit on the number of threads that the SPD
Engine can spawn for I/O processing.

SPDESORTSIZE= Specifies the size of memory space needed for sorting operations used
by the SPD Engine.

SPDEUTILLOC= Specifies one or more file system locations in which the SPD Engine
can temporarily store utility files.

SPDEWHEVAL= Specifies the process used to determine which observations meet the
conditions of a WHERE expression.

SAS VSAM Processing for Z/OS

System Option Description

VSAMLOAD Enables you to load a VSAM data set.

VSAMREAD Enables the user to read a VSAM data set.

SAS System Options � SAS/CONNECT User’s Guide 2017

System Option Description

VSAMRLS Enables record-level sharing for a VSAM data
set.

VSAMUPDATE Enables you to update a VSAM data set.

SAS/ACCESS for Relational Databases: Reference

System Option Description

DBIDIRECTEXEC= Controls SQL optimization for SAS/ACCESS engines.

DBSRVTP= Specifies whether SAS/ACCESS engines put a hold (or block) on the
originating client while making performance-critical calls to the
database. This option applies when SAS is invoked as a server
responding to multiple clients .

DBSLICEPARM= Controls the scope of DBMS threaded reads and the number of
threads.

SASTRACE= Generates trace information from a DBMS engine.

SASTRACELOC= Prints SASTRACE information to a specified location.

SQLMAPPUTTO= Specifies whether the PUT function in the SQL procedure is processed
by SAS or by the SAS_PUT() function inside the Teradata database.

VALIDVARNAME= Controls the type of SAS variable names that can be used or created
during a SAS session.

SAS/CONNECT User’s Guide

System Option Description

AUTOSIGNON Automatically signs on to the server when the client issues a remote
submit request for server processing.

COMAMID= Identifies the communication access method for connecting a client
and a server across a network.

CONNECTPERSIST Specifies whether a connection between a client and a server persists
(continues) after the RSUBMIT has completed.

CONNECTREMOTE= Identifies the server session that a SAS/CONNECT client connects to.

CONNECTSTATUS Specifies the default setting for the display of the Transfer Status
window.

CONNECTWAIT Specifies whether remote submits are executed synchronously or
asynchronously.

DMR Specifies to invoke a server session.

2018 SAS/SHARE User’s Guide � Chapter 7

System Option Description

SASCMD= Specifies the command that starts a server session on a
multi-processor (SMP) machine.

SASFRSCR Is a read-only option that contains the fileref that is generated by the
SASSCRIPT= option.

SASSCRIPT= Specifies one or more storage locations for SAS/CONNECT script files.

SIGNONWAIT Specifies whether a SAS/CONNECT SIGNON should be executed
asynchronously or synchronously.

SYSRPUTSYNC Sets %SYSRPUT macro variable in the client session when the
%SYSRPUT statements are executed rather than when a
synchronization point in encountered.

TBUFSIZE= Specifies the size of the buffer that is used by the SAS application
layer for transferring data between a client and a server across a
network.

TCPPORTFIRST= Specifies the first value in a range of TCP/IP ports for a client to use
to connect to a server.

TCPPORTLAST= Specifies the last value in a range of TCP/IP ports for a client to use
to connect to a server.

SAS/SHARE User’s Guide

System Option Description

COMAMID= Identifies the communications access method to connect a SAS/
SHARE client a server SAS session.

COMAUX1= Specifies the first alternate communications access method.

SHARESESSIONCNTL= Specifies the condition under which subsequent sessions can be
created on a SAS/SHARE server.

TBUFSIZE= Specifies the value of the default buffer size that the server uses for
transferring data.

2019

P A R T2

Dictionary of Component Object Language
Elements

Chapter 8.Component Objects 2021

Chapter 9.Hash and Hash Iterator Object Language Elements 2025

Chapter 10.Java Object Language Elements 2083

2020

2021

C H A P T E R

8
Component Objects

DATA Step Component Objects 2021
The DATA Step Component Interface 2021

Dot Notation and DATA Step Component Objects 2022

Definition 2022

Syntax 2022

Rules When Using Component Objects 2023

DATA Step Component Objects
SAS provides these five predefined component objects for use in a DATA step:

hash and hash
iterator objects

enable you to quickly and efficiently store, search, and retrieve data
based on lookup keys. For more information about the hash object,
see “Using the Hash Object” in SAS Language Reference: Concepts.
For more information about the hash iterator, see “Using the Hash
Iterator Object” in SAS Language Reference: Concepts.

java object provides a mechanism similar to the Java Native Interface (JNI) for
instantiating Java classes and accessing fields and methods on the
resultant objects. For more information about the java object, see
“Using the Java Object” in SAS Language Reference: Concepts.

logger and
appender objects

enable you to record logging events and write these events to the
appropriate destination. For complete information about the logger
and appender objects, see “Logger and Appender Object Language
Reference” in the SAS Logging: Configuration and Programming
Reference.

The DATA Step Component Interface
The DATA step component object interface enables you to create and manipulate

predefined component objects in a DATA step.
To declare and create a component object, you use either the DECLARE statement by

itself or the DECLARE statement and _NEW_ operator together.
Component objects are data elements that consist of attributes, methods, and

operators. Attributes are the properties that specify the information that is associated
with an object. Methods define the operations that an object can perform. For
component objects, operators provide special functionality.

You use the DATA step object dot notation to access the component object’s attributes
and methods.

2022 Dot Notation and DATA Step Component Objects � Chapter 8

Note: The DATA step component object statements, attributes, methods, and
operators are limited to those defined for these objects. You cannot use the SAS
Component Language functionality with these predefined DATA step objects. �

Dot Notation and DATA Step Component Objects

Definition
Dot notation provides a shortcut for invoking methods and for setting and querying

attribute values. Using dot notation makes your SAS programs easier to read.
To use dot notation with a DATA step component object, you must declare and

instantiate the component object by using either the DECLARE statement by itself or
the DECLARE statement and the _NEW_ operator together. For more information
about creating the hash, hash iterator, and java DATA step component objects, see
“Using DATA Step Component Objects” in SAS Language Reference: Concepts. For
more information about creating the logger and appender objects, see “Logger and
Appender Object Language Reference” in SAS Logging: Configuration and
Programming Reference.

Syntax
The syntax for dot notation is as follows:

object.attribute

or

object.method(<argument_tag-1: value-1<, ...argument_tag-n: value-n>>);

Where

object
specifies the variable name for the DATA step component object

attribute
specifies an object attribute to assign or query.

When you set an attribute for an object, the code takes this form:

object.attribute = value;

When you query an object attribute, the code takes this form:

value = object.attribute;

method
specifies the name of the method to invoke.

argument_tag
identifies the arguments that are passed to the method. Enclose the argument tag
in parentheses. The parentheses are required whether the method contains
argument tags.

All DATA step component object methods take this form:

return_code=object.method(<argument_tag-1:value-1<, ...argument_tag-n value-n>>);

Component Objects � Rules When Using Component Objects 2023

The return code indicates method success or failure. A return code of zero
indicates success; a non-zero value indicates failure. If you do not supply a return
code variable for the method call and the method fails, an appropriate error
message will be printed to the log.

value
specifies the argument value.

Rules When Using Component Objects
� You can assign objects in the same manner as you assign DATA step variables.

However, the object types must match. The first set of code is valid, but the second
generates an error.

declare hash h();
declare hash t();
t=h;

declare hash t();
declare javaobj j();
j=t;

� You cannot declare arrays of objects. The following code would generate an error:

declare hash h1();
declare hash h2();
array h h1--h2;

� You can store a component object in a hash object as data but not as keys.

data _null_;
declare hash h1();
declare hash h2();

length key1 key2 $20;

h1.defineKey(’key1’);
h1.defineData(’key1’, ’h2’);
h1.defineDone();

key1 = ’abc’;
h2 = _new_ hash();
h2.defineKey(’key2’);
h2.defineDone();

key2 = ’xyz’;
h2.add();
h1.add();

key1 = ’def’;
h2 = _new_ hash();
h2.defineKey(’key2’);
h2.defineDone();

key1 = ’abc’;

2024 Rules When Using Component Objects � Chapter 8

rc = h1.find();
h2.output(dataset: ’work.h2’);

run;

proc print data=work.h2;
run;

The data set WORK.H2 is displayed.

Output 8.1

Obs key2

1 xyz

� You cannot use component objects with comparison operators other than the equal
sign (=). If H1 and H2 are hash objects, the following code will generate an error:

if h1>h2 then

� After you declare and instantiate a component object, you cannot assign a scalar
value to it. If J is a java object, the following code will generate an error:

j=5;

� You have to be careful to not delete object references that might still be in use or
that have already been deleted by reference. In the following code, the second
DELETE statement will generate an error because the original H1 object has
already been deleted through the reference to H2. The original H2 can no longer
be referenced directly.

declare hash h1();
declare hash h2();
declare hash t();
t=h2;
h2=h1;
h2.delete();
t.delete();

� You cannot use component objects in argument tag syntax. In the following
example, using the H2 hash object in the ADD methods will generate an error.

declare hash h2();
declare hash h();
h.add(key: h2);
h.add(key: 99, data: h2);

2025

C H A P T E R

9
Hash and Hash Iterator Object
Language Elements

ADD Method

Adds the specified data that is associated with the given key to the hash object.

Applies to: Hash object

Syntax
rc=object.ADD(<KEY: keyvalue-1,…, KEY: keyvalue-n, DATA: datavalue-1,

…, DATA: datavalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Details
You can use the ADD method in one of two ways to store data in a hash object.

You can define the key and data item, and then use the ADD method as shown in the
following code:

2026 ADD Method � Chapter 9

data _null_;
length k $8;
length d $12;

/* Declare hash object and key and data variable names */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

end;

/* Define constant key and data values */
k = ’Joyce’;
d = ’Ulysses’;
/* Add key and data values to hash object */
rc = h.add();

run;

Alternatively, you can use a shortcut and specify the key and data directly in the
ADD method call as shown in the following code:

data _null_;
length k $8;
length d $12;

/* Define hash object and key and data variable names */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;

/* Define constant key and data values and add to hash object */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);

run;

If you add a key that is already in the hash object, then the ADD method will return a
non-zero value to indicate that the key is already in the hash object. Use the REPLACE
method to replace the data that is associated with the specified key with new data.

If you do not specify the data variables with the DEFINEDATA method, the data
variables are automatically assumed to be same as the keys.

If you use the KEY: and DATA: argument tags to specify the key and data directly,
you must use both argument tags.

The ADD method does not set the value of the data variable to the value of the data
item. It only sets the value in the hash object.

See Also

Statements:
“DEFINEDATA Method” on page 2030
“DEFINEKEY Method” on page 2033

Hash and Hash Iterator Object Language Elements � CHECK Method 2027

“REF Method” on page 2062
“Storing and Retrieving Data” in SAS Language Reference: Concepts

CHECK Method

Checks whether the specified key is stored in the hash object.

Applies to: Hash object

Syntax
rc=object.CHECK(<KEY: keyvalue-1,…, KEY: keyvalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

Details
You can use the CHECK method in one of two ways to find data in a hash object.

You can specify the key, and then use the CHECK method as shown in the following
code:

data _null_;
length k $8;
length d $12;

/* Declare hash object and key and data variable names */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

/* avoid uninitialized variable notes */
call missing(k, d);

end;

2028 CHECK Method � Chapter 9

/* Define constant key and data values and add to hash object */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);

/* Verify that JOYCE key is in hash object */
k = ’Joyce’;
rc = h.check();
if (rc = 0) then

put ’Key is in the hash object.’;
run;

Alternatively, you can use a shortcut and specify the key directly in the CHECK
method call as shown in the following code:

data _null_;
length k $8;
length d $12;

/* Declare hash object and key and data variable names */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

/* avoid uninitialized variable notes */
call missing(k, d);

end;

/* Define constant key and data values and add to hash object */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);

/* Verify that JOYCE key is in hash object */
rc = h.check(key: ’Joyce’);
if (rc =0) then

put ’Key is in the hash object.’;
run;

Comparisons
The CHECK method only returns a value that indicates whether the key is in the hash
object. The data variable that is associated with the key is not updated. The FIND
method also returns a value that indicates whether the key is in the hash object.
However, if the key is in the hash object, then the FIND method also sets the data
variable to the value of the data item so that it is available for use after the method call.

See Also
Methods:
“FIND Method” on page 2037
“DEFINEKEY Method” on page 2033

Hash and Hash Iterator Object Language Elements � CLEAR Method 2029

CLEAR Method

Removes all items from the hash object without deleting the hash object instance.

Applies to: Hash object

Syntax
rc=object.CLEAR();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

Details
The CLEAR method enables you to remove items from and reuse an existing hash
object without having to delete the object and create a new one. If you want to remove
the hash object instance completely, use the DELETE method.

Note: The CLEAR method does not change the value of the DATA step variables. It
only clears the values in the hash object. �

Examples
The following example declares a hash object, gets the number of items in the hash
object, and then clears the hash object without deleting it.

data mydata;
do i = 1 to 10000;

output;
end;
run;

data _null_;
length i 8;

/* Declares the hash object named MYHASH using the data set MyData. */
dcl hash myhash(dataset: ’mydata’);
myhash.definekey(’i’);
myhash.definedone();
call missing (i);

/* Uses the NUM_ITEMS attribute, which returns the number of items in
the hash object. */

2030 DECLARE Statement, Hash and Hash Iterator Objects � Chapter 9

n = myhash.num_items;
put n=;

/* Uses the CLEAR method to delete all items within MYHASH. */
rc = myhash.clear();

/* Writes the number of items in the log. */
n = myhash.num_items;
put n=;

run;

The first PUT statement writes the number of items in the hash table MYHASH
before it is cleared.

n=10000

The second PUT statement writes the number of items in the hash table MYHASH
after it is cleared.

n=0

See Also
Methods:
“DELETE Method” on page 2035

DECLARE Statement, Hash and Hash Iterator Objects

Declares a hash or hash iterator object; creates an instance of and initializes data for a hash or
hash iterator object.

Valid in: DATA step
See: “DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

DEFINEDATA Method

Defines data, associated with the specified data variables, to be stored in the hash object.

Applies to: Hash object

Syntax
rc=object.DEFINEDATA(’datavarname-1’< ,…’datavarname-n’>);

rc=object.DEFINEDATA(ALL: ’YES’ | “YES”);

Arguments

Hash and Hash Iterator Object Language Elements � DEFINEDATA Method 2031

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

’datavarname’
specifies the name of the data variable.

The data variable name can also be enclosed in double quotation marks.

ALL: ’YES’ | “YES”
specifies all the data variables as data when the data set is loaded in the object
constructor.

If the dataset argument tag is used in the DECLARE statement or _NEW_
operator to automatically load a data set, then you can define all the data set
variables as data by using the ALL: ’YES’ option.

Note: If you use the shortcut notation for the ADD or REPLACE method (for
example, h.add(key:99, data:’apple’, data:’orange’)) and use the ALL:’YES’
option on the DEFINEDATA method, then you must specify the data in the same order
as it exists in the data set. �

Note: The hash object does not assign values to key variables (for example,
h.find(key:’abc’)), and the SAS compiler cannot detect the key and data variable
assignments that are performed by the hash object and the hash iterator. Therefore, if
no assignment to a key or data variable appears in the program, then SAS will issue a
note stating that the variable is uninitialized. To avoid receiving these notes, you can
perform one of the following actions:

� Set the NONOTES system option.

� Provide an initial assignment statement (typically to a missing value) for each key
and data variable.

� Use the CALL MISSING routine with all the key and data variables as
parameters. Here is an example:

length d $20;
length k $20;

if _N_ = 1 then do;
declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
call missing(k, d);

end;

�

Details
The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must

2032 DEFINEDONE Method � Chapter 9

call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

For detailed information about how to use the DEFINEDATA method, see “Defining
Keys and Data” in SAS Language Reference: Concepts.

Examples

The following example creates a hash object and defines the key and data variables:

data _null_;
length d $20;
length k $20;
/* Declare the hash object and key and data variables */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;
run;

See Also

Methods:
“DEFINEDONE Method” on page 2032
“DEFINEKEY Method” on page 2033

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:
“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Defining Keys and Data” in SAS Language Reference: Concepts

DEFINEDONE Method
Indicates that all key and data definitions are complete.

Applies to: Hash object

Syntax
rc = object.DEFINEDONE();

rc = object.DEFINEDONE(MEMRC: ’y’);

Arguments

Hash and Hash Iterator Object Language Elements � DEFINEKEY Method 2033

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

memrc:’y’
enables recovery from memory failure when loading a data set into a hash object.

If a call fails because of insufficient memory to load a data set, a nonzero return
code is returned. The hash object frees the principal memory in the underlying array.
The only allowable operation after this type of failure is deletion via the DELETE
method.

Details
When the DEFINEDONE method is called and the dataset argument tag is used with
the constructor, the data set is loaded into the hash object.

The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must
call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

For detailed information about how to use the DEFINEDONE method, see “Defining
Keys and Data” in SAS Language Reference: Concepts.

See Also

Methods:
“DEFINEDATA Method” on page 2030
“DEFINEKEY Method” on page 2033

“Defining Keys and Data” in SAS Language Reference: Concepts.

DEFINEKEY Method

Defines key variables for the hash object.

Applies to: Hash object

Syntax
rc=object.DEFINEKEY(’keyvarname-1’<…, ’keyvarname-n’>);
rc=object.DEFINEKEY(ALL: ’YES’ | ”YES”);

Arguments

2034 DEFINEKEY Method � Chapter 9

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

’keyvarname’
specifies the name of the key variable.

The key variable name can also be enclosed in double quotation marks.

ALL: ’YES’ | ”YES”
specifies all the data variables as keys when the data set is loaded in the object
constructor.

If you use the dataset argument tag in the DECLARE statement or _NEW_
operator to automatically load a data set, then you can define all the key variables by
using the ALL: ’YES’ option.

Note: If you use the shortcut notation for the ADD, CHECK, FIND, REMOVE, or
REPLACE methods (for example, h.add(key:99, data:’apple’, data:’orange’))
and the ALL:’YES’ option on the DEFINEKEY method, then you must specify the keys
and data in the same order as they exist in the data set. �

Details
The hash object works by storing and retrieving data based on lookup keys. The keys
and data are DATA step variables, which you use to initialize the hash object by using
dot notation method calls. You define a key by passing the key variable name to the
DEFINEKEY method. You define data by passing the data variable name to the
DEFINEDATA method. When you have defined all key and data variables, you must
call the DEFINEDONE method to complete initialization of the hash object. Keys and
data consist of any number of character or numeric DATA step variables.

For detailed information about how to use the DEFINEKEY method, see “Defining
Keys and Data” in SAS Language Reference: Concepts.

Note: The hash object does not assign values to key variables (for example,
h.find(key:’abc’)), and the SAS compiler cannot detect the key and data variable
assignments done by the hash object and the hash iterator. Therefore, if no assignment
to a key or data variable appears in the program, SAS will issue a note stating that the
variable is uninitialized. To avoid receiving these notes, you can perform one of the
following actions:

� Set the NONOTES system option.
� Provide an initial assignment statement (typically to a missing value) for each key

and data variable.
� Use the CALL MISSING routine with all the key and data variables as

parameters. Here is an example:

length d $20;
length k $20;

if _N_ = 1 then do;
declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();

Hash and Hash Iterator Object Language Elements � DELETE Method 2035

call missing(k, d);
end;

�

See Also

Methods:

“DEFINEDATA Method” on page 2030

“DEFINEDONE Method” on page 2032

Operators:

“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Defining Keys and Data” in SAS Language Reference: Concepts.

DELETE Method

Deletes the hash or hash iterator object.

Applies to: Hash object

Hash interator object

Syntax
rc=object.DELETE();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is printed to the log.

object
specifies the name of the hash or hash iterator object.

Details
DATA step component objects are deleted automatically at the end of the DATA step. If
you want to reuse the object reference variable in another hash or hash iterator object
constructor, you should delete the hash or hash iterator object by using the DELETE
method.

If you attempt to use a hash or hash iterator object after you delete it, you will
receive an error in the log.

2036 EQUALS Method � Chapter 9

If you want to delete all the items from within a hash object and save the hash object
to use again, use the “CLEAR Method” on page 2029.

EQUALS Method

Determines whether two hash objects are equal.

Applies to: Hash object

Syntax
rc=object.EQUALS(HASH: ’object’, RESULT: variable name);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of a hash object.

HASH:’object’
specifies the name of the second hash object that is compared to the first hash object.

RESULT: variable name
specifies the name of a numeric variable name to hold the result. If the hash objects
are equal, the result variable is 1. Otherwise, the result variable is zero.

Details
The following example compares H1 to H2 hash objects:

length eq k 8;
declare hash h1();
h1.defineKey(’k’);
h1.defineDone();

declare hash h2();
h2.defineKey(’k’);
h2.defineDone();

rc = h1.equals(hash: ’h2’, result: eq);
if eq then

put ’hash objects equal’;
else

put ’hash objects not equal’;

The two hash objects are defined as equal when all of the following conditions occur:

Hash and Hash Iterator Object Language Elements � FIND Method 2037

� Both hash objects are the same size—that is, the HASHEXP sizes are equal.

� Both hash objects have the same number of items—that is, H1.NUM_ITEMS =
H2.NUM_ITEMS.

� Both hash objects have the same key and data structure.

� In an unordered iteration over H1 and H2 hash objects, each successive record
from H1 has the same key and data fields as the corresponding record in H2—that
is, each record is in the same position in each hash object and each such record is
identical to the corresponding record in the other hash object.

Examples

In the following example, the first return call to EQUALS returns a nonzero value
and the second return call returns a zero value.

data x;
length k eq 8;
declare hash h1();
h1.defineKey(’k’);
h1.defineDone();

declare hash h2();
h2.defineKey(’k’);
h2.defineDone();

k = 99;
h1.add();
h2.add();

rc = h1.equals(hash: ’h2’, result: eq);
put eq=;

k = 100;
h2.replace();

rc = h1.equals(hash: ’h2’, result: eq);
put eq=;

run;

FIND Method

Determines whether the specified key is stored in the hash object.

Applies to: Hash object

Syntax
rc=object.FIND(<KEY: keyvalue–1,…, KEY: keyvalue-n>);

2038 FIND Method � Chapter 9

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables
that you define by using the DEFINEKEY method.

Details
You can use the FIND method in one of two ways to find data in a hash object.

You can specify the key, and then use the FIND method as shown in the following
code:

data _null_;
length k $8;
length d $12;

/* Declare hash object and key and data variables */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;

/* Define constant key and data values */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);

/* Find the key JOYCE */
k = ’Joyce’;
rc = h.find();
if (rc = 0) then

put ’Key is in the hash object.’;
run;

Alternatively, you can use a shortcut and specify the key directly in the FIND
method call as shown in the following code:

data _null_;
length k $8;
length d $12;

/* Declare hash object and key and data variables */
if _N_ = 1 then do;

Hash and Hash Iterator Object Language Elements � FIND Method 2039

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;

/* Define constant key and data values */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);

/* Find the key JOYCE */
rc = h.find(key: ’Joyce’);
if (rc = 0) then

put ’Key is in the hash object.’;
run;

If the hash object has multiple data items for each key, use the “FIND_NEXT
Method” on page 2040 and the “FIND_PREV Method” on page 2042 in conjunction with
the FIND method to traverse a multiple data item list.

Comparisons
The FIND method returns a value that indicates whether the key is in the hash object.
If the key is in the hash object, then the FIND method also sets the data variable to the
value of the data item so that it is available for use after the method call. The CHECK
method only returns a value that indicates whether the key is in the hash object. The
data variable is not updated.

Examples

The following example creates a hash object. Two data values are added. The FIND
method is used to find a key in the hash object. The data value is returned to the data
set variable that is associated with the key.

data _null_;
length k $8;
length d $12;
/* Declare hash object and key and data variable names */
if _N_ = 1 then do;

declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
/* avoid uninitialized variable notes */
call missing(k, d);
rc = h.defineDone();

end;
/* Define constant key and data values and add to hash object */
rc = h.add(key: ’Joyce’, data: ’Ulysses’);
rc = h.add(key: ’Homer’, data: ’Odyssey’);
/* Verify that key JOYCE is in hash object and */
/* return its data value to the data set variable D */
rc = h.find(key: ’Joyce’);
put d=;

run;

2040 FIND_NEXT Method � Chapter 9

d=Ulysses is written to the SAS log.

See Also

Methods:
“CHECK Method” on page 2027
“DEFINEKEY Method” on page 2033
“FIND_NEXT Method” on page 2040
“FIND_PREV Method” on page 2042
“REF Method” on page 2062

“Storing and Retrieving Data” in SAS Language Reference: Concepts

FIND_NEXT Method
Sets the current list item to the next item in the current key’s multiple item list and sets the data
for the corresponding data variables.

Applies to: Hash object

Syntax
rc=object.FIND_NEXT();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

Details
The FIND method determines whether the key exists in the hash object. The
HAS_NEXT method determines whether the key has multiple data items associated
with it. When you have determined that the key has another data item, that data item
can be retrieved by using the FIND_NEXT method, which sets the data variable to the
value of the data item so that it is available for use after the method call. Once you are
in the data item list, you can use the HAS_NEXT and FIND_NEXT methods to traverse
the list.

Examples

This example uses the FIND_NEXT method to iterate through a data set where
several keys have multiple data items. If a key has more than one data item,
subsequent items are marked dup.

Hash and Hash Iterator Object Language Elements � FIND_NEXT Method 2041

data dup;
length key data 8;
input key data;
datalines;
1 10
2 11
1 15
3 20
2 16
2 9
3 100
5 5
1 5
4 6
5 99
;

data _null_;
dcl hash h(dataset:’dup’, multidata: ’y’);
h.definekey(’key’);
h.definedata(’key’, ’data’);
h.definedone();
/* avoid uninitialized variable notes */
call missing (key, data);

do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;

put key= data=;
rc = h.find_next();
do while(rc = 0);

put ’dup ’ key= data;
rc = h.find_next();

end;
end;

end;
run;

The following lines are written to the SAS log.

Output 9.1 Keys with Multiple Data Items

key=1 data=10
dup key=1 5
dup key=1 15
key=2 data=11
dup key=2 9
dup key=2 16
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99

2042 FIND_PREV Method � Chapter 9

See Also

Methods:
“FIND Method” on page 2037
“FIND_PREV Method” on page 2042
“HAS_NEXT Method” on page 2044

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

FIND_PREV Method

Sets the current list item to the previous item in the current key’s multiple item list and sets the
data for the corresponding data variables.

Applies to: Hash object

Syntax
rc=object.FIND_PREV();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

Details
The FIND method determines whether the key exists in the hash object. The
HAS_PREV method determines whether the key has multiple data items associated
with it. When you have determined that the key has a previous data item, that data
item can be retrieved by using the FIND_PREV method, which sets the data variable to
the value of the data item so that it is available for use after the method call. Once you
are in the data item list, you can use the HAS_PREV and FIND_PREV methods in
addition to the HAS_NEXT and FIND_NEXT methods to traverse the list. See
“HAS_NEXT Method” on page 2044 for an example.

See Also

Methods:
“FIND Method” on page 2037
“FIND_NEXT Method” on page 2040

Hash and Hash Iterator Object Language Elements � FIRST Method 2043

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

FIRST Method

Returns the first value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object.FIRST();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, an
appropriate error message will be printed to the log.

object
specifies the name of the hash iterator object.

Details
The FIRST method returns the first data item in the hash object. If you use the ordered:
’yes’ or ordered: ’ascending’ argument tag in the DECLARE statement or _NEW_
operator when you instantiate the hash object, then the data item that is returned is
the one with the ’least’ key (smallest numeric value or first alphabetic character),
because the data items are sorted in ascending key-value order in the hash object.
Repeated calls to the NEXT method will iteratively traverse the hash object and return
the data items in ascending key order. Conversely, if you use the ordered: ’descending’
argument tag in the DECLARE statement or _NEW_ operator when you instantiate the
hash object, then the data item that is returned is the one with the ’highest’ key (largest
numeric value or last alphabetic character), because the data items are sorted in
descending key-value order in the hash object. Repeated calls to the NEXT method will
iteratively traverse the hash object and return the data items in descending key order.

Use the LAST method to return the last data item in the hash object.

Note: The FIRST method sets the data variable to the value of the data item so that
it is available for use after the method call. �

Examples

The following example creates a data set that contains sales data. You want to list
products in order of sales. The data is loaded into a hash object and the FIRST and
NEXT methods are used to retrieve the data.

data work.sales;
input prod $1-6 qty $9-14;

2044 HAS_NEXT Method � Chapter 9

datalines;
banana 398487
apple 384223
orange 329559
;

data _null_;
/* Declare hash object and read SALES data set as ordered */
if _N_ = 1 then do;

length prod $10;
length qty $6;
declare hash h(dataset: ’work.sales’, ordered: ’yes’);
declare hiter iter(’h’);
/* Define key and data variables */
h.defineKey(’qty’);
h.defineData(’prod’);
h.defineDone();
/* avoid uninitialized variable notes */
call missing(qty, prod);

end;

/* Iterate through the hash object and output data values */
rc = iter.first();
do while (rc = 0);

put prod=;
rc = iter.next();

end;
run;

The following lines are written to the SAS log:

prod=orange
prod=banana
prod=apple

See Also

Method:
“LAST Method” on page 2049

Operators:

“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050
Statements:

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430
“Using the Hash Iterator Object” in SAS Language Reference: Concepts

HAS_NEXT Method

Determines whether there is a next item in the current key’s multiple data item list.

Applies to: Hash object

Hash and Hash Iterator Object Language Elements � HAS_NEXT Method 2045

Syntax
rc=object.HAS_NEXT(RESULT: R);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

RESULT:R
specifies the numeric variable R, which receives a zero value if there is not another
data item in the data item list or a nonzero value if there is another data item in the
data item list.

Details
If a key has multiple data items, you can use the HAS_NEXT method to determine
whether there is a next item in the current key’s multiple data item list. If there is
another item, the method will return a nonzero value in the numeric variable R.
Otherwise, it will return a zero.

The FIND method determines whether the key exists in the hash object. The
HAS_NEXT method determines whether the key has multiple data items associated
with it. When you have determined that the key has another data item, that data item
can be retrieved by using the FIND_NEXT method, which sets the data variable to the
value of the data item so that it is available for use after the method call. Once you are
in the data item list, you can use the HAS_PREV and FIND_PREV methods in addition
to the HAS_NEXT and FIND_NEXT methods to traverse the list.

Examples

This example creates a hash object where several keys have multiple data items. It
uses the HAS_NEXT method to find all the data items.

data testdup;
length key data 8;
input key data;
datalines;
1 100
2 11
1 15
3 20
2 16
2 9
3 100
5 5
1 5

2046 HAS_NEXT Method � Chapter 9

4 6
5 99

;

data _null_;
length r 8;
dcl hash h(dataset:’testdup’, multidata: ’y’);
h.definekey(’key’);
h.definedata(’key’, ’data’);
h.definedone();
call missing (key, data);

do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;

put key= data=;
h.has_next(result: r);
do while(r ne 0);

rc = h.find_next();
put ’dup ’ key= data;
h.has_next(result: r);

end;
end;

end;
run;

The following lines are written to the SAS log.

Output 9.2 Output of Keys with Multiple Data Items

key=1 data=100
dup key=1 5
dup key=1 15
key=2 data=11
dup key=2 9
dup key=2 16
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99

See Also

Methods:

“FIND Method” on page 2037

“FIND_NEXT Method” on page 2040

“FIND_PREV Method” on page 2042

“HAS_PREV Method” on page 2047

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

Hash and Hash Iterator Object Language Elements � HAS_PREV Method 2047

HAS_PREV Method

Determines whether there is a previous item in the current key’s multiple data item list.

Applies to: Hash object

Syntax
rc=object.HAS_PREV(RESULT: R);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

RESULT:R
specifies the numeric variable R, which receives a zero value if there is not another
data item in the data item list or a nonzero value if there is another data item in the
data item list.

Details
If a key has multiple data items, you can use the HAS_PREV method to determine
whether there is a previous item in the current key’s multiple data item list. If there is
a previous item, the method will return a nonzero value in the numeric variable R.
Otherwise, it will return a zero.

The FIND method determines whether the key exists in the hash object. The
HAS_NEXT method determines whether the key has multiple data items associated
with it. When you have determined that the key has a previous data item, that data
item can be retrieved by using the FIND_PREV method, which sets the data variable to
the value of the data item so that it is available for use after the method call. Once you
are in the data item list, you can use the HAS_PREV and FIND_PREV methods in
addition to the HAS_NEXT and FIND_NEXT methods to traverse the list. See
“HAS_NEXT Method” on page 2044 for an example.

See Also

Methods:
“FIND Method” on page 2037
“FIND_NEXT Method” on page 2040
“FIND_PREV Method” on page 2042
“HAS_NEXT Method” on page 2044

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

2048 ITEM_SIZE Attribute � Chapter 9

ITEM_SIZE Attribute

Returns the size (in bytes) of an item in a hash object.

Applies to: Hash object

Syntax
variable_name=object.ITEM_SIZE;

Arguments

variable_name
specifies name of the variable that contains the size of the item in the hash object.

object
specifies the name of the hash object.

Details
The ITEM_SIZE attribute returns the size (in bytes) of an item, which includes the key
and data variables and some additional internal information. You can set an estimate
of how much memory the hash object is using with the ITEM_SIZE and NUM_ITEMS
attributes. The ITEM_SIZE attribute does not reflect the initial overhead that the hash
object requires, nor does it take into account any necessary internal alignments.
Therefore, the use of ITEM_SIZE does not provide exact memory usage, but it does
return a good approximation.

Examples

The following example uses ITEM_SIZE to return the size of the item in MYHASH:

data work.stock;
input prod $1-10 qty 12-14;
datalines;

broccoli 345
corn 389
potato 993
onion 730
;

data _null_;
if _N_ = 1 then do;

length prod $10;
/* Declare hash object and read STOCK data set as ordered */

declare hash myhash(dataset: "work.stock");
/* Define key and data variables */
myhash.defineKey(’prod’);
myhash.defineData(’qty’);
myhash.defineDone();

end;

Hash and Hash Iterator Object Language Elements � LAST Method 2049

/* Add a key and data value to the hash object */
prod = ’celery’;
qty = 183;
rc = myhash.add();

/* Use ITEM_SIZE to return the size of the item in hash object */
itemsize = myhash.item_size;
put itemsize=;

run;

The following lines are written to the log:

itemsize=40

LAST Method

Returns the last value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object.LAST();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details
The LAST method returns the last data item in the hash object. If you use the ordered:
’yes’ or ordered: ’ascending’ argument tag in the DECLARE statement or _NEW_
operator when you instantiate the hash object, then the data item that is returned is the
one with the ’highest’ key (largest numeric value or last alphabetic character), because
the data items are sorted in ascending key-value order in the hash object. Conversely, if
you use the ordered: ’descending’ argument tag in the DECLARE statement or _NEW_
operator when you instantiate the hash object, then the data item that is returned is
the one with the ’least’ key (smallest numeric value or first alphabetic character),
because the data items are sorted in descending key-value order in the hash object.

Use the FIRST method to return the first data item in the hash object.

Note: The LAST method sets the data variable to the value of the data item so that
it is available for use after the method call. �

2050 _NEW_ Operator, Hash or Hash Iterator Object � Chapter 9

See Also

Methods:

“FIRST Method” on page 2043

Operators:

“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Using the Hash Iterator Object” in SAS Language Reference: Concepts

NEW Operator, Hash or Hash Iterator Object

Creates an instance of a hash or hash iterator object.

Applies to: Hash object

Hash iterator object

Syntax
object-reference = _NEW_ object(<argument_tag-1: value-1<, …argument_tag-n:

value-n>>);

Arguments

object-reference
specifies the object reference name for the hash or hash iterator object.

object
specifies the component object. It can be one of the following:

hash indicates a hash object. The hash object provides a mechanism for
quick data storage and retrieval. The hash object stores and
retrieves data based on lookup keys. For more information about
the hash object, see “Using the Hash Object” in SAS Language
Reference: Concepts.

hiter indicates a hash iterator object. The hash iterator object enables
you to retrieve the hash object’s data in forward or reverse key
order. For more information about the hash iterator object, see
“Using the Hash Iterator Object” in SAS Language Reference:
Concepts.

argument-tag
specifies the information that is used to create an instance of the hash object.

Valid hash object argument tags are

dataset: ’dataset_name <(datasetoption)>’
Names a SAS data set to load into the hash object.

Hash and Hash Iterator Object Language Elements � _NEW_ Operator, Hash or Hash Iterator Object 2051

The name of the SAS data set can be a literal or character variable. The data
set name must be enclosed in single or double quotation marks. Macro variables
must be enclosed in double quotation marks.

You can use SAS data set options when declaring a hash object in the DATASET
argument tag. Data set options specify actions that apply only to the SAS data set
with which they appear. They enable you to perform the following operations:

� renaming variables
� selecting a subset of observations based on observation number for processing
� selecting observations using the WHERE option
� dropping or keeping variables from a data set loaded into a hash object, or for

an output data set specified in an OUTPUT method call
� specifying a password for a data set.

The following syntax is used:

dcl hash h;
h = _new_ hash (dataset: ’x (where = (i > 10))’);

For a list of SAS data set options, see “Data Set Options by Category” on page 12.

Note: If the data set contains duplicate keys, the default is to keep the first
instance in the hash object; subsequent instances will be ignored. To store the last
instance in the hash object or have an error message written in the SAS log if
there is a duplicate key, use the DUPLICATE argument tag. �

duplicate: ’option’
determines whether to ignore duplicate keys when loading a data set into the hash
object. The default is to store the first key and ignore all subsequent duplicates.
Option can be one of the following values:

’replace’ | ’r’
stores the last duplicate key record.

’error’ | ’e’
reports an error to the log if a duplicate key is found.
The following example using the REPLACE option stores brown for the key 620

and blue for the key 531 . If you use the default, green would be stored for 620
and yellow would be stored for 531.

data table;
input key data $;
datalines;
531 yellow
620 green
531 blue
908 orange
620 brown
143 purple
run;

data _null_;
length key 8 data $ 8;
if (_n_ = 1) then do;

declare hash myhash;
myhash = _new_ hash (dataset: "table", duplicate: "r");
rc = myhash.definekey(’key’);
rc = myhash.definedata(’data’);
myhash.definedone();

2052 _NEW_ Operator, Hash or Hash Iterator Object � Chapter 9

end;

rc = myhash.output(dataset:"otable");
run;

hashexp: n
The hash object’s internal table size, where the size of the hash table is 2n.

The value of HASHEXP is used as a power-of-two exponent to create the hash
table size. For example, a value of 4 for HASHEXP equates to a hash table size of
24, or 16. The maximum value for HASHEXP is 20.

The hash table size is not equal to the number of items that can be stored.
Imagine the hash table as an array of ’buckets.’ A hash table size of 16 would have
16 ’buckets.’ Each bucket can hold an infinite number of items. The efficiency of
the hash table lies in the ability of the hashing function to map items to and
retrieve items from the buckets.

You should set the hash table size relative to the amount of data in the hash
object in order to maximize the efficiency of the hash object lookup routines. Try
different HASHEXP values until you get the best result. For example, if the hash
object contains one million items, a hash table size of 16 (HASHEXP = 4) would
work, but not very efficiently. A hash table size of 512 or 1024 (HASHEXP = 9 or
10) would result in the best performance.

Default: 8, which equates to a hash table size of 28 or 256

ordered: ’option’
Specifies whether or how the data is returned in key-value order if you use the
hash object with a hash iterator object or if you use the hash object OUTPUT
method.

option can be one of the following values:

’ascending’ | ’a’ Data is returned in ascending key-value order. Specifying
’ascending’ is the same as specifying ’yes’.

’descending’ | ’d’ Data is returned in descending key-value order.

’YES’ | ’Y’ Data is returned in ascending key-value order. Specifying ’yes’
is the same as specifying ’ascending’.

’NO’ | ’N’ Data is returned in some undefined order.

Default: NO
The argument value can also be enclosed in double quotation marks.

multidata: ’option’
specifies whether multiple data items are allowed for each key.

option can be one of the following values:

’YES’ | ’Y’ Multiple data items are allowed for each key.

’NO’ | ’N’ Only one data item is allowed for each key.

Default: NO

See Also: “Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

The argument value can also be enclosed in double quotation marks.

suminc: ’variable-name’
maintains a summary count of hash object keys. The SUMINC argument tag is
given a DATA step variable, which holds the sum increment, that is, how much to
add to the key summary for each reference to the key. The SUMINC value treats a
missing value as zero, like the SUM function. For example, a key summary
changes using the current value of the DATA step variable.

Hash and Hash Iterator Object Language Elements � _NEW_ Operator, Hash or Hash Iterator Object 2053

dcl hash myhash(suminc: ’count’);

For more information, see “Maintaining Key Summaries” in SAS Language
Reference: Concepts.

See Also: “Initializing Hash Object Data Using a Constructor” and “Declaring and
Instantiating a Hash Iterator Object” in SAS Language Reference: Concepts.

Details
To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing the predefined component objects from within the DATA step.

If you use the _NEW_ operator to instantiate the component object, you must first
use the DECLARE statement to declare the component object. For example, in the
following lines of code, the DECLARE statement tells SAS that the object reference H is
a hash object. The _NEW_ operator creates the hash object and assigns it to the object
reference H.

declare hash h();
h = _new_ hash();

Note: You can use the DECLARE statement to declare and instantiate a hash or
hash iterator object in one step. �

A constructor is a method that is used to instantiate a component object and to
initialize the component object data. For example, in the following lines of code, the
NEW operator instantiates a hash object and assigns it to the object reference H. In
addition, the data set WORK.KENNEL is loaded into the hash object.

declare hash h();
h = _new_ hash(datset: "work.kennel");

For more information about the predefined DATA step component objects and
constructors, see “Using DATA Step Component Objects” in SAS Language Reference:
Concepts.

Comparisons
You can use the DECLARE statement and the _NEW_ operator, or the DECLARE
statement alone to declare and instantiate an instance of a hash or hash iterator object.

Examples

This example uses the _NEW_ operator to instantiate and initialize data for a hash
object and instantiate a hash iterator object.

The hash object is filled with data, and the iterator is used to retrieve the data in key
order.

data kennel;
input name $1-10 kenno $14-15;
datalines;

Charlie 15
Tanner 07
Jake 04
Murphy 01
Pepe 09
Jacques 11

2054 _NEW_ Operator, Hash or Hash Iterator Object � Chapter 9

Princess Z 12
;
run;

data _null_;
if _N_ = 1 then do;

length kenno $2;
length name $10;
/* Declare the hash object */
declare hash h();
/* Instantiate and initialize the hash object */
h = _new_ hash(dataset:"work.kennel", ordered: ’yes’);
/* Declare the hash iterator object */
declare hiter iter;
/* Instantiate the hash iterator object */
iter = _new_ hiter(’h’);
/* Define key and data variables */
h.defineKey(’kenno’);
h.defineData(’name’, ’kenno’);
h.defineDone();
/* avoid uninitialized variable notes */
call missing(kenno, name);

end;

/* Find the first key in the ordered hash object and output to the log */
rc = iter.first();
do while (rc = 0);

put kenno ’ ’ name;
rc = iter.next();

end;
run;

The following lines are written to the SAS log:

Output 9.3 Output of Data Written in Key Order

NOTE: There were 7 observations read from the data set WORK.KENNEL.
01 Murphy
04 Jake
07 Tanner
09 Pepe
11 Jacques
12 Princess Z
15 Charlie

See Also

Statements:
“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Using DATA Step Component Objects” in SAS Language Reference: Concepts

Hash and Hash Iterator Object Language Elements � NUM_ITEMS Attribute 2055

NEXT Method
Returns the next value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object.NEXT();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details
Use the NEXT method iteratively to traverse the hash object and return the data items
in key order.

The FIRST method returns the first data item in the hash object.
You can use the PREV method to return the previous data item in the hash object.

Note: The NEXT method sets the data variable to the value of the data item so that
it is available for use after the method call. �

Note: If you call the NEXT method without calling the FIRST method, then the
NEXT method will still start at the first item in the hash object. �

See Also

Methods:
“FIRST Method” on page 2043
“PREV Method” on page 2061

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:
“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Using the Hash Iterator Object” in SAS Language Reference: Concepts

NUM_ITEMS Attribute
Returns the number of items in the hash object.

2056 NUM_ITEMS Attribute � Chapter 9

Applies to: Hash object

Syntax
variable_name=object.NUM_ITEMS;

Arguments

variable_name
specifies the name of the variable that contains the number of items in the hash
object.

object
specifies the name of the hash object.

Examples

This example creates a data set and loads the data set into a hash object. An item is
added to the hash object and the total number of items in the resulting hash object is
returned by the NUM_ITEMS attribute.

data work.stock;
input item $1-10 qty $12-14;
datalines;

broccoli 345
corn 389
potato 993
onion 730
;

data _null_;
if _N_ = 1 then do;

length item $10;
length qty 8;
length totalitems 8;
/* Declare hash object and read STOCK data set as ordered */
declare hash myhash(dataset: "work.stock");
/* Define key and data variables */
myhash.defineKey(’item’);
myhash.defineData(’qty’);
myhash.defineDone();

end;
/* Add a key and data value to the hash object */
item = ’celery’;
qty = 183;
rc = myhash.add();
if (rc ne 0) then

put ’Add failed’;
/* Use NUM_ITEMS to return updated number of items in hash object */
totalitems = myhash.num_items;
put totalitems=;

run;

Hash and Hash Iterator Object Language Elements � OUTPUT Method 2057

totalitems=5 is written to the SAS log.

OUTPUT Method

Creates one or more data sets each of which contain the data in the hash object.

Applies to: Hash object

Syntax
rc=object.OUTPUT(DATASET: ’dataset-1 <(datasetoption)>’ <…, DATASET:

’dataset-n’>(’datasetoption<(datasetoption)>’);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

DATASET: ’dataset’
specifies the name of the output data set.

The name of the SAS data set can be a character literal or character variable. The
data set name can also be enclosed in double quotation marks. When specifying the
name of the output data set, you can use SAS data set options in the DATASET
argument tag. Macro variables must be enclosed in double quotation marks.

datasetoption
specifies a data set option.

For complete information about how to specify data set options, see “Syntax” on
page 10.

Details
Hash object keys are not automatically stored as part of the output data set. The keys
must be defined as data items by using the DEFINEDATA method to be included in the
output data set.

If you use the ordered: ’yes’ or ordered: ’ascending’ argument tag in the DECLARE
statement or _NEW_ operator when you instantiate the hash object, then the data
items are written to the data set in ascending key-value order. If you use the ordered:
’descending’ argument tag in the DECLARE statement or _NEW_ operator when you
instantiate the hash object, then the data items are written to the data set in descending
key-value order. If you do not use the ordered argument tag, the order is undefined.

When specifying the name of the output data set, you can use SAS data set options
in the DATASET argument tag. Data set options specify actions that apply only to the
SAS data set with which they appear. They let you perform the following operations:

2058 OUTPUT Method � Chapter 9

� renaming variables

� selecting a subset of observations based on the observation number for processing

� selecting observations using the WHERE option

� dropping or keeping variables from a data set loaded into a hash object, or for an
output data set that is specified in an OUTPUT method call

� specifying a password for a data set.

The following example uses the WHERE data set option to select specific data for the
output data set named OUT:

data x;
do i = 1 to 20;

output;
end;
run;

/* Using the WHERE option. */
data _null_;

length i 8;
dcl hash h();
h.definekey(all: ’y’);
h.definedone();
h.output(dataset: ’out (where =(i < 8))’);

run;

The following example uses the RENAME data set option to rename the variable J to K
for the output data set named OUT:

data x;
do i = 1 to 20;

output;
end;
run;

/* Using the RENAME option. */
data _null_;

length i j 8;
dcl hash h();
h.definekey(all: ’y’);
h.definedone();
h.output(dataset: ’out (rename =(j=k))’);

run;

For a list of data set options, see “Data Set Options by Category” on page 12.

Note: When you use the OUTPUT method to create a data set, the hash object is
not part of the output data set. In the following example, the H2 hash object will be
omitted from the output data set.

data _null_;
length k 8;
length d $10;
declare hash h2();
declare hash h(ordered: ’y’);
h.defineKey(’k’);
h.defineData(’k’, ’d’, ’h2’);
h.defineDone();

Hash and Hash Iterator Object Language Elements � OUTPUT Method 2059

k = 99;
d = ’abc’;
h.add();
k = 199;
d = ’def’;
h.add();
h.output(dataset:’work.x’);

run;

�

Examples

Using the data set ASTRO that contains astronomical data, the following code
creates a hash object with the Messier (OBJ) objects sorted in ascending order by their
right-ascension (RA) values and uses the OUTPUT method to save the data to a data
set.

data astro;
input obj $1-4 ra $6-12 dec $14-19;
datalines;
M31 00 42.7 +41 16
M71 19 53.8 +18 47
M51 13 29.9 +47 12
M98 12 13.8 +14 54
M13 16 41.7 +36 28
M39 21 32.2 +48 26
M81 09 55.6 +69 04
M100 12 22.9 +15 49
M41 06 46.0 -20 44
M44 08 40.1 +19 59
M10 16 57.1 -04 06
M57 18 53.6 +33 02
M3 13 42.2 +28 23
M22 18 36.4 -23 54
M23 17 56.8 -19 01
M49 12 29.8 +08 00
M68 12 39.5 -26 45
M17 18 20.8 -16 11
M14 17 37.6 -03 15
M29 20 23.9 +38 32
M34 02 42.0 +42 47
M82 09 55.8 +69 41
M59 12 42.0 +11 39
M74 01 36.7 +15 47
M25 18 31.6 -19 15
;
run;

data _null_;
if _N_ = 1 then do;

length obj $10;
length ra $10;
length dec $10;
/* Read ASTRO data set as ordered */

2060 OUTPUT Method � Chapter 9

declare hash h(hashexp: 4, dataset:"work.astro", ordered: ’yes’);
/* Define variables RA and OBJ as key and data for hash object */
h.defineKey(’ra’);
h.defineData(’ra’, ’obj’);
h.defineDone();
/* avoid uninitialized variable notes */
call missing(ra, obj);

end;
/* Create output data set from hash object */
rc = h.output(dataset: ’work.out’);
run;

proc print data=work.out;
var ra obj;
title ’Messier Objects Sorted by Right-Ascension Values’;

run;

Output 9.4 Messier Objects Sorted by Right-Ascension Values

Messier Objects Sorted by Right-Ascension Values 1

Obs ra obj

1 00 42.7 M31
2 01 36.7 M74
3 02 42.0 M34
4 06 46.0 M41
5 08 40.1 M44
6 09 55.6 M81
7 09 55.8 M82
8 12 13.8 M98
9 12 22.9 M100
10 12 29.8 M49
11 12 39.5 M68
12 12 42.0 M59
13 13 29.9 M51
14 13 42.2 M3
15 16 41.7 M13
16 16 57.1 M10
17 17 37.6 M14
18 17 56.8 M23
19 18 20.8 M17
20 18 31.6 M25
21 18 36.4 M22
22 18 53.6 M57
23 19 53.8 M71
24 20 23.9 M29
25 21 32.2 M39

See Also

Methods:
“DEFINEDATA Method” on page 2030

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:

Hash and Hash Iterator Object Language Elements � PREV Method 2061

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430
“Saving Hash Object Data in a Data Set” in SAS Language Reference: Concepts

PREV Method

Returns the previous value in the underlying hash object.

Applies to: Hash iterator object

Syntax
rc=object.PREV();

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Details
Use the PREV method iteratively to traverse the hash object and return the data items
in reverse key order.

The FIRST method returns the first data item in the hash object. The LAST method
returns the last data item in the hash object.

You can use the NEXT method to return the next data item in the hash object.

Note: The PREV method sets the data variable to the value of the data item so that
it is available for use after the method call. �

See Also

Methods:
“FIRST Method” on page 2043

“LAST Method” on page 2049
“NEXT Method” on page 2055

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430
“Using the Hash Iterator Object” in SAS Language Reference: Concepts

2062 REF Method � Chapter 9

REF Method

Consolidates the FIND and ADD methods into a single method call.

Applies to: Hash object

Syntax
rc=object.REF(<KEY: keyvalue-1,…, KEY: keyvalue-n, DATA: datavalue-1,

…, DATA: datavalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Details
You can consolidate FIND and ADD methods into a single REF method. You can change
the following code:

rc = h.find();
if (rc ne = 0) then
rc = h.add();

to

rc = h.ref();

The REF method is useful for counting the number of occurrences of each key in a
hash object. The REF method initializes the key summary for each key on the first
ADD, and then changes the ADD for each subsequent FIND.

Note: The REF method sets the data variable to the value of the data item so that it
is available for use after the method call. �

For more information about key summaries, see SAS Language Reference: Concepts.

Hash and Hash Iterator Object Language Elements � REF Method 2063

Examples

The following example uses the REF method for key summaries:

data keys;
input key;
datalines;
1
2
1
3
5
2
3
2
4
1
5
1
;

data count;
length count key 8;
keep key count;

if _n_ = 1 then do;
declare hash myhash(suminc: "count", ordered: "y");
declare hiter iter("myhash");
myhash.defineKey(’key’);
myhash.defineDone();
count = 1;

end;

do while (not done);
set keys end=done;
rc = myhash.ref();

end;

rc = iter.first();
do while(rc = 0);

rc = myhash.sum(sum: count);
output;
rc = iter.next();

end;

stop;
run;

The following lines are written to the SAS log.

2064 REMOVE Method � Chapter 9

Output 9.5 Output of DATA Using the REF Method

Obs count key
1 4 1
2 3 2
3 2 3
4 1 4
5 2 5

See Also

Methods:
“ADD Method” on page 2025
“FIND Method” on page 2037
“CHECK Method” on page 2027

REMOVE Method
Removes the data that is associated with the specified key from the hash object.

Applies to: Hash object

Syntax
rc=object.REMOVE(<KEY: keyvalue-1,…, KEY: keyvalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.
Restriction: If an associated hash iterator is pointing to the keyvalue, then the

REMOVE method will not remove the key or data from the hash object. An error
message is issued.

Details
The REMOVE method deletes both the key and the data from the hash object.

Hash and Hash Iterator Object Language Elements � REMOVE Method 2065

You can use the REMOVE method in one of two ways to remove the key and data in
a hash object.

You can specify the key, and then use the REMOVE method as shown in the
following code:

data _null_;
length k $8;
length d $12;

if _N_ = 1 then do;
declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;

rc = h.add(key: ’Joyce’, data: ’Ulysses’);

/* Specify the key */
k = ’Joyce’;
/* Use the REMOVE method to remove the key and data */
rc = h.remove();
if (rc = 0) then

put ’Key and data removed from the hash object.’;
run;

Alternatively, you can use a shortcut and specify the key directly in the REMOVE
method call as shown in the following code:

data _null_;
length k $8;
length d $12;

if _N_ = 1 then do;
declare hash h();
rc = h.defineKey(’k’);
rc = h.defineData(’d’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(k, d);

end;

rc = h.add(key: ’Joyce’, data: ’Ulysses’);
rc = h.add(key: ’Homer’, data: ’Iliad’);

/* Specify the key in the REMOVE method parameter */
rc = h.remove(key: ’Homer’);
if (rc =0) then

put ’Key and data removed from the hash object.’;
run;

Note: The REMOVE method does not modify the value of data variables. It only
removes the value in the hash object. �

2066 REMOVE Method � Chapter 9

Note: If you specify multidata:’y’ in the hash object constructor, the REMOVE
method will remove all data items for the specified key. �

Examples

This example illustrates how to remove a key in the hash table.

/* Generate test data */
data x;

do k = 65 to 70;
d = byte (k);
output;

end;
run;

data _null_;
length k 8 d $1;
/* define the hash table and iterator */
declare hash H (dataset:’x’, ordered:’a’);
H.defineKey (’k’);
H.defineData (’k’, ’d’);
H.defineDone ();
call missing (k,d);
declare hiter HI (’H’);
/* Use this logic to remove a key in the hash table
when an iterator is pointing to that key */
do while (hi.next() = 0);

if flag then rc=h.remove(key:key);
if d = ’C’ then do;

key=k;
flag=1;

end;
end;

rc = h.output(dataset: ’work.out’);
stop;
run;

proc print;
run;

The following output shows that the key and data for the third object (key=67,
data=C) is deleted.

Output 9.6 Key and Data Removed from Output

The SAS System 1

Obs k d

1 65 A
2 66 B
3 68 D
4 69 E
5 70 F

Hash and Hash Iterator Object Language Elements � REMOVEDUP Method 2067

See Also

Methods:
“ADD Method” on page 2025
“DEFINEKEY Method” on page 2033
“REMOVEDUP Method” on page 2067

“Replacing and Removing Data” in SAS Language Reference: Concepts

REMOVEDUP Method

Removes the data that is associated with the specified key’s current data item from the hash
object.

Applies to: Hash object

Syntax
rc=object.REMOVEDUP(<KEY: keyvalue-1,…, KEY: keyvalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

The number of “KEY: keyvalue” pairs depends on the number of key variables that
you define by using the DEFINEKEY method.
Restriction: If an associated hash iterator is pointing to the keyvalue, then the

REMOVEDUP method will not remove the key or data from the hash object. An
error message is issued.

Details
The REMOVEDUP method deletes both the key and the data from the hash object.

You can use the REMOVEDUP method in one of two ways to remove the key and
data in a hash object. You can specify the key, and then use the REMOVEDUP method.
Alternatively, you can use a shortcut and specify the key directly in the REMOVEDUP
method call.

Note: The REMOVEDUP method does not modify the value of data variables. It
only removes the value in the hash object. �

2068 REMOVEDUP Method � Chapter 9

Note: If only one data item is in the key’s data item list, the key and data will be
removed from the hash object. �

Comparisons
The REMOVEDUP method removes the data that is associated with the specified key’s
current data item from the hash object. The REMOVE method removes the data that is
associated with the specified key from the hash object.

Examples

This example creates a hash object where several keys have multiple data items. The
last data item in the key is removed.

data testdup;
length key data 8;
input key data;
datalines;
1 10
2 11
1 15
3 20
2 16
2 9
3 100
5 5
1 5
4 6
5 99

;

data _null_;
length r 8;
dcl hash h(dataset:’testdup’, multidata: ’y’, ordered: ’y’);
h.definekey(’key’);
h.definedata(’key’, ’data’);
h.definedone();
call missing (key, data);

do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;

h.has_next(result: r);
if (r ne 0) then do;

h.find_next();
h.removedup();

end;
end;

end;

dcl hiter i(’h’);
rc = i.first();
do while (rc = 0);

put key= data=;
rc = i.next();

Hash and Hash Iterator Object Language Elements � REPLACE Method 2069

end;
run;

The following lines are written to the SAS log.

Output 9.7 Last Data Item Removed from the Key

key=1 data=10
key=1 data=15
key=2 data=11
key=2 data=16
key=3 data=20
key=4 data=6
key=5 data=5

See Also

Methods:

“REMOVE Method” on page 2064

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

REPLACE Method

Replaces the data that is associated with the specified key with new data.

Applies to: Hash object

Syntax
rc=object.REPLACE(<KEY: keyvalue-1,…, KEY: keyvalue-n, DATA: datavalue-1,…,

DATA: datavalue-n>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a non-zero value indicates failure. If you
do not supply a return code variable for the method call and the method fails, then
an appropriate error message is written to the log.

object
specifies the name of the hash object.

KEY: keyvalue
specifies the key value whose type must match the corresponding key variable that is
specified in a DEFINEKEY method call.

2070 REPLACE Method � Chapter 9

The number of “KEY: keyvalue” pairs depends on the number of key variables
that you define by using the DEFINEKEY method.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method.

Details
You can use the REPLACE method in one of two ways to replace data in a hash object.

You can define the key and data item, and then use the REPLACE method as shown
in the following code. In this example the data for the key ’Rottwlr’ is changed from
’1st’ to ’2nd’.

data work.show;
input brd $1-10 plc $12-14;

datalines;
Terrier 2nd
LabRetr 3rd
Rottwlr 1st
Collie bis
ChinsCrstd 2nd
Newfnlnd 3rd
;

data _null_;
length brd $12;
length plc $8;

if _N_ = 1 then do;
declare hash h(dataset: ’work.show’);
rc = h.defineKey(’brd’);
rc = h.defineData(’plc’);
rc = h.defineDone();

end;

/* Specify the key and new data value */
brd = ’Rottwlr’;
plc = ’2nd’;
/* Call the REPLACE method to replace the data value */
rc = h.replace();

run;

Alternatively, you can use a shortcut and specify the key and data directly in the
REPLACE method call as shown in the following code:

data work.show;
input brd $1-10 plc $12-14;

datalines;
Terrier 2nd
LabRetr 3rd
Rottwlr 1st
Collie bis
ChinsCrstd 2nd

Hash and Hash Iterator Object Language Elements � REPLACEDUP Method 2071

Newfnlnd 3rd
;

data _null_;
length brd $12;
length plc $8;

if _N_ = 1 then do;
declare hash h(dataset: ’work.show’);
rc = h.defineKey(’brd’);
rc = h.defineData(’plc’);
rc = h.defineDone();
/* avoid uninitialized variable notes */
call missing(brd, plc);

end;

/* Specify the key and new data value in the REPLACE method */
rc = h.replace(key: ’Rottwlr’, data: ’2nd’);

run;

Note: If you call the REPLACE method and the key is not found, then the key and
data are added to the hash object. �

Note: The REPLACE method does not replace the value of the data variable with
the value of the data item. It only replaces the value in the hash object. �

Comparisons
The REPLACE method replaces the data that is associated with the specified key with
new data. The REPLACEDUP method replaces the data that is associated with the
current key’s current data item with new data.

See Also

Methods:

“DEFINEDATA Method” on page 2030

“DEFINEKEY Method” on page 2033

“REPLACEDUP Method” on page 2071

“Replacing and Removing Data” in SAS Language Reference: Concepts

REPLACEDUP Method

Replaces the data that is associated with the current key’s current data item with new data.

Applies to: Hash object

Syntax
rc=object.REPLACEDUP(<DATA: datavalue-1,…, DATA: datavalue-n>);

2072 REPLACEDUP Method � Chapter 9

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

DATA: datavalue
specifies the data value whose type must match the corresponding data variable that
is specified in a DEFINEDATA method call.

The number of “DATA: datavalue” pairs depends on the number of data variables
that you define by using the DEFINEDATA method for the current key.

Details
You can use the REPLACEDUP method in one of two ways to replace data in a hash
object.

You can define the data item, and then use the REPLACEDUP method. Alternatively,
you can use a shortcut and specify the data directly in the REPLACEDUP method call.

Note: If you call the REPLACEDUP method and the key is not found, then the key
and data are added to the hash object. �

Note: The REPLACEDUP method does not replace the value of the data variable
with the value of the data item. It only replaces the value in the hash object. �

Comparisons
The REPLACEDUP method replaces the data that is associated with the current key’s
current data item with new data. The REPLACE method replaces the data that is
associated with the specified key with new data.

Examples

This example creates a hash object where several keys have multiple data items.
When a duplicate data item is found, 300 is added to the value of the data item.

data testdup;
length key data 8;
input key data;
datalines;
1 10
2 11
1 15
3 20
2 16
2 9
3 100
5 5
1 5
4 6
5 99

Hash and Hash Iterator Object Language Elements � REPLACEDUP Method 2073

;

data _null_;
length r 8;
dcl hash h(dataset:’testdup’, multidata: ’y’, ordered: ’y’);
h.definekey(’key’);
h.definedata(’key’, ’data’);
h.definedone();
call missing (key, data);

do key = 1 to 5;
rc = h.find();
if (rc = 0) then do;

put key= data=;
h.has_next(result: r);
do while(r ne 0);

rc = h.find_next();
put ’dup ’ key= data;
data = data + 300;
rc = h.replacedup();
h.has_next(result: r);

end;
end;

end;

put ’iterating...’;

dcl hiter i(’h’);

rc = i.first();
do while (rc = 0);

put key= data=;
rc = i.next();

end;
run;

The following lines are written to the SAS log.

2074 SETCUR Method � Chapter 9

Output 9.8 Ouput Showing Alteration of Duplicate Data Items

key=1 data=10
dup key=1 5
dup key=1 15
key=2 data=11
dup key=2 9
dup key=2 16
key=3 data=20
dup key=3 100
key=4 data=6
key=5 data=5
dup key=5 99
iterating...
key=1 data=10
key=1 data=305
key=1 data=315
key=2 data=11
key=2 data=309
key=2 data=316
key=3 data=20
key=3 data=400
key=4 data=6
key=5 data=5
key=5 data=399

See Also

Methods:
“REPLACE Method” on page 2069

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

SETCUR Method

Specifies a starting key item for iteration.

Applies to: Hash iterator object

Syntax
rc=object.SETCUR(KEY: ’keyvalue-1’<,…,KEY: ’keyvalue-n’>);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash iterator object.

Hash and Hash Iterator Object Language Elements � SETCUR Method 2075

KEY: ’keyvalue’
specifies a key value as the starting key for the iteration.

Details
The hash iterator enables you to start iteration on any item in the hash object. The
SETCUR method sets the starting key for iteration. You use the KEY option to specify
the starting item.

Examples

The following example creates a data set that contains astronomical data. You want
to start iteration at RA= 18 31.6 instead of the first or last items. The data is loaded
into a hash object and the SETCUR method is used to start the iteration. Because the
ordered argument tag was set to YES, note that the output is sorted in ascending order.

data work.astro;
input obj $1-4 ra $6-12 dec $14-19;
datalines;
M31 00 42.7 +41 16
M71 19 53.8 +18 47
M51 13 29.9 +47 12
M98 12 13.8 +14 54
M13 16 41.7 +36 28
M39 21 32.2 +48 26
M81 09 55.6 +69 04
M100 12 22.9 +15 49
M41 06 46.0 -20 44
M44 08 40.1 +19 59
M10 16 57.1 -04 06
M57 18 53.6 +33 02
M3 13 42.2 +28 23
M22 18 36.4 -23 54
M23 17 56.8 -19 01
M49 12 29.8 +08 00
M68 12 39.5 -26 45
M17 18 20.8 -16 11
M14 17 37.6 -03 15
M29 20 23.9 +38 32
M34 02 42.0 +42 47
M82 09 55.8 +69 41
M59 12 42.0 +11 39
M74 01 36.7 +15 47
M25 18 31.6 -19 15
;

The following code sets the starting key for iteration to ’18 31.6’:

data _null_;
length obj $10;
length ra $10;
length dec $10;
declare hash myhash(hashexp: 4, dataset:"work.astro", ordered:"yes");

declare hiter iter(’myhash’);
myhash.defineKey(’ra’);

2076 SUM Method � Chapter 9

myhash.defineData(’obj’, ’ra’);

myhash.defineDone();
call missing (ra, obj, dec);

rc = iter.setcur(key: ’18 31.6’);
do while (rc = 0);
put obj= ra=;
rc = iter.next();

end;
run;

The following lines are written to the SAS log.

Output 9.9 Output Showing Starting Key of 18.31.6

obj=M25 ra=18 31.6
obj=M22 ra=18 36.4
obj=M57 ra=18 53.6
obj=M71 ra=19 53.8
obj=M29 ra=20 23.9
obj=M39 ra=21 32.2

You can use the FIRST method or the LAST method to start iteration on the first
item or the last item, respectively.

See Also

Methods:
“FIRST Method” on page 2043
“LAST Method” on page 2049

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:
“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

“Using the Hash Iterator Object” in SAS Language Reference: Concepts

SUM Method
Retrieves the summary value for a given key from the hash table and stores the value in a DATA
step variable.

Applies to: Hash object

Syntax
rc=object.SUM(SUM: variable-name);

Hash and Hash Iterator Object Language Elements � SUM Method 2077

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, then an
appropriate error message is written to the log.

object
specifies the name of the hash object.

SUM: variable-name
specifies a DATA step variable that stores the current summary value of a given key.

Details
You use the SUM method to retrieve key summaries from the hash object. For more
information, see “Maintaining Key Summaries” in SAS Language Reference: Concepts.

Comparisons
The SUM method retrieves the summary value for a given key when only one data item
exists per key. The SUMDUP method retrieves the summary value for the current data
item of the current key when more than one data item exists for a key.

Examples

The following example uses the SUM method to retrieve the key summary for each
given key, K=99 and K=100.

k = 99;
count = 1;
h.add();
/* key=99 summary is now 1 */

k = 100;
h.add();
/* key=100 summary is now 1 */

k = 99;
h.find();
/* key=99 summary is now 2 */

count = 2;
h.find();
/* key=99 summary is now 4 */

k = 100;
h.find();
/* key=100 summary is now 3 */
h.sum(sum: total);
put ’total for key 100 = ’ total;

k = 99;
h.sum(sum:total);

2078 SUMDUP Method � Chapter 9

put ’total for key 99 = ’ total;

run;

The first PUT statement prints the summary for k=100:

total for key 100 = 3

The second PUT statement prints the summary for k=99:

total for key 99 = 4

See Also

Methods:
“ADD Method” on page 2025

“FIND Method” on page 2037

“CHECK Method” on page 2027
“REF Method” on page 2062

“SUMDUP Method” on page 2078

Operators:
“_NEW_ Operator, Hash or Hash Iterator Object” on page 2050

Statements:

“DECLARE Statement, Hash and Hash Iterator Objects” on page 1430

SUMDUP Method

Retrieves the summary value for the current data item of the current key and stores the value in a
DATA step variable.

Applies to: Hash object

Syntax
rc=object.SUMDUP(SUM: variable-name);

Arguments

rc
specifies whether the method succeeded or failed.

A return code of zero indicates success; a nonzero value indicates failure. If you do
not supply a return code variable for the method call and the method fails, an
appropriate error message is printed to the log.

object
specifies the name of the hash object.

Hash and Hash Iterator Object Language Elements � SUMDUP Method 2079

SUM: variable-name
specifies a DATA step variable that stores the summary value for the current data
item of the current key.

Details
You use the SUMDUP method to retrieve key summaries from the hash object when a
key has multiple data items. For more information, see “Maintaining Key Summaries”
in SAS Language Reference: Concepts.

Comparisons
The SUMDUP method retrieves the summary value for the current data item of the
current key when more than one data item exists for a key. The SUM method retrieves
the summary value for a given key when only one data item exists per key.

Example

The following example uses the SUMDUP method to retrieve the summary value for
the current data item. It also illustrates that it is possible to loop backward through
the list by using the HAS_PREV and FIND_PREV methods. The FIND_PREV method
works similarly to the FIND_NEXT method with respect to the current list item except
that it moves backward through the multiple item list.

data dup;
length key data 8;
input key data;
cards;
1 10
2 11
1 15
3 20
2 16
2 9
3 100
5 5
1 5
4 6
5 99

;

data _null_;
length r i sum 8;
i = 0;
dcl hash h(dataset:’dup’, multidata: ’y’, suminc: ’i’);
h.definekey(’key’);
h.definedata(’key’, ’data’);
h.definedone();
call missing (key, data);

i = 1;
do key = 1 to 5;

rc = h.find();
if (rc = 0) then do;

h.has_next(result: r);

2080 SUMDUP Method � Chapter 9

do while(r ne 0);
rc = h.find_next();
rc = h.find_prev();
rc = h.find_next();
h.has_next(result: r);

end;
end;

end;

i = 0;
do key = 1 to 5;

rc = h.find();
if (rc = 0) then do;

h.sum(sum: sum);
put key= data= sum=;
h.has_next(result: r);
do while(r ne 0);

rc = h.find_next();
h.sumdup(sum: sum);
put ’dup ’ key= data= sum=;
h.has_next(result: r);

end;
end;

end;
run;

The following lines are written to the SAS log.

Output 9.10 Key Summary

key=1 data=10 sum=2
dup key=1 data=5 sum=3
dup key=1 data=15 sum=2
key=2 data=11 sum=2
dup key=2 data=9 sum=3
dup key=2 data=16 sum=2
key=3 data=20 sum=2
dup key=3 data=100 sum=2
key=4 data=6 sum=1
key=5 data=5 sum=2
dup key=5 data=99 sum=2

To see how this works, consider the key 1,which has three data values: 10, 5, and 15
(which are stored in that order).

key=1 data=10 sum=2
dup key=1 data=5 sum=3
dup key=1 data=15 sum=2

When traveling through the data list in the loop, the key summary for 10 is set to 1
on the initial FIND method call. The first FIND_NEXT method call sets the key
summary for 5 to 1. The next FIND_PREV method call moves back to the data value 10
and increments its key summary to 2. Finally, the last call to the FIND_NEXT method
increments the key summary for 5 to 2. The next iteration through the loop sets the
key summary for 15 to 1 and the key summary for 5 to 3 (because 5 is stored before 15

Hash and Hash Iterator Object Language Elements � SUMDUP Method 2081

in the list). Finally, the key summary for 15 is incremented to 2. This processing
results in the output for key 1 as shown in Output 5.10.

Note that you do not call the HAS_PREV method before calling the FIND_PREV
method in this example because you already know that there is a previous entry in the
list. Otherwise, you would not have gotten into the loop.

This example illustrates that there is no guaranteed order for multiple data items for
a given key because they all have the same key. SAS cannot sort on the key. The order
in the list (10, 5, 15) does not match the order that the items were added.

Also shown here is the necessity of having special methods for some duplicate
operations (in this case, the SUMDUP method works similarly to the SUM method by
retrieving the key summary for the current list item).

See Also

Methods:
“SUM Method” on page 2076

“Non-Unique Key and Data Pairs” in SAS Language Reference: Concepts

2082

2083

C H A P T E R

10
Java Object Language Elements

Java Object Methods by Category 2083
Dictionary 2084

CALLtypeMETHOD Method 2084

CALLSTATICtypeMETHOD Method 2087

DECLARE Statement, Java Object 2089

DELETE Method 2089
EXCEPTIONCHECK Method 2090

EXCEPTIONCLEAR Method 2091

EXCEPTIONDESCRIBE Method 2093

FLUSHJAVAOUTPUT Method 2095

GETtypeFIELD Method 2096

GETSTATICtypeFIELD Method 2099
SETtypeFIELD Method 2102

SETSTATICtypeFIELD Method 2104

Java Object Methods by Category
There are five categories of java object methods:

Table 10.1 Java Object Methods by Category

Category Description

Deletion enables you to delete a java object.

Exception enables you to gather information about and clear an exception.

Field reference enables you to return or set the value of static and non-static instance
fields of the java object.

Method reference enables you to access static and non-static Java methods.

Output enables you to send the Java output to its destination immediately.

The following table provides brief descriptions of the java object methods. For more
detailed descriptions, see the dictionary entry for each method.

2084 Dictionary � Chapter 10

Table 10.2 Categories and Descriptions of Java Object Language Elements

Category Java Object Language
Elements

Description

Deletion “DELETE Method” on
page 2089

Deletes the Java object.

Exception “EXCEPTIONCHECK
Method” on page 2090

Determines whether an exception occurred during a
method call.

“EXCEPTIONCLEAR
Method” on page 2091

Clears any exception that is currently being thrown.

“EXCEPTIONDESCRIBE
Method” on page 2093

Turns the exception debug logging on or off and prints
exception information.

Field reference “GETtypeFIELD Method”
on page 2096

Returns the value of a non-static field for a Java object.

“GETSTATICtypeFIELD
Method” on page 2099

Returns the value of a static field for a Java object.

“SETtypeFIELD Method”
on page 2102

Modifies the value of a non-static field for a Java object.

“SETSTATICtypeFIELD
Method” on page 2104

Modifies the value of a static field for a Java object.

Method reference “CALLtypeMETHOD
Method” on page 2084

Invokes an instance method on a Java object from a
non-static Java method.

“CALLSTATICtypeMETHOD
Method” on page 2087

Invokes an instance method on a Java object from a
static Java method.

Output “FLUSHJAVAOUTPUT
Method” on page 2095

Specifies that the Java output is sent to its destination.

Dictionary

CALLtypeMETHOD Method

Invokes an instance method on a java object from a non-static Java method.

Category: Method reference

Syntax
object.CALLtypeMETHOD ("method-name", <method-argument-1 …,

method-argument-n>, <return value>);

Arguments

Java Object Language Elements � CALLtypeMETHOD Method 2085

object
specifies the name of the java object.

type
specifies the result type for the non-static Java method. The type can be one of the
following values:

BOOLEAN
specifies that the result type is BOOLEAN.

BYTE
specifies that the result type is BYTE.

CHAR
specifies that the result type is CHAR.

DOUBLE
specifies that the result type is DOUBLE.

FLOAT
specifies that the result type is FLOAT.

INT
specifies that the result type is INT.

LONG
specifies that the result type is LONG.

SHORT
specifies that the result type is SHORT.

STRING
specifies that the result type is STRING.

VOID
specifies that the result type is VOID.

See Also: “Type Issues” in SAS Language Reference: Concepts

method-name
specifies the name of the non-static Java method.
Requirement: The method name must be enclosed in either single or double

quotation marks.

method-argument
specifies the parameters to pass to the method.

return-value
specifies the return value if the method returns one.

Details
Once you instantiate a java object, you can access any non-static Java method through
method calls on the java object by using the CALLtypeMETHOD method.

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons
Use the CALLtypeMETHOD method for non-static Java methods. If the Java method is
static, use the CALLSTATICtypeMETHOD method.

2086 CALLtypeMETHOD Method � Chapter 10

Example

The following example creates a simple class that contains three non-static fields.
The java object j is instantiated, the field values are set and then retrieved by using
the CALLtypeFIELD method .

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{

public int i;
public double d;
public string s;

public int im()
{

return i;
}

public String sm()
{

return s;
}

public double dm()
{

return d;
}

}

/* DATA step code */
data _null_;

dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100);
j.setDoubleField("d", 3.14159);
j.setStringField("s", "abc");

j.callIntMethod("im", val);
put val=;
j.callDoubleMethod("dm", val);
put val=;
j.callStringMethod("sm", str);
put str=;

run;

The following lines are written to the SAS log:

Java Object Language Elements � CALLSTATICtypeMETHOD Method 2087

val=100
val=3.14159
str=abc

See Also

Method:
“CALLSTATICtypeMETHOD Method” on page 2087

CALLSTATICtypeMETHOD Method

Invokes an instance method on a java object from a static Java method.

Category: Method reference

Syntax
object.CALLSTATICtypeMETHOD ("method-name", <method-argument-1 …,

method-argument-n>, <return value>);

Arguments

object
specifies the name of the java object.

type
specifies the result type for the static Java method. The type can be one of the
following values:

BOOLEAN
specifies that the result type is BOOLEAN.

BYTE
specifies that the result type is BYTE.

CHAR
specifies that the result type is CHAR.

DOUBLE
specifies that the result type is DOUBLE.

FLOAT
specifies that the result type is FLOAT.

INT
specifies that the result type is INT.

LONG
specifies that the result type is LONG.

SHORT
specifies that the result type is SHORT.

2088 CALLSTATICtypeMETHOD Method � Chapter 10

STRING
specifies that the result type is STRING.

VOID
specifies that the result type is VOID.

See Also: “Type Issues” in SAS Language Reference: Concepts

method-name
specifies the name of the static Java method.
Requirement: The method name must be enclosed in either single or double

quotation marks.

method-argument
specifies the parameters to pass to the method.

return-value
specifies the return value if the method returns one.

Details
Once you instantiate a java object, you can access any static Java method through
method calls on the java object by using the CALLSTATICtypeMETHOD method.

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons
Use the CALLSTATICtypeMETHOD method for static Java methods. If the Java
method is not static, use the CALLtypeMETHOD method.

Example

The following example creates a simple class that contains three static fields. The
java object j is instantiated, the field values are set and then retrieved by using the
CALLSTATICtypeFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttestc
{

public static double d;
public static double dm()
{

return d;
}

/* DATA step code */
data x;

declare javaobj j("ttestc");
length d 8;

Java Object Language Elements � DELETE Method 2089

j.SetStaticDoubleField("d", 3.14159);
j.callStaticDoubleMethod("dm", d);
put d=;

run;

The following line is written to the SAS log:

d=3.14159

See Also

Method:
“CALLtypeMETHOD Method” on page 2084

DECLARE Statement, Java Object

Declares a java object; creates an instance of and initializes data for a java object.

Valid in: DATA step
See: “DECLARE Statement, Java Object” on page 1437 in SAS Language Reference:
Dictionary

DELETE Method

Deletes the java object.

Category: Deletion

Syntax
object.DELETE();

Arguments

object
specifies the name of the java object.

Details
DATA step component objects are deleted automatically at the end of the DATA step. If
you want to reuse the object reference variable in another java object constructor, you
should delete the java object by using the DELETE method.

2090 EXCEPTIONCHECK Method � Chapter 10

If you attempt to use a java object after you delete it, you will receive an error in the
log.

EXCEPTIONCHECK Method

Determines whether an exception occurred during a method call.

Category: Exception

Syntax
object.EXCEPTIONCHECK(status);

Arguments

object
specifies the name of the java object.

status
specifies the exception status that is returned.
Tip: The status value that is returned by Java is of type DOUBLE which

corresponds to a SAS numeric data value.

Details
Java exceptions are handled through the EXCEPTIONCHECK, EXCEPTIONCLEAR,
and EXCEPTIONDESCRIBE methods.

The EXCEPTIONCHECK method is used to determine whether an exception
occurred during a method call. Ideally, the EXCEPTIONCHECK method should be
called after every call to a Java method that can throw an exception.

Example

In the following example, the Java class contains a method that throws an exception.
The method is called in the DATA step and a check is made for the exception.

/* Java code */
public class a

{
public void m() throws NullPointerException
{

throw new NullPointerException();
}

}

/* DATA step code */
data _null_;

Java Object Language Elements � EXCEPTIONCLEAR Method 2091

length e 8;
dcl javaobj j(’a’);

rc = j.callvoidmethod(’m’);

/* Check for exception. Value is returned in variable ’e’ */
rc = j.exceptioncheck(e);
if (e) then
put ’exception’;

else
put ’no exception’;

run;

The following line is written to the SAS log.

exception

See Also

Method:
“EXCEPTIONCLEAR Method” on page 2091
“EXCEPTIONDESCRIBE Method” on page 2093

EXCEPTIONCLEAR Method

Clears any exception that is currently being thrown.

Category: Exception

Syntax
object.EXCEPTIONCLEAR();

Arguments

object
specifies the name of the java object.

Details
Java exceptions are handled through the EXCEPTIONCHECK, EXCEPTIONCLEAR,
and EXCEPTIONDESCRIBE methods.

If you call a method that throws an exception, it is strongly recommended that you
check for an exception after the call. If an exception was thrown, you should perform
some appropriate action and then clear the exception by using the EXCEPTIONCLEAR
method.

2092 EXCEPTIONCLEAR Method � Chapter 10

If no exception is currently being thrown, this method has no effect.

Example

Example 1: Checking and Clearing an Exception In the following example, the Java
class contains a method that throws an exception. The method is called in the DATA
step and the exception is cleared.

/* Java code */
public class a

{
public void m() throws NullPointerException
{

throw new NullPointerException();
}

}

/* DATA step code */
data _null_;

length e 8;
dcl javaobj j(’a’);

rc = j.callvoidmethod(’m’);

/* Check for exception. Value is returned in variable ’e’ */
rc = j.exceptioncheck(e);
if (e) then
put ’exception’;

else
put ’no exception’;

/* Clear the exception and check it again */
rc = j.exceptionclear();
rc = j.exceptioncheck(e);
if (e) then

put ’exception’;
else

put ’no exception’;

run;

The following lines are written to the SAS log.

exception
no exception

Example 2: Chekcing for an Exception When Reading an External File Iin this
example, the Java IO classes are used to read an external file from the DATA step. The
Java code creates a wrapper class for DataInputStream which enables you to pass a
FileInputStream to the constructor. The wrapper is necessary because the constructor
actually takes an InputStream, the parent of FileInputStream, and the current
method lookup is not robust enough to do the superclass lookup.

Java Object Language Elements � EXCEPTIONDESCRIBE Method 2093

/* Java code */
public class myDataInputStream extends java.io.DataInputStream
{

myDataInputStream(java.io.FileInputStream fi)
{

super(fi);
}

}

After you create the wrapper class, you can use it to create a DataInputStream for
an external file and read the file until the end–of–file is reached. The
EXCEPTIONCHECK method is used to determine when the readInt method throws
an EOFException, which enables you to end the input loop.

/* DATA step code */
data _null_;

length d e 8;
dcl javaobj f("java/io/File", "c:\temp\binint.txt");
dcl javaobj fi("java/io/FileInputStream", f);
dcl javaobj di("myDataInputStream", fi);

do while(1);
di.callIntMethod("readInt", d);
di.ExceptionCheck(e);
if (e) then

leave;
else

put d=;
end;

run;

See Also

Method:
“EXCEPTIONCHECK Method” on page 2090
“EXCEPTIONDESCRIBE Method” on page 2093

EXCEPTIONDESCRIBE Method

Turns the exception debug logging off or on and prints exception information.

Category: Exception

Syntax
object.EXCEPTIONDESCRIBE(status);

Arguments

2094 EXCEPTIONDESCRIBE Method � Chapter 10

object
specifies the name of the java object.

status
specifies whether exception debug logging is on or off. status can be one of the
following values:

0
specifies that debug logging is off.

1
specifies that debug logging is on.

Default: 0 (off)

Tip: The status value that is returned by Java is of type DOUBLE which
corresponds to a SAS numeric data value.

Details
The EXCEPTIONDESCRIBE method is used to turn exception debug logging on or off.
If exception debug logging is on, exception information is printed to the JVM standard
output.

Note: By default, JVM standard output is redirected to the SAS log. �

Example

In the following example, exception information is printed to the standard output.

/* Java code */
public class a

{
public void m() throws NullPointerException
{

throw new NullPointerException();
}

}

/* DATA step code */
data _null_;

length e 8;
dcl javaobj j(’a’);

j.exceptiondescribe(1);
rc = j.callvoidmethod(’m’);

run;

The following lines are written to the SAS log:

java.lang.NullPointerException
at a.m(a.java:5)

Java Object Language Elements � FLUSHJAVAOUTPUT Method 2095

See Also

Method:
“EXCEPTIONCHECK Method” on page 2090
“EXCEPTIONCLEAR Method” on page 2091

FLUSHJAVAOUTPUT Method

Specifies that the Java output is sent to its destination.

Category: Output

Syntax
object.FLUSHJAVAOUTPUT();

Arguments

object
specifies the name of the java object.

Details
Java output that is directed to the SAS log is flushed when the DATA step terminates.
If you use the FLUSHJAVAOUTPUT method, the Java output will appear after any
output that was issued while the DATA step was running.

Example

In the following example, the “In Java class” lines are written after the DATA step is
complete.

:

/* Java code */
public class p
{
void p()

{
System.out.println("In Java class");

}
}

/* DATA step code */
data _null_;

dcl javaobj j(’p’);
do i = 1 to 3;

2096 GETtypeFIELD Method � Chapter 10

j.callVoidMethod(’p’);
put ’In DATA Step’;

end;
run;

The following lines are written to the SAS log.

In DATA Step
In DATA Step
In DATA Step
In Java class
In Java class
In Java class

If you use the FLUSHJAVAOUTPUT method, the Java output is written to the SAS
log in the order of execution.

/* DATA step code */
data _null_;

dcl javaobj j(’p’);
do i = 1 to 3;

j.callVoidMethod(’p’);
j.flushJavaOutput();
put ’In DATA Step’;

end;
run;

The following lines are written to the SAS log.

In Java class
In DATA Step
In Java class
In DATA Step
In Java class
In DATA Step

See Also

“Java Standard Output” in SAS Language Reference: Concepts

GETtypeFIELD Method

Returns the value of a non-static field for a java object.

Category: Field reference

Java Object Language Elements � GETtypeFIELD Method 2097

Syntax
object.GETtypeFIELD("field–name", value);

Arguments

object
specifies the name of a java object.

type
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See Also: “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.
Requirement: The field name must be enclosed in either single or double quotation

marks.

value
specifies the name of variable that receives the returned field value.

Details
Once you instantiate a java object, you can access and modify its public fields through
method calls on the java object. The GETtypeFIELD method enables you to access
non-static fields.

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons
The GETtypeFIELD method returns the value of a non-static field for a java object. To
return the value of a static field, use the GETSTATICtypeFIELD method.

2098 GETtypeFIELD Method � Chapter 10

Example

The following example creates a simple class that contains three non-static fields.
The java object j is instantiated, the field values are modified and then retrieved by
using the GETtypeFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{

public int i;
public double d;
public string s;

}
}

/* DATA step code */
data _null_;

dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100);
j.setDoubleField("d", 3.14159);
j.setStringField("s", "abc");

j.getIntField("i", val);
put val=;
j.getDoubleField("d", val);
put val=;
j.getStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

See Also

Method:
“GETSTATICtypeFIELD Method” on page 2099
“SETtypeFIELD Method” on page 2102

Java Object Language Elements � GETSTATICtypeFIELD Method 2099

GETSTATICtypeFIELD Method
Returns the value of a static field for a java object.

Category: Field reference

Syntax
object.GETSTATICtypeFIELD("field–name", value);

Arguments

object
specifies the name of a java object.

type
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See Also: “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.
Requirement: The field name must be enclosed in either single or double quotation

marks.

value
specifies the name of variable that receives the returned field value.

Details
Once you instantiate a java object, you can access and modify its public fields through
method calls on the java object. The GETSTATICtypeFIELD method enables you to
access static fields.

2100 GETSTATICtypeFIELD Method � Chapter 10

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons

The GETSTATICtypeFIELD method returns the value of a static field for a java object.
To return the value of a non-static field, use the GETtypeFIELD method.

Example

The following example creates a simple class that contains three static fields. The
java object j is instantiated, the field values are set and then retrieved by using the
GETSTATICtypeFIELD method.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttestc
{

public static double d;
public static double dm()
{

return d;
}

}

/* DATA step code */
data x;

declare javaobj j("ttestc");
length d 8;

j.callSetStaticDoubleField("d", 3.14159);
j.callStaticDoubleMethod("dm", d);
put d=;

run;

The following line is written to the SAS log:

d=3.14159

See Also

Method:

“GETtypeFIELD Method” on page 2096

“SETSTATICtypeFIELD Method” on page 2104

Java Object Language Elements � _NEW_ Operator, Java Object 2101

NEW Operator, Java Object

Creates an instance of a java object.

Valid in: DATA step

Syntax
object-reference = _NEW_ JAVAOBJ ("java-class", <argument–1 , … argument–n>);

Arguments
object-reference

specifies the object reference name for the java object.

java-class
specifies the name of the Java class to be instantiated.

Requirement: The Java class name must be enclosed in either double or single
quotation marks.

argument
specifies the information that is used to create an instance of the java object. Valid
values for argument depend on the java object.

See Also: “Details” on page 2101

Details
To use a DATA step component object in your SAS program, you must declare and
create (instantiate) the object. The DATA step component interface provides a
mechanism for accessing the predefined component objects from within the DATA step.

If you use the _NEW_ operator to instantiate the java object, you must first use the
DECLARE statement to declare the java object. For example, in the following lines of
code, the DECLARE statement tells SAS that the object reference J is a java object.
The _NEW_ operator creates the java object and assigns it to the object reference J.

declare javaobj j;
j = _new_ javaobj("somejavaclass");

Note: You can use the DECLARE statement to declare and instantiate a java object
in one step. �

A constructor is a method that is used to instantiate a component object and to
initialize the component object data. For example, in the following lines of code, the
NEW operator instantiates a java object and assigns it to the object reference J. Note
that the only required argument to a java object constructor is the name of the Java
class to be instantiated. All other arguments are constructor arguments to the Java
class itself. In addition, the Java classname, testjavaclass, he constructor and the
values 100 and .8 are constructor arguments.

declare javaobj j;
j = _new_ javaobj("testjavaclass", 100, .8);

For more information about the predefined DATA step component objects and
constructors, see “Using DATA Step Component Objects” in SAS Language Reference:
Concepts.

2102 SETtypeFIELD Method � Chapter 10

Comparisons
You can use the DECLARE statement and the _NEW_ operator, or the DECLARE
statement alone to declare and instantiate an instance of a java object.

Examples

In the following example, a Java class is created for a hash table. The _NEW_
operator is used to create and instantiate an instance of this class by specifying the
capacity and load factor. In this example, a wrapper class, mhash, is necessary because
the DATA step’s only numeric type is equivalent to the Java type DOUBLE.

/* Java code */
import java.util.*;

public class mhash extends Hashtable;
{

mhash (double size, double load)
{

super ((int)size, (float)load);
}

}

/* DATA step code */
data _null_;

declare javaobj h;
h = _new_ javaobj("mhash", 100, .8);

run;

See Also

Statements:
“DECLARE Statement, Java Object” on page 1437

“Using DATA Step Component Objects” in SAS Language Reference: Concepts

SETtypeFIELD Method
Modifies the value of a non-static field for a java object.

Category: Field reference

Syntax
object.SETtypeFIELD("field–name", value);

Arguments

Java Object Language Elements � SETtypeFIELD Method 2103

object
specifies the name of a java object.

type
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See Also: “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.
Requirement: The field name must be enclosed in either single or double quotation

marks.

value
specifies the value.

Details
Once you instantiate a java object, you can access and modify its public fields through
method calls on the java object. The SETtypeFIELD method enables you to modify
non-static fields.

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons
The SETtypeFIELD method modifies the value of a non-static field for a java object. To
modify the value of a static field, use the SETSTATICtypeFIELD method.

Example

The following example creates a simple class that contains three non-static fields.
The java object j is instantiated, the field values are set by using the SETtypeFIELD
method and then retrieved.

2104 SETSTATICtypeFIELD Method � Chapter 10

/* Java code */
import java.util.*;
import java.lang.*;
public class ttest
{

public int i;
public double d;
public string s;

}
}

/* DATA step code */
data _null_;

dcl javaobj j("ttest");
length val 8;
length str $20;
j.setIntField("i", 100);
j.setDoubleField("d", 3.14159);
j.setStringField("s", "abc");

j.getIntField("i", val);
put val=;
j.getDoubleField("d", val);
put val=;
j.getStringField("s", str);
put str=;

run;

The following lines are written to the SAS log:

val=100
val=3.14159
str=abc

See Also

Method:
“GETtypeFIELD Method” on page 2096
“SETSTATICtypeFIELD Method” on page 2104

SETSTATICtypeFIELD Method

Modifies the value of a static field for a java object.

Category: Field reference

Java Object Language Elements � SETSTATICtypeFIELD Method 2105

Syntax
object.SETSTATICtypeFIELD("field–name", value);

Arguments

object
specifies the name of a java object.

type
specifies the type for the Java field. The type can be one of the following values:

BOOLEAN
specifies that the field type is BOOLEAN.

BYTE
specifies that the field type is BYTE.

CHAR
specifies that the field type is CHAR.

DOUBLE
specifies that the field type is DOUBLE.

FLOAT
specifies that the field type is FLOAT.

INT
specifies that the field type is INT.

LONG
specifies that the field type is LONG.

SHORT
specifies that the field type is SHORT.

STRING
specifies that the field type is STRING.

See Also: “Type Issues” in SAS Language Reference: Concepts

field-name
specifies the Java field name.
Requirement: The field name must be enclosed in either single or double quotation

marks.

value
specifies the value.

Details
Once you instantiate a java object, you can access and modify its public fields through
method calls on the java object. The SETSTATICtypeFIELD method enables you to
modify static fields.

Note: type represents a Java data type. For more information about how Java data
types relate to SAS data types, see “Type Issues” in SAS Language Reference:
Concepts. �

Comparisons
The SETSTATICtypeFIELD method modifies the value of a static field for a java object.
To modify the value of a non–static field, use the SETtypeFIELD method.

2106 SETSTATICtypeFIELD Method � Chapter 10

Example

The following example creates a simple class that contains three static fields. The
java object j is instantiated, the field values are set by using the
SETSTATICtypeFIELD method and then retrieved.

/* Java code */
import java.util.*;
import java.lang.*;
public class ttestc
{

public static double d;
public static double dm()
{

return d;
}

}

/* DATA step code */
data x;

declare javaobj j("ttestc");
length d 8;

j.callSetStaticDoubleField("d", 3.14159);
j.callStaticDoubleMethod("dm", d);
put d=;

run;

The following line is written to the SAS log:

d=3.14159

See Also

Method:
“GETSTATICtypeFIELD Method” on page 2099
“SETtypeFIELD Method” on page 2102

2107

P A R T3

Appendixes

Appendix 1.DATA Step Debugger 2109

Appendix 2.Perl Regular Expression (PRX) Metacharacters 2141

Appendix 3.SAS Utility Macro 2149

Appendix 4.Recommended Reading 2153

2108

2109

A P P E N D I X

1
DATA Step Debugger

Introduction 2110
Definition: What Is Debugging? 2110

Definition: The DATA Step Debugger 2110

Basic Usage 2111

How a Debugger Session Works 2111

Using the Windows 2111
Entering Commands 2111

Working with Expressions 2112

Assigning Commands to Function Keys 2112

Advanced Usage: Using the Macro Facility with the Debugger 2112

Using Macros as Debugging Tools 2112

Creating Customized Debugging Commands with Macros 2112
Debugging a DATA Step Generated by a Macro 2113

Examples 2113

Example 1: Debugging a Simple DATA Step 2113

Discovering a Problem 2113

Using the DEBUG Option 2114
Examining Data Values after the First Iteration 2115

Examining Data Values after the Second Iteration 2116

Ending the Debugger 2118

Correcting the DATA Step 2118

Example 2: Working with Formats 2119
Example 3: Debugging DO Loops 2124

Example 4: Examining Formatted Values of Variables 2124

Commands 2125

List of Debugger Commands 2125

Debugger Commands by Category 2125

Dictionary 2126
BREAK 2126

CALCULATE 2128

DELETE 2129

DESCRIBE 2130

ENTER 2131
EXAMINE 2131

GO 2132

HELP 2133

JUMP 2134

LIST 2135
QUIT 2136

SET 2136

STEP 2137

2110 Introduction � Appendix 1

SWAP 2138
TRACE 2138

WATCH 2139

Introduction

Definition: What Is Debugging?
Debugging is the process of removing logic errors from a program. Unlike syntax

errors, logic errors do not stop a program from running. Instead, they cause the
program to produce unexpected results. For example, if you create a DATA step that
keeps track of inventory, and your program shows that you are out of stock but your
warehouse is full, you have a logic error in your program.

To debug a DATA step, you could do the following:

� copy a few lines of the step into another DATA step, execute it, and print the
results of those statements

� insert PUT statements at selected places in the DATA step, submit the step, and
examine the values that are displayed in the SAS log.

� use the DATA step debugger.

While the SAS log can help you identify data errors, the DATA step debugger offers
you an easier, interactive way to identify logic errors, and sometimes data errors, in
DATA steps.

Definition: The DATA Step Debugger
The DATA step debugger is part of Base SAS software and consists of windows and a

group of commands. By issuing commands, you can execute DATA step statements one
by one and pause to display the resulting variable values in a window. By observing the
results that are displayed, you can determine where the logic error lies. Because the
debugger is interactive, you can repeat the process of issuing commands and observing
the results as many times as needed in a single debugging session. To invoke the
debugger, add the DEBUG option to the DATA statement and execute the program.

The DATA step debugger enables you to perform the following tasks:

� execute statements one by one or in groups

� bypass execution of one or more statements

� suspend execution at selected statements, either in each iteration of DATA step
statements or on a condition you specify, and resume execution on command

� monitor the values of selected variables and suspend execution at the point a
value changes

� display the values of variables and assign new values to them

� display the attributes of variables

� receive help for individual debugger commands

� assign debugger commands to function keys

� use the macro facility to generate customized debugger commands.

DATA Step Debugger � Entering Commands 2111

Basic Usage

How a Debugger Session Works
When you submit a DATA step with the DEBUG option, SAS compiles the step,

displays the debugger windows, and pauses until you enter a debugger command to
begin execution. For example, if you begin execution with the GO command, SAS
executes each statement in the DATA step. To suspend execution at a particular line in
the DATA step, use the BREAK command to set breakpoints at statements you select.
Then issue the GO command. The GO command starts or resumes execution until the
breakpoint is reached.

To execute the DATA step one statement at a time or a few statements at a time, use
the STEP command. By default, the STEP command is mapped to the ENTER key.

In a debugging session, statements in a DATA step can iterate as many times as they
would outside the debugging session. When the last iteration has finished, a message
appears in the DEBUGGER LOG window.

You cannot restart DATA step execution in a debugging session after the DATA step
finishes executing. You must resubmit the DATA step in your SAS session. However,
you can examine the final values of variables after execution has ended.

You can debug only one DATA step at a time. You can use the debugger only with a
DATA step, and not with a PROC step.

Using the Windows
The DATA step debugger contains two primary windows, the DEBUGGER LOG and

the DEBUGGER SOURCE windows. The windows appear when you execute a DATA
step with the DEBUG option.

The DEBUGGER LOG window records the debugger commands you issue and their
results. The last line is the debugger command line, where you issue debugger
commands. The debugger command line is marked with a greater than (>) prompt.

The DEBUGGER SOURCE window contains the SAS statements that comprise the
DATA step you are debugging. The window enables you to view your position in the
DATA step as you debug your program. In the window, the SAS statements have the
same line numbers as they do in the SAS log.

You can enter windowing environment commands on the window command lines.
You can also execute commands by using function keys.

Entering Commands
Enter DATA step debugger commands on the debugger command line. For a list of

commands and their descriptions, refer to “Debugger Commands by Category” on page
2125. Follow these rules when you enter a command:

� A command can occupy only one line (except for a DO group).
� A DO group can extend over more than one line.
� To enter multiple commands, separate the commands with semicolons:

examine _all_; set letter=’bill’; examine letter

2112 Working with Expressions � Appendix 1

Working with Expressions
All SAS operators that are described in “SAS Operators in Expressions” in SAS

Language Reference: Concepts, are valid in debugger expressions. Debugger expressions
cannot contain functions.

A debugger expression must fit on one line. You cannot continue an expression on
another line.

Assigning Commands to Function Keys
To assign debugger commands to function keys, open the Keys window. Position your

cursor in the Definitions column of the function key you want to assign, and begin the
command with the term DSD. To assign more than one command to a function key,
enclose the commands (separated by semicolons) in quotation marks. Be sure to save
your changes. These examples show commands assigned to function keys:

� dsd step3

� dsd ’examine cost saleprice; go 120;’

Advanced Usage: Using the Macro Facility with the Debugger
You can use the SAS macro facility with the debugger to invoke macros from the

DEBUGGER LOG command line. You can also define macros and use macro program
statements, such as %LET, on the debugger command line.

Using Macros as Debugging Tools
Macros are useful for storing a series of debugger commands. Executing the macro at

the DEBUGGER LOG command line then generates the entire series of debugger
commands. You can also use macros with parameters to build different series of
debugger commands based on various conditions.

Creating Customized Debugging Commands with Macros
You can create a customized debugging command by defining a macro on the

DEBUGGER LOG command line. Then invoke the macro from the command line. For
example, to examine the variable COST, to execute five statements, and then to
examine the variable DURATION, define the following macro (in this case the macro is
called EC). Note that the example uses the alias for the EXAMINE command.

%macro ec; ex cost; step 5; ex duration; %mend ec;

To issue the commands, invoke macro EC from the DEBUGGER LOG command line:

%ec

The DEBUGGER LOG displays the value of COST, executes the next five statements,
and then displays the value of DURATION.

Note: Defining a macro on the DEBUGGER LOG command line allows you to use
the macro only during the current debugging session, because the macro is not
permanently stored. To create a permanently stored macro, use the Program Editor. �

DATA Step Debugger � Example 1: Debugging a Simple DATA Step 2113

Debugging a DATA Step Generated by a Macro
You can use a macro to generate a DATA step, but debugging a DATA step that is

generated by a macro can be difficult. The SAS log displays a copy of the macro, but not
the DATA step that the macro generated. If you use the DEBUG option at this point,
the text that the macro generates appears as a continuous stream to the debugger. As a
result, there are no line breaks where execution can pause.

To debug a DATA step that is generated by a macro, use the following steps:
1 Use the MPRINT and MFILE system options when you execute your program.
2 Assign the fileref MPRINT to an existing external file. MFILE routes the program

output to the external file. Note that if you rerun your program, current output
appends to the previous output in your file.

3 Invoke the macro from a SAS session.
4 In the Program Editor window, issue the INCLUDE command or use the File

menu to open your external file.
5 Add the DEBUG option to the DATA statement and begin a debugging session.
6 When you locate the logic error, correct the portion of the macro that generated

that statement or statements.

Examples

Example 1: Debugging a Simple DATA Step
This example shows how to debug a DATA step when output is missing.

Discovering a Problem
This program creates information about a travel tour group. The data files contain

two types of records. One type contains the tour code, and the other type contains
customer information. The program creates a report listing tour number, name, age,
and sex for each customer.

/* first execution */
data tours (drop=type);

input @1 type $ @;
if type=’H’ then do;

input @3 Tour $20.;
return;
end;

else if type=’P’ then do;
input @3 Name $10. Age 2. +1 Sex $1.;
output;
end;

datalines;
H Tour 101
P Mary E 21 F
P George S 45 M
P Susan K 3 F

2114 Example 1: Debugging a Simple DATA Step � Appendix 1

H Tour 102
P Adelle S 79 M
P Walter P 55 M
P Fran I 63 F
;

proc print data=tours;
title ’Tour List’;

run;

Tour List 1
Obs Tour Name Age Sex

1 Mary E 21 F
2 George S 45 M
3 Susan K 3 F
4 Adelle S 79 M
5 Walter P 55 M
6 Fran I 63 F

The program executes without error, but the output is unexpected. The output does
not contain values for the variable Tour. Viewing the SAS log will not help you debug
the program because the data are valid and no errors appear in the log. To help identify
the logic error, run the DATA step again using the DATA step debugger.

Using the DEBUG Option
To invoke the DATA step debugger, add the DEBUG option to the DATA statement

and resubmit the DATA step:

data tours (drop=type) / debug;

The following display shows the resulting two debugger windows.

DATA Step Debugger � Example 1: Debugging a Simple DATA Step 2115

The upper window is the DEBUGGER LOG window. Issue debugger commands in
this window by typing commands on the debugger command line (the bottom line,
marked by a >). The debugger displays the command and results in the upper part of
the window.

The lower window is the DEBUGGER SOURCE window. It displays the DATA step
submitted with the DEBUG option. Each line in the DATA step is numbered with the
same line number used in the SAS log. One line appears in reverse video (or other
highlighting, depending on your monitor). DATA step execution pauses just before the
execution of the highlighted statement.

At the beginning of your debugging session, the first executable line after the DATA
statement is highlighted. This means that SAS has compiled the step and will begin to
execute the step at the top of the DATA step loop.

Examining Data Values after the First Iteration

To debug a DATA step, create a hypothesis about the logic error and test it by
examining the values of variables at various points in the program. For example, issue
the EXAMINE command from the debugger command line to display the values of all
variables in the program data vector before execution begins:

examine _all_

Note: Most debugger commands have abbreviations, and you can assign commands
to function keys. The examples in this section, however, show the full command name
to help you find the commands in “Debugger Commands by Category” on page 2125. �

When you press ENTER, the following display appears:

2116 Example 1: Debugging a Simple DATA Step � Appendix 1

The values of all variables appear in the DEBUGGER LOG window. SAS has
compiled, but not yet executed, the INPUT statement.

Use the STEP command to execute the DATA step statements one at a time. By
default, the STEP command is assigned to the ENTER key. Press ENTER repeatedly to
step through the first iteration of the DATA step, and stop when the RETURN
statement in the program is highlighted in the DEBUGGER SOURCE window.

Because Tour information was missing in the program output, enter the EXAMINE
command to view the value of the variable Tour for the first iteration of the DATA step.

examine tour

The following display shows the results:

The variable Tour contains the value Tour 101, showing you that Tour was read. The
first iteration of the DATA step worked as intended. Press ENTER to reach the top of
the DATA step.

Examining Data Values after the Second Iteration
You can use the BREAK command (also known as setting a breakpoint) to suspend

DATA step execution at a particular line you designate. In this example, suspend
execution before executing the ELSE statement by setting a breakpoint at line 7.

break 7

When you press ENTER, an exclamation point appears at line 7 in the DEBUGGER
SOURCE window to mark the breakpoint:

DATA Step Debugger � Example 1: Debugging a Simple DATA Step 2117

Execute the GO command to continue DATA step execution until it reaches the
breakpoint (in this case, line 7):

go

The following display shows the result:

SAS suspended execution just before the ELSE statement in line 7. Examine the
values of all the variables to see their status at this point.

examine _all_

The following display shows the values:

2118 Example 1: Debugging a Simple DATA Step � Appendix 1

You expect to see a value for Tour, but it does not appear. The program data vector
gets reset to missing values at the beginning of each iteration and therefore does not
retain the value of Tour. To solve the logic problem, you need to include a RETAIN
statement in the SAS program.

Ending the Debugger
To end the debugging session, issue the QUIT command on the debugger command

line:

quit

The debugging windows disappear, and the original SAS session resumes.

Correcting the DATA Step
Correct the original program by adding the RETAIN statement. Delete the DEBUG

option from the DATA step, and resubmit the program:

/* corrected version */
data tours (drop=type);

retain Tour;
input @1 type $ @;
if type=’H’ then do;

input @3 Tour $20.;
return;
end;

else if type=’P’ then do;
input @3 Name $10. Age 2. +1 Sex $1.;
output;
end;

datalines;
H Tour 101
P Mary E 21 F
P George S 45 M
P Susan K 3 F
H Tour 102
P Adelle S 79 M
P Walter P 55 M
P Fran I 63 F
;

run;

DATA Step Debugger � Example 2: Working with Formats 2119

proc print;
title ’Tour List’;

run;

The values for Tour now appear in the output:

Tour List 1
Obs Tour Name Age Sex

1 Tour 101 Mary E 21 F
2 Tour 101 George S 45 M
3 Tour 101 Susan K 3 F
4 Tour 102 Adelle S 79 M
5 Tour 102 Walter P 55 M
6 Tour 102 Fran I 63 F

Example 2: Working with Formats
This example shows how to debug a program when you use format statements to

format dates. The following program creates a report that lists travel tour dates for
specific countries.

options yearcutoff=1920;

data tours;
length Country $ 10;
input Country $10. Start : mmddyy. End : mmddyy.;
Duration=end-start;

datalines;
Italy 033000 041300
Brazil 021900 022800
Japan 052200 061500
Venezuela 110300 11800
Australia 122100 011501
;

proc print data=tours;
format start end date9.;
title ’Tour Duration’;

run;

Tour Duration 1

Obs Country Start End Duration

1 Italy 30MAR2000 13APR2000 14
2 Brazil 19FEB2000 28FEB2000 9
3 Japan 22MAY2000 15JUN2000 24
4 Venezuela 03NOV2000 18JAN2000 -290
5 Australia 21DEC2000 15JAN2001 25

The value of Duration for the tour to Venezuela shows a negative number, -290 days.
To help identify the error, run the DATA step again using the DATA step debugger. SAS
displays the following debugger windows:

2120 Example 2: Working with Formats � Appendix 1

At the DEBUGGER LOG command line, issue the EXAMINE command to display
the values of all variables in the program data vector before execution begins:

examine _all_

Initial values of all variables appear in the DEBUGGER LOG window. SAS has not
yet executed the INPUT statement.

Press ENTER to issue the STEP command. SAS executes the INPUT statement, and
the assignment statement is now highlighted.

Issue the EXAMINE command to display the current value of all variables:

examine _all_

The following display shows the results:

DATA Step Debugger � Example 2: Working with Formats 2121

Because a problem exists with the Venezuela tour, suspend execution before the
assignment statement when the value of Country equals Venezuela. Set a breakpoint to
do this:

break 6 when country=’Venezuela’

Execute the GO command to resume program execution:

go

SAS stops execution when the country name is Venezuela. You can examine Start
and End tour dates for the Venezuela trip. Because the assignment statement is
highlighted (indicating that SAS has not yet executed that statement), there will be no
value for Duration.

Execute the EXAMINE command to view the value of the variables after execution:

examine _all_

The following display shows the results:

2122 Example 2: Working with Formats � Appendix 1

To view formatted SAS dates, issue the EXAMINE command using the DATEw.
format:

examine start date7. end date7.

The following display shows the results:

Because the tour ends on November 18, 2000, and not on January 18, 2000, there is
an error in the variable End. Examine the source data in the program and notice that
the value for End has a typographical error. By using the SET command, you can
temporarily set the value of End to November 18 to see whether you get the anticipated
result. Issue the SET command using the DDMMMYYw. format:

DATA Step Debugger � Example 2: Working with Formats 2123

set end=’18nov00’d

Press ENTER to issue the STEP command and execute the assignment statement.
Issue the EXAMINE command to view the tour date and Duration fields:

examine start date7. end date7. duration

The following display shows the results:

The Start, End, and Duration fields contain correct data.
End the debugging session by issuing the QUIT command on the DEBUGGER LOG

command line. Correct the original data in the SAS program, delete the DEBUG option,
and resubmit the program.

/* corrected version */
options yearcutoff=1920;

data tours;
length Country $ 10;
input Country $10. Start : mmddyy. End : mmddyy.;
duration=end-start;

datalines;
Italy 033000 041300
Brazil 021900 022800
Japan 052200 061500
Venezuela 110300 111800
Australia 122100 011501
;

proc print data=tours;
format start end date9.;
title ’Tour Duration’;

2124 Example 3: Debugging DO Loops � Appendix 1

run;

Tour Duration 1

Obs Country Start End duration

1 Italy 30MAR2000 13APR2000 14
2 Brazil 19FEB2000 28FEB2000 9
3 Japan 22MAY2000 15JUN2000 24
4 Venezuela 03NOV2000 18NOV2000 15
5 Australia 21DEC2000 15JAN2001 25

Example 3: Debugging DO Loops
An iterative DO, DO WHILE, or DO UNTIL statement can iterate many times

during a single iteration of the DATA step. When you debug DO loops, you can examine
several iterations of the loop by using the AFTER option in the BREAK command. The
AFTER option requires a number that indicates how many times the loop will iterate
before it reaches the breakpoint. The BREAK command then suspends program
execution. For example, consider this data set:

data new / debug;
set old;
do i=1 to 20;

newtest=oldtest+i;
output;

end;
run;

To set a breakpoint at the assignment statement (line 4 in this example) after every
five iterations of the DO loop, issue this command:

break 4 after 5

When you issue the GO commands, the debugger suspends execution when I has the
values of 5, 10, 15, and 20 in the DO loop iteration.

In an iterative DO loop, select a value for the AFTER option that can be divided
evenly into the number of iterations of the loop. For example, in this DATA step, 5 can
be evenly divided into 20. When the DO loop iterates the second time, I again has the
values of 5, 10, 15, and 20.

If you do not select a value that can be evenly divided (such as 3 in this example),
the AFTER option causes the debugger to suspend execution when I has the values of 3,
6, 9, 12, 15, and 18. When the DO loop iterates the second time, I has the values of 1, 4,
7, 10, 13, and 16.

Example 4: Examining Formatted Values of Variables
You can use a SAS format or a user-created format when you display a value with

the EXAMINE command. For example, assume that the variable BEGIN contains a
SAS date value. To display the day of the week and date, use the SAS WEEKDATEw.
format with EXAMINE:

examine begin weekdate17.

When the value of BEGIN is 033001, the debugger displays the following:

Sun, Mar 30, 2001

DATA Step Debugger � Debugger Commands by Category 2125

As another example, you can create a format named SIZE:

proc format;
value size 1-5=’small’

6-10=’medium’
11-high=’large’;

run;

To debug a DATA step that applies the format SIZE. to the variable STOCKNUM,
use the format with EXAMINE:

examine stocknum size.

For example, when the value of STOCKNUM is 7, the debugger displays the
following:

STOCKNUM = medium

Commands

List of Debugger Commands

BREAK JUMP

CALCULATE LIST

DELETE QUIT

DESCRIBE SET

ENTER STEP

EXAMINE SWAP

GO TRACE

HELP WATCH

Debugger Commands by Category

Table A1.1 Categories and Descriptions of Debugger Commands

Category DATA Step Debugger Description

Controlling Program
Execution

“GO” on page 2132 Starts or resumes execution of the DATA step

“JUMP” on page 2134 Restarts execution of a suspended program

“STEP” on page 2137 Executes statements one at a time in the active program

2126 Dictionary � Appendix 1

Controlling the Windows “HELP” on page 2133 Displays information about debugger commands

“SWAP” on page 2138 Switches control between the SOURCE window and the
LOG window

Manipulating DATA Step
Variables

“CALCULATE” on page
2128

Evaluates a debugger expression and displays the result

“DESCRIBE” on page 2130 Displays the attributes of one or more variables

“EXAMINE” on page 2131 Displays the value of one or more variables

“SET” on page 2136 Assigns a new value to a specified variable

Manipulating Debugging
Requests

“BREAK” on page 2126 Suspends program execution at an executable statement

“DELETE” on page 2129 Deletes breakpoints or the watch status of variables in
the DATA step

“LIST” on page 2135 Displays all occurrences of the item that is listed in the
argument

“TRACE” on page 2138 Controls whether the debugger displays a continuous
record of the DATA step execution

“WATCH” on page 2139 Suspends execution when the value of a specified
variable changes

Tailoring the Debugger “ENTER” on page 2131 Assigns one or more debugger commands to the ENTER
key

Terminating the Debugger “QUIT” on page 2136 Terminates a debugger session

Dictionary

BREAK

Suspends program execution at an executable statement.

Category: Manipulating Debugging Requests
Alias: B

Syntax
BREAK location <AFTER count> <WHEN expression> <DO group >

Arguments

location
specifies where to set a breakpoint. Location must be one of these:

label a statement label. The breakpoint is set at the statement that
follows the label.

DATA Step Debugger � BREAK 2127

line-number the number of a program line at which to set a breakpoint.

* the current line.

AFTER count
honors the breakpoint each time the statement has been executed count times. The
counting is continuous. That is, when the AFTER option applies to a statement
inside a DO loop, the count continues from one iteration of the loop to the next. The
debugger does not reset the count value to 1 at the beginning of each iteration.

If a BREAK command contains both AFTER and WHEN, AFTER is evaluated
first. If the AFTER count is satisfied, the WHEN expression is evaluated.
Tip: The AFTER option is useful in debugging DO loops.

WHEN expression
honors a breakpoint when the expression is true.

DO group
is one or more debugger commands enclosed by a DO and an END statement. The
syntax of the DO group is the following:

DO; command-1 < ... ; command-n; >END;

command
specifies a debugger command. Separate multiple commands by semicolons.

A DO group can span more than one line and can contain IF-THEN/ELSE
statements, as shown:

IF expression THEN command; <ELSE command;>
IF expression THEN DO group; <ELSE DO group;>
IF evaluates an expression. When the condition is true, the debugger command

or DO group in the THEN clause executes. An optional ELSE command gives an
alternative action if the condition is not true. You can use these arguments with IF:

expression
specifies a debugger expression. A non-zero, nonmissing result causes the
expression to be true. A result of zero or missing causes the expression to be
false.

command
specifies a single debugger command.

DO group
specifies a DO group.

Details
The BREAK command suspends execution of the DATA step at a specified statement.
Executing the BREAK command is called setting a breakpoint.

When the debugger detects a breakpoint, it does the following:
� checks the AFTER count value, if present, and suspends execution if count

breakpoint activations have been reached
� evaluates the WHEN expression, if present, and suspends execution if the

condition that is evaluated is true
� suspends execution if neither an AFTER nor a WHEN clause is present
� displays the line number at which execution is suspended
� executes any commands that are present in a DO group
� returns control to the user with a > prompt.

If a breakpoint is set at a source line that contains more than one statement, the
breakpoint applies to each statement on the source line. If a breakpoint is set at a line

2128 CALCULATE � Appendix 1

that contains a macro invocation, the debugger breaks at each statement generated by
the macro.

Examples
� Set a breakpoint at line 5 in the current program:

b 5

� Set a breakpoint at the statement after the statement label eoflabel:

b eoflabel

� Set a breakpoint at line 45 that will be honored after every third execution of line
45:

b 45 after 3

� Set a breakpoint at line 45 that will be honored after every third execution of that
line only when the values of both DIVISOR and DIVIDEND are 0:

b 45 after 3
when (divisor=0 and dividend=0)

� Set a breakpoint at line 45 of the program and examine the values of variables
NAME and AGE:

b 45 do; ex name age; end;

� Set a breakpoint at line 15 of the program. If the value of DIVISOR is greater
than 3, execute STEP. Otherwise, display the value of DIVIDEND.

b 15 do; if divisor>3 then st;
else ex dividend; end;

See Also

Commands:
“DELETE” on page 2129
“WATCH” on page 2139

CALCULATE

Evaluates a debugger expression and displays the result.

Category: Manipulating DATA Step Variables

Syntax
CALC expression

Arguments

expression

DATA Step Debugger � DELETE 2129

specifies any debugger expression.
Restriction: Debugger expressions cannot contain functions.

Details
The CALCULATE command evaluates debugger expressions and displays the result.
The result must be numeric.

Examples
� Add 1.1, 1.2, 3.4 and multiply the result by 0.5:

calc (1.1+1.2+3.4)*0.5

� Calculate the sum of STARTAGE and DURATION:

calc startage+duration

� Calculate the values of the variable SALE minus the variable DOWNPAY and
then multiply the result by the value of the variable RATE. Divide that value by
12 and add 50:

calc (((sale-downpay)*rate)/12)+50

See Also
“Working with Expressions” on page 2112 for information about debugger expressions

DELETE

Deletes breakpoints or the watch status of variables in the DATA step.

Category: Manipulating Debugging Requests
Alias: D

Syntax
DELETE BREAK location

DELETE WATCH variable(s) | _ALL_

Arguments

BREAK
deletes breakpoints.
Alias: B

location
specifies a breakpoint location to be deleted. Location can have one of these values:

ALL all current breakpoints in the DATA step.

label the statement after a statement label.

line-number the number of a program line.

2130 DESCRIBE � Appendix 1

* the breakpoint from the current line.

WATCH
deletes watched status of variables.
Alias: W

variable(s)
names one or more watched variables for which the watch status is deleted.

ALL
specifies that the watch status is deleted for all watched variables.

Examples
� Delete the breakpoint at the statement label

eoflabel

:

d b eoflabel

� Delete the watch status from the variable ABC in the current DATA step:

d w abc

See Also

Commands:

“BREAK” on page 2126
“WATCH” on page 2139

DESCRIBE

Displays the attributes of one or more variables.

Category: Manipulating DATA Step Variables

Alias: DESC

Syntax
DESCRIBE variable(s) | _ALL_

Arguments

variable(s)
identifies one or more DATA step variables

ALL
indicates all variables that are defined in the DATA step.

DATA Step Debugger � EXAMINE 2131

Details
The DESCRIBE command displays the attributes of one or more specified variables.

DESCRIBE reports the name, type, and length of the variable, and, if present, the
informat, format, or variable label.

Examples
� Display the attributes of variable ADDRESS:

desc address

� Display the attributes of array element ARR{i + j}:

desc arr{i+j}

ENTER

Assigns one or more debugger commands to the ENTER key.

Category: Tailoring the Debugger

Syntax
ENTER <command-1 <... ; command-n>>

Arguments

command
specifies a debugger command.
Default: STEP 1

Details
The ENTER command assigns one or more debugger commands to the ENTER key.
Assigning a new command to the ENTER key replaces the existing command
assignment. If you assign more than one command, separate the commands with
semicolons.

Examples
� Assign the command STEP 5 to the ENTER key:

enter st 5

� Assign the commands EXAMINE and DESCRIBE, both for the variable CITY, to
the ENTER key:

enter ex city; desc city

EXAMINE

Displays the value of one or more variables.

2132 GO � Appendix 1

Category: Manipulating DATA Step Variables
Alias: E

Syntax
EXAMINE variable-1 <format-1> <...variable-n <format-n>>

EXAMINE _ALL_ <format>

Arguments

variable
identifies a DATA step variable.

format
identifies a SAS format or a user-created format.

ALL
identifies all variables that are defined in the current DATA step.

Details
The EXAMINE command displays the value of one or more specified variables. The
debugger displays the value using the format currently associated with the variable,
unless you specify a different format.

Examples
� Display the values of variables N and STR:

ex n str

� Display the element i of the array TESTARR:

ex testarr{i}

� Display the elements i+1, j*2, and k-3 of the array CRR:

ex crr{i+1}; ex crr{j*2}; ex crr{k−3}

� Display the SAS date variable T_DATE with the DATE7. format:

ex t_date date7.

� Display the values of all elements in array NEWARR:

ex newarr{*}

See Also

Command:
“DESCRIBE” on page 2130

GO
Starts or resumes execution of the DATA step.

DATA Step Debugger � HELP 2133

Category: Controlling Program Execution

Alias: G

Syntax
GO <line-number | label>

Without Arguments
If you omit arguments, GO resumes execution of the DATA step and executes its

statements continuously until a breakpoint is encountered, until the value of a watched
variable changes, or until the DATA step completes execution.

Arguments
line-number

gives the number of a program line at which execution is to be suspended next.

label
is a statement label. Execution is suspended at the statement following the
statement label.

Details
The GO command starts or resumes execution of the DATA step. Execution continues
until all observations have been read, a breakpoint specified in the GO command is
reached, or a breakpoint set earlier with a BREAK command is reached.

Examples
� Resume executing the program and execute its statements continuously:

g

� Resume program execution and then suspend execution at the statement in line
104:

g 104

See Also

Commands:

“JUMP” on page 2134

“STEP” on page 2137

HELP

Displays information about debugger commands.

Category: Controlling the Windows

2134 JUMP � Appendix 1

Syntax
HELP

Without Arguments
The HELP command displays a directory of the debugger commands. Select a

command name to view information about the syntax and usage of that command. You
must enter the HELP command from a window command line, from a menu, or with a
function key.

JUMP

Restarts execution of a suspended program.

Category: Controlling Program Execution
Alias: J

Syntax
JUMP line-number | label

Arguments

line-number
indicates the number of a program line at which to restart the suspended program.

label
is a statement label. Execution resumes at the statement following the label.

Details
The JUMP command moves program execution to the specified location without
executing intervening statements. After executing JUMP, you must restart execution
with GO or STEP. You can jump to any executable statement in the DATA step.

CAUTION:
Do not use the JUMP command to jump to a statement inside a DO loop or to a label that is
the target of a LINK-RETURN group. In such cases you bypass the controls set up at the
beginning of the loop or in the LINK statement, and unexpected results can appear. �

JUMP is useful in two situations:
� when you want to bypass a section of code that is causing problems in order to

concentrate on another section. In this case, use the JUMP command to move to a
point in the DATA step after the problematic section.

� when you want to re-execute a series of statements that have caused problems. In
this case, use JUMP to move to a point in the DATA step before the problematic
statements and use the SET command to reset values of the relevant variables to
the values they had at that point. Then re-execute those statements with STEP or
GO.

DATA Step Debugger � LIST 2135

Examples
� Jump to line 5: j 5

See Also

Commands:
“GO” on page 2132
“STEP” on page 2137

LIST

Displays all occurrences of the item that is listed in the argument.

Category: Manipulating Debugging Requests
Alias: L

Syntax
LIST _ALL_ | BREAK | DATASETS | FILES | INFILES | WATCH

Arguments

ALL
displays the values of all items.

BREAK
displays breakpoints.
Alias: B

DATASETS
displays all SAS data sets used by the current DATA step.

FILES
displays all external files to which the current DATA step writes.

INFILES
displays all external files from which the current DATA step reads.

WATCH
displays watched variables.
Alias: W

Examples
� List all breakpoints, SAS data sets, external files, and watched variables for the

current DATA step:

l _all_

� List all breakpoints in the current DATA step:

2136 QUIT � Appendix 1

l b

See Also

Commands:

“BREAK” on page 2126

“DELETE” on page 2129

“WATCH” on page 2139

QUIT

Terminates a debugger session.

Category: Terminating the Debugger

Alias: Q

Syntax
QUIT

Without Arguments
The QUIT command terminates a debugger session and returns control to the SAS

session.

Details
SAS creates data sets built by the DATA step that you are debugging. However, when
you use QUIT to exit the debugger, SAS does not add the current observation to the
data set.

You can use the QUIT command at any time during a debugger session. After you
end the debugger session, you must resubmit the DATA step with the DEBUG option to
begin a new debugging session; you cannot resume a session after you have ended it.

SET

Assigns a new value to a specified variable.

Category: Manipulating DATA Step Variables

Alias: None

Syntax
SET variable=expression

DATA Step Debugger � STEP 2137

Arguments

variable
specifies the name of a DATA step variable or an array reference.

expression
is any debugger expression.

Tip: Expression can contain the variable name that is used on the left side of the
equal sign. When a variable appears on both sides of the equal sign, the debugger
uses the original value on the right side to evaluate the expression and stores the
result in the variable on the left.

Details
The SET command assigns a value to a specified variable. When you detect an error
during program execution, you can use this command to assign new values to variables.
This enables you to continue the debugging session.

Examples
� Set the variable A to the value of 3:

set a=3

� Assign to the variable B the value 12345 concatenated with the previous value of
B:

set b=’12345’ || b

� Set array element ARR{1} to the result of the expression a+3:

set arr{1}=a+3

� Set array element CRR{1,2,3} to the result of the expression crr{1,1,2} + crr{1,1,3}:

set crr{1,2,3} = crr{1,1,2} + crr{1,1,3}

� Set the variable A to the result of the expression a+c*3:

set a=a+c*3

STEP

Executes statements one at a time in the active program.

Category: Controlling Program Execution

Alias: ST

Syntax
STEP <n>

Without Arguments
STEP executes one statement.

2138 SWAP � Appendix 1

Arguments
n

specifies the number of statements to execute.

Details
The STEP command executes statements in the DATA step, starting with the statement
at which execution was suspended.

When you issue a STEP command, the debugger:
� executes the number of statements that you specify
� displays the line number
� returns control to the user and displays the > prompt.

Note: By default, you can execute the STEP command by pressing the ENTER key.
�

See Also

Commands:
“GO” on page 2132
“JUMP” on page 2134

SWAP

Switches control between the SOURCE window and the LOG window.

Category: Controlling the Windows
Alias: None

Syntax
SWAP

Without Arguments
The SWAP command switches control between the LOG window and the SOURCE

window when the debugger is running. When you begin a debugging session, the LOG
window becomes active by default. While the DATA step is still being executed, the
SWAP command enables you to switch control between the SOURCE and LOG window
so that you can scroll and view the text of the program and also continue monitoring
the program execution. You must enter the SWAP command from a window command
line, from a menu, or with a function key.

TRACE

Controls whether the debugger displays a continuous record of the DATA step execution.

DATA Step Debugger � WATCH 2139

Category: Manipulating Debugging Requests
Alias: T
Default: OFF

Syntax
TRACE <ON | OFF>

Without Arguments
TRACE displays the current status of the TRACE command.

Arguments
ON

prepares for the debugger to display a continuous record of DATA step execution.
The next statement that resumes DATA step execution (such as GO) records all
actions taken during DATA step execution in the DEBUGGER LOG window.

OFF
stops the display.

Examples
� Determine whether TRACE is ON or OFF:

trace

� Prepare to display a record of debugger execution:

trace on

WATCH
Suspends execution when the value of a specified variable changes.

Category: Manipulating Debugging Requests
Alias: W

Syntax
WATCH variable(s)

Arguments

variable(s)
specifies one or more DATA step variables.

Details
The WATCH command specifies a variable to monitor and suspends program execution
when its value changes.

2140 WATCH � Appendix 1

Each time the value of a watched variable changes, the debugger does the following:
� suspends execution
� displays the line number where execution has been suspended
� displays the variable’s old value
� displays the variable’s new value
� returns control to the user and displays the > prompt.

Examples
� Monitor the variable DIVISOR for value changes:

w divisor

2141

A P P E N D I X

2
Perl Regular Expression (PRX)
Metacharacters

Tables of Perl Regular Expression (PRX) Metacharacters 2141
General Constructs 2141

Basic Perl Metacharacters 2141

Metacharacters and Replacement Strings 2143

Other Quantifiers 2143

Greedy and Lazy Repetition Factors 2144
Class Groupings 2145

Look-Ahead and Look-Behind Behavior 2146

Comments and Inline Modifiers 2147

Selecting the Best Condition by Using Combining Operators 2147

Tables of Perl Regular Expression (PRX) Metacharacters

General Constructs

Table A2.1 General Constructs

Metacharacter Description

() indicates grouping.

non-metacharacter matches a character.

{ } []()^ $. | * + ? \ to match these characters, override (escape) with \.

\ overrides the next metacharacter.

\n matches capture buffer n.

(?:...) specifies a non-capturing group.

Basic Perl Metacharacters
The following table lists the metacharacters that you can use to match patterns in

Perl regular expressions.

2142 Basic Perl Metacharacters � Appendix 2

Table A2.2 Basic Perl Metacharacters and Their Descriptions

Metacharacter Description

\a matches an alarm (bell) character.

\A matches a character only at the beginning of a string.

\b matches a word boundary (the position between a word and a space):

� "er\b" matches the "er" in "never"

� "er\b" does not match the "er" in "verb"

\B matches a non-word boundary:

� "er\B" matches the "er" in "verb"

� "er\B" does not match the "er" in "never"

\cA-\cZ matches a control character. For example, \cX matches the control
character control-X.

\C matches a single byte.

\d matches a digit character that is equivalent to [0−9].

\D matches a non-digit character that is equivalent to [^0−9].

\e matches an escape character.

\E specifies the end of case modification.

\f matches a form feed character.

\l specifies that the next character is lowercase.

\L specifies that the next string of characters, up to the \E
metacharacter, is lowercase.

\n matches a newline character.

\num

$num

matches capture buffer num, where num is a positive integer. Perl
variable syntax ($num) is valid when referring to capture buffers, but
not in other cases.

\Q escapes (places a backslash before) all non-word characters.

\r matches a return character.

\s matches any white space character, including space, tab, form feed,
and so on, and is equivalent to [\f\n\r\t\v].

\S matches any character that is not a white space character and is
equivalent to [^\f\n\r\t\v].

\t matches a tab character.

\u specifies that the next character is uppercase.

\U specifies that the next string of characters, up to the \E
metacharacter, is uppercase.

\w matches any word character or alphanumeric character, including the
underscore.

\W matches any non-word character or nonalphanumeric character, and
excludes the underscore.

\ddd matches the octal character ddd.

Perl Regular Expression (PRX) Metacharacters � Other Quantifiers 2143

Metacharacter Description

\xdd matches the hexadecimal character dd.

\z matches a character only at the end of a string.

\Z matches a character only at the end of a string or before newline at
the end of a string.

Metacharacters and Replacement Strings

You can use the following metacharacters in both a regular expression and in
replacement text, when you use a substitution regular expression:

\l

\u

\L

\E

\U

\Q

These metacharacters are useful in replacement text for controlling the case of
capture buffers that are used within replacement text. For an example of how these
metacharacters can be used, see “Replacing Text: Example 3” on page 333

For a description of these metacharacters, see Table A2.2 on page 2142.

Other Quantifiers
The following table lists other qualifiers that you can use in Perl regular expressions.

The descriptions of the metacharacters in the table include examples of how the
metacharacters can be used.

Table A2.3 Other Quantifiers

Metacharacter Description

\ marks the next character as either a special character, a literal, a back
reference, or an octal escape:

� “\n” matches a newline character

� “\\” matches “\”

� “\(“ matches”(“

| specifies the or condition when you compare alphanumeric strings. For
example, the construct x|y matches either x or y:

� "z|food" matches either "z" or "food"

� “(z|f)ood” matches “zood” or “food”

^ matches the position at the beginning of the input string.

$ matches the position at the end of the input string.

2144 Greedy and Lazy Repetition Factors � Appendix 2

Metacharacter Description

period (.) matches any single character except newline. To match any character
including newline, use a pattern such as "[.\n]".

(pattern) specifies grouping. Matches a pattern and creates a capture buffer for
the match. To retrieve the position and length of the match that is
captured, use CALL PRXPOSN. To retrieve the value of the capture
buffer, use the PRXPOSN function. To match parentheses characters,
use "\(" or "\)".

Greedy and Lazy Repetition Factors
Perl regular expressions support “greedy” repetition factors and “lazy” repetition

factors. A repetition factor is considered greedy when the repetition factor matches a
string as many times as it can when using a specific starting location. A repetition
factor is considered lazy when it matches a string the minimum number of times that is
needed to satisfy the match. To designate a repetition factor as lazy, add a ? to the end
of the repetition factor. By default, repetition factors are considered greedy.

The following table lists the greedy repetition factors. The descriptions of the
repetition factors in the table include examples of how they can be used.

Table A2.4 Greedy Repetition Factors

Metacharacter Description

* matches the preceding subexpression zero or more times:

� zo* matches "z" and "zoo"

� * is equivalent to {0,}

+ matches the preceding subexpression one or more times:

� "zo+" matches "zo" and "zoo"

� "zo+" does not match "z"

� + is equivalent to {1,}

? matches the preceding subexpression zero or one time:

� "do(es)?" matches the "do" in "do" or "does"

� ? is equivalent to {0,1}

{n} matches at least n times.

{n,} matches a pattern at least n times.

{n,m} m and n are non-negative integers, where n<=m. They match at least
n and at most m times:

� "o{1,3}" matches the first three o’s in "fooooood"

� "o{0,1}" is equivalent to "o?"

Note: You cannot put a space between the comma and
the numbers. �

The following table lists the lazy repetition metacharacters.

Perl Regular Expression (PRX) Metacharacters � Class Groupings 2145

Table A2.5 Lazy Repetition Factors

Metacharacter Description

*? matches a pattern zero or more times.

+? matches a pattern one or more times.

?? matches a pattern zero or one time.

{n}? matches exactly n times.

{n,}? matches a pattern at least n times.

{n,m}? matches a pattern at least n times but not more than m times.

Class Groupings

The following table lists character class groupings. You specify these classes by
enclosing characters inside brackets. These metacharacters share a set of common
properties. To be successful, the character class must always match a character. The
negated character class must always match a character that is not in the list of
characters that are designated inside the brackets. The descriptions of the
metacharacters in the table include examples of how the metacharacters can be used.

Table A2.6 Character Class Groupings

Metacharacter Description

[...] specifies a character set that matches any one of the enclosed
characters:

� “[abc]” matches the “a” in “plain”

[^...] specifies a negative character set that matches any character that is
not enclosed:

� “[^abc]” matches the “p” in “plain”

[a-z] specifies a range of characters that matches any character in the range:

� “[a-z]” matches any lowercase alphabetic character in the range
“a” through “z”

[^a-z] specifies a range of characters that does not match any character in
the range:

� "[^a-z]" matches any character that is not in the range "a"
through "z"

[[:alpha:]]

[[:^alpha:]]

matches an alphabetic character.

matches a nonalphabetic character.

[[:alnum:]]

[[:^alnum:]]

matches an alphanumeric character.

matches a nonalphanumeric character.

[[:ascii:]]

[[:^ascii:]]

matches an ASCII character. Equivalent to [\0–\177].

matches a non-ASCII character. Equivalent to [^\0–\177].

2146 Look-Ahead and Look-Behind Behavior � Appendix 2

Metacharacter Description

[[:blank:]]

[[:^blank:]]

matches a blank character.

matches a non-blank character.

[[:cntrl:]]

[[:^cntrl:]]

matches a control character.

matches a character that is not a control character.

[[:digit:]]

[[:^digit:]]

matches a digit. Equivalent to \d.

matches a non-digit character. Equivalent to \D.

[[:graph:]]

[[:^graph:]]

is a visible character, excluding the space character. Equivalent to
[[:alnum:][:punct:]].

is not a visible character. Equivalent to [^[:alnum:][:punct:]].

[[:lower:]]

[[:^lower:]]

matches lowercase characters.

does not match lowercase characters.

[[:print:]]

[[:^print:]]

prints a string of characters.

does not print a string of characters.

[[:punct:]]

[[:^punct:]]

matches a punctuation character or a visible character that is not a
space or alphanumeric.

does not match a punctuation character or a visible character that is
not a space or alphanumeric.

[[:space:]]

[[:^space:]]

matches a space. Equivalent to \s.

does not match a space. Equivalent to \S.

[[:upper:]]

[[:^upper:]]

matches uppercase characters.

does not match uppercase characters.

[[:word:]]

[[:^word:]]

matches a word. Equivalent to \w.

does not match a word. Equivalent to \W.

[[:xdigit:]]

[[:^xdigit:]]

matches a hexadecimal character.

does not match a hexadecimal character.

Look-Ahead and Look-Behind Behavior

Look-ahead and look-behind are ways to look ahead or behind a match to see whether a
particular text occurs. The text that is found with look-ahead or look-behind is not
included in the match that is found. For example, if you want to find names that end
with “Jr.”, but you do not want “Jr.” to be part of the match, you could use the regular
expression /.*(?=Jr\.)/. For the value "John Wainright Jr.", the regular expression will
find "John Wainright" as a match because it is followed by "Jr."

Perl Regular Expression (PRX) Metacharacters � Selecting the Best Condition by Using Combining Operators 2147

Table A2.7 Look-Ahead and Look-Behind Behavior

Metacharacter Description

(?=...) specifies a zero-width, positive, look-ahead assertion. For example, in
the expression regex1 (?=regex2), a match is found if both regex1 and
regex2 match. regex2 is not included in the final match.

(?!...) specifies a zero-width, negative, look-ahead assertion. For example, in
the expression regex1 (?!regex2), a match is found if regex1 matches
and regex2 does not match. regex2 is not included in the final match.

(?<=...) specifies a zero-width, positive, look-behind assertion. For example, in
the expression (?<=regex1) regex2, a match is found if both regex1 and
regex2 match. regex1 is not included in the final match. Works with
fixed-width look-behind only.

(?<!...) specifies a zero-width, negative, look-behind assertion. Works with
fixed-width look-behind only.

Comments and Inline Modifiers
The metacharacters in this table contain a question mark as the first element inside

the parentheses. The characters after the question mark indicate the extension.

Table A2.8 Comments and Inline Modifiers

Metacharacter Description

(?#text) specifies a comment in which the text is ignored.

(?imsx) specifies one or more embedded pattern-matching modifiers. If the
pattern is case insensitive, you can use (?i) at the front of the pattern.
An example is $pattern="(?i)foobar";. Letters that appear after
a hyphen (-) turn the modifiers off.

Selecting the Best Condition by Using Combining Operators

The elementary regular expressions (for example, \a and \w) that are described in
the preceding tables can match at most one substring at the given position in the input
string. However, operators that perform combining in typical regular expressions
combine elementary metacharacters to create more complex patterns. In an ambiguous
situation, these operators (see Table A1.9) can determine the best match or the worst
match. The match that is the best is always chosen.

2148 Selecting the Best Condition by Using Combining Operators � Appendix 2

Table A2.9 Best Match Using Combining Operators

Metacharacter Description

ST in the following example, specifies that AB and A’B’, and A and A’ are
substrings that can be matched by S, and that B and B’ are substrings
that can be matched by T:

� If A is a better match for S than A’, then AB is a better match
than A’B’.

� If A and A’ coincide, then AB is a better match than AB’ if B is a
better match for T than B’.

S|T specifies that when S can match, it is a better match than when only T
can match. The ordering of two matches for S is the same as for S.
Similarly, the ordering of two matches for T is the same as for T.

S{repeat-count} matches as SSS . . . S (repeated as many times as necessary).

S{min,max} matches as S{max}|S{max-1}| . . . |S{min+1}|S{min}.

S{min,max}? matches as S{min}|S{min+1}| . . . |S{max-1}|S{max}.

S?, S*, S+ same as S{0,1}, S{0, big-number}, S{1,big-number}, respectively.

S??, S*?, S+ same as S{0,1}?, S{0, big-number}?, S{1,big-number}?, respectively.

(?=S), (?<=S) considers the best match for S. (This is important only if S has
capturing parentheses, and back references are used elsewhere in the
whole regular expression.)

(?!S), (?<!S) unnecessary to describe the ordering for this grouping operator
because only whether S can match is important.

2149

A P P E N D I X

3
SAS Utility Macro

%DS2CSV Macro 2149

%DS2CSV Macro

Converts SAS data sets to comma-separated value (CSV) files.

Restriction: Must be in open code. Cannot be used in a DATA step.

Syntax

%DS2CSV(argument=value, argument=value,...)

Arguments That Affect Input/Output

csvfile=external-filename
specifies the name of the CSV file where the formatted output is to be written. If the
file that you specify does not exist, then it is created for you.

Note: Do not use the CSVFILE argument if you use the CSVFREF argument. �

csvfref=fileref
specifies the SAS fileref that points to the location of the CSV file where the
formatted output is to be written. If the file that you specify does not exist, then it is
created for you.

Note: Do not use the CSVFREF argument if you use the CSVFILE argument. �

openmode=REPLACE|APPEND
indicates whether the new CSV output overwrites the information that is currently
in the specified file or if the new output is appended to the end of the existing file.
The default value is REPLACE. If you do not want to replace the current contents,
then specify OPENMODE=APPEND to add your new CSV-formatted output to the
end of an existing file.

Note: OPENMODE=APPEND is not valid if you are writing your resulting
output to a partitioned data set (PDS) on z/OS. �

2150 %DS2CSV Macro � Appendix 3

Arguments That Affect MIME/HTTP Headers
For more information about MIME and HTTP headers, refer to the Internet Request

for Comments (RFC) documents RFC 1521 (http://asg.web.cmu.edu/rfc/rfc1521.html)
and RFC 1945 (http://asg.web.cmu.edu/rfc/rfc1945.html), respectively.

conttype=Y | N
indicates whether to write a content type header. This header is written by default.
Restriction: This argument is valid only when RUNMODE=S.

contdisp=Y | N
indicates whether to write a content disposition header. This header is written by
default.

Note: If you specify CONTDISP=N, then the SAVEFILE argument is ignored. �
Restriction: This argument is valid only when RUNMODE=S.

mimehdr1=MIME/HTTP-header
specifies the text that is to be used for the first MIME or HTTP header that is
written. This header is written after the content type and disposition headers. By
default, nothing is written for this header.
Restriction: This argument is valid only when RUNMODE=S.

mimehdr2=MIME/HTTP-header
specifies the text that is to be used for the second MIME or HTTP header that is
written. This header is written after the content type and disposition headers. By
default, nothing is written for this header.
Restriction: This argument is valid only when RUNMODE=S.

mimehdr3=MIME/HTTP-header
specifies the text that is to be used for the third MIME or HTTP header that is
written when RUNMODE=S is specified. This header is written after the content
type and disposition headers. By default, nothing is written for this header.
Restriction: This argument is valid only when RUNMODE=S.

mimehdr4=MIME/HTTP-header
specifies the text that is to be used for the fourth MIME or HTTP header that is
written. This header is written after the content type and disposition headers. By
default, nothing is written for this header.
Restriction: This argument is valid only when RUNMODE=S.

mimehdr5=MIME/HTTP-header
specifies the text that is to be used for the fifth MIME or HTTP header that is
written. This header is written after the content type and disposition headers. By
default, nothing is written for this header.

runmode=S | B
specifies whether you are running the %DS2CSV macro in batch or server mode. The
default setting for this argument is RUNMODE=S.

� Server mode (RUNMODE=S) is used with Application Dispatcher programs and
streaming output stored processes. Server mode causes DS2CSV to generate
appropriate MIME or HTTP headers. For more information about Application
Dispatcher, refer to the Application Dispatcher documentation at
http://support.sas.com/rnd/web/intrnet/dispatch.html.

� Batch mode (RUNMODE=B) means that you are submitting the DS2CSV macro
in the SAS Program Editor or that you included it in a SAS program.

SAS Utility Macro � %DS2CSV Macro 2151

Note: No HTTP headers are written when you specify batch mode. �

Restriction: RUNMODE=S is valid only when used within the SAS/IntrNet and
Stored Process servers.

savefile=filename
specifies the filename to display in the Web browser’s Save As dialog box. The
default value is the name of the data set plus “.csv”.

Note: This argument is ignored if CONTDISP=N is specified. �
Restriction: This argument is valid only when RUNMODE=S.

Arguments That Affect CSV Creation

colhead=Y | N
indicates whether to include column headings in the CSV file. The column headings
that are used depend on the setting of the LABELS argument. By default, column
headings are included as the first record of the CSV file.

data=SAS-data-set-name
specifies the SAS data set that contains the data that you want to convert into a CSV
file. This argument is required. However, if you omit the data set name, DS2CSV
attempts to use the most recently created SAS data set.

formats=Y | N
indicates whether to apply the data set’s defined variable formats to the values in the
CSV file. By default, all formats are applied to values before they are added to the
CSV file. The formats must be stored in the data set in order for them to be applied.

labels=Y | N
indicates whether to use the SAS variable labels that are defined in the data set as
your column headings. The DS2CSV macro uses the variable labels by default. If a
variable does not have a SAS label, then use the name of the variable. Specify
labels=N to use variable names instead of the SAS labels as your column headings.
See colhead on page 2151 argument for more information about column headings.

pw=password
specifies the password that is needed to access a password-protected data set. This
argument is required if the data set has a READ or PW password. (You do not need
to specify this argument if the data set has only WRITE or ALTER passwords.)

sepchar=separator-character
specifies the character that is used for the separator character. Specify the
two-character hexadecimal code for the character or omit this argument to get the
default setting. The default settings are 2C for ASCII systems and 6B for EBCDIC
systems. (These settings represent commas (,) on their respective systems.)

var=var1 var2 ...
specifies the variables that are to be included in the CSV file and the order in which
they should be included. To include all of the variables in the data set, do not specify
this argument. If you want to include only a subset of the variables, then list each
variable name and use single blank spaces to separate the variables. Do not use a
comma in the list of variable names.

where=where-expression
specifies a valid WHERE clause that selects observations from the SAS data set.
Using this argument subsets your data based on the criteria you supply for
where-expression.

2152 %DS2CSV Macro � Appendix 3

Details
The DS2CSV macro converts SAS data sets to comma-separated value (CSV) files. You
can specify the hexadecimal code for the separator character if you want to create some
other type of output file (for example, a tab-separated value file).

Example
The following example uses the %DS2CSV macro to convert the SASHELP.RETAIL

data set to a comma-separated value file:

%ds2csv (data=sashelp.retail, runmode=b, csvfile=c:\temp\retail.csv);

2153

A P P E N D I X

4
Recommended Reading

Recommended Reading 2153

Recommended Reading

Here is the recommended reading list for this title:
� An Array of Challenges—Test Your SAS Skills
� Base SAS Glossary

� Base SAS Procedures Guide
� Cody’s Data Cleaning Techniques Using SAS Software

� Combining and Modifying SAS Data Sets: Examples
� Debugging SAS Programs: A Handbook of Tools and Techniques

� Health Care Data and SAS

� The Little SAS Book: A Primer
� Output Delivery System: The Basics

� Quick Results with the Output Delivery System
� SAS Companion for OpenVMS on HP Integrity Servers

� SAS Companion for UNIX Environments
� SAS Companion for Windows

� SAS Companion for z/OS
� SAS Guide to Report Writing: Examples

� SAS Language Reference: Concepts

� SAS Metadata LIBNAME Engine: User’s Guide
� SAS National Language Support (NLS): Reference Guide

� SAS Output Delivery System: User’s Guide
� SAS Programming by Example

� SAS Scalable Performance Data Engine: Reference
� The SAS Workbook

� SAS XML LIBNAME Engine: User’s Guide

� Step-by-Step Programming with Base SAS Software
� Using the SAS Windowing Environment: A Quick Tutorial

For a complete list of SAS publications, go to support.sas.com/bookstore. If you
have questions about which titles you need, please contact a SAS Publishing Sales

2154 Recommended Reading � Appendix 4

Representative at:

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: 1-800-727-3228
Fax: 1-919-531-9439
E-mail: sasbook@sas.com
Web address: support.sas.com/bookstore

Customers outside the United States and Canada, please contact your local SAS office
for assistance.

2155

Index

& (ampersand) format modifier, definition 1593
@ (at sign) line-hold specifier, PUT statement 1665
@@ (at signs) line-hold specifier, PUT statement 1665
: (colon) format modifier 1591
: (colon) format modifier, definition 1593
; (semicolon), in data lines 1413, 1429
~ (tilde) format modifier 1591
~ (tilde) format modifier, definition 1593

Numbers
32-bit platforms

memory address of character variables 370
memory address of numeric variables 369

64-bit platforms
memory address of character variables 370

A
ABEND argument

ABORT statement 1392
ABORT statement 1392

arguments 1392
compared to STOP statement 1724
comparisons 1394
details 1394
examples 1395
without arguments 1392

ABS function 368
absolute value 368

sum of, for non-missing arguments 1112
access methods

non-sequential processing 59
ACCESS= option

LIBNAME statement 1609
ACCESS=READONLY option

CATNAME statement 1414
accrued interest

securities paying interest at maturity 687, 707
securities paying periodic interest 687, 707

ADD method 2025
consolidating with FIND method 2062

ADDR function 369
ADDRLONG function 370
aggregate storage location

filerefs for 1477
AIRY function 371

derivative of 624
alignment of output 1808

ALL argument
FILENAME statement 1475
LIBNAME statement 1609

ALL CLEAR option
CATNAME statement 1414

ALL LIST option
CATNAME statement 1414

ALLCOMB function 372
ALLPERM function 374
alphabetic characters

searching character string for 378
alphanumeric characters

searching character string for 376
ALTER= data set option 14
ALTER passwords 14, 1423

assigning to SAS files 49
AM or PM

datetime values with 153, 1303
time values with 248

ampersand (&) format modifier 1593
ampersand format modifier 1591
annuities

interest rate per period 702, 718
periodic payment 700, 716

anonymous FTP login 1503
ANYALNUM function 376
ANYALPHA function 378
ANYCNTRL function 380
ANYDIGIT function 381
ANYDTDTEw. informat 1257
ANYDTDTMw. informat 1259
ANYDTTMEw. informat 1262
ANYFIRST function 383
ANYGRAPH function 385
ANYLOWER function 387
ANYNAME function 389
ANYPRINT function 391
ANYPUNCT function 393
ANYSPACE function 395
ANYUPPER function 397
ANYXDIGIT function 398
APPEND= system option 1791
applet location 1792
APPLETLOC= system option 1792
arc tangent 404

of two numeric variables 405
arccosine 400
ARCOS function 400
ARCOSH function 400
arcsine 401

2156 Index

arguments 446, 645
converting to lowercase 891
converting words to proper case 1009
counting missing arguments 578
data type, returning 1183
difference between nthlag 645
extracting substrings 1106
format decimal values, returning 1158
format names, returning 1160
format width, returning 1162
informat decimal values, returning 1169
informat names, returning 1171
informat width, returning 1173
resolving 446
returning length of 863
searching for character values, equal to first argu-

ment 1190
searching for numeric values, equal to first argu-

ment 1191
size, returning 1178

arithmetic mean 902
array reference, explicit 1400

compared to ARRAY statement 1398
array reference statement 1400
ARRAY statement 1395

compared to array reference, explicit 1401
arrays 646

defining elements in 1395
describing elements to process 1400
finding contents 1166
finding dimensions 646
finding values in 1153
identifying 1152
lower bounds 859
upper bounds of 786
writing to 1666

ARSIN function 401
ARSINH function 402
ARTANH function 403
ASCII

converting character data to 108
ASCII characters, returning 428

a string of 583
by number 428
number of 1052

ASCII data
converting character data to, Base 64 encoding 109, 1239
converting to native format 1238

$ASCIIw. format 108
$ASCIIw. informat 1238
assignment statement 1402
asymmetric spelling differences 1095
at sign (@) argument

INPUT statement 1570
INPUT statement, column input 1585
INPUT statement, formatted input 1587
INPUT statement, named input 1597
PUT statement 1660
PUT statement, column output 1674
PUT statement, formatted output 1677
PUT statement, named output 1685

at sign (@) column pointer control
INPUT statement 1571
PUT statement 1660
WINDOW statement 1749

at sign (@) line-hold specifier
PUT statement 1665
PUT statement, column output 1665

at signs (@@) argument
INPUT statement 1571
INPUT statement, column input 1585
INPUT statement, formatted input 1587
INPUT statement, named input 1597
PUT statement 1660
PUT statement, column output 1674
PUT statement, formatted output 1677
PUT statement, named output 1685

at signs (@@) line-hold specifier, PUT statement 1665
ATAN function 404
ATAN2 function 405
ATTACH= option

FILENAME statement, EMAIL access method 1485
attachments to e-mail 1492
ATTRC function 406
ATTRIB statement 1403

arguments 1403
compared to FORMAT statement 1529
compared to INFORMAT statement 1567
compared to LENGTH statement 1606
comparisons 1405
details 1405
examples 1405
specifying formats with 86
specifying informats with 1220

attributes 2021
ATTRN function 408
AUTHDOMAIN= option

FILENAME statement, FTP access method 1496
FILENAME statement, URL access method 1516

authentication provider 1793
AUTHPROVIDERDOMAIN system option 1793
autocall macro files

starting position for reading variable-sized record in-
put 1934

autocall macro libraries
accessing lowercased members 1524
WebDAV location as 1524

autocall macros
executing from catalogs 1482

AUTOEXEC file
echoing to the log 1839

autoexec files
starting position for reading variable-sized record in-

put 1934
autosave file

location of 1795
AUTOSAVELOC= system option 1795
AUTOSKIP= option, WINDOW statement 1750
average 902

B
B8601DAw. format 138
B8601DAw. informat 1265
B8601DNw. format 139
B8601DNw. informat 1266
B8601DTw.d format 140, 1267
B8601DZw. format 142
B8601DZw.d informat 1268
B8601LZw. format 143
B8601TMw.d format 144

Index 2157

B8601TMw.d informat 1270
B8601TZw.d format 146
B8601TZw.d informat 1272
BAND function 413
base 3
Base 64 encoding

converting character data to ASCII text 109, 1239
base interval

shift interval corresponding to 840
$BASE64Xw. format 109
$BASE64Xw. informat 1239
batch processing

checkpoint-restart mode and 1417
error handling 1848
recording checkpoint-restart data for 1954
specifying with checkpoint-restart data 1956

BATCHFILE option
FILENAME statement, SFTP access method 1507

BCC= option
FILENAME statement, EMAIL access method 1486

BELL argument, DISPLAY statement 1442
Bernoulli distributions 555, 640

cumulative distribution functions 555
probability density functions 962

bessel function, returning value of 795, 848
BESTDw.p format 136
BESTw. format 135
beta distribution

returning a quantile from 415
beta distributions

cumulative distribution functions 556
probabilities from 984
probability density functions 962

BETA function 414
BETAINV function 415
BIDI text handling formats 99
big endian platforms

byte ordering 88
big endian platforms, byte ordering on 1221
bin specification

for printed output 1901
name of paper bin 1903

binary
converting character data to 110
converting numeric values to 138

binary data, converting to
character 1241
integers 1274

BINARY option
FILENAME statement, FTP access method 1496

binary zeros, converting to blanks 1244
$BINARYw. format 110
BINARYw. format 138
$BINARYw. informat 1241
BINARYw.d informat 1274
binding edge 1796
BINDING= system option 1796
binomial distributions 489, 557, 641

cumulative distribution functions 557
probabilities from 985
probability density functions 963
random numbers 489, 1037

bits, extracting 1274
BITSw.d informat 1274
bitwise logical operations

AND 413

EXCLUSIVE OR 427
NOT 424
OR 425
shift left 424
shift right 426

bivariate normal distribution
probability computed from 986

Black model
call prices for European options on futures 416
put prices for European options on futures 418

Black-Scholes model
call prices for European options on stocks 420

BLACKCLPRC function 416
BLACKPTPRC function 418
BLANK argument, DISPLAY statement 1442
BLANKPAGE option, PUT statement 1662
blanks 589

compressing 589, 600
converting binary zeros to 1244
converting to zeros 1276
removing from search string 1131
searching character string for 395
trimming trailing 1135, 1137

BLKSHCLPRC function 420
BLKSHPTPRC function 422
BLKSIZE= option

FILE statement 1459
INFILE statement 1545

BLOCKSIZE= option
FILENAME statement, FTP access method 1496
FILENAME statement, SOCKET access 1512
FILENAME statement, URL access method 1516

BLSHIFT function 424
BNOT function 424
bond-equivalent yield 704, 719
bookmarks 746

finding 982
setting 746

BOR function 425
BOTTOMMARGIN= system option 1797
BREAK command

DATA step debugger 2126
browsers

for ODS output 1862
for SAS Help 1862

BRSHIFT function 426
buffers

allocated for data set processing 15
extra buffers for navigating index files 1867
number for data sets 1798
page buffers for catalogs 1807
page size and 17
size of 1799
size of permanent buffer page 17
view buffer size 44
writing to disk 1851

buffers, allocating
SASFILE statement 1703

BUFNO= data set option 15
BUFNO system option 1798
BUFSIZE= data set option 17
BUFSIZE= system option 1799
BXOR function 427
BY-group access

spill files and 59

2158 Index

BY-group processing
SET statement for 1717

BY groups
identifying beginning and end of 1408
processing 1409

BY lines
printing 1802

BY processing 1409
with nonsorted data 1410

BY statement 1407
arguments 1407
details 1408
examples 1410
in DATA step 1408
in PROC steps 1409
specifying sort order 1410
with SAS views 1409

BY values
duplicates, MODIFY statement 1638

BY variables
customizing titles with 1730
existing in one data set but not another 1993
specifying 1410

BYE command, compared to ENDSAS statement 1455
BYERR system option 1801
BYLINE system option 1802
BYSORTED system option 1803
BYTE function 428
byte ordering 88, 1221
BZw.d informat 1276

compared to w.d informat 1363

C
CALCULATE command

DATA step debugger 2128
CALL ALLCOMB routine 429

in DATA step 430
with macros 429, 431

CALL ALLCOMBI routine 432
in DATA step 433
with macros 432, 433

CALL ALLPERM routine 434
CALL CATS routine 438
CALL CATT routine 440
CALL CATX routine 442
CALL COMPCOST routine 444
CALL EXECUTE routine 446
CALL GRAYCODE routine 447

in DATA step 448
%SYSCALL macro with 449, 450
with macros 448

CALL IS8601_CONVERT routine 451
CALL LABEL routine 454
CALL LEXCOMB routine 456

in DATA step 457
with macros 456, 457

CALL LEXCOMBI routine 459
with DATA step 460
with macros 460, 461

CALL LEXPERK routine 462
in DATA step 463
with macros 463, 465

CALL LEXPERM routine 466
in DATA step 468
with macros 467, 469

CALL LOGISTIC routine 470
CALL MISSING routine 471

comparison 471
details 471
examples 471

CALL MODULE routine 472
arguments 472
comparisons 473
details 472
examples 473
MODULEIN function and 473
MODULEN function and 474

CALL POKE routine 474
CALL POKELONG routine 476
call prices

European options on futures, Black model 416
European options on stocks, Black-Scholes model 420
for European options, based on Margrabe model 895

CALL PRXCHANGE routine 477
CALL PRXDEBUG routine 479
CALL PRXFREE routine 481
CALL PRXNEXT routine 482
CALL PRXPOSN routine 484
CALL PRXSUBSTR routine 487
CALL RANBIN routine 489
CALL RANCAU routine 491
CALL RANEXP routine 494
CALL RANGAM routine 496
CALL RANNOR routine 499
CALL RANPERK routine 501
CALL RANPERM routine 503
CALL RANPOI routine 505
CALL RANTBL routine 507
CALL RANTRI routine 510
CALL RANUNI routine 512
CALL routines 305

by category 342
calling 1412
Perl regular expression (PRX) CALL routines 331
random-number CALL routines 313
syntax 306

CALL SCAN routine 514
CALL SET routine 522
CALL SOFTMAX routine 525
CALL SORTC routine 526
CALL SORTN routine 527
CALL statement 1412
CALL STDIZE routine 528
CALL STREAMINIT routine 532
CALL SYMPUTX routine 534
CALL TANH routine 536
CALL VNAME routine 537
CALL VNEXT routine 539
CALLBOOLEANMETHOD method 2085
CALLBYTEMETHOD method 2085
CALLCHARMETHOD method 2085
CALLDOUBLEMETHOD method 2085
CALLFLOATMETHOD method 2085
CALLINTMETHOD method 2085
CALLLONGMETHOD method 2085
CALLSHORTMETHOD method 2085
CALLSTATICBOOLEANMETHOD method 2087
CALLSTATICBYTEMETHOD method 2087
CALLSTATICCHARMETHOD method 2087
CALLSTATICDOUBLEMETHOD method 2087
CALLSTATICFLOATMETHOD method 2087

Index 2159

CALLSTATICINTMETHOD method 2087
CALLSTATICLONGMETHOD method 2087
CALLSTATICSHORTMETHOD method 2087
CALLSTATICSTRINGMETHOD method 2087
CALLSTATICtypeMETHOD method 2087
CALLSTATICVOIDMETHOD method 2087
CALLSTRINGMETHOD method 2085
CALLtypeMETHOD method 2085
CALLVOIDMETHOD method 2085
CANCEL argument

ABORT statement 1393
CAPS system option 1804
capture buffers 1023
CARDIMAGE system option 1805
CARDS argument

INFILE statement 1544
CARDS statement 1413
CARDS4 statement 1413
carriage returns

searching character string for 395
case

converting argument words to proper case 1009
cashflow, enumerated

convexity for 605
modified duration for 659

cashflow stream, periodic
convexity for 606
modified duration for 660
present value for 1032

CAT function 541
CATALOG access method

See FILENAME statement, CATALOG access method
catalog entries

%INCLUDE with 1481
catalogs

concatenating 1414
concatenating, implicitly 1613, 1615
error handling 1830
executing autocall macros from 1482
%INCLUDE statement with several entries in single cata-

log 1542
number to keep open 1806
page buffers 1807
referencing as external files 1479
renaming entries 1058
search order for 1854

CATAMS entries
reading and writing 1481

CATCACHE= system option 1806
CATNAME statement 1414

arguments 1414
comparisons 1415
details 1414
examples 1415
options 1414

CATQ function 543
catrefs 1414
CATS function 547
CATT function 549
CATX function 551
Cauchy distributions 491, 557

cumulative distribution functions 557
probability density functions 964
random numbers 491, 1038

CBUFNO= system option 1807
$CBw. informat 1242

CBw.d informat 1277
CC= option

FILENAME statement, EMAIL access method 1487
CD= option

FILENAME statement, FTP access method 1496
FILENAME statement, SFTP access method 1507

CDF function 554
CEIL function 568
ceiling values 568
CEILZ function 569
CENTER system option 1808
CEXIST function 571
CGOPTIMIZE= system option 1808
CHAR function 572
character arguments

converting words to proper case 1009
returning value of 582

character attributes
returning the value of 406

character combinations 1809
character data

converting to ASCII 108
converting to ASCII text, Base 64 encoding 109, 1239
converting to binary 110
converting to EBCDIC 112
converting to hexadecimal 113
converting to octal 127
embedded blanks in 1594
reverse order, left alignment 131
reverse order, preserving blanks 130
uppercase conversion 131
varying length 132
writing 111, 134
writing in uppercase 114

character data, reading
from column-binary files 1242
standard format 1256
varying length fields 1255
with blanks 1242

character expressions 801
converting to uppercase 1139
encoding for searching 1093
first unique character 1155
left aligning 862
missing values, returning a result for 906
repeating 1060
replacing characters in 1129
replacing words in 1132
reversing 1062
right aligning 1064
searching by index 801
searching for specific characters 803
searching for words 804
selecting a word from 1077

character formats 99
character strings

character position of a word in 730
compressing specified characters 598
counting words in 614
first character in 741
number of a word in 730
returning single character from specified position 572
searching 730
searching for a character in a variable name 389
searching for alphabetic characters in 378
searching for alphanumeric characters in 376

2160 Index

searching for control characters in 380
searching for digits in 381
searching for first character in a variable name 383
searching for graphical characters in 385
searching for hexadecimal character in 398
searching for lowercase letter in 387
searching for printable character in 391
searching for punctuation character in 393
searching for uppercase letter in 397
searching for white-space character in 395

character values
based on true, false, or missing expressions 796
choice from a list of arguments 574
replacing contents of 1105
searching for, equal to first argument 1190

character variables
memory address of 370
sorting argument values 526

CHARCODE system option 1809
$CHARw. format 111
$CHARw. informat 1243

compared to $ASCII informat 1239
compared to $CHARZBw. informat 1244
compared to $EBCDICw. informat 1245
compared to $w. informat 1256

$CHARZBw. informat 1244
CHECK method 2027
CHECKPOINT EXECUTE_ALWAYS statement 1417
checkpoint-restart data

libref of library where saved 1955
recording for batch programs 1954
specifying batch programs with 1956

checkpoint-restart mode 1417
chi-squared distributions 558

cumulative distribution functions 558
noncentrality parameters 579
probabilities 987
probability density functions 964
quantiles 576

CHOOSEC function 574
CHOOSEN function 575
CINV function 576
CLEANUP system option 1810
CLEAR argument

FILENAME statement 1474, 1476
LIBNAME statement 1608

CLEAR method 2029
CLEAR option

CATNAME statement 1414
client/server transfers

number of observations to send 66
CLIPBOARD access method 1483
CLOSE function 577
CMD automatic variable 1752
CMD SAS variable, WINDOW statement 1752
CMISS function 578
CMPLIB= system option 1812
CMPMODEL= system option 1813
CMPOPT= system option 1814
CNONCT function 579
CNTLLEV= data set option 18
COALESCE function 581
COALESCEC function 582
code compilation

optimization level during 1808
code generation optimization 1814

coefficient of variation 619
COLLATE function 583
COLLATE system option 1816
collating output 1816
colon (:) format modifier 1591, 1593
COLOR= argument, WINDOW statement 1745
COLOR= option, WINDOW statement 1750
color printing 1817
COLORPRINTING system option 1817
column-binary, reading

with blanks 1243
column-binary data, reading

down a column 1327
punch-card code 1322

column-binary files, reading 1242
column input 1574, 1584
COLUMN= option

FILE statement 1459
INFILE statement 1545

column output 1663, 1674
column pointer controls

INPUT statement 1571
PUT statement 1660

columns
two-column page format 1470

COLUMNS= argument, WINDOW statement 1746
COMB function 584

logarithm of 861
combinations, computing 584

See permutations, computing
combinatorial CALL routines

all combinations 429
distinct non-missing, in lexicographic order 456, 462
indices 432
indices, in lexicographic order 459
subsetting 447

combinatorial functions
all combinations 372
distinct non-missing, in lexicographic order 873
indices, in lexicographic order 871
non-missing distinct, in lexicographic order 868
non-missing values, in lexicographic order 875
subsetting 781

combinatorial routines
non-missing values, in lexicographic order 466

comma-delimited data 1594, 1595
comma-separated value (CSV) files 2149
commas

in numeric values 147, 148
replacing decimal points with 208

COMMAw.d format 147
COMMAw.d informat 1278

compared to COMMAXw.d informat 1279
COMMAXw.d format 148
COMMAXw.d informat 1279

compared to COMMAw.d informat 1278
Comment statement 1417
comments 1417

in PDF documents 1908
COMPARE function 586
COMPBL function 589
COMPGED function 590
compilation

optimization level during 1808
compiler optimization 1814
compiler subroutines 1812

Index 2161

complementary error function 663
COMPLEV function 595
component object interface 2021
component objects 2021

dot notation 2022
rules for using 2023

COMPOUND function 597
compound interest 597
COMPRESS= data set option 19
COMPRESS function 589, 598

arguments 599
compared to COMPBL function 589
compressing blanks 600
compressing lowercase letters 601
compressing tab characters 601
details 600
examples 600
keeping characters in the list 601

COMPRESS= option
LIBNAME statement 1609

COMPRESS= system option 1818
compressed data sets

reusing freed space 56
reusing space when adding observations 1924

compressing 589
blanks 589

compressing character strings 598
blanks 600
keeping characters in the list 601
lowercase letters 601
tab characters 601

compressing data sets 19
random vs. sequential access 48

compressing observations 1818
compression

for device drivers supporting Deflate algorithm 1825
Universal Printers and SAS/GRAPH files 1981

concatenating catalogs
CATNAME statement 1414
implicitly 1613, 1615
logically concatenated catalogs 1415
nested catalog concatenation 1416
rules for 1415

concatenating data libraries 1613
logically 1614

concatenating data sets
SET statement for 1717, 1718

concatenation
with delimiter and quotation marks 543

conditional logic
for sending e-mail 1493

confidence intervals, computing 1002
CONSTANT function 602
constants, calculating

double-precision numbers, largest 603
double-precision numbers, smallest 604
Euler constant 603
exact integer 603
machine precision 605
natural base 602
overview 602

constructors 1433, 1438
CONTENT_TYPE= option

FILENAME statement, EMAIL access method 1487
CONTINUE argument, DM statement 1443

CONTINUE statement 1419
compared to LEAVE statement 1604

control characters
searching character string for 380

converting ISO 8601 intervals 451
convexity, for enumerated cashflow 605
convexity, for periodic cashflow stream 606
CONVX function 605
CONVXP function 606
copied records

truncating 1562
copies, specifying number of 1820
COPIES= system option 1820
copying

PDF documents 1910
corrected sum of squares 617
COS function 608
COSH function 609
cosine 608

inverse hyperbolic 400
COUNT function 609
COUNTC function 611
counting

missing arguments 578
words in a character string 614

COUNTW function 614
coupon period

coupons payable between settlement and maturity
dates 690, 709

days from beginning to settlement date 689, 708
days from settlement date to next coupon date 689, 709
next coupon date after settlement date 690, 709
number of days 689, 709
pervious coupon date before settlement date 690, 710

CPUCOUNT= system option 1821
CPUID system option 1822
CSS function 617
CSV files 2149
cumulative distribution functions 554

Bernoulli distribution 555
beta distribution 556
binomial distribution 557
Cauchy distribution 557
chi-squared distribution 558
exponential distribution 558
F distribution 559
gamma distribution 560
geometric distribution 560
hypergeometric distribution 560
Laplace distribution 561
logistic distribution 562
lognormal distribution 562
negative binomial distribution 562
normal distribution 563
Pareto distribution 564
Poisson distribution 565
T distribution 565
uniform distribution 565
Wald (Inverse Gaussian) distribution 566
Weibull distribution 566

cumulative interest 691, 710
cumulative principal 691, 710
CUROBS function 618
currency conversion formats 99
CV function 619

2162 Index

CVPBYTES= option
LIBNAME statement 1610

CVPENGINE= option
LIBNAME statement 1610

CVPMULTIPLIER= option
LIBNAME statement 1610

cycle index 813

D
DACCDB function 620
DACCDBSL function 621
DACCSL function 622
DACCSYD function 623
DACCTAB function 623
DAIRY function 624
damaged data sets 21
damaged data sets or catalogs 1830
data conversion

formats and 89
data libraries

associating librefs with 1612
concatenating 1613
concatenating, logically 1614
disassociating librefs from 1613
verifying existence of members 665
writing attributes to log 1613

data lines
as card images 1805
including 1537
length of sequence field 1937
reading 1413, 1429

data representation
output data sets 46

Data Set Data Vector (DDV), reading observations
into 674, 675

data set list
MERGE statement 1630
SET statement 1712

data set names, returning 658
data set options 10

by category 12
examples 10
input data sets with 10
loading hash objects with 1434, 1436
MODIFY statement with 1642
output data sets with 10
syntax 10
system option interactions with 11
system options and 1777

data set pointer, positioning at start of data set 1063
data set types

for specially structured data sets 67
data sets

See also output data sets
buffer size 1799
buffers allocated for processing 15
character attributes, returning value of 406
combining 1717
compressing 19
compressing on output 1818
concatenating 1717, 1718
conditions for selecting observations 68
containing hash object data 2057
contributing to current observation 33
converting to CSV files 2149

damaged 21, 1830
dialog box for entering passwords 50
dropping variables 22
empty 54
encrypting 23
extracting zip codes from 1017
first observation to process in single data set 26
generations for 27
generations for, specifying 28
interleaving 1717, 1718
keeping variables 36
labels for 38
last observation for processing 39
most recently created 1876
not found 1837
number of buffers 1798
numeric attributes, returning value of 408
one-to-one reading 1717, 1719
overwriting 54, 55
permanently storing, one-level names 1615
reading observations 1712, 1718
reading observations, more than once 1718
renaming 1059
repairing 21
replacing 55
replacing permanently stored 1923
reusing space in compressed data sets 1924
selecting observations from 68
shared access level 18
sorting 57
specially structured 67
tape volume position when closing 25
updated, evaluating against WHERE expression 69
verifying existence of 665
with same name 54, 55

DATA statement
arguments 1421
creating custom reports 1426
creating DATA step views 1424
creating input DATA step views 1425
creating output data sets 1424
creating stored compiled DATA step programs 1424
DEBUG option 2114
describing DATA step views 1424
details 1423
displaying nesting levels 1427
examples 1425
executing stored compiled DATA step programs 1425
keywords allowed in 1822
when not creating data sets 1424
without arguments 1421

DATA step 522, 533
aborting 1392
assigning data to macro variables 533
BY statement in 1408
CALL ALLCOMB routine in 430
CALL ALLCOMBI routine in 433
CALL GRAYCODE routine in 448
CALL LEXCOMB routine in 457
CALL LEXCOMBI routine with 460
CALL LEXPERK routine in 463
CALL LEXPERM routine in 468
generating random number streams with function

calls 313
linking SAS data set variables 522, 533
MODIFY statement in 1640

Index 2163

Perl regular expressions (PRX) in 331, 332
stopping 1700, 1724

DATA step component object interface 2021
DATA step component objects

creating instance of 2050, 2101
declaring 1430, 1433, 1437
instantiating 1430, 1437

DATA step debugger 2110
assigning commands to ENTER key 2131
assigning commands to function keys 2112
assigning new variable values 2137
commands by category 2125
continuous record of DATA step exceution 2139
customizing commands with macros 2112
DATA step generated by macros 2113
DEBUG option 2114
debugger sessions 2111
debugging, defined 2110
debugging DO loops 2124
deleting breakpoints 2129
deleting watch status 2129
description of 2110
displaying variable attributes 2130
displaying variable values 2132
entering commands 2111
evaluating expressions 2128
examples 2113
executing statements one at a time 2137
expressions and 2112
formats and 2119
formatted variable values 2124
help on commands 2134
jumping to program line 2134
list of commands 2125
listing items 2135
macro facility with 2112
macros as debugging tools 2112
quitting 2136
restarting suspended programs 2134
resuming DATA step execution 2133
starting DATA step execution 2133
suspending execution 2126, 2139
switching window control 2138
windows 2111

DATA step functions
within macro functions 310

DATA step programs
stored compiled, executing 1456

DATA step programs, retrieving source code from 1441
DATA step statements 1383

declarative 1383
executable 1383
global, by category 1389
global, definition 1389

DATA step views
creating 1424
describing 1424
retrieving source code from 1441
spill file for non-sequential processing 59
view buffer size 44

data summarization procedures
memory limits for 1957

data type, returning 1183
data validation 334
data values, reading 1217

data views
verifying existence of 666

DATALINES argument
INFILE statement 1544, 1557

DATALINES statement 1428
compared to DATALINES4 statement 1430
length of data 1928

DATALINES4 statement 1429
DATAn naming convention 1421
datasets

compiler subroutines in 1812
DATASTMTCHK= system option 1822
DATDIF function 625
date and time formats 99
date and time informats

B8601DN informat, ISO 8601 basic date notation, returns
the date in a datetime value 1266

B8601DT informat, ISO 8601 basic datetime notation, no
time zone 1267

date and time intervals 326
commonly used time intervals 327
definition 326
incrementing dates and times 327
interval names and SAS dates 326

date and time values
SHR records 1344

date calculations
days between dates 625
years between dates 1195

DATE function 628
date informats and functions

year cutoff 1996
date intervals

cycle index 813
recommended format for 824
seasonal cycle 820, 838
seasonal index 828

date stamp 1823
DATE system option 1823
date/time functions

date values, returning 901
dates, extracting from datetime value 629
dates, returning current 628, 629
datetime value, creating 643
day of the month, returning 630
day of week, returning 1190
hour value, extracting 791
Julian dates, converting to SAS values 628
Julian dates, from SAS date values 849
minute values, returning 905
month values, returning 913
seconds value, returning 1087
time, extracting from datetime values 1125
time, returning current 629
time intervals, extracting integer values of 816
time values, creating 788
year quarter, returning 1033
year quarter, returning date value from 1196
year value, returning 1193

date/time values, reading
date, yymm 1368
date, yymmn 1368
date values, dddmmmyy 1280
date values, dddmmmyy hh:mm:ss.ss 1281
date values, dddmmmyyyy 1280
date values, dddmmmyyyy hh:mm:ss.ss 1281

2164 Index

date values, ddmmyy 1283
date values, ddmmyyyy 1283
dates, mmddyy 1305
dates, mmddyyyy 1305
dates, yymmmdd 1366
dates, yyyymmmdd 1366
IBM mainframes 1315
IBM mainframes, RMF records 1326
IBM mainframes, SMF records 1347
Julian dates 1302
month and year values 1307
RMF records 1315
SMF records 1315
time, hh:mm:ss.ss 1349
TIME MIC values 1308
time-of-day stamp 1351
time values, IBM mainframe 1308
timer units 1352
year quarter 1369

date values
aligning output 833
as day of month 156
B8601DA format, ISO 8601 basic notation 138
B8601DA informat, ISO 8601 basic notation 1265
DATEw. format 151
day-of-week name 163
DDMMYYw. format 157
DDMMYYxw. format 158
DTDATEw. format 164
E8601DA format, ISO 8601 extended notation 170
E8601DA informat, extended notation 1286
E8601DN informat, ISO 8601 extended notation, returns

date in datetime value 1287
extracting from informat values 1257
holidays 789
incrementing 831
Julian dates 193
Julian day of the year 192
MMDDYYw. format 195
MMDDYYxw. format 197
MMYYw. format 200
MMYYxw. format 202
month name 204
month of the year 205
MONYYw. format 206
quarter of the year 222
quarter of the year in Roman numerals 223
WEEKDATEw. format 256
WEEKDATXw. format 257
WEEKDAYw. format 259
WORDDATEw. format 265
WORDDATXw. format 266
YEARw. format 269
YYMMDDw. format 273
YYMMDDxw. format 275
YYMMw. format 270
YYMMxw. format 271
YYMONw. format 276
YYQRw. format 280
YYQRxw. format 281
YYQw. format 277
YYQxw. format 279

DATEAMPMw.d format 153
DATEJUL function 628
DATEPART function 629

dates
time intervals aligned between two 822
time intervals based on three values 826
weekdays 953

dates, Julian 849
DATESTYLE= system option 1824
datetime values

$N8601EA format, ISO 8601 extended notation 120
datetime formats

ISO 8601 extended datetime, with time zone 173
ISO 8601 extended datetime with no time zone 172

DATETIME function 629
datetime informats

B8601DZ informat, ISO 8601 basic notation with time
zone 1268

datetime informats and functions
year cutoff 1996

datetime intervals
cycle index 813
recommended format for 824
seasonal cycle 820, 838
seasonal index 828

datetime values
B8601DN format, ISO 8601 basic datetime notation, for-

mats the date 139
B8601DT format, ISO 8601 basic notation, no time

zone 140
B8601DZ format, ISO 8601 basic notation with time

zone 142
converting to/from ISO 8601 intervals 451
DATEAMPMw.d format 153
DATETIMEw.d format 154
DTDATEw. format 164
DTMONYYw. format 165
DTWKDATXw. format 166
DTYEARw. format 167
DTYYQCw. format 168
E8601DN format, ISO 8601 extended, formats the

date 171
E8601DT informat, ISO 8601 extended, notation, no time

zone 1288
E8601DZ informat, ISO 8601 extended notation with time

zone 1289
E8601LZ informat, ISO 8601 extended local notation with

time zone 1291
extracting from informat values 1259
incrementing 831
$N8601 informat, ISO 8601 basic and extended nota-

tion 1249
$N8601B format, basic notation 116
$N8601BA format, ISO 8601 basic notation 117
$N8601E format, extended notation 118
$N8601E informat, extended notation 1251
$N8601EH format, ISO 8601 extended notation, hyphen

for omitted components 121
$N8601EX format, extended notation, x for omitted com-

ponents 122
$N8601H format, basic notation, hyphen for omitted com-

ponentents 123
$N8601X format, x for omitted components 125
time intervals based on three values 826
with AM or PM 153

datetime vlaues
YMDDTTMw.d informat 1364

DATETIMEw. informat 1281
DATETIMEw.d format 154

Index 2165

DATEw. format 151
DATEw. informat 1280
DAY function 630
DAYw. format 156
DBCS formats 99
DCLOSE function 631
DCREATE function 632
DDMMYYw. format 157
DDMMYYw. informat 1283
DDMMYYxw. format 158
DDV (Data Set Data Vector) , reading observations

into 675
DDV (Data Set Data Vector), reading observations into 674
/DEBUG argument

DATA statement 1421
DEBUG option

DATA statement 2114
FILENAME statement, FTP access method 1496
FILENAME statement, SFTP access method 1507
FILENAME statement, URL access method 1516
FILENAME statement, WebDAV access method 1520

DEBUGGER LOG window 2111
DEBUGGER SOURCE window 2111
debugging

See also DATA step debugger
writing Perl debug output to log 341

DEC format
integer binary (fixed-point) values in 189
positive integer binary (fixed-point) values in 219
reading integer binary values in 1299
reading positive integer binary values in 1320

decimal places
aligned 136, 149

decimal points
replacing with commas 208

decimal points, reading as commas 1309
declarative DATA step statements 1383
declarative statements 1383
DECLARE statement

comparisons 1434
details 1433
hash and hash iterator arguments 1430
hash and hash iterator objects 1430
hash object examples 1434

DECLARE statement, Java object 1437
declining balance method 704, 719
DEFAULT= argument

INFORMAT statement 1566
LENGTH statement 1606

DEFINEDATA method 2031
DEFINEDONE method 2033
DEFINEKEY method 2034
Deflate compression algorithm 1825
DEFLATION= system option 1825
degrees

geodetic distance input in 772
DELETE argument, DISPLAY statement 1442
DELETE command

DATA step debugger 2129
DELETE method 2035

java object 2089
DELETE statement 1440

compared to DROP statement 1452
compared to IF statement, subsetting 1534

delimited data 1595
reading 1554

reading from external file 1476
DELIMITER= option

FILE statement 1459
INFILE statement 1545, 1557

delimiter sensitive data
FILE statement 1461

delimiters
concatenation and 543
INFILE statement 1557

DEPDB function 633
DEPDBSL function 634
depreciation 620

accumulated declining balance 620, 621
accumulated from tables 623
accumulated straight-line 622
accumulated straight-line, converting from declining bal-

ance 621
accumulated sum-of-years 623
declining balance 633
declining balance method 704, 719
depreciation coefficient 688, 708
double-declining balance method 692, 711
fixed-declining balance method 692, 710
for each accounting period 688, 708
from tables 637
straight-line 622, 635, 703, 718
straight-line, converting from declining balance 634
sum-of-years-digits 703, 718, 636

DEPSL function 635
DEPSYD function 636
DEPTAB function 637
DEQUOTE function 638
DESC= option

FILENAME statement, CATALOG access method 1480
DESCENDING argument

BY statement 1407
DESCRIBE command

DATA step debugger 2130
DESCRIBE statement 1441
descriptive statistic functions 309
DETAILS system option 1826
deviance, computing

Bernoulli distribution 640
binomial distribution 641
Gamma distribution 641
inverse Gaussian (Wald) distribution 642
normal distribution 642
overview 640
Poisson distribution 643

DEVIANCE function 640
device drivers

supporting Deflate compression algorithm 1825
DEVICE= system option 1827
DHMS function 643
dialog boxes

for entering data set passwords 50
DIF function 645
difference between nthlag 645
DIGAMMA function 646
digital signature 900
digits

searching character string for 381
DIM function 646, 787

compared to HBOUND function 787
DINFO function 648

2166 Index

DIR option
FILENAME statement, FTP access method 1497
FILENAME statement, SFTP access method 1507
FILENAME statement, WebDAV access method 1520

direct access
by indexed values 1638
by observation number 1639

directories 631
assigning/deassigning filerefs 680
closing 631, 670
creating 632
opening 652
reading and writing from 1505
reading from member of 1524
renaming 1058
writing to new member of 1523

directories, returning
attribute information 653
information about 648
number of information items 655
number of members in 651

directory listings
retrieving 1502

directory members 656
closing 670
name of, returning 656

discount rate 692, 711
%DISPLAY macro

compared to WINDOW statement 1752
DISPLAY= option, WINDOW statement 1751
DISPLAY statement 1441

compared to WINDOW statement 1752
DIVIDE function 649
division

ODS missing values and 649
DKRICOND= system option 1828
DKROCOND= system option 1829
DLDMGACTION= data set option 21
DLDMGACTION= system option 1830
DLMSOPT= option

FILE statement 1460
INFILE statement 1546

DLMSTR= option
FILE statement 1460
INFILE statement 1545

DM statement 1443
DMR system option 1830
DMS system option 1831
DMSEXP system option 1832
DMSLOGSIZE= system option 1833
DMSOUTSIZE= system option 1834
DMSPGMLINESIZE= system option 1835
DMSSYNCHK system option 1835
DNUM function 651
DO-loop processing

termination value 1719
DO loops

debugging 2124
DO statement 1445
DO statement, iterative 1446
DO UNTIL statement 1450
DO WHILE statement 1451
ending 1453
GO TO statement 1532
resuming 1419, 1604
stopping 1419, 1604

DO statement 1445
compared to DO UNTIL statement 1450
compared to DO WHILE statement 1451

DO statement, iterative 1446
compared to DO statement 1445
compared to DO UNTIL statement 1450
compared to DO WHILE statement 1451

DO UNTIL statement 1450
compared to DO statement 1445
compared to DO statement, iterative 1448
compared to DO WHILE statement 1451

DO WHILE statement 1451
compared to DO statement 1445
compared to DO statement, iterative 1448
compared to DO UNTIL statement 1450

dollar price
converting from decimal number to fraction 693, 711
converting from fraction to decimal number 693, 711

dollar sign ($) argument
INPUT statement 1570
INPUT statement, column input 1584
INPUT statement, named input 1597
LENGTH statement 1605

DOLLARw.d format 160
DOLLARXw.d format 161
domain suffix

associating with authentication provider 1793
DOPEN function 652
DOPTNAME function 653
DOPTNUM function 655
dot notation 2022

syntax 2022
double-declining balance method 692, 711
double-precision number constants

largest 603
smallest 604

double quotation marks
data values in 128

double trailing @
INPUT statement, list 1592

DOWNAMEw. format 163
DREAD function 656
DROP= data set option 22

compared to DROP statement 1452
error detection for input data sets 1828

DROP= DATA step option
error detection for output data sets 1829

DROP statement 1452
compared to DELETE statement 1440
compared to KEEP statement 1600
error detection for output data sets 1829

DROPNOTE function 657
DROPOVER option

FILE statement 1460
%DS2CSV macro 2149
DSD option

FILE statement 1461
INFILE statement 1546, 1558

DSNAME function 658
DSNFERR system option 1837
DTDATEw. format 164
DTMONYYw. format 165
DTRESET system option 1837
DTWKDATXw. format 166
DTYEARw. format 167
DTYYQCw. format 168

Index 2167

duation values
$N8601 informat, ISO 8601 basic and extended nota-

tion 1249
Dunnett’s one-sided test 995
Dunnett’s two-sided test 996
duplex printing 1838
DUPLEX system option 1838
DUR function 659
duration

Macauley modified 696, 713
securities with periodic interest payments 693, 712

duration values
converting to/from ISO 8601 intervals 451
$N8601B format, basic notation 116
$N8601BA format, ISO 8601 basic notation 117
$N8601E format, extended notation 118
$N8601E informat, extended notation 1251
$N8601EA format, ISO 8601 extended notation 120
$N8601EH format, ISO 8601 extended notation, hyphen

for omitted components 121
$N8601EX formats, extended notation, x for omitted com-

ponents 122
$N8601H format, basic notation, hyphen for omitted com-

ponentents 123
$N8601X format, x for omitted components 125

DURP function 660
Dw.p format 149

E
e-mail

attachments 1492
creating and sending images 1494
options for FILENAME statement, EMAIL access

method 1485
password 1845
procedure output in 1494
sending from SAS with SMTP 1485

E8601DAw. format 170
E8601DAw. informat 1286
E8601DNw. format 171
E8601DNw. informat 1287
E8601DTw.d format 172
E8601DTw.d informat 1288
E8601DZw. format 173
E8601DZw.d informat 1289
E8601LZw. format 175
E8601LZw.d informat 1291
E8601TMw.d format 176
E8601TMw.d informat 1293
E8601TZ 1294
E8601TZw.d format 178
E8601TZw.d informat 1294
EBCDIC

converting character data to 112
numeric data in 227

EBCDIC characters 428
getting by number 428
returning a string of 583
returning numeric value of 1052

EBCDIC data
convert to native format 1245
reading 1329

$EBCDICw. format 112
$EBCDICw. informat 1245

compared to S370FFw.d informat 1329

ECHOAUTO system option 1839
effective annual interest rate 694, 712
EMAIL (SMTP) access method

See FILENAME statement, EMAIL (SMTP) access
method
EMAILAUTHPROTOCOL= system option 1840
EMAILFROM system option 1841
EMAILHOST system option 1841
EMAILID= system option 1843
EMAILPORT system option 1844
EMAILPW= system option 1845
embedded blanks

character data with 1594
embedded characters, removing 1278, 1279
empty data sets 54
encoded passwords 1503
encoding

for output files 1472
formats and 89

ENCODING= option
FILE statement 1461, 1472
FILENAME statement 1473, 1478
FILENAME statement, EMAIL access method 1487
FILENAME statement, FTP access method 1497
FILENAME statement, SOCKET access 1512
FILENAME statement, WebDAV access method 1521
INFILE statement 1547, 1565

encoding strings 1093
ENCRYPT= data set option 23
encryption

output data sets 23
END= argument

MODIFY statement 1636
UPDATE statement 1735

END= option
INFILE statement 1547
SET statement 1712, 1720

END statement 1453
ENDSAS command, compared to ENDSAS statement 1455
ENDSAS statement 1454
ENGINE= system option 1846
ENTER command

DATA step debugger 2131
enumerated cashflow

convexity for 605
modified duration for 659

environment variables
length of 661

ENVLEN function 661
EOF= option

INFILE statement 1547
EOV= option

INFILE statement 1547
EQUALS method 2036
ERF function 662
ERFC function 663
error detection levels

input data sets 1828
output data sets 1829

error function 662
error function, complementary 663
error handling

catalogs 1830
format not found 1854
in batch processing 1848
numeric data 1874

2168 Index

error messages 1117
BY variable exists in one data set but not another 1993
for _IORC_ variable 845
maximum number printed 1849
overprinting 1897
returning 1117
SORT porcedure 1801
writing 1455

error response 1846
ERROR statement 1455
ERROR variable 1455
ERRORABEND system option 1846
ERRORBYABEND system option 1847
ERRORCHECK= system option 1848
ERRORS= system option 1849
EUCLID function 664
Euclidean norm

calculating with variable list 664
of non-missing arguments 664

Euler constants 603
European options on futures

call prices, based on Black model 416
put prices, based on Black model 418

European options on stocks
call prices, based on Black-Scholes model 420
call prices, based on Margrabe model 895
put prices based on Margrabe model 897

Ew. format 169
Ew.d informat 1285
exact integer constants 603
EXAMINE command

DATA step debugger 2132
EXCEPTIONCHECK method 2090
EXCEPTIONCLEAR method 2091
EXCEPTIONDESCRIBE method 2094
executable DATA step statements 1383
executable statements 1383
EXECUTE CALL routine 446
EXECUTE statement 1456
EXIST function 665
existence of software image 909
EXP function 667
EXPANDTABS option

INFILE statement 1547
EXPLORER system option 1850
Explorer window

invoking 1832, 1850
exponential distribution 494
exponential distributions 558

cumulative distribution functions 558
probability density functions 965
random numbers 494, 1049

exponential functions 667
expressions

character values based on 796
DATA step debugger and 2112
numeric values based on 798

expressions, summing 1725
external files 657

appending records to 669
assigning filerefs 682
associating filerefs 1476
closing 670
deassigning filerefs 680
definition 1475
deleting 673

disassociating filerefs 1474, 1476
encoding specification 1473, 1478
getting information about 751
identifying a file to read 1543
including 1541
logical record length for reading and writing 1884
names of information items 750
note markers, returning 657
number of information items 751
opening 747
opening by directory id 914
opening by member name 914
pathnames, returning 958
pointer to next record 752
reading 757
reading delimited data from 1476
referencing catalogs as 1479
renaming 1058
size of current record 760
size of last record read 760
updating in place 1467, 1553, 1561
verifying existence 677, 679
writing 763
writing attributes to log 1475, 1476

external files, reading 757
to File Data Buffer (FDB) 757

external programs
passing parameter strings to 1905

external routines
calling, without return code 472

extracting strings from substrings 337

F
F distributions 559

cumulative distribution functions 559
noncentrality parameter 744
probabilities from 988
probability density functions 965
quantiles 736

FACT function 668
logarithm of 878

factorials, computing 668
false expressions 796, 798
FAPPEND function 669
FCLOSE function 670
FCOL function 672
FDELETE function 673
FETCH function 674
FETCHOBS function 675
FEXIST function 677
FGET function 678

setting token delimiters for 761
FILE argument

ABORT statement 1393
File Data Buffer (FDB) 672

column pointer, setting 754
copying data from 678
current column position 672
moving data to 756
reading external files to 757

file extensions
attaching automatically 1525

file information items, value of 735
file manipulation

functions for 311

Index 2169

FILE= option
FILE statement 1466

file pointer, setting to start of file 758
FILE statement 1457

arguments 1457
arranging contents of entire page 1470
comparisons 1469
current output file 1470, 1471
details 1467
encoding for output file 1472
examples 1469
executing statements at new page 1469
external files, updating in place 1467
operating environment options 1467
options 1459
output buffer, accessing contents 1467
output line too long 1471
page breaks 1470
TCP/IP socket and 1471
updating _FILE_ variable 1468

FILE variable
updating 1468

FILECLOSE= data set option 25
FILEEXIST function 679
FILEEXT option

FILENAME statement, FTP access method 1497
FILENAME statement, WebDAV access method 1521,

1525
FILENAME function 680

arguments 680
details 681
examples 682
filerefs for external files 682
filerefs for pipe files 682
system-generated filerefs 682

FILENAME= option
FILE statement 1462
INFILE statement 1547

FILENAME statement 1473
arguments 1473
compared with REDIRECT statement 1689
comparisons 1476
definitions 1475
details 1475
disassociating filerefs 1474, 1476
encoding specification 1473, 1478
examples 1476
filerefs for aggregate storage location 1477
filerefs for external files 1476
filerefs for output devices 1476
LIBNAME statement and 1477
operating environment information 1475
operating environment options 1475
options 1475
reading delimited data from external files 1476
routing PUT statement output 1478
SOCKET access method 1512
writing file attributes to log 1475, 1476

FILENAME statement, CATALOG access method 1479
arguments 1479
catalog options 1480
details 1481
examples 1481
executing autocall macros from catalogs 1482
%INCLUDE with catalog entries 1481
reading and writing CATAMS entries 1481

writing to SOURCE entries 1482
FILENAME statement, CLIPBOARD access method 1483
FILENAME statement, EMAIL (SMTP) access method

arguments 1485
attachments with e-mail 1492
conditional logic in DATA step 1493
creating and e-mailing images 1494
details 1492
e-mail options 1485
examples 1492
PUT statement syntax for 1488
sending procedure output 1494

FILENAME statement, FTP access method 1495
arguments 1495
comparisons 1502
creating files on remote host 1503
creating transport libraries with transport engine 1504
encoded passwords 1503
examples 1502
FTP anonymous login 1503
FTP options 1496
importing transport data sets 1504
proxy servers 1506
reading and writing from directories 1505
reading files from remote host 1502
reading S370V files on z/OS 1503
retrieving directory listings 1502
transporting libraries 1504

FILENAME statement, SFTP access method 1507
arguments 1507
comparisons 1510
details 1509
examples 1510
prompts 1510
SFTP options 1507

FILENAME statement, SOCKET access method 1512
client mode 1514
details 1514
examples 1514
server mode 1514
TCPIP options 1512

FILENAME statement, URL access method 1516
accessing files at a Web site 1519
arguments 1516
details 1518
examples 1519
reading part of a URL file 1519
URL options 1516
user ID and password 1519

FILENAME statement, WebDAV access method 1520
accessing files at a Web site 1523
accessing files with mixed-cased names 1524
accessing lowercased autocall macro member 1524
arguments 1520
automatically attaching file extensions 1525
details 1522
examples 1523
proxy servers 1523
reading from directory member 1524
WebDAV location as autocall macro library 1524
WebDAV options 1520
writing to new directory member 1523

FILEREF function 683
filerefs

assigning to directories 680
assigning to external files 682

2170 Index

assigning to output devices 680
assigning to pipe files 682
associating with aggregate storage location 1477
associating with external files 1476
associating with output devices 1476
deassigning 680
definition 1475
disassociating from external files 1474, 1476
FILENAME function 680
FILENAME statement 1473
system-generated 682
verifying 683

files, master
updating 1735

FILESYNC= system option 1851
FILEVAR= option

FILE statement 1462, 1471
INFILE statement 1548, 1561

FINANCE function 684
financial calculations 684
financial functions 309

pricing functions 310
FIND function 721
FIND method 2038

consolidating with ADD method 2062
FINDC function 724
FIND_NEXT method 2040
FIND_PREV method 2042
FINDW function 730
FINFO function 735

compared to FOPTNUM function 751
FINV function 736
FIPNAME function 737
FIPNAMEL function 738
FIPS codes

converting to mixed case state names 738
converting to postal codes 739
converting to uppercase state names 737
converting zip codes to 1201

FIPSTATE function 739
FIRST function 741
FIRST method 2043
FIRST. variable 1408
FIRSTOBS= data set option 26
FIRSTOBS= option

INFILE statement 1548
FIRSTOBS= system option 1852
fixed-declining balance method 692, 710
fixed-point values

DEC format 189, 219
Intel format 189, 219
reading in Intel and DEC formats 1299, 1320
writing 188, 217

floating-point data, reading 1296
floating-point data (IEEE), reading 1301
floating-point values 180

IEEE 191
FLOATw.d format 180
FLOATw.d informat 1296
FLOOR function 742
floor values 742
FLOORZ function 743
FLOWOVER option

FILE statement 1462
INFILE statement 1548, 1559

FLUSHJAVAOUTPUT method 2095

FMTERR system option 1854
FMTSEARCH= system option 1854
FNONCT function 744
FNOTE function 746
font embedding 1855
font selector window

listing only SAS fonts 1888
FONTEMBEDDING system option 1855
FONTRENDERING= system option 1856
fonts

rendering with operating system or FreeType en-
gine 1856

FONTSLOC= system option 1857
FOOTNOTE statement 1525

arguments 1525
comparisons 1528
details 1527
examples 1528
without arguments 1525

footnotes
customizing with ODS 1730

FOOTNOTES option
FILE statement 1462

FOPEN function 747
FOPTNAME function 735, 750

compared to FINFO function 735
compared to FOPTNUM function 751

FOPTNUM function 735, 751
compared to FINFO function 735

form feeds
searching character string for 395

format catalogs
search order for 1854

format decimal values, returning 1157
arguments 1158
variables 1157

format names, returning 1159
arguments 1160
variables 1159

FORMAT statement 1529
specifying formats with 86

format width, returning 1159
arguments 1162
variables 1159, 1161

formats 84
applying 1027
associating with variables 1403, 1529
by category 99
byte ordering and 88
character, specifying at run time 1028
data conversions 89
DATA step debugger and 2119
encodings 89
integer binary notation 89
name length 1987
not found 1854
numeric, specifying at run time 1030
packed decimal data 90
permanent 87
recommended for date, time, or datetime intervals 824
returning 1144, 1156, 1163
specifying 85
specifying with ATTRIB statement 86
specifying with FORMAT statement 86
specifying with PUT function 86
specifying with PUT statement 85

Index 2171

specifying with %SYSFUNC function 86
syntax 84
temporary 87
user-defined 87
zoned decimal data 90

formatted input 1574, 1587
modified list input vs. 1593

formatted output 1663, 1676
formatting characters 1858
FORMCHAR= system option 1858
FORMDLIM= system option 1859
forms

default form for printing 1860
FORMS= system option 1860
FPOINT function 752
FPOS function 754
FPUT function 756
fractions 182, 267
FRACTw. format 182
FREAD function 757
FREWIND function 758
FRLEN function 760
FROM e-mail option 1841
FROM= option

FILENAME statement, EMAIL access method 1487
FSEP function 761
FTP

anonymous login 1503
FTP access method

See FILENAME statement, FTP access method
functions 305

by category 342
COMB 584
CONSTANT 602
DATA step functions within macro functions 310
DATDIF 625
descriptive statistic functions 309
DEVIANCE 640
FACT 668
file manipulation with 311
financial functions 309
for Web applications 342
JULDATE 849
Perl regular expression (PRX) functions 331
PERM 981
pricing functions 310
PROBMC 992
random-number functions 313
restrictions on arguments 307
syntax 305
target variables 308
YRDIF 1195

future value
of an investment 694, 712
of initial principal 694, 712

future value of periodic savings 1076
futures

call prices for European options on, Black model 416
put prices for European options on, Black model 418

FUZZ function 762
FWRITE function 763

G
GAMINV function 764

gamma distributions 496, 560, 641
cumulative distribution functions 560
probabilities from 989
probability density functions 966
quantiles 764
random numbers 496, 1050

GAMMA function 765
natural logarithm of 879
returning value of 765

GARKHCLPRC function 766
GARKHPTPRC function 768
Garman-Kohlhagen model

call prices for European options on stocks 766
GCD function 770
generation data sets

renaming 1060
verifying existence of 666

generations
maximum number of versions 27
modifying the number of 27
requesting for data sets 27
specifying for data sets 28

GENMAX= data set option 27
GENNUM= data set option 28
geodetic distance 771

between two zip codes 1199
in kilometers 772
in miles 772
input measured in degrees 772
input measured in radians 772

GEODIST function 771
GEOMEAN function 773
GEOMEANZ function 775
geometric distributions 560

cumulative distribution functions 560
probability density functions 966

geometric mean 773
zero fuzzing 775

GETBOOLEANFIELD method 2097
GETBYTEFIELD method 2097
GETCHARFIELD method 2097
GETDOUBLEFIELD method 2097
GETFLOATFIELD method 2097
GETINTFIELD method 2097
GETLONGFIELD method 2097
GETOPTION function 776

changing YEARCUTOFF system option with 777
obtaining reporting options 777

GETSHORTFIELD method 2097
GETSTATICBOOLEANFIELD method 2099
GETSTATICBYTEFIELD method 2099
GETSTATICCHARFIELD method 2099
GETSTATICDOUBLEFIELD method 2099
GETSTATICFLOATFIELD method 2099
GETSTATICINTFIELD method 2099
GETSTATICLONGFIELD method 2099
GETSTATICSHORTFIELD method 2099
GETSTATICSTRINGFIELD method 2099
GETSTATICtypeFIELD method 2099
GETSTRINGFIELD method 2097
GETtypeFIELD method 2097
GETVARC function 778
GETVARN function 780
global DATA step statements

by category 1389
definition 1389

2172 Index

GO command
DATA step debugger 2133

GO TO statement 1532
GRAPH window

displaying SAS/GRAPH output in 1861
graphical characters

searching character string for 385
graphics options

returning value of 776
GRAYCODE function 781
greatest common divisor 770
GROUP= operator, WINDOW statement 1747
GROUPFORMAT argument

BY statement 1407
grouping observations 1411

with formatted values 1410
GRSEG catalog entries

ODS styles in graphs stored as 1861
GSTYLE system option 1861
GWINDOW system option 1861

H
hardware information, writing to SAS log 1822
HARMEAN function 784
HARMEANZ function 785
harmonic mean 784

zero fuzzing 785
hash iterator objects 1431

deleting 2035
hash objects 1430

adding data to 2025
checking for keys 2027
clearing 2029
completion of key and data definitions 2033
consolidaitng FIND and ADD methods 2062
creating instance of DATA step component object 2050,

2101
data sets containing hash object data 2057
declaring and instantiating with DECLARE state-

ment 1435
declaring and instantiating with _NEW_ operator 1434
defining data to be stored 2031
defining key variables 2034
deleting 2035
determining if specified key is stored in 2038
determining if two are equal 2036
determining previous item in list 2047
first value in underlying object 2043
instantiating and sizing 1435
item size 2048
last value in underlying object 2049
loading with data set options 1434, 1436
next item in data item list 2045
next value in underlying object 2055
number of items in 2056
previous value in underlying object 2061
removing data 2064, 2067
replacing data 2069, 2072
retrieving and storing summary values 2077, 2078
retrieving data items 2040, 2042
starting key item for iteration 2074

hash table size 1432
HAS_NEXT method 2045
HAS_PREV method 2047

HBOUND function 647, 786
compared to DIM function 647

HEADER= option
FILE statement 1462, 1469

HEADERS= option
FILENAME statement, URL access method 1517

Hebrew text handling formats 99
Help

browser for 1862
online training courses 1979
remote help browser 1863
remote help client 1864

HELP command
DATA step debugger 2134

HELPBROWSER= system option 1862
HELPENCMD system option 1863
HELPHOST= system option 1863
HELPPORT= system option 1864
hexadecimal

converting character data to 113
converting real binary (floating-point) values to 183
packed Julian dates in 211
packed Julian dates in, for IBM 213

hexadecimal binary values, converting to integers 1297
hexadecimal binary values, converting to real binary 1297
hexadecimal characters

searching character string for 398
hexadecimal data, converting to character 1246
hexadecimal values

for system options 1770
reading packed Julian date values in, for IBM 1313
reading packed Julian dates in, for IBM 1314

$HEXw. format 113
HEXw. format 183
$HEXw. informat 1246

compared to $BINARYw. informat 1241
HEXw. informat 1297

compared to $HEXw. informat 1247
HHMMw.d format 185
HMS function 788
HOLIDAY function 789
holidays

date value for 789
user-supplied 1873

horizontal tabs
searching character string for 395

HOST= option
FILENAME statement, FTP access method 1497
FILENAME statement, SFTP access method 1508

HOSTRESPONSELEN= option
FILENAME statement, FTP access method 1498

HOUR function 791
HOURw.d format 187
HTML

decoding 792
encoding 793

HTMLDECODE function 792
HTMLENCODE function 793
HTTP server

highest port number for 1865
lowest port number for 1866

HTTPSERVERPORTMAX 1865
HTTPSERVERPORTMAX= system option 1865
HTTPSERVERPORTMIN 1866
HTTPSERVERPORTMIN= system option 1866

Index 2173

hyperbolic cosine 609
inverse 400

hyperbolic sine 1089
inverse 402

hyperbolic tangent 536
inverse 403

hyperbolic tangents 1124
hypergeometric distributions 560

cumulative distribution functions 560
probabilities from 990
probability density functions 967

I
I/O control

MODIFY statement 1649
IBESSEL function 795
IBM

packed Julian dates in hexadecimal for 213
IBM mainframe format

integer binary (fixed-point) values in 228
numeric data in 227
packed decimal data in 231
positive integer binary (fixed-point) values in 234
real binary (floating-point) data in 236
unsigned integer binary (fixed-point) values in 230
unsigned packed decimal data in 233
unsigned zoned decimal data in 241
zoned decimal data 237
zoned decimal leading-sign data in 238
zoned decimal separate leading-sign data in 239
zoned decimal separate trailing-sign data in 240

IBM packed decimal data, reading 1311
IBRw.d format 189
IBRw.d informat 1299
IBUFNO= system option 1867
IBUFSIZE= system option 1868
IBw.d format 188
IBw.d informat 1298

compared to S370FIBw.d informat 1330
ICOLUMN= argument, WINDOW statement 1746
IDXNAME= data set option 30
IDXWHERE= data set option 32
IEEE floating-point values 191

reading 1301
IEEEw.d format 191
IF, THEN/ELSE statements 1535

compared to IF statement, subsetting 1534
IF statement, subsetting 1533

compared to DELETE statement 1440
IFC function 796
IFN function 798
images

sending in e-mail 1494
IML procedure

MODULEIN function in 473
IMPORTANCE= option

FILENAME statement, EMAIL access method 1488
importing

transfer data sets 1504
IN= data set option 33
%INCLUDE statement 1537

accessing lowercased autocall macro members 1524
arguments 1537
catalog entries with 1481
comparisons 1541

data sources for 1540
details 1540
examples 1541
including external files 1541
including keyboard input 1542
including previously submitted lines 1542
processing large amounts of data 1710
rules for using 1540
starting position for reading variable-sized record in-

put 1934
when to use 1540
with several entries in single catalog 1542

including programming statements and data lines 1537
incrementing values 831
INDEX= data set option 35
index files

extra buffers for navigating 1867
INDEX function 801

compared to INDEXC function 803
INDEXC function 803
indexed values

direct access by 1638
indexes

cycle index 813
damaged data sets and 21
defining for output data sets 35
duplicate values 1638, 1647
overriding 32
seasonal 828
specifying a candidate index 30
specifying index search 32

INDEXW function 804
indices

CALL ALLCOMBI routine and 432
CALL LEXCOMBI routine and 459
LEXCOMBI function and 871

INDSNAME option
SET statement 1713

INENCODING= option
LIBNAME statement 1610

INFILE automatic variable 1552
INFILE option

PUT statement 1659
INFILE statement 1552, 1563, 1564

INFILE statement 1543
compared to INPUT statement 1580
comparisons 1557
DBMS specifications 1553
delimited data, reading 1554
delimiters 1557
details 1553
encoding specification 1565
examples 1557
input buffer, accessing contents 1553
input buffer, working with data 1562
missing values, list input 1559
multiple input files 1553, 1560
operating environment options 1553
options 1545
pointer location 1562
reading long instream data records 1555
reading past the end of a line 1556
short records 1559
truncating copied records 1562
updating external files in place 1553, 1561
variable-length records, reading 1560

2174 Index

variable-length records, scanning 1559
informat decimal values, returning 1168

arguments 1169
variables 1168

informat names, returning 1170
arguments 1171
variables 1170

INFORMAT statement 1566
specifying informats with 1219

informat width, returning 1172
arguments 1173
variables 1172

informats 1217, 1232
ambiguous data 1824
associating with variables 1403, 1405, 1566
byte ordering 1221
categories of 1232
integer binary notation 1222
name length 1987
packed decimal data and 92
permanent 1220
reading results of expressions 807
reading unaligned data with 1594
returning 1146, 1167, 1174
specifying 1219
specifying, with ATTRIB statement 1220
specifying, with INFORMAT statement 1219
specifying, with INPUT function 1219
specifying, with INPUT statement 1219
specifying at run time 809, 811
syntax 1218
temporary 1220
user-defined 1220
zoned decimal data and 92

INITCMD system option 1869
initializing procedure output files 1921
INITSTMT= system option 1871
input

as card images 1805
assigning to variables 1569
column 1574, 1584
describing format of 1569
end-of-data indicator 1652
formatted 1574, 1587
invalid data 1579, 1628
list 1574
list input 1590
listing for current session 1621
logging 1621
missing records 1628
missing values 1633
named 1575, 1596
resynchronizing 1628
uppercasing 1804

input buffer
accessing, for multiple files 1564
accessing contents 1553
working with data in 1562

input column 1587
input data

reading past the end of a line 1556
input data sets

data set options with 10
error detection levels 1828
excluding variables from processing 22
redirecting 1688

selecting observations from 69
specifying variables to process 36

input DATA step views
creating 1425

input files
reading multiple files 1553, 1560
truncating copied records 1562

INPUT function 807
specifying informats with 1219

input source lines
length of numeric portion of sequence field 1937

INPUT statement 808, 1569
arguments 1543
column 1584
compared to INPUT function 808
compared to PUT statement 1667
formatted 1587
identifying file to be read 1543
named 1596
specifying informats with 1219

INPUT statement, column 1584
INPUT statement, formatted 1587
INPUT statement, list 1590

details 1592
examples 1594

INPUT statement, named 1596
INPUTC function 809

compared to INPUTN function 811
INPUTN function 809, 811

compared to INPUTC function 809
INSERT system option 1872
instream data

reading long records 1555
INT function 812
INTCINDEX function 813
INTCK function 816
INTCYCLE function 820
integer binary data

byte ordering 88
notation and programming languages 89

integer binary data, reading
IBM mainframe format 1330, 1335

integer binary (fixed-point) values
IBM mainframe format 228

integer binary notation 1222
integer binary values

DEC format 189
Intel format 189
reading in Intel and DEC formats 1299
writing 188

integer binary values, reading 1298, 1318
integers

greatest common divisor for 770
printing without decimals 136

Intel format
integer binary (fixed-point) values in 189
positive integer binary (fixed-point) values in 219
reading integer binary values in 1299
reading positive integer binary values in 1320

interest
accrued 687
cumulative 691
payment for a given period 695, 713

interest rate
effective annual 694, 712
fully invested securities 695, 713

Index 2175

nominal 696, 714
per period of an annuity 702, 718

interleaving data sets
SET statement for 1717, 1718

internal rate of return 695, 696, 705, 836
as fraction 836
as percentage 847
examples 713, 714, 720

interpolating spline
monotonicity-preserving 917

interval values
$N8601BA format, ISO 8601 basic notation 117
$N8601EA format, ISO 8601 extended notation 120
$N8601EX formats, extended notation, x for omitted com-

ponents 122
$N8601H format, basic notation, hyphen for omitted com-

ponentents 123
interval names 326
interval values

$N8601 informat, ISO 8601 basic and extended nota-
tion 1249

$N8601B format, basic notation 116
$N8601E format, extended notation 118
$N8601E informat, extended notation 1251
$N8601EH format, ISO 8601 extended notation, hyphen

for omitted components 121
$N8601X format, x for omitted components 125
user-supplied holidays 1873

INTERVALDS= system option
user-supplied holidays 1873

INTFIT function 822
INTFMT function 824
INTGET function 826
INTINDEX function 828
INTNX function 831

aligning date output 833
examples 834

INTRR function 847
compared to IRR function 848

INTSEAS function 838
INTSHIFT function 840
INTTEST function 842
INTZ function 844
invalid data

numeric 1874
INVALIDDATA= system option 1874
inverse Gaussian (Wald) distributions 642
inverse hyperbolic cosine 400
inverse hyperbolic sine 402
inverse hyperbolic tangent 403
IOM clients

tracking submitted SAS programs 1726
IORC automatic variable

MODIFY statement and 1639
IORC variable

formatted error messages for 845
IORCMSG function 845
IQR function 846
IROW= argument, WINDOW statement 1746
IS= system option 1871
ISO 8601 date and time formats

B8601DA format, basic date notation 138
B8601DN format, basic datetime notation, formats the

date 139
B8601DT format, basic datetime notation, no time

zone 140

B8601DZ format, basic datetime notation with time
zone 142

B8601LZ format, basic local time with time zone 143
B8601TM format, basic time notation, no time zone 144
B8601TZ format, basic time notation with time zone 146
E8601DA format, extended date notation 170
E8601DN format, extended datetime notation, formats the

date 171
E8601TM format, extended time notation, no time

zone 176
E8601TZ format, extended time notation with time

zone 178
extended datetime, with time zone 173
extended local time with UTC offset 175

ISO 8601 date and time informats
B8601DA informat, basic date notation 1265
B8601DN informat, basic datetime notation, returns the

date in a datetime value 1266
B8601DZ informat, basic datetime notation with time

zone 1268
B8601TM informat, basic time notation, no time

zone 1270
B8601TZ informat, basic time notation with time

zone 1272
E8601DA informat, extended date notation 1286
E8601DN informat, extended notation, returns date in

datetime value 1287
E8601DT informat, basic datetime notation, no time

zone 1267
E8601DT informat, extended datetime notation, no time

zone 1288
E8601DZ informat, extended datetime notation with time

zone 1289
E8601LZ informat, extended local datetime notation with

time zone 1291
E8601TM informat, extended time notation, no time

zone 1293
E8601TZ informat, extended time notation with time

zone 1294
$N8601 informat, basic and extended notation for dura-

tions, datetimes, and intervals 1249
$N8601E informat, extended notation for duration, date-

time, and interval 1251
ISO 8601 datetime formats

extended datetime with no time zone 172
ISO 8601 duration and datetime formats

$N8601B format, basic notation 116
$N8601BA format, basic notation 117
$N8601E format, extended notation 118
$N8601EA format, extended notation 120
$N8601EH format, extended notation, hyphen for omitted

components 121
$N8601H format, hyphen for omitted componen-

tents 123
$N8601X format, x for omitted components 125

ISO 8601 intervals
converting 451

ISO 8602 duration and datetime formats
$N8601EX formats, extended notation, x for omitted com-

ponents 122
ITEM_SIZE attribute 2048

J
Java applet location 1792

2176 Index

Java objects
declaring 1437
instantiating 1437

JBESSEL function 848
JPEG files

quality factor 1875
JPEGQUALITY= system option 1875
JULDATE function 849
JULDATE7 function 850
JULDAYw. format 192
julian date 850
Julian date values, packed

reading in hexadecimal form, for IBM 1313
Julian dates 193, 1224

day of the year 192
packed 91
packed values in hexadecimal 211
packed values in hexadecimal for IBM 213
returning 849

Julian dates, packed
reading in hexadecimal format, for IBM 1314

JULIANw. format 193
JULIANw. informat 1302
JUMP command

DATA step debugger 2134

K
KEEP= data set option 36

compared to KEEP statement 1600
error detection for input data sets 1828

KEEP= DATA step option
error detection for output data sets 1829

KEEP statement 1600
compared to DROP statement 1452
compared to RETAIN statement 1697
error detection for output data sets 1829

KEY= argument
MODIFY statement 1636

KEY= option
SET statement 1713, 1719

keyboard 1809
keyboard input

including 1542
KEYS= argument, WINDOW statement 1746
keywords, allowed in DATA statement 1822
kilometers

geodetic distance in 772
kurtosis 851
KURTOSIS function 851

L
LABEL= data set option 38
LABEL statement 1601

compared to statement labels 1603
LABEL system option 1876
labels

associating with variables 1403
for data sets 38
statement labels 1603
using with variables in SAS procedures 1876

Labels, statement 1603
LAG function 851
landscape orientation 1896

Laplace distributions 561
cumulative distribution functions 561
probability density functions 967

LARGEST function 858
LAST method 2049
LAST= system option 1876
LAST. variable 1408
latitude

geodetic distance between latitude and longitude coordi-
nates 771

layout
for PDF documents 1913

LBOUND function 859
LCM function 860
LCOMB function 861
leading zeros 283
least common multiple 860
LEAVE statement 1419, 1604

compared to CONTINUE statement 1419
LEFT function 862
left margin 1877
LEFTMARGIN= system option 1877
length

associating with variables 1403
of environment variables 661

LENGTH function 863
compared to VLENGTH function 1177

LENGTH= option
INFILE statement 1548, 1560

LENGTH statement 1605
LENGTHC function 865
LENGTHM function 866
LENGTHN function 867
LEXCOMB function 868
LEXCOMBI function 871
lexicographic order 456, 459, 462, 466,,
LEXPERK function 873
LEXPERM function 875
LFACT function 878
LGAMMA function 879
LIBNAME function 879
LIBNAME statement 1608

arguments 1608
assigning librefs 1614
associating librefs with data libraries 1612
comparisons 1614
concatenating catalogs, implicitly 1613, 1615
concatenating data libraries 1613
concatenating data libraries, logically 1614
data library attributes, writing to log 1613
details 1612
disassociating librefs from data libraries 1613
engine-host-options 1612
examples 1614
FILENAME statement and 1477
library concatenation rules 1613
options 1609
permanently storing data sets, one-level names 1615

LIBNAME statement, for WebDAV Servers 1616
libraries

damaged data sets or catalogs 1830
default access method 1846
default permanent SAS library 1982
listing details 1826
renaming members 1058
SAS library to use as SASUSER library 1936

Index 2177

transporting 1504
library concatenation rules 1613
LIBREF function 882
librefs 882

assigning 1614
assigning/deassigning 879
assigning user-defined, at startup 1953
associating with data libraries 1612
disassociating from data libraries 1613
SAS libraries 882
verifying 882

license information
altering 1938

license verification 1120
licensing 909
line feeds

searching character string for 395
line-hold specifiers

INPUT statement 1576
PUT statement 1665

LINE= option
FILE statement 1463
INFILE statement 1548

line pointer controls
INPUT statement 1572
PUT statement 1661

line size
Program Editor 1835

LINESIZE= option
FILE statement 1463
INFILE statement 1549

LINESIZE= system option 1878
LINESLEFT= option

FILE statement 1463, 1470
LINK statement 1620

compared to GO TO statement 1532
LIST argument

FILENAME statement 1475, 1476
LIBNAME statement 1609

LIST command
DATA step debugger 2135

list input 1574, 1590
character data with embedded blanks 1594
comma-delimited data 1595
data with quotation marks 1594
missing values in 1559
modified 1592, 1593, 1595
reading delimited data 1595
reading unaligned data 1594
reading unaligned data with informats 1594
simple 1592, 1594
when to use 1592

LIST option
CATNAME statement 1414
FILENAME statement, FTP access method 1498

list output 1663, 1681
See also modified list output
PUT statement, list 1680
spacing 1681
writing values with 1682

LIST statement 1621
%LIST statement 1624
little endian platforms

byte ordering 88
little endian platforms, byte ordering on 1221

LOCALCACHE= option
FILENAME statement, WebDAV access method 1521

LOCK statement 1625
LOCKDURATION= option

FILENAME statement, WebDAV access method 1521
log

of 1 plus the argument 883
writing data library attributes to 1613
writing external file attributes to 1475, 1476
writing messages to 1686
writing Perl debug output to 341

log files 1880
LOG function 883
Log window

invoking 1832
maximum number of rows 1833
suppressing 1869

LOG window
DATA step debugger 2138

LOG10 function 884
LOG1PX function 883
LOG2 function 885
logarithms 879

base 10 884
base 2 885
natural logarithms 883
of COMB function 861
of FACT function 878
of gamma function 879
of PERM function 892
of probability functions 888
of survival functions 890

LOGBETA function 886
LOGCDF function 886
logical record length

for reading and writing external files 1884
logistic distributions 562

cumulative distribution functions 562
probability density functions 968

logistic values 470
lognormal distributions 562

cumulative distribution functions 562
probability density functions 968

LOGPARM= system option 1880
LOGPDF function 888
LOGSDF function 890
longitude

geodetic distance between latitude and longitude coordi-
nates 771

LOSTCARD statement 1628
LOWCASE function 891
LOWCASE_MEMNAME option

FILENAME statement, FTP access method 1498
FILENAME statement, WebDAV access method 1521

lowercase
searching character string for 387

lowercase, converting arguments to 891
lowercase letters

compressing 601
Lp norm 893
LPERM function 892
LPNORM function 893
LRECL= option

FILE statement 1463
FILENAME statement, CATALOG access method 1480
FILENAME statement, EMAIL access method 1487

2178 Index

FILENAME statement, FTP access method 1498
FILENAME statement, SFTP access method 1508
FILENAME statement, SOCKET access 1513
FILENAME statement, URL access method 1517
FILENAME statement, WebDAV access method 1521
INFILE statement 1549

LRECL= system option 1884
LS option

FILENAME statement, FTP access method 1498
FILENAME statement, SFTP access method 1508

LSA option
FILENAME statement, SFTP access method 1508

LSFILE= option
FILENAME statement, FTP access method 1498
FILENAME statement, SFTP access method 1508

M
Macauley modified duration 696, 713
machine precision constants 605
macro facility

DATA step debugger with 2112
macro functions

within DATA step functions 310
macro variables 522, 533

assigning DATA step data 533
linking SAS data set variables 522, 533
returning during DATA step 1114

macros 1061
as debugging tools 2112
CALL ALLCOMB routine with 429, 431
CALL ALLCOMBI routine with 432, 433
CALL GRAYCODE routine with 448
CALL LEXCOMB routine with 456, 457
CALL LEXCOMBI routine with 460, 461
CALL LEXPERK routine with 463, 465
CALL LEXPERM routine with 467, 469
customized debugging commands with 2112
debugging a DATA step generated by 2113
returning values from 1061

MAD function 894
many-one t-statistics, Dunnett’s one-sided test 995
many-one t-statistics, Dunnett’s two-sided test 996
maps

location to search for 1885
MAPS= system option 1885
margins

bottom margin size 1797
left margin 1877
right margin 1925
top margin 1978

Margrabe model
call prices for European options on stocks 895
put prices for European options on stocks 897

MARGRCLPRC function 895
MARGRPTPRC function 897
master files, updating 1735
match-merge 1632
matching access 1638
matching words 1095
maturation

amount received at maturity 703, 718
MAX function 899
maximum values, returning 899
MD5 function 900
MDY function 901

MDYAMPMw.d format 194
MDYAMPMw.d informat 1303
MEAN function 902
means

multiple comparisons of 992, 1000
MEDIAN function 903
memory

for data summarization procedures 1957
SORT procedure 1941

memory address
character variables 370
numeric variables 369

memory addresses, storing contents of 974
as character variables 975
as numeric variables 974

MENU= argument, WINDOW statement 1746
menus

SOLUTIONS menu in SAS windows 1939
MERGE processing

without BY statement 1886
MERGE statement 1630

compared to UPDATE statement 1736
transcoded variables and 1405, 1406

MERGENOBY system option 1886
merging observations 1718
message digest 900
messages

detail level of 1887
MERGE processing without BY statement 1886
news file for writing to SAS log 1889
printing to SAS log, all vs. top-level 1922
writing to log 1686

metacharacters, PRX 2141
methods 2021
MGET option

FILENAME statement, FTP access method 1498
FILENAME statement, SFTP access method 1508

MicroFocus COBOL
zoned numeric data 1355

MicroFocus Cobol zoned numeric data 253
miles

geodetic distance in 772
MIN function 904
minimum values, returning 904
minus sign

trailing 1352
MINUTE function 905
missing arguments

counting 578
missing expressions 796, 798
MISSING function 906
missing records, input 1628
MISSING statement 1633
MISSING= system option 1886

compared to MISSING statement 1634
missing values 924

assigning to specified variables 471
character to print for numeric values 1886
input 1633
list input 1559
MISSING statement 1633
number of 924
ODS and 649
reading external files 1559
returning a value for 906
substitute characters for 1633

Index 2179

MISSOVER option
INFILE statement 1549, 1559

MMDDYYw. format 195
MMDDYYw. informat 1305
MMDDYYxw. format 197
MMSSw.d format 199
MMYYw. format 200
MMYYxw. format 202
MOD function 907
MOD option

FILE statement 1464
FILENAME statement, CATALOG access method 1481
FILENAME statement, WebDAV access method 1522

MODEL procedure
output model type 1813

MODEXIST function 909
modified list input 1592

formatted input vs. 1593
reading delimited data 1595

modified list output 1681
vs. formatted output 1681
writing values with : 1683
writing values with ~ 1683

MODIFY statement 1635
comparisons 1642
data set options with 1642
details 1638
direct access by indexed values 1638
direct access by observation number 1639
duplicate BY values 1638
duplicate index values 1638, 1647
examples 1643
I/O control 1649
in DATA step 1640
IORC automatic variable 1639
matching access 1638
SAS/SHARE environment 1642
sequential access 1639
SYSRC autocall macro 1639

MODULEC function 910
MODULEIN function

CALL MODULE routine and 473
MODULEN function 911

CALL MODULE routine and 474
modulus 907
MODZ function 911
MONNAMEw. format 204
monotonicity-preserving interpolating spline 917
MONTH function 913
MONTHw. format 205
MONYYw. format 206
MONYYw. informat 1307
MOPEN function 914
MORT function 916
MPROMPT option

FILENAME statement, FTP access method 1499
MSECw. informat 1308
MSG automatic variable 1752
MSG SAS variable, WINDOW statement 1752
$MSGCASEw. format 114
MSGLEVEL= system option 1887
MSPLINT function 917
MULTENVAPPL system option 1888

N
N function 920
N= option

FILE statement 1464, 1470
INFILE statement 1549

$N8601BAw.d format 117
$N8601Bw.d format 116
$N8601Bw.d informat 1249
$N8601EAw.d format 120
$N8601EHw.d format 121
$N8601Ew.d format 118
$N8601Ew.d informat 1251
$N8601EXw.d format 122
$N8601Hw.d format 123
$N8601Xw.d format 125
named input 1575, 1596
named output 1663, 1684
natural base constants 602
natural logarithms 883
NBYTE= option

INFILE statement 1471, 1550
negative binomial distributions 562

cumulative distribution functions 562
probabilities from 1005
probability density functions 969

negative numeric values
writing in parentheses 207

NEGPARENw.d format 207
nested catalog concatenation 1416
/NESTING argument

DATA statement 1421
nesting levels

displaying 1427
net present value 697, 705, 921, 950

as fraction 921
as percentage 950
examples 714, 720

NETPV function 921
NEW operator 2050, 2101

declaring and instantiating hash objects 1434
NEW option

FILENAME statement, FTP access method 1499
FILENAME statement, SFTP access method 1509

NEWS= system option 1889
NEXT method 2055
nibble 1223

definition 90
NLITERAL function 922
NMISS function 924
NOBS= option

MODIFY statement 1636
SET statement 1713, 1719

NOINPUT argument, DISPLAY statement 1442
NOLIST argument

ABORT statement 1394
DATA statement 1423

nominal interest rate 696, 714
non-sequential processing

access methods 59
spill files and 59

noncentrality parameters 579
chi-squared distribution 579
F distribution 744
student’s t distribution 1127

nonmissing values 920

2180 Index

normal distributions 499, 563
cumulative distribution functions 563
deviance from 642
probability density functions 969
random numbers 499, 1053

NORMAL function 925
NOTALNUM function 925
NOTALPHA function 927
NOTCNTRL function 929
NOTDIGIT function 930
NOTE function 932
notes

writing to SAS log 1889
NOTES system option 1889
NOTFIRST function 934
NOTGRAPH function 936
NOTLOWER function 937
NOTNAME function 939
NOTPRINT function 941
NOTPUNCT function 942
NOTSORTED argument

BY statement 1408
NOTSPACE function 944
NOTUPPER function 947
NOTXDIGIT function 948
NPV function 950
NULL argument

DATA statement 1421
Null statement 1652
NUMBER system option 1890
numeric arguments

returning value of 581
numeric attributes

returning the value of 408
numeric data 812

appended to letters K, M, or G 1345
character to print for missing values 1886
commas replacing decimal points 208
EBCIDC format 227
IBM mainframe format 227
invalid 1874
leading zeros with 283
one digit per byte 255
scientific notation 169
truncating 812, 1138
zoned decimal format 284

numeric data, reading
commas for decimal points 1309
from column-binary files 1277
standard format 1363

numeric expressions
missing values, returning a result for 906

numeric formats 99
numeric values

aligning decimal places 136, 149
based on true, false, or missing expressions 798
best notation 135
choice from a list of arguments 575
commas in 147, 148
converting to binary 138
converting to fractions 182
converting to octal 209
DOLLARw.d format 160
DOLLARXw.d format 161
Roman numerals 226
searching for, equal to first argument 1191

words with numeric fractions 267
writing as percentages 214
writing as words 268
writing negative values in parentheses 207

numeric variables
memory address of 369
sorting argument values 527

NUM_ITEMS attribute 2056
NUMXw.d format 208
NUMXw.d informat 1309
NVALID function 951
NWKDOM function 953

O
OBS= data set option 39

comparisons 40
data set with deleted observations 42
examples 40
WHERE processing with 41

OBS= option
INFILE statement 1550

OBS= system option 1891
comparisons 1892
data set with deleted observations 1894
details 1891
examples 1892
WHERE processing with 1893

OBSBUF= data set option 44
observations 618

bookmarks, finding 982
bookmarks, setting 746
client/server transfer 66
combining multiple 1411
compressing in output data set 19
compressing on output 1818
conditions for selecting 68
contributing data sets for 33
deleting 1440, 1690
dropping 1452
end point for processing 39
error messages, number printed 1849
first observation to process in single data set 26
grouping 1411
grouping with formatted values 1410
merging 1630, 1718
modifying 1635, 1643
modifying, located by index 1647
modifying, located by number 1645
modifying, with transaction data set 1644
modifying, writing to different data sets 1650
multiple records for 1578
number of current 618
observation ID, returning 932
reading 674, 675
reading subsets 1719
reading with SET statement 1712
replacing 1694
starting at a specific 1852
stopping processing 1891
updated data sets and WHERE expression 69
writing 1654
writing to freed space 56

observations, selecting
IF, subsetting 1533
IF, THEN/ELSE statement 1535

Index 2181

WHERE statement 1740
octal

converting character data to 127
converting numeric values to 209

octal data
converting to character 1247
converting to integers 1310

$OCTALw. format 127
OCTALw. format 209
$OCTALw. informat 1247
OCTALw. informat

compared to $OCTALw. informat 1247
OCTALw.d informat 1310
odd first period

price per $100 face value 697, 715
yield 698, 715

odd last period
price per $100 face value 698, 715
yield 699, 716

ODS option
FILE statement 1464

ODS output
browser for 1862
division and 649
missing values for 649

ODS (Output Delivery System)
customizing titles and footnotes 1730

ODS styles
in graphs stored as GRSEG catalog entries 1861

OLD option
FILE statement 1465

one-to-one merge 1631
one-to-one reading 1717, 1719
online training courses 1979
OPEN function 955
OPEN= option

SET statement 1714
operating environment

FILE statement options for 1467
operating system commands 536, 1122

executing 536
issuing from SAS sessions 1122, 1756

operating system variables, returning 1116
operators 2021
optimization

during code compilation 1808
options on futures

call prices for European, based on Black model 416
put prices for European, based on Black model 418

options on stocks
call prices for European, based on Black-Scholes

model 420
OPTIONS= option

FILENAME statement, SFTP access method 1509
OPTIONS statement 1653

specifying system options 1769
ORDINAL function 958
orientation, for printing 1896
ORIENTATION= system option 1896
out-of-resource conditions 1810
OUTENCODING= option

LIBNAME statement 1610
output

aligning 1808
bin specification 1901
collating 1816

column 1663, 1674
compressing 1818
default form for printing 1860
delimiting page breaks 1859
displaying SAS/GRAPH output in GRAPH win-

dow 1861
footnotes 1525
formatted 1663, 1676
formatting characters 1858
left margin 1877
list 1663
named 1663, 1684
overprinting error messages 1897
page size 1900
right margin 1925
skipping lines 1938
spooling 1945
top margin 1978

output buffer
accessing contents 1467

output data sets 1424
compressing observations 19
creating 1424
data representation 46
data set options with 10
defining indexes for 35
encrypting 23
error detection 1829
excluding variables from being written 22
redirecting 1688
selecting observations from 69
size of permanent buffer page 17
specifying variables to write 36

output devices
assigning/deassigning filerefs 680
associating filerefs 1476

output files
dynamically changing current file 1471
encoding for 1472
for PUT statements 1457
identifying current file 1470
output line too long 1471

OUTPUT method 2057
output model type 1813
OUTPUT statement 1654

compared to REMOVE statement 1690
compared to REPLACE statement 1694

Output window
invoking 1832
maximum number of rows 1834
suppressing 1869

OUTREP= data set option 46
OUTREP= option

LIBNAME statement 1610
OVERPRINT option, PUT statement 1662
overprinting error messages 1897
OVP system option 1897

P
p-values

writing 221
packed data, reading in IBM mainframe format 1333
packed decimal data 90, 1224

defined 1223
definition 90

2182 Index

formats and 90
formats and informats for 1226
IBM mainframe format 231
languages supporting 92, 1225
platforms supporting 91, 1225
summary of formats and informats 92
unsigned format 220

packed decimal format
writing data in 210

packed hexadecimal data, converting to character 1248
packed Julian date values

reading in hexadecimal form, for IBM 1313
writing in hexadecimal 211
writing in hexadecimal for IBM 213

packed Julian dates 91, 1224
reading in hexadecimal format, for IBM 1314

PAD option
FILE statement 1465
INFILE statement 1550

page breaks
delimiting 1859
determined by lines left on current page 1470
executing statements at 1469

page buffers
for catalogs 1807

page layout
for PDF documents 1913

page numbers
printing in title line of each page 1890
resetting 1899

PAGE option, PUT statement 1662
page size 1900

buffers and 17
two-column format 1470

PAGE statement 1657
page viewing mode 1913
PAGEBREAKINITIAL system option 1898
PAGENO= system option 1899
PAGESIZE= option

FILE statement 1465
PAGESIZE= system option 1900
paging control buttons

SVG documents 1958
paper orientation 1896
paper size 1902
paper type 1904
PAPERDEST= system option 1901
PAPERSIZE= system option 1902
PAPERSOURCE= system option 1903
PAPERTYPE= system option 1904
parameter strings

passing to external programs 1905
parameters

returning system parameter string 1118
parentheses

writing negative numeric values in 207
Pareto distributions 564

cumulative distribution functions 564
probability density functions 970

PARM= system option 1905
PARMCARDS statement

file reference to open for 1905
PARMCARDS= system option 1905
PASS= option

FILENAME statement, FTP access method 1499
FILENAME statement, URL access method 1517

FILENAME statement, WebDAV access method 1522
password-protected files

enabling access to 49
passwords

ALTER 1423
ALTER passwords 14
assigning to SAS files 49
DATA step and 1423
dialog box for entering 50
encoded 1503
PDF documents 1914
READ 1423
READ passwords 51
stored compiled DATA step programs with 1426
WRITE passwords 71

PATH option
FILENAME statement, SFTP access method 1509

PATHNAME function 958
pattern matching 331, 1015

definition 331
Perl regular expression (PRX) functions and CALL rou-

tines 331
Perl regular expressions (PRX) in DATA step 331, 332
replacement 1010
writing Perl debug output to log 341

payment on principal 700
PCTL function 960
PDF documents

assembly of 1907
changing the content of 1909
copying 1910
modifying comments 1908
page layout for 1913
page viewing mode 1913
passwords for 1914
printing permissions for 1917
resolution for printing 1916
screen readers for visually impaired 1906

PDF forms
filling in 1911

PDF function 961
PDFACCESS system option 1906
PDFASSEMBLY system option 1907
PDFCOMMENT system option 1908
PDFCONTENT system option 1909
PDFCOPY system option 1910
PDFFILLIN 1911
PDFFILLIN system option 1911
PDFPAGELAYOUT= system option 1913
PDFPAGEVIEW= system option 1913
PDFPASSWORD= system option 1914
PDFPRINT= system option 1916
PDFSECURITY= system option 1917
PDJULGw. format 211
PDJULGw. informat 1313
PDJULIw. format 213
PDJULIw. informat 1314
PDTIMEw. informat 1315

compared to RMFSTAMPw. informat 1327
PDw.d format 210
PDw.d informat 1311

compared to $PHEXw. informat 1248
compared to PKw.d informat 1321
compared to S370FPDw.d informat 1333

PEEK function 974
compared to PEEKC function 976

Index 2183

PEEKC function 975
compared to PEEK function 975

PEEKCLONG function 978
PEEKLONG function 979
percentages

converting to numeric values 1317
numeric values as 214
with minus sign for negative values 215

PERCENTNw.d format 215
PERCENTw.d format 214
PERCENTw.d informat 1317
periodic cashflow stream

convexity for 606
modified duration for 660
present value for 1032

periodic payment of annuity 700
periods for an investment 697, 714
Perl

compiling regular expressions 1016
Perl regular expression (PRX) functions and CALL rou-

tines 331
Perl regular expressions (PRX)

benefits of using in DATA step 331
extracting substring from a string 337
pattern matching with 331
Perl Artistic License compliance 342
syntax 332
using in DATA step 332
validating data 334
writing Perl debug output to log 341

PERM function 981
logarithm of 892

permanent buffer page
size of 17

permanent formats 87
permissions

printing PDF documents 1917
permutations, computing 981
PERSIST= option, WINDOW statement 1751
PGM= argument

DATA statement 1422
$PHEXw. informat 1248
PIBRw.d format 219
PIBRw.d informat 1320
PIBw.d format 217
PIBw.d informat 1318

compared to S370FPIBw.d informat 1336
pipe files

assigning/deassigning filerefs 682
PKw.d format 220
PKw.d informat 1321
plotters

filerefs for 1476
plus sign

trailing 1352
plus sign (+) column pointer control

INPUT statement 1572
PUT statement 1660
WINDOW statement 1749

PM or AM
datetime values with 153
time values with 248

POINT function 982
POINT= option

MODIFY statement 1637
SET statement 1714, 1719

pointer controls
INPUT statement 1575
PUT statement 1664

pointer location 1562
POINTOBS= data set option 48
Poisson distributions 505, 565, 643

cumulative distribution functions 565
probabilities from 983
probability density functions 971
random numbers 505, 1054

POISSON function 983
POKE CALL routine 474
POKELONG CALL routine 476
population size, returning 920
port number

for HTTP server for remote browsing 1865
for remote browser client 1864
HTTP server for remote browsing 1866

PORT= option
FILENAME statement, FTP access method 1499

portrait orientation 1896
positive integer binary (fixed-point) values

IBM mainframe format 234
positive integer binary values

DEC format 219
Intel format 219
reading in Intel and DEC formats 1320
writing 217

postal codes 1100
converting FIPS codes to 739
converting to FIPS codes 1100
converting to state names 1100, 1101
converting zip codes to 1205

pound sign (#) line pointer control
INPUT statement 1572
PUT statement 1661

PPASS= option
FILENAME statement, URL access method 1517

present value 702, 717
PREV method 2061
price

discounted security 701, 717
security paying interest at maturity 701, 717
security paying periodic interest 701, 717
treasury bills 704, 719

pricing functions 310
PRIMARYPROVIDERDOMAIN= system option 1918
principal

cumulative 691, 710
future value of 694, 712
payment on 700, 716

PRINT option
FILE statement 1466
INFILE statement 1550

printable characters
searching character string for 391

PRINTERPATH= system option 1920
printers

binding edge 1796
filerefs for 1476
font for default printer 1972
for Universal Printing 1920
paper size 1902

printing
bin specification 1901
color printing 1817

2184 Index

default form for 1860
duplexing controls 1838
initializing SAS procedure output files 1921
name of paper bin 1903
number of copies 1820
overprinting error messages 1897
page numbers in title line of each page 1890
page orientation 1896
paper size 1902
paper type 1904
PDF documents 1916, 1917

PRINTINIT system option 1921
PRINTMSGLIST system option 1922
probabilities 983

beta distributions 984
binomial distributions 985
chi-squared distributions 987
F distribution 988
gamma distribution 989
hypergeometric distributions 990
negative binomial distributions 1005
Poisson distributions 983
standard normal distributions 1007
student’s t distribution 1007

probabilities, computing
confidence intervals, computing 1002
examples 1000
for multiple comparisons of means 992
for multiple comparisons of means, example 1000
many-one t-statistics, Dunnett’s one-sided test 995
many-one t-statistics, Dunnett’s two-sided test 996
studentized maximum modulus 998
studentized range 997
Williams’ test 998
Williams’ test, example 1004

probability
from bivariate normal distribution 986

probability density functions 961
Bernoulli distributions 962
beta distributions 962
binomial distributions 963
Cauchy distributions 964
chi-squared distributions 964
exponential distributions 965
F distributions 965
gamma distributions 966
geometric distributions 966
hypergeometric distributions 967
Laplace distributions 967
logistic distributions 968
lognormal distributions 968
negative binomial distributions 969
normal distributions 969
Pareto distributions 970
Poisson distributions 971
uniform distributions 972
Wald distributions 972
Weibull distributions 972

probability functions 888
logarithms of 888

PROBBETA function 984
PROBBNML function 985
PROBBNRM function 986
PROBCHI function 987
PROBF function 988
PROBGAM function 989

PROBHYPR function 990
PROBIT function 991
PROBMC function 992
PROBNEGB function 1005
PROBNORM function 1007
PROBT function 1007
PROC steps

BY statement in 1409
procedure output

aligning 1808
footnotes 1525
linesize 1878
sending in e-mail 1494
submitting as SAS statements 1443

procedure output files
initializing 1921

procedures
using labels with variables 1876
WHERE processing with, renaming variables 53

product license verification 1120
product licensing 909
Program Editor

autosave file 1795
maximum characters in a line 1835

Program Editor commands, submitting as SAS state-
ments 1443

flow into main entry 1443
Program Editor window

invoking 1832
suppressing 1869

programming languages
integer binary notation and 89
packed decimal data support 92
zoned decimal data support 92

programming statements
including 1537

PROMPT option
FILENAME statement, FTP access method 1499
FILENAME statement, URL access method 1517

PROPCASE function 1009
PROTECT= option, WINDOW statement 1751
PROXY= option

FILENAME statement, URL access method 1517
FILENAME statement, WebDAV access method 1522

proxy servers 1506, 1523
PRX metacharacters 2141
PRXCHANGE function 1010
PRXDEBUG routine 479
PRXMATCH

extracting zip codes 1017
PRXMATCH function 1015

compiling Perl regular expressions 1016
finding substring positions 1016

PRXPAREN function 1019
PRXPARSE function 1021
PRXPOSN function 1023
PS= system option 1900
PTRLONGADD function 1026
PUNCH.d informat 1322
punctuation characters

searching character string for 393
PUSER= option

FILENAME statement, URL access method 1517
PUT function 1027

reducing, based number of format values 1950
reducing, based on engine type 1947

Index 2185

reducing, based on number of observations in table 1949
specifying formats with 86

put prices
European options on futures, Black model 418
for European options, based on Margrabe model 897

PUT statement 1658
compared to INPUT statement 1580
compared to LIST statement 1622
compared to PUT function 1027
FILE statement and 1457
output file for 1457
routing output 1478
specifying formats with 85
syntax for EMAIL access method 1488

PUT statement, column 1674
PUT statement, formatted 1676
PUT statement, list 1680

arguments 1680
comparisons 1681
details 1681
examples 1682
list output 1681
list output, spacing 1681
list output, writing values with 1682
modified list output, writing values 1683
modified list output vs. formatted output 1681
writing character strings 1683
writing variable values 1683

PUT statement, named 1684
PUTC function 1028

compared to PUTN function 1030
PUTLOG statement 1686
PUTN function 1029, 1030

compared to PUTC function 1029
PUTTY client

connecting to SSHD server 1511
PVALUEw.d format 221
PVP function 1032
PW= data set option 49
PWREQ= data set option 50

Q
QTR function 1033
QTRRw. format 223
QTRw. format 222
QUANTILE function 1034
quantiles

chi-squared distribution 576
F distribution 736
from standard normal distribution 991
from student’s t distribution 1125
gamma distribution 764
returning from beta distribution 415

quantiles, computing
for multiple comparisons of means 992

queries
remerged data and 1951

question mark (?) format modifier 807
INPUT function 807
INPUT statement 1573

question marks (??) format modifier 807
INPUT function 807
INPUT statement 1573

queues, returning values from 851

QUIT command
DATA step debugger 2136

quotation marks 638
adding 1036
concatenation and 543
removing 638, 1253

QUOTE function 1036
QUOTELENMAX system option 1923
$QUOTEw. format 128
$QUOTEw. informat 1253

R
R language

interface to SAS 1926
radians

geodetic distance input in 772
RANBIN CALL routine 489
RANBIN function 1037
RANCAU CALL routine 491
RANCAU function 1038
RAND function 1039
random access

spill files and 59
random-number functions and CALL routines 313

comparison of 317
examples 326
random number streams generated by function calls 313
seed values 313

random numbers 489, 491, 494, 496,,
binomial distribution 489, 1037
Cauchy distribution 491, 1038
exponential distribution 494, 1049
gamma distribution 496, 1050
normal distribution 499, 932, 1053
Poisson distribution 505, 1054
tabled probability distribution 507, 1055
triangular distribution 510, 1057
uniform distribution 512, 1058

RANEXP CALL routine 494
RANEXP function 1049
RANGAM CALL routine 496
RANGAM function 1050
RANGE function 1052
ranges of values, returning 1052
RANK function 1052
RANNOR Call routine 499
RANNOR CALL routine

compared to RANNOR function 1054
RANNOR function 1053
RANPOI CALL routine 505, 1055

compared to RANPOI function 1055
RANPOI function 1054
RANTBL CALL routine 507, 1056

compared to RANTBL function 1056
RANTBL function 1055
RANTRI CALL routine 510

compared to RANTRI function 1057
RANTRI function 1057
RANUNI CALL routine 512, 1058

compared to RANUNI function 1058
RANUNI function 1058
RBw.d format 224
RBw.d informat 1323

compared to S370FRBw.d informat 1337
compared toVAXRBw.d informat 1354

2186 Index

RCFM= option
FILENAME statement, FTP access method 1500
FILENAME statement, SFTP access method 1509

RCMD= option
FILENAME statement, FTP access method 1499

RDC (Ross Data Compression) 20
READ= data set option 51
READ passwords 1423

assigning to SAS files 49, 51
reading

from directories 1505
reading data values 1217
reading past the end of a line 1556
reading variable-sized record input 1934
real binary data

real binary format 224
real binary data, reading 1323

IBM mainframe format 1337
VMS format 1354

real binary (floating-point) data
IBM mainframe format 236
VMS format 252

real binary (floating-point) values
converting to hexadecimal 183

real binary format
real binary data (floating-point) in 224

RECFM= option
FILE statement 1466
FILENAME statement 1475
FILENAME statement, CATALOG access method 1480
FILENAME statement, SOCKET access 1513
FILENAME statement, URL access method 1518
FILENAME statement, WebDAV access method 1522
INFILE statement 1551

RECONN= option
FILENAME statement, SOCKET access 1513

records
stopping processing 1891

REDIRECT statement 1688
arguments 1688
examples 1689

redirecting data sets 1688
REF method 2062
remainder values 907
remerging data 1951
remote browsing

highest port number for HTTP server 1865
lowest port number for HTTP server 1866

remote files
FTP access method 1495
SFTP access method 1507
URL access method 1516
WebDAV access method 1520

remote help browser 1863
remote help client

port number 1864
remote host

creating files on 1503
reading files from 1502
reading files from a directory 1511

remote SAS sessions 1830
REMOVE method 2064
REMOVE statement 1690

compared to OUTPUT statement 1655
compared to REMOVE statement 1690
compared to REPLACE statement 1694

REMOVEDUP method 2067
RENAME= data set option 52

compared to RENAME statement 1692
error detection for input data sets 1828

RENAME= DATA step option
error detection for output data sets 1829

RENAME function 1058
RENAME statement 1692

error detection for output data sets 1829
renaming variables 52

at time of input 53
at time of output 53
for procedures with WHERE processing 53

repairing data sets 21
REPEAT function 1060
REPEMPTY= data set option 54
REPEMPTY= option

LIBNAME statement 1611
REPLACE= data set option 55
REPLACE method 2069
REPLACE statement 1694

compared to OUTPUT statement 1655
compared to REMOVE statement 1690

REPLACE system option 1923
REPLACEDUP method 2072
REPLYTO= option

FILENAME statement, EMAIL access method 1488
reports

creating with DATA statement 1426
REQUIRED= option, WINDOW statement 1751
resolution

for printing PDF documents 1916
RESOLVE function 1061
resolving arguments 446
Results window

invoking 1832
retail calendar intervals 830, 839
RETAIN statement 1696

compared to KEEP statement 1600
compared to SUM statement 1725

RETURN argument
ABORT statement 1393

return codes 1922
RETURN statement 1700

compared to GO TO statement 1532
REUSE= data set option 56
REUSE= system option 1924
$REVERJw. format 130
REVERSE function 1062
reverse order character data 130, 131
$REVERSw. format 131
REWIND function 1063
RHELP option

FILENAME statement, FTP access method 1500
RIGHT function 1064
right margin 1925
RIGHTMARGIN= system option 1925
RLANG system option 1926
RLE (Run Length Encoding) 19
RMF records, reading duration intervals 1325
RMFDURw. informat 1325
RMFSTAMPw. informat 1326

compared to RMFDURw. informat 1325
RMS function 1064
roman numerals 280, 281
Roman numerals 223, 226

Index 2187

ROMANw. format 226
root mean square 1064
Ross Data Compression (RDC) 20
ROUND function 1065
ROUNDE function 1072
rounding 1065
ROUNDZ function 1073
ROWS= argument, WINDOW statement 1747
ROWw.d informat 1327
RSASUSER system option 1927
RSTAT option

FILENAME statement, FTP access method 1501
Run Length Encoding (RLE) 19
RUN statement 1701
%RUN statement 1702

S
S= system option 1928
S2= argument

%INCLUDE statement 1539
S2= system option 1931
S2V= system option 1934
S370FFw.d format 227
S370FFw.d informat 1329
S370FIBUw.d format 230
S370FIBUw.d informat 1331
S370FIBw.d format 228
S370FIBw.d informat 1330
S370FPDUw.d format 233
S370FPDUw.d informat 1334
S370FPDw.d format 231
S370FPDw.d informat 1333

compared to S370FPDUw.d informat 1334
S370FPIBw.d format 234
S370FPIBw.d informat 1335

compared to S370FIBUw.d informat 1332
S370FRBw.d format 236
S370FRBw.d informat 1337
S370FZDBw.d informat 1338
S370FZDLw.d format 238
S370FZDLw.d informat 1340
S370FZDSw.d format 239
S370FZDTw.d format 240
S370FZDTw.d informat 1342
S370FZDUw.d format 241
S370FZDUw.d informat 1343
S370FZDw.d format 237
S370FZDw.d informat 1339

compared to S370FZDUw.d informat 1343
S370V files

reading on z/OS 1503
S370V option

FILENAME statement, FTP access method 1501
S370VS option

FILENAME statement, FTP access method 1501
SAS/AF software

suppressing windows 1869
SAS catalog entries, verifying existence 571
SAS catalogs 571

verifying existence 571
SAS/CONNECT software

remote session ability 1830
SAS data sets

character variables, returning values of 778
closing 577

deleting observations 1690
note markers, returning 657
numeric variables, returning values of 780
opening 955
redirecting 1688
setting data set pointer to start of 1063
variable data type, returning 1154
variable labels, returning 1146
variable length, returning 1148
variable names, returning 1149
variable position, returning 1150
writing to 1654

SAS dates 326
SAS files

ALTER passwords 14
assigning passwords to 49
preventing reading 51
preventing writing to 71

SAS functions
See functions

SAS/GRAPH
displaying output in GRAPH window 1861
terminal device driver, specifying 1827

SAS/GRAPH files
compression of 1981

SAS informats 1217
SAS invocation

initializing WORK library at 1995
SAS jobs

aborting 1392
SAS jobs, terminating 1454
SAS libraries

pathnames, returning 958
SAS log

AUTOEXEC input 1839
date and time, printing 1823
detail level of messages 1887
logging input 1621
news file for writing messages to 1889
printing messages to, all vs. top-level 1922
skipping to new page 1657
writing hardware information to 1822
writing notes to 1889
writing secondary source statements to 1944
writing source statements to 1944

SAS OPTIONS window, compared to OPTIONS state-
ment 1654

SAS procedure output files
initializing 1921

SAS procedures
using labels with variables 1876

SAS programs
including statements or data lines 1537
tracking, for IOM clients 1726

SAS sessions
aborting 1392
associating terminal with 1974
executing statements at termination 1975
issuing operating-system commands 1756
terminating 1454

SAS/SHARE
MODIFY statement and 1642

SAS statements 1383
executing at startup 1871
writing to utility data set in WORK data library 1945

2188 Index

SAS system options
changing values of 1653

SAS views
BY statement with 1409

SAS windowing environment
invoking 1831
syntax checking 1835

SASFILE statement 1703
SASHELP library

location of 1935
SASHELP= system option 1935
SASUSER library

opening for read or read-write access 1927
SAS library to use as 1936

SASUSER= system option 1936
SAVEUSER option

FILENAME statement, FTP access method 1501
SAVING function 1076
SCAN function 1077
SCANOVER option

INFILE statement 1551, 1559
scientific notation 169

reading 1285
screen readers

PDF documents for visually impaired 1906
SDF function 1085
search order

format catalogs 1854
searching

character strings 730
encoding strings for 1093
for character value, equal to first argument 1190
for numeric value, equal to first argument 1191

seasonal cycle 838
seasonal cycles 820
seasonal indexes 828
SECOND function 1087
secondary source statements

writing to SAS log 1944
Secure Sockets Layer (SSL) protocol

FILENAME statement, URL access method 1518
FILENAME statement, WebDAV access method 1522

seed values 313
SELECT groups, compared to IF, THEN/ELSE state-

ment 1536
SELECT statement 1709

comparisons 1710
examples 1710
WHEN statements in SELECT groups 1709

semicolon (;), in data lines 1413, 1429
SEQ= system option 1937
sequence field

length of numeric portion 1937
sequential access

MODIFY statement 1639
SERVER argument

FILENAME statement, SOCKET access 1512
SET CALL routine 522, 533
SET command

DATA step debugger 2137
SET statement 1712

arguments 1712
BY-group processing with 1717
combining data sets 1717
compared to INPUT statement 1580
compared to MERGE statement 1632

comparisons 1717
concatenating data sets 1717, 1718
details 1715
examples 1718
interleaving data sets 1717, 1718
merging observations 1718
one-to-one reading 1717, 1719
options 1712
reading subsets 1719
table-lookup 1719
transcoded variables and 1405, 1406

SETBOOLEANFIELD method 2103
SETBYTEFIELD method 2103
SETCHARFIELD method 2103
SETCUR method 2074
SETDOUBLEFIELD method 2103
SETFLOATFIELD method 2103
SETINIT system option 1938
SETINTFIELD method 2103
SETLONGFIELD method 2103
SETSHORTFIELD method 2103
SETSTATICBOOLEANFIELD method 2105
SETSTATICBYTEFIELD method 2105
SETSTATICCHARFIELD method 2105
SETSTATICDOUBLEFIELD method 2105
SETSTATICFLOATFIELD method 2105
SETSTATICINTFIELD method 2105
SETSTATICLONGFIELD method 2105
SETSTATICSHORTFIELD method 2105
SETSTATICSTRINGFIELD method 2105
SETSTATICtypeFIELD method 2105
SETSTRINGFIELD method 2103
SETtypeFIELD method 2103
SFTP access method

See FILENAME statement, SFTP access method
SFTP argument

FILENAME statement, SFTP access method 1507
SHAREBUFFERS option

INFILE statement 1551, 1561
shared access level

for data sets 18
shift interval

corresponding to base interval 840
short records 1559
SHR records

reading data and time values of 1344
SHRSTAMPw. informat 1344
SIGN function 1088
signs, returning 1088
Simple Mail Transfer Protocol

See FILENAME statement, EMAIL (SMTP) access
method
SIN function 1089
sine 1089

inverse hyperbolic 402
SINH function 1089
site license information

altering 1938
SIZEK format 242
SIZEKBw.d format 244
SIZEKMGw.d format 245
SIZEKMGw.d informat 1345
skewness 1090
SKEWNESS function 1090
SKIP statement 1723
SKIP= system option 1938

Index 2189

skipping lines 1938
slash (/) line pointer control

INPUT statement 1573
PUT statement 1661

SLEEP CALL routine 523
SLEEP function 1091
SMALLEST function 1092
SMFSTAMPw. informat 1347
SMTP access method

See FILENAME statement, EMAIL (SMTP) access
method
Social Security numbers 246
SOCKET access method

FILENAME statement 1512
SOCKET argument

FILENAME statement, SOCKET access 1512
softmax value 525
software images

existence of 909
SOLUTIONS menu

including in SAS windows 1939
SOLUTIONS system option 1939
sort information

for data sets 57
sort order

specifying with BY statement 1410
verifying user-specified 1942

SORT procedure
error messages 1801
memory for 1941
removing duplicate variables 1940
verifying user-specified sort order 1942

SORTDUP= system option 1940
SORTEDBY= data set option 57
SORTEQUALS system option 1940
sorting

character argument values 526
data set sort information 57
numeric argument values 527

SORTSIZE= system option 1941
SORTVALIDATE system option 1942
SOUNDEX function 1093
SOURCE= argument

DATA statement 1422
SOURCE entries

writing to 1482
source lines

as card images 1805
source statements

length of 1928, 1931
writing secondary statements to SAS log 1944
writing to SAS log 1944

SOURCE system option 1944
SOURCE window

DATA step debugger 2138
SOURCE2 argument

%INCLUDE statement 1539
SOURCE2 system option 1944
special characters not on keyboard 1809
SPEDIS function 1095
SPILL= data set option 59
spill files 59
spline

monotonicity-preserving interpolating 917
SPOOL system option 1945

SQL procedure
undo policy 1952

SQLCONSTDATETIME system option 1946
SQLREDUCEPUT= system option 1947
SQLREDUCEPUTOBS= system option 1949
SQLREDUCEPUTVALUES= system option 1950
SQLREMERGE system option 1951
SQLUNDOPOLICY= system option 1952
SQRT function 1097
square roots 1097
SSHD server

connecting at non-standard port 1510
connecting at standard port 1510
connecting Windows PUTTY client to 1511

SSL protocol
FILENAME statement, URL access method 1518
FILENAME statement, WebDAV access method 1522

SSNw. format 246
/STACK argument

DATA statement 1421
standard deviations 1097
standard error of means 1098
standard normal distributions 991

probabilities from 1007
quantiles 991

START= option
INFILE statement 1551

starting position
for reading variable-sized record input 1934

STARTLIB system option 1953
startup

assigning user-defined permanent librefs at 1953
executing SAS statements at 1871

state names
converting FIPS codes to, mixed case 738
converting FIPS codes to, uppercase 737
converting zip codes to, mixed case 1204
converting zip codes to, uppercase 1202

statement labels 1603
statement labels, jumping to 1620
statements 1383

DATA step statements 1383
declarative 1383
executable 1383
executing at page break 1469
executing at termination of SAS sessions 1975
length of 1928, 1931
writing to utility data set in WORK data library 1945

STD function 1097
STDERR function 1098
STEP command

DATA step debugger 2137
STEPCHKPT system option 1954
STEPCHKPTLIB= system option 1955
STEPRESTART system option 1956
STFIPS function 1099

compared to STNAME function 1100
compared to STNAMEL function 1101

STIMERw. informat 1348
STNAME function 1099, 1100

compared to STFIPS function 1099
compared to STNAMEL function 1101

STNAMEL function 1099, 1101
compared to STFIPS function 1099
compared to STNAME function 1100

2190 Index

stocks
call prices for European options, based on Margrabe

model 895
call prices for European options on, Black-Scholes

model 420
call prices for European options on, Garman-Kohlhagen

model 766
put prices for European options, based on Margrabe

model 897
put prices for European options on, Garman-Kohlhagen

model 768
STOP statement 1724
STOPOVER option

FILE statement 1466
INFILE statement 1551, 1559

stored compiled DATA step programs
creating 1424
executing 1425, 1456
passwords with 1426
retrieving source code from 1441

straight-line depreciation 703, 718
STREAMINIT CALL routine 532
strings

extracting substrings from 337
message digest of 900
removing blanks 1131
replacing or removing substrings 1130

STRIP function 1102
studentized maximum modulus 998
studentized range 997
student’s t distributions

noncentrality parameter 1127
probabilities from 1007
quantiles 1125

SUBJECT= option
FILENAME statement, EMAIL access method 1488

SUBPAD function 1104
subsetting 447, 781
SUBSTR (left of =) function

left of = 1105
SUBSTR (right of =) function 1106
substrings

extracting from arguments 1106
extracting strings from 337
finding position of 1016
replacing or removing 1130

SUBSTRN function 1108
sum

of absolute values, for non-missing arguments 1112
SUM function 1111

compared to SUM statement 1725
SUM method 2077
sum-of-years digits depreciation 703, 718
Sum statement 1725
SUMABS function 1112
SUMDUP method 2078
summing expressions 1725
SUMSIZE= system option 1957
survival functions 890

computing 1085
logarithms of 890

SVG documents
paging control buttons 1958

SVG output
forcing uniform scaling 1961
height of viewport 1959

preserving aspect ratio 1961
setting the viewBox 1964
title in title bar 1963
value of title element in XML file 1963
width of viewport 1966

SVGCONTROLBUTTONS system option 1958
SVGHEIGHT= system option 1959
SVGPRESERVEASPECTRATIO= system option 1961
SVGTITLE= system option 1963
SVGVIEWBOX= system option 1964
SVGWIDTH= system option 1966
SVGX= system option 1968
SVGY= system option 1969
SWAP command

DATA step debugger 2138
SYMEXIST function 1113
SYMGET function 1114
SYMGLOBL function 1115
SYMLOCAL function 1115
SYMPUT CALL routine 533
syntax checking 1970

SAS windowing environment 1835
SYNTAXCHECK system option 1970
%SYSCALL macro

CALL GRAYCODE routine with 449, 450
SYSECHO statement 1726
%SYSFUNC function

specifying formats with 86
%SYSFUNC macro

generating random number streams with function
calls 316

SYSGET function 1116
SYSMSG function 1117
SYSPARM function 1118
SYSPRINTFONT= system option 1972
SYSPROD function 1120
SYSRC autocall macro

MODIFY statement and 1639
SYSRC function 1122
SYSTEM CALL routine 536
system error numbers, returning 1122
SYSTEM function 1122
system-generated filerefs 682
system options 1769

changing settings 1775
comparisons 1777
data set interactions with 11
data set options and 1777
default settings 1770
determining current settings 1770
determining how value was set 1774
determining restricted options 1771
duration of settings 1776
hexadecimal values for 1770
information about 1774
order of precedence 1776
returning value of 776
specifying in OPTIONS statement 1769
syntax 1769

system parameter string, returning 1118

T
T distributions 565

cumulative distribution functions 565
probability density functions 971

Index 2191

tab characters
compressing 601

table-lookup
duplicate observations in master file 1719

tabled probability distribution, random numbers 507
tabs

searching character string for 395
TAN function 1123
tangent

inverse hyperbolic 403
tangents 1123
TANH function 1124
tape volume

position when closing data set 25
target variables 308
TCP/IP socket

reading and writing text through 1471
TCP/IP socket access

FILENAME statement 1512
TCPIP-options

FILENAME statement, SOCKET access 1512
temporary formats 87
terminal device driver 1827
TERMINAL system option 1974
terminals

associating with SAS session 1974
filerefs for 1476

TERMSTMT= system option 1975
TERMSTR= option

FILENAME statement, SOCKET access 1502, 1513
FILENAME statement, URL access method 1518

text editor commands, submitting as SAS statements 1443
flow into main entry 1443

TEXTURELOC= system option 1976
threaded processing 1977
threads

concurrent processing 1821
THREADS system option 1977
tilde (~) format modifier 1591, 1593
time/date functions

time, returning current 1125
TIME function 1125
time intervals

See also date and time intervals
aligned between two dates 822
based on three date or datetime values 826
cycle index 813
recommended format for 824
seasonal cycle 820, 838
seasonal index 828
validity checking 842

time stamp 1823
time values

B8601LZ format, ISO 8601 basic local time with time
zone 143

B8601TM format, ISO 8601 basic time notation, no time
zone 144

B8601TM informat, ISO 8601 basic time notation, no
time zone 1270

B8601TZ format, ISO 8601 basic time notation with time
zone 146

B8601TZ informat, ISO 8601 basic time notation with
time zone 1272

E8601TM format, ISO 8601 extended notation, no time
zone 176

E8601TM informat, ISO 8601 extended time notation, no
time zone 1293

E8601TZ format, ISO 8601 extended notation with time
zone 178

E8601TZ informat, ISO 8601 extended notation with time
zone 1294

extracting from informat values 1262
HHMMw.d format 185
HOURw.d format 187
incrementing 831
ISO 8601 extended local time with UTC offset 175
MMSSw.d format 199
TIMEAMPMw.d format 248
TIMEw.d format 247
TODw.d format 250

TIMEAMPMw.d format 248
TIMEPART function 1125
TIMEw. informat 1349
TIMEw.d format 247
TINV function 1125
title lines

printing page numbers in 1890
TITLE statement 1727
titles

customizing with BY variables 1730
customizing with ODS 1730
SVG output 1963

TITLES option
FILE statement 1466

TNONCT function 1127
TO= option

FILENAME statement, EMAIL access method 1488
TO statement, compared to LINK statement 1620
TOBSNO= data set option 66
TODAY function 1128
TODSTAMPw. informat 1351

compared to MSECw. informat 1308
TODw.d format 250
TOOLSMENU system option 1978
top margin 1978
TOPMARGIN= system option 1978
TRACE command

DATA step debugger 2139
trailing @

INPUT statement, list 1591
trailing blanks, trimming 1135
trailing plus or minus sign 1352
TRAILSGNw. informat 1352
training courses, online 1979
TRAINLOC= system option 1979
transaction data sets

modifying observations 1644
transcoded variables 1405, 1406
transcoding 89
TRANSLATE function 1129

compared to TRANWRD function 1132
transport data sets

importing 1504
transport engine

creating transport libraries with 1504
transport libraries

creating with transport engine 1504
transporting libraries 1504
TRANSTRN function 1130
TRANWRD function 1129, 1132

compared to TRANSLATE function 1129

2192 Index

treasury bills
bond-equivalent yield 704, 719
price per $100 face value 704, 719
yield computation 704, 719

triangular distributions, random numbers 510, 1057
TRIGAMMA function 1135

returning value of 1135
TRIM function 1135

compared to TRIMN function 1137
trimming trailing blanks 1135
TRIMN function 1136, 1137

compard to TRIM function 1136
TRR function 836
true expressions 796, 798
TRUNC function 1138
truncating

copied records 1562
TRUNCOVER option

INFILE statement 1552, 1559
TUw. informat 1352
two-column format 1470
two-pass access

spill files and 60
TYPE= data set option 67

U
unaligned data 1594
UNBUFFERED option

INFILE statement 1552
uncorrected sum of squares 1142
undo policy

SQL procedure 1952
uniform distributions 512, 565

cumulative distribution functions 565
probability density functions 972
random numbers 512, 1058

UNIFORM function 1139
UNIQUE option

SET statement 1715
MODIFY statement 1637

Universal Printers
compression of files 1981
filerefs for 1476

Universal Printing
enabling 1980
font embedding 1855
printer designation 1920

Universal Unique Identifier (UUID) 1143
UNIVERSALPRINT system option 1980
unsigned integer binary data, reading

IBM mainframe format 1331
unsigned integer binary (fixed-point) values

IBM mainframe format 230
unsigned packed decimal data

IBM mainframe format 233
unsigned packed decimal data, reading 1321

IBM mainframe format 1334
unsigned packed decimal format 220
unsigned zoned decimal data

IBM mainframe format 241
unsigned zoned decimal data, reading

IBM mainframe format 1343
UPCASE function 1139
$UPCASEw. format 131
$UPCASEw. informat 1254

UPDATE statement 1735
compared to MERGE statement 1632

UPDATEMODE= argument
UPDATE statement 1735

UPDATEMODE= option
MODIFY statement 1637

uppercase 1139
converting character data to 131
converting character expressions to 1139
reading data as 1254
searching character string for 397
translating input to 1804
UPCASE function 1139
$UPCASEw. informat 1254
writing character data in 114

UPRINTCOMPRESSION system option 1981
URL access method

See FILENAME statement, URL access method
URLDECODE function 1140
URLENCODE function 1141
URLs

decoding 1140
encoding 1141
escape syntax 1140, 1141

user-defined formats 87, 99
user-defined librefs

assigning at startup 1953
USER= option

FILENAME statement, FTP access method 1501
FILENAME statement, SFTP access method 1509
FILENAME statement, URL access method 1518
FILENAME statement, WebDAV access method 1522

user-supplied holidays 1873
USER= system option 1982
USS function 1142
UTILLOC= system option 1983
UUID Generator Daemon

host and port 1985
number of UUIDs to acquire 1984

UUID (Universal Unique Identifier) 1143
UUIDCOUNT= system option 1984
UUIDGEN function 1143
UUIDGENDHOST= system option 1985

V
V6CREATEUPDATE= system option 1986
validating data 334
VALIDFMTNAME= system option 1987
VALIDVARNAME= system option 1988

ANYFIRST function and 383
ANYNAME function and 389

values
signs, returning 1088

VAR function 1144
VARFMT function 1144
variable-length records

reading 1560
scanning for character string 1559

variable lists
Euclidean norm and 664
Lp norm and 894

variable names
rules for valid names 1988
searching character string for first character of 383
searching character string for valid character in 389

Index 2193

variable-sized record input
starting position for reading 1934

variables 454, 537
assigning input to 1569
associating formats with 1403, 1529
associating informats with 1403, 1405, 1566
associating labels with 1403
associating length with 1403
BY variables 1410
character, returning values of 778
data type, returning 1154
dropping from data set processing 22
ERROR, setting 1455
FIRST. 1408
format decimal values, returning 1157
format names, returning 1159
format not found 1854
format width, returning 1161
informat decimal values, returning 1168
informat names, returning 1170
informat width, returning 1172
keeping for data set processing 36
labeling 1601
labels, assigning 454
labels, returning 1147, 1175
LAST. 1408
length, returning 1148
length, specifying 1605
names, assigning 537
names, returning 1149, 1180
numeric, returning values of 780
operating system, returning 1116
position, returning 1150
renaming 52, 1692
retaining values 1696
size, returning 1177
target variables 308
transcoded 1405, 1406
type, returning 1182
using labels with, in SAS procedures 1876
values, returning 1181

variance 1144
VARINFMT function 1146
VARLABEL function 1147
VARLEN function 1148
VARLENCHK= system option 1990
VARNAME function 1149
VARNUM function 1150
VARRAY function 1152

compared to VARRAYX function 1153
VARRAYX function 1152, 1153

compared to VARRAY function 1152
VARTYPE function 1154
$VARYINGw. format 132
$VARYINGw. informat 1255
VAXRBw.d format 252
VAXRBw.d informat 1354
VERIFY function 1155
vertical tabs

searching character string for 395
VFORMAT function 1156

compared to VFORMATX function 1164
VFORMATD function 1157

compared to VFORMATDX function 1158
VFORMATDX function 1157, 1158

compared to VFORMATD function 1157

VFORMATN function 1159
compared to VFORMATNX function 1160

VFORMATNX function 1159, 1160
compared to VFORMATN function 1159

VFORMATW function 1161
compared to VFORMATWX function 1162

VFORMATWX function 1162
VFORMATX function 1156, 1163

compared to VFORMAT function 1156
VIEW= argument

DATA statement 1421
view buffers 45

size of 44
VIEWMENU system option 1992
VINARRAY function 1164

compared to VINARRAYX function 1166
VINARRAYX function 1166

compared to VINARRAY function 1165
VINFORMAT function 1167

compared to VINFORMATX function 1174
VINFORMATD function 1168

compared to VINFORMATDX function 1169
VINFORMATDX function 1169

compared to VINFORMATD function 1168
VINFORMATN function 1170

compared to VINFORMATNX function 1171
VINFORMATNX function 1171

compared to VINFORMATN function 1170
VINFORMATW function 1172

compared to VINFORMATWX function 1174
VINFORMATWX function 1173

compared to VINFORMATW function 1173
VINFORMATX function 1167, 1174

compared to VINFORMAT function 1167
visual impairment

screen readers for PDF documents 1906
VLABEL function 1147, 1175

compared to VARLABEL function 1147
compared to VLABELX function 1176

VLABELX function 1176
compared to VLABEL function 1175

VLENGTH function 1148, 1177
compared to VARLEN function 1148
compared to VLENGTH function 1179

VLENGTHX function 1178
VMS

zoned numeric data 253, 1355
VMS format

real binary (floating-point) data in 252
VMSZNw.d format 253
VMSZNw.d informat 1355
VNAME CALL routine 537
VNAME function 1180
VNAMEX function 1181

compared to VNAME function 1180
VNFERR system option 1993
VTYPE function 1182

compared to VTYPEX function 1183
VTYPEX function 1183

compared to VTYPE function 1182
VVALUE function 1184
VVALUEX function 1185

W
$w. format 134

2194 Index

$w. informat 1256
compared to $CHARw. informat 1243

WAIT_MILLISECONDS= option
FILENAME statement, SFTP access method 1502, 1509

Wald distributions 566
cumulative distribution functions 566
probability density functions 972

WATCH command
DATA step debugger 2139

w.d format 255
w.d informat 1363, 1373

compared to Ew.d informat 1285
compared to NUMXw.d informat 1309
compared to ZDw.d informat 1371

Web applications
functions for 342

Web sites
accessing files at 1519, 1523

WebDAV access method
See FILENAME statement, WebDAV access method

WEEK function 1186
WEEKDATEw. format 256
WEEKDATXw. format 257
WEEKDAY function 1190
weekdays

dates of 953
WEEKDAYw. format 259
weeks

number of week, date value, U algorithm 1356
week number, date value, V algorithm 1358
week number, date value, W algorithm 1361
week number, decimal format, U algorithm 260
week number, decimal format, V algorithm 261
week number, decimal format, W algorithm 263

WEEKUw. format 260
WEEKUw. informat 1356
WEEKVw. format 261
WEEKVw. informat 1358
WEEKWw. format 263
WEEKWw. informat 1361
Weibull distributions 566

cumulative distribution functions 566
probability density functions 972

WHEN statement
in SELECT groups 1709

WHERE= data set option 68
WHERE expressions

evaluating updated data sets against 69
index search for 32
overriding indexes 32
sequential search for 32
specifying an index to match conditions 30

WHERE processing
OBS= data set option with 41
OBS= system option with 1893
renaming variables in procedures 53

WHERE statement 1740
compared to IF statement, subsetting 1534

WHEREUP= data set option 69
WHICHC function 1190
WHICHN function 1191
white-space characters

searching character string for 395
Williams’ test 998, 1004
%WINDOW macro, compared to WINDOW state-

ment 1752

WINDOW statement 1745
windows, displaying 1441, 1745
Windows PUTTY client

connecting to SSHD server 1511
WORDDATEw. format 265
WORDDATXw. format 266
WORDFw. format 267
words

character position in a string 730
converting to proper case 1009
counting, in character strings 614
number of a word in a string 730
replacing all occurrences of 1130
searching character expressions for 804
writing numeric values as 268

WORDSw. format 268
WORK data library

initializing at SAS invocation 1995
specifying 1994
writing SAS statements to utility data set in 1945

WORK files
erasing at end of session 1995

WORK= system option 1994
WORKINIT system option 1995
WORKTERM system option 1995
WRITE= data set option 71
WRITE passwords

assigning to SAS files 49, 71
writing

from directories 1505
writing character data 111, 134
writing values to memory 474

X
X command, compared to X statement 1757
X statement 1756
XML files

value of title element 1963

Y
YEAR function 1193
YEARCUTOFF= system option 1996

changing with GETOPTION function 777
YEARw. format 269
yield

bond-equivalent 704, 719
discounted security 706, 720
odd first period 698, 715
odd last period 699, 716
security paying interest at maturity 707, 721
security paying periodic interest 706, 720
treasury bills 704, 719

YIELDP function 1193
YMDDTTMw.d finformat 1364
YRDIF function 1195
YYMMDDw. format 273
YYMMDDw. informat 1366
YYMMDDxw. format 275
YYMMNw. informat 1368
YYMMw. format 270
YYMMxw. format 271
YYMONw. format 276
YYQ function 1196
YYQRw. format 280

Index 2195

YYQRxw. format 281

YYQw. format 277
YYQw. informat 1369
YYQxw. format 279

Z
z/OS

reading S370V files 1503
ZDBw.d informat 1372

ZDVw.d informat 1373
See also w.d informat
See also ZDw.d informat
compared to ZDw.d informat 1371

ZDw.d format 284
ZDw.d informat 1370, 1373

compared to ZDVw.d 1373

zero
numeric data with leading zeros 283

zeros, binary
converting to blanks 1244

zip codes
city name and postal code for 1197
converting to FIPS codes 1201
converting to mixed case state names 1204

converting to postal codes 1205
converting to uppercase state names 1202
extracting from data sets 1017
geodetic distance between two 1199

ZIPCITY function 1197
ZIPCITYDISTANCE function 1199
ZIPFIPS function 1201

ZIPNAME function 1202

ZIPNAMEL function 1204

ZIPSTATE function 1205

zoned decimal data 91, 1224

defined 1223

definition 90

formats and 90

formats and informats for 1226

IBM mainframe format 237

languages supporting 92, 1225

platforms supporting 91, 1225

summary of formats and informats 92

zoned decimal data, reading 1370, 1372

IMB mainframe format 1339

zoned decimal format 284

zoned decimal leading-sign data

IBM mainframe format 238

zoned decimal leading-sign data, reading

IBM mainframe format 1340

zoned decimal separate leading-sign data

IBM mainframe format 239

zoned decimal separate trailing-sign data

IBM mainframe format 240

zoned decimal separate trailing-sign data, reading

IBM mainframe format 1342

zoned numeric data

MicroFocus COBOL 253, 1355

VMS 253, 1355

zoned separate leading-sign data, reading

IBM mainframe format 1341

Zw.d format 283

Your Turn

We welcome your feedback.
� If you have comments about this book, please send them to yourturn@sas.com.

Include the full title and page numbers (if applicable).
� If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

s u p p o r t . s a s . c o m / s a s p r e s s
SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

•	 Online	help	that	is	built	into	the	software.	
•	 Tutorials	that	are	integrated	into	the	product.	
•	 Reference	documentation	delivered	in	HTML	and	PDF	– free on the Web.
•	 Hard-copy	books.	

s u p p o r t . s a s . c o m / p u b l i s h i n g
SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author
podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

s u p p o r t . s a s . c o m / s p n

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other	brand	and	product	names	are	trademarks	of	their	respective	companies.	©	2009	SAS	Institute	Inc.	All	rights	reserved.	518177_1US.0109

http://support.sas.com/saspress
http://support.sas.com/publishing
http://support.sas.com/LE

	Contents
	What’s New
	Overview
	SAS System Features
	Checkpoint Mode and Restart Mode
	Support for ISO 8601 Basic and Extended Time Notations
	Support for IPv6
	Universal Printing and New TrueType Fonts
	SAS Logging Facility Language Elements
	WHERE-Expression Processing
	DATA Step Java Object
	Viewing Help and ODS Output in the Remote Browser

	SAS Language Elements
	Data Set Options
	Formats
	Functions and CALL Routines
	Informats
	Statements
	System Options
	DATA Step Object Attributes, Operators, and Methods

	Dictionary of Language Elements
	Introduction to the SAS 9.2 Language Reference: Dictionary
	The SAS Language Reference: Dictionary
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	SAS Data Set Options
	Definition of Data Set Options
	Syntax
	Using Data Set Options
	Using Data Set Options with Input or Output SAS Data Sets
	How Data Set Options Interact with System Options

	Data Set Options by Category
	Dictionary
	Data Set Options Documented in Other SAS Publications

	Formats
	Definition of Formats
	Syntax
	Using Formats
	Ways to Specify Formats
	Permanent versus Temporary Association
	User-Defined Formats

	Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms
	Definitions
	How Bytes are Ordered Differently
	Writing Data Generated on Big Endian or Little Endian Platforms
	Integer Binary Notation and Different Programming Languages

	Data Conversions and Encodings
	Working with Packed Decimal and Zoned Decimal Data
	Definitions
	Types of Data
	Platforms Supporting Packed Decimal and Zoned Decimal Data
	Languages Supporting Packed Decimal and Zoned Decimal Data
	Summary of Packed Decimal and Zoned Decimal Formats and Informats

	Working with Dates and Times Using the ISO 8601 Basic and Extended Notations
	ISO 8601 Formatting Symbols
	Writing ISO 8601 Date, Time, and Datetime Values
	Writing ISO 8601 Duration, Datetime, and Interval Values

	Formats by Category
	Dictionary
	Formats Documented in Other SAS Publications

	Functions and CALL Routines
	Definitions of Functions and CALL Routines
	Definition of Functions
	Definition of CALL Routines

	Syntax
	Syntax of Functions
	Syntax of CALL Routines

	Using Functions and CALL Routines
	Restrictions Affecting Function Arguments
	Using the OF Operator with Temporary Arrays
	Characteristics of Target Variables
	Notes about Descriptive Statistic Functions
	Notes about Financial Functions
	Using DATA Step Functions within Macro Functions
	Using CALL Routines and the %SYSCALL Macro Statement
	Using Functions to Manipulate Files

	Function Compatibility with SBCS, DBCS, and MBCS Character Sets
	Overview
	I18N Level 0
	I18N Level 1
	I18N Level 2

	Using Random-Number Functions and CALL Routines
	Types of Random-Number Functions
	Seed Values
	Understanding How Functions Generate a Random-Number Stream
	Comparison of Seed Values in Random-Number Functions and CALL Routines
	Generating Multiple Streams from Multiple Seeds in Random-Number CALL Routines
	Generating Multiple Variables from One Seed in Random-Number Functions
	Using the RAND Function as an Alternative
	Effectively Using the Random-Number CALL Routines
	Comparison of Changing the Seed in a CALL Routine and in a Function

	Date and Time Intervals
	Definition of a Date and Time Interval
	Interval Names and SAS Dates
	Incrementing Dates and Times by Using Multipliers and by Shifting Intervals
	Commonly Used Time Intervals
	Retail Calendar Intervals: ISO 8601 Compliant
	Best Practices for Custom Interval Names

	Pattern Matching Using Perl Regular Expressions (PRX)
	Definition of Pattern Matching
	Definition of Perl Regular Expression (PRX) Functions and CALL Routines
	Benefits of Using Perl Regular Expressions in the DATA Step

	Using Perl Regular Expressions in the DATA Step
	Syntax of Perl Regular Expressions
	Example 1: Validating Data
	Example 2: Replacing Text
	Example 3: Extracting a Substring from a String
	Example 4: Another Example of Extracting a Substring from a String

	Writing Perl Debug Output to the SAS Log
	Perl Artistic License Compliance
	Base SAS Functions for Web Applications
	Functions and CALL Routines by Category
	Dictionary
	Functions and CALL Routines Documented in Other SAS Publications
	References

	Informats
	Definition of Informats
	Syntax
	Using Informats
	Ways to Specify Informats
	Permanent versus Temporary Association
	User-Defined Informats

	Byte Ordering for Integer Binary Data on Big Endian and Little Endian Platforms
	Definitions
	How the Bytes Are Ordered
	Reading Data Generated on Big Endian or Little Endian Platforms
	Integer Binary Notation in Different Programming Languages

	Working with Packed Decimal and Zoned Decimal Data
	Definitions
	Types of Data
	Platforms Supporting Packed Decimal and Zoned Decimal Data
	Languages Supporting Packed Decimal and Zoned Decimal Data
	Summary of Packed Decimal and Zoned Decimal Formats and Informats

	Reading Dates and Times Using the ISO 860 Basic and Extended Notations
	ISO 8601 Formatting Symbols
	Reading ISO 8601 Date, Time, and Datetime Values
	Reading ISO 8601 Duration, Interval, and Datetime Values

	Informats by Category
	Dictionary
	Informats Documented in Other Base SAS Publications

	Statements
	Definition of Statements
	DATA Step Statements
	Executable and Declarative Statements
	DATA Step Statements by Category

	Global Statements
	Definition
	Global Statements by Category

	Dictionary
	SAS Statements Documented in Other SAS Publications

	SAS System Options
	Definition of System Options
	Syntax
	Specifying System Options in an OPTIONS Statement
	Specifying Hexadecimal Values

	Using SAS System Options
	Default Settings
	Saving and Loading SAS System Options
	Determining Which Settings Are in Effect
	Restricted Options
	Determining How a SAS System Option Value Was Set
	Obtaining Descriptive Information about a System Option
	Changing SAS System Option Settings
	How Long System Option Settings Are in Effect
	Order of Precedence
	Interaction with Data Set Options

	Comparisons
	SAS System Options by Category
	Dictionary
	SAS System Options Documented in Other SAS Publications

	Dictionary of Component Object Language Elements
	Component Objects
	DATA Step Component Objects
	The DATA Step Component Interface
	Dot Notation and DATA Step Component Objects
	Definition
	Syntax

	Rules When Using Component Objects

	Hash and Hash Iterator Object Language Elements
	Java Object Language Elements
	Java Object Methods by Category
	Dictionary

	Appendixes
	DATA Step Debugger
	Introduction
	Definition: What Is Debugging?
	Definition: The DATA Step Debugger

	Basic Usage
	How a Debugger Session Works
	Using the Windows
	Entering Commands
	Working with Expressions
	Assigning Commands to Function Keys

	Advanced Usage: Using the Macro Facility with the Debugger
	Using Macros as Debugging Tools
	Creating Customized Debugging Commands with Macros
	Debugging a DATA Step Generated by a Macro

	Examples
	Example 1: Debugging a Simple DATA Step
	Example 2: Working with Formats
	Example 3: Debugging DO Loops
	Example 4: Examining Formatted Values of Variables

	Commands
	List of Debugger Commands
	Debugger Commands by Category

	Dictionary

	Perl Regular Expression (PRX) Metacharacters
	Tables of Perl Regular Expression (PRX) Metacharacters
	General Constructs
	Basic Perl Metacharacters
	Metacharacters and Replacement Strings
	Other Quantifiers
	Greedy and Lazy Repetition Factors
	Class Groupings
	Look-Ahead and Look-Behind Behavior
	Comments and Inline Modifiers
	Selecting the Best Condition by Using Combining Operators

	SAS Utility Macro
	Recommended Reading
	Index

